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Abstract. Volatility and oxygen-to-carbon (O/C) molar ratios are critical properties of organic aerosols (OA),
influencing their viscosity, hygroscopicity, and light absorption thereby resulting in impacts on air quality and
climate. While atmospheric models often track these properties to simulate OA evolution, their performance
remains insufficiently evaluated. This study assessed OA volatility and O/C simulations by comparing CMAQ
model outputs using official AERO7i and community-contributed two-dimensional volatility basis set (2D-VBS)
schemes, against two field measurements in eastern China. Apart from baseline modelling, two additional sim-
ulations using AERO7i incrementally incorporated low-volatility/semi-volatile/intermediate-volatility organic
compound (L/S/IVOC) emissions and enhanced anthropogenic secondary organic aerosol (SOA) yields. An op-
timized 2D-VBS simulation further constrained O/C ratios of primary organic aerosol (POA) emissions using
observations. The results showed that OA mass concentrations were underestimated by 24 % in 2D-VBS and
27 %–34 % with updated AERO7i, likely due to underrepresented vehicular POA emissions and nighttime SOA
formation. All simulations captured the substantial contribution of low-volatility products (C∗ < 0.1 µg m−3) but
failed to reproduce the detailed volatility distributions within this range. Simulated O/C ratios were biased low
in aged air masses (notably with 2D-VBS) and slightly overestimated in areas with more local emissions using
updated AERO7i. Misrepresentations of OA volatility significantly led to biases in viscosity predictions, while
the hygroscopicity parameter played a more important role. These findings highlight the need to better constrain
OA volatility and O/C in models to improve projections of OA air quality and climate impacts.
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1 Introduction

Organic aerosols (OA) are a major component of fine partic-
ulate matter (PM2.5), accounting for 20 %–90 % of its mass
(Jimenez et al., 2009; Zhang et al., 2007), and play a critical
role in global air quality, climate, and public health (Nault5

et al., 2021; Shrivastava et al., 2017; Wu et al., 2018). OA
can be classified as either primary organic aerosol (POA),
emitted directly from sources such as combustion, or sec-
ondary organic aerosol (SOA), formed through the oxida-
tion of volatile organic compounds (VOCs) and semi-volatile10

and intermediate volatility organic compounds (S/IVOCs)
(Hallquist et al., 2009; Heald and Kroll, 2020). The chem-
ical aging of OA involves functionalization (incorporation of
oxygen-containing groups), fragmentation, and oligomeriza-
tion. These processes alter OA’s composition and physico-15

chemical properties, including volatility, oxidation state, vis-
cosity, hygroscopicity, and light absorption (Chacon-Madrid
and Donahue, 2011; Tritscher et al., 2011; Massoli et al.,
2010; Rothfuss and Petters, 2017; Hems et al., 2021). Un-
derstanding these evolving properties is crucial for accurately20

predicting the impacts of OA on climate, air quality, and pub-
lic health in atmospheric and climate models (Tsigaridis and
Kanakidou, 2018).

Among the various properties of OA, volatility and the
oxygen-to-carbon molar ratio (O/C, an indicator of the ex-25

tent of oxygenation) are pivotal for constraining their atmo-
spheric fate and impacts, and they are therefore important
parameters in chemical transport models (CTMs) (Donahue
et al., 2013; Rao and Vejerano, 2018). The two-dimensional
volatility basis set (2D-VBS), a widely adopted framework30

in OA modeling, tracks volatility and O/C to simulate chem-
ical evolution (Donahue et al., 2011). Volatility primarily
governs the partitioning of organic compounds between par-
ticulate and gas phases at equilibrium, thereby influencing
their atmospheric behavior (e.g., chemical aging, transport,35

and deposition) and overall OA concentrations (Donahue et
al., 2014; Shiraiwa and Seinfeld, 2012). Li et al. (2020) re-
cently parameterized the glass transition temperature (Tg, at
which a phase transition between amorphous solid and semi-
solid states occurs, and viscosity changes dramatically) as a40

function of volatility and O/C. This parametrization high-
lights the link between volatility and phase state (or viscos-
ity), which influence the kinetics of gas-particle interactions,
with implications for diffusion, partitioning, and heteroge-
neous reaction rates (Zaveri et al., 2014; Reid et al., 2018;45

Marshall et al., 2018; Li and Shiraiwa, 2019). Furthermore,
OA volatility affects cloud condensation nuclei (CCN) ac-
tivity due to its connection with particle hygroscopicity and
growth dynamics (Liu and Matsui, 2022; Zhang et al., 2023).

The O/C ratios of OA influence their viscosity and hy-50

groscopicity, similar to the effects of volatility (Massoli et
al., 2010; Koop et al., 2011). The O/C ratios and volatility of

OA components are largely coupled, with more volatile com-
ponents typically exhibiting lower O/C ratios. Lower O/C
ratios favor phase separation under specific relative humidity 55

conditions (Pye et al., 2017). Conversely, elevated O/C ratios
indicate increased hygroscopicity resulting in enhanced wa-
ter uptake, thereby increasing their potential to act as cloud
condensation nuclei and ice nuclei (Mahrt et al., 2022; Malek
et al., 2023; Song et al., 2012; Tian et al., 2022). Further- 60

more, O/C ratios substantially impact the optical properties
of OA (Xu et al., 2024). During aging, bulk OA generally
darkens with increasing O/C, while excessive oxidation at
higher O/C levels diminishes light absorption (Jiang et al.,
2022; Duan et al., 2024). These findings suggest that O/C 65

could serve as a critical parameter in radiative forcing esti-
mation in climate models.

A few prior studies have revealed significant uncertainties
in OA volatility and O/C simulations with CTMs. For in-
stance, Saha et al. (2017) demonstrated that the VBS module 70

in WRF-Chem significantly underestimated OA concentra-
tions, and failed to reproduce low-volatility OA components
with effective saturation concentration (C∗) between 10−4

and 10−1 µg m−3. This discrepancy could be partially ex-
plained by underestimated SOA formation due to wall losses 75

of condensable vapors and missing low-volatility products,
with the parameters empirically derived from aerosol growth
experiments. In contrast, parameters derived from dual ther-
modenuder (TD) measurements predicted 2–4× higher SOA
yields, and produced more low-volatility products under 80

atmospherically relevant conditions (Saha and Grieshop,
2016). Additionally, the lack of S/IVOC emissions in the
model likely contributed to biases in simulated OA volatility
distributions (Xu et al., 2019). Regarding O/C simulations,
Tsimpidi et al. (2018) introduced the ORACLE 2-D mod- 85

ule into a global chemistry-climate model, which tended to
overpredict OA O/C ratios in urban downwind areas. Over-
all, the model exhibited a 5 %–7 % overestimation of O/C
for OA and SOA, with the most pronounced positive biases
in summer. The regional model Community Multiscale Air 90

Quality (CMAQ) also overestimated OM/OC ratio (closely
related to O/C) of OA compared to observations in the south-
eastern US (Pye et al., 2017). However, accounting for in-
teractions between OA and aerosol water, which enhance
semi-volatile partitioning by increasing the available parti- 95

tioning medium, could reduce model biases in OM/OC. The
air quality model Polyphemus underestimated O/C in the
northwestern Mediterranean region, even after implementing
multi-generational oxidation processes, highlighting insuffi-
cient representation of aging processes in the model (Chrit 100

et al., 2018). While model performance varies across differ-
ent regions and models globally, simulations of OA volatility
and O/C ratios in the polluted atmospheres of China remain
insufficiently explored.
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In this study, we evaluated the performance of the CMAQ
model in simulating OA mass concentration, volatility dis-
tribution and O/C ratio, by comparing to the observations at
two sites in eastern China. The evaluation focused on two
OA schemes that differed in their level of complexity regard-5

ing the representation of volatility and O/C. Additionally,
two adjustments to the default CMAQ scheme were evalu-
ated: (1) adding S/IVOC emissions with SOA formation from
these precursors, and (2) updating the SOA yields of aro-
matic species (benzene, toluene, xylene) and polycyclic aro-10

matic hydrocarbons (PAHs). The assessment also explored
how uncertainties in OA volatility and O/C propagated to
Tg and viscosity predictions. These efforts aimed to provide
valuable insights into improving OA simulations (in terms of
both mass concentrations and properties), and their implica-15

tions for viscosity and phase state modeling in CTMs.

2 Methods and Data

2.1 Model configuration

In this study, two versions of the CMAQ model
(https://epa.gov/cmaq, last access: 6 November 2023),20

the official v5.3.2 (Appel et al., 2021) (available from
https://doi.org/10.5281/zenodo.4081737, US EPA Of-
fice of Research and Development, 2020TS1 ) and
v5.4 with a community contribution (available from
https://doi.org/10.5281/zenodo.7218076, US EPA Office25

of Research and Development, 2022TS2 ), were used to
perform nested simulations with horizontal resolutions of
36 and 12 km. The outer domain encompassed most of
China, while the inner domain focused on eastern China
(Fig. S1 in the Supplement). The simulation period covered30

17 March–21 April and 29 September–21 November 2018,
aligning with the campaigns conducted in Dongying (DY)
and Guangzhou (GZ), respectively. Meteorological fields
were generated using the Weather Research and Forecasting
(WRF) model version 4.2.1. Anthropogenic emissions for35

China were represented using the 2018 high-resolution
(0.25°× 0.25°) Multi-resolution Emission Inventory for
China (MEIC) v1.4 (http://www.meicmodel.org, last access:
9 September 2023), while the Regional Emission Inventory
in Asia (REAS) v3.2.1 (https://www.nies.go.jp/REAS/,40

last access: 12 September 2023) was used for the rest
of Asia. Emissions from open burning were obtained
from the Fire Inventory from NCAR (FINN) v1.5 (https:
//www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar,
last access: 13 January 2021), and biogenic emissions were45

calculated using the Model of Emissions of Gases and
Aerosols from Nature (MEGAN) v2.1 (Guenther et al.,
2012). The simulations utilized the SAPRC07tic gas-phase
mechanism within CMAQ (Xie et al., 2013). The capabilities
of WRF and CMAQ in simulating meteorological factors50

and major pollutants (NO2, SO2, O3 and PM2.5) were
evaluated (Tables S1–S2 in the Supplement).

2.2 OA representations

All the simulations modeled SOA formation from isoprene,
glyoxal, and methylglyoxal, as well as NO3-initiated oxi- 55

dation of monoterpenes, using consistent parameterizations
from CMAQ’s official AERO7i module (see Fig. S2). Specif-
ically, isoprene SOA formed via the aqueous uptake of iso-
prene epoxydiols (IEPOX)/methacrylic acid epoxide (MAE),
and monoterpene-derived organic nitrates (ONs) via NO3 ox- 60

idation were explicitly represented (Pye et al., 2013; Pye et
al., 2015). Semi-volatile isoprene SOA, including contribu-
tions from non-aqueous pathways, was parameterized with
the two-product model (Carlton et al., 2010), which utilized
mass yields of two products (αi , i = 1, 2) and their effective 65

saturation concentrations (C∗i , i = 1,2) to simulate aerosol
growth observed in experiments (Pankow, 1994). All the sim-
ulations accounted for multiphase SOA formation from gly-
oxal and methylglyoxal both in cloud (Carlton et al., 2008)
and on wet aerosol surfaces (Pye et al., 2015). 70

Five simulations were conducted to evaluate model per-
formance in reproducing OA mass concentrations, volatility
distributions, and O/C ratios against observational data (Ta-
ble 1). All simulations retained the same AERO7i heteroge-
neous chemistry and selected other systems (see above), and 75

focused on different representations of key volatility-based
systems. The simulation using the standard AERO7i treat-
ment including SOA from anthropogenic precursors (e.g.,
aromatics, long-chain alkanes) (Qin et al., 2021), monoter-
penes via O3/OH oxidation (Xu et al., 2018), and sesquiter- 80

penes (Carlton et al., 2010) was referred to as a 1-D VBS
for simplicity. In another simulation, the 2D-VBS framework
(Zhao et al., 2015; Zhao et al., 2016; Chang et al., 2022)
was used for anthropogenic VOCs, monoterpenes (exclud-
ing NO3 oxidation pathways), and sesquiterpenes. Addition- 85

ally, in 2D-VBS, the oxidation of POA (or L/S/IVOCs) was
represented differently compared to the 1D-VBS simulations
(Murphy et al., 2017).

The 1D-VBS simulation reflected the default CMAQ con-
figuration without modifications to emissions or chemistry. 90

The 1D-VBS_E simulation incorporated additional IVOC
emissions, and updated emissions of S/LVOCs (histori-
cally classified as POA), based on MEICv1.4 (Sect. S1 in
the Supplement). L/SVOC and IVOC emissions in each
volatility bin were scaled from POA and total VOC emis- 95

sions, respectively, using source-specific scaling factors (Ta-
ble S3). Since the lowest volatility bin for emissions in
the standard 1D-VBS parameterization was set to C∗ =

10−1 µg m−3, the difference between original POA emissions
and L/SVOC emissions within the model-resolved volatil- 100

ity range (−1≤ logC∗(µgm−3)≤ 2) was reclassified as non-
volatile (C∗ = 10−10 µg m−3, see Fig. S3) and treated with
heterogeneous aging chemistry (Simon and Bhave, 2012).
This adjustment conserved POA mass while addressing the
model’s limitations in volatility coverage. The estimated 105

nation-wide L/SVOC and IVOC emissions, which were 3.18

https://epa.gov/cmaq
https://doi.org/10.5281/zenodo.4081737
https://doi.org/10.5281/zenodo.7218076
http://www.meicmodel.org
https://www.nies.go.jp/REAS/
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
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Table 1. Description of the five simulations conducted in this study.

Case OA modeling

1D-VBS Default CMAQv5.3 AERO7i configuration

1D-VBS_E 1D-VBS with added emissions of L/S/IVOCs, SOA formation from IVOC oxidation and an updated volatility distribu-
tion of semi-volatile POA

1D-VBS_EY 1D-VBS_E with updated SOA yields for aromatic and PAH precursors, accounting for vapor wall loss effects and
autoxidation pathways

2D-VBS CMAQv5.4 with the 2D-VBS community contribution. Emission inputs closely align with the 1D-VBS_E simulation

2D-VBS_A 2D-VBS with modified O/C ratio distribution of POA based on observational constraints

and 6.68 Tg yr−1, respectively, were higher than those re-
ported by Zheng et al. (2023), but agreed well with Chen et
al. (2024) in magnitude (Table S4, Figs. S4–S5), as both this
study and Chen et al. (2024) applied a ratio-based method-
ology combined with the MEIC emission inventory. In con-5

trast, Zheng et al. (2023) employed a different approach, us-
ing emission factors and activity data obtained from ABa-
CAS (Air Benefit and Cost and Attainment Assessment Sys-
tem) and Chang et al. (2022), which led to larger discrep-
ancies relative to our estimates. The source contributions10

and volatility distributions of L/S/IVOCs differed slightly be-
tween studies. For example, our estimates indicated a lower
contribution of solvent use to IVOCs compared with Zheng
et al. (2023) (40 % vs. 57 %), and a higher contribution from
residential sources to S/LVOCs (49 % vs. 30 %). In addi-15

tion, the differences in emission magnitudes were primar-
ily in the IVOC volatility range, whereas discrepancies in
L/SVOCs were smaller. In the 1D-VBS_E simulation, the
aging of L/SVOCs followed the POA treatment established
in prior studies (Donahue et al., 2012; Murphy et al., 2017),20

where a fraction of L/SVOCs was oxidized in the gas phase
to form SOA and the volatility distribution continually up-
dated. The IVOC-derived SOA formation adopted the param-
eterization of Lu et al. (2020). In the 1D-VBS_EY simula-
tion, SOA yields for benzene, toluene, xylene, and naphtha-25

lene oxidation were updated (Table S5) to account for va-
por wall losses and formation of highly oxygenated organic
molecules (HOMs) via autoxidation (Bilsback et al., 2023).

The 2D-VBS scheme (Zhao et al., 2015; Zhao et al., 2016;
Chang et al., 2022), was implemented into CMAQv5.4 and30

evaluated using emission inputs largely consistent with the
1D-VBS_E simulation. The major differences in emissions
included (1) reallocating non-volatile POA to the LVOC
species with C∗ of 10−2 µg m−3 (i.e., the least volatile pri-
mary emission category in 2D-VBS); and (2) mapping SVOC35

emissions with C∗ of 10−1 µg m−3 to the C∗ = 10−2 µg m−3

bin as well (due to the absence of a corresponding volatil-
ity bin in the 2D-VBS scheme). L/SVOC aging products
were classified as SOA. Initial O/C ratio distributions for
L/S/IVOC emissions across volatility bins followed 2D-VBS40

default profiles. However, these default assumptions led to
underestimated POA O/C ratios (see Sect. 3.3). Therefore,
we conducted the 2D-VBS_A simulation, wherein sector-
specific O/C ratios for POA emissions from gasoline/diesel
vehicles, non-road mobile sources, power plants and indus- 45

trial sources were constrained using observational averages
in eastern China (Table S6).

2.3 Volatility distribution and O/C ratio modelling

The volatility (expressed in terms of C∗) and O/C ratios for
OA surrogate species across all the simulations were sum- 50

marized in Tables S7–S8. Volatilities for all species, ex-
cept those in VBS-based parameterizations, were aligned
with surrogate data in chamber experiments. Non-volatile
POA and SOA formed via pathways such as aromatic ox-
idation under low-NOx conditions, aqueous-phase uptake 55

of IEPOX/MAE/glyoxal/methylglyoxal, ON hydrolysis and
particle-phase oligomerization were assigned a fixed C∗

of 10−10 µg m−3 for simplicity. The volatility of primary
L/S/IVOCs in the condensed phase and aged OA, was de-
scribed in detail by Murphy et al. (2017). In the 1D-VBS_EY 60

simulation, a new SOA species with C∗ = 0.1µg m−3 (un-
represented in the base 1D-VBS in CMAQ) was explicitly
incorporated. The volatility distribution of total SOA (POA)
was then derived using simulated concentrations of individ-
ual SOA (POA) species. 65

The overall O/C ratios for SOA, POA, and OA were calcu-
lated using the mole-weighted averages of the O/C values for
individual species. The O/C ratios of OA species were calcu-
lated based on mass-based OM/OC ratios provided with the
CMAQ code. The OM/OC ratios for SOA were primarily 70

derived from chamber experiments (Pye et al., 2017; Carl-
ton et al., 2010; Xu et al., 2018). For example, SOA species
with relatively well-known structures (e.g., IEPOX-/MAE-
derived SOA, isoprene dinitrates and monoterpene nitrates),
along with seven VBS bins representing monoterpene SOA 75

formed via O3 and OH oxidation, adopted OM/OC values
and other molecular properties from surrogate compounds
identified in chamber studies. For other SOA species, once
their C∗ values were determined (as described above) and
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the number of carbons (nC) was assumed, the OM/OC ratios
were either inferred based on plausible structures (Pankow et
al., 2015) or estimated using the relationship between volatil-
ity, nC and the number of oxygens (nO) used in 2D-VBS
((Pye et al., 2017). Additionally, OM/OC ratios for primary5

L/S/IVOCs and their aging products were constrained by lab-
oratory work and filed observations as documented in previ-
ous studies (Murphy et al., 2017; Lu et al., 2020). The non-
volatile POA emissions were assumed to have an OM/OC
ratio of 1.6 (Turpin and Lim, 2001), which was equivalent to10

O/C of 0.35.
In the base 2D-VBS, the O/C distributions for L/S/IVOC

emissions in each volatility bin followed the default settings
in the community-contributed 2D-VBS. These O/C ratios
were primarily based on Chang et al. (2022), which used15

emission test data for specific sectors when available and oth-
erwise adopted values from prior studies. However, in the 2D
VBS, the O/C ratios for emissions were capped at 0.4. For
SOA products overlapping with AERO7i, such as isoprene
SOA, the O/C ratios were set to match those in AERO7i.20

For other SOA surrogate species, the O/C ratios were de-
termined either by adjusting the O/C distribution of first-
generation products to align with experimental data (OH/O3-
intitiated monoterpene and sesquiterpene SOA), or based on
explicit chemical mechanisms for initial oxidation (anthro-25

pogenic SOA), followed by aging through functionalization
and fragmentation within 2D-VBS (Zhao et al., 2015). As
a result, the O/C ratios for OH/O3-intitiated monoterpene
and sesquiterpene SOA in 2D-VBS generally ranged from
0 to 1.0 in 0.1 increments. In contrast, anthropogenic SOA30

(ASOA) exhibited a broader range, with a maximum O/C
ratio of 2.0, to account for the high degree of oxygenation
observed in toluene SOA in chamber experiments.

2.4 Predictions of Tg and viscosity

Previous measurements have demonstrated a close relation-35

ship between volatility and viscosity. For instance, Cham-
pion et al. (2019) found that SOA with higher fractions of
EL/LVOCs showed increased viscosity. Similarly, an inverse
correlation between Tg and vapor pressure was observed for
isoprene SOA components (Zhang et al., 2019). Although the40

dependence of Tg on atomic O/C ratios is generally weaker
than on vapor pressure (Koop et al., 2011), strong correla-
tions between Tg and O/C ratios have been observed for ox-
idation products formed from specific precursors, such as α-
pinene (Dette et al., 2014), n-heptadecane, and naphthalene45

(Saukko et al., 2012). Therefore, the uncertainties in volatil-
ity and O/C ratios may impact Tg and viscosity predictions
when using the parameterizations that relate Tg and viscos-
ity to volatility and O/C ratios (Li et al., 2020; Zhang et al.,
2019).50

Here we calculated the Tg of individual OA surrogate
species i (Tg,i) using Eqs. (1), (2) (Li et al., 2020) or (3)
(Zhang et al., 2019):

Tg,i = 288.70− 15.33× log10

(
C0
i

)
− 0.33×

[
log10

(
C0
i

)]2
(1)

Tg,i = 289.10− 16.5× log10

(
C0
i

)
− 0.29

×

[
log10

(
C0
i

)]2
+ 3.23× log10

(
C0
i

)
× (O/C) (2) 55

Tg,i = 480.07−
54395(

log10

(
RT
Mi
C0
i

)
− 7.7929

)2
+ 116.49

(3)

Where Eq. (1) relies solely on volatility (C0
i represents the

saturation concentration at 298 K, and is equal to C∗i as-
suming ideal thermodynamic mixing), and was developed
for coupling into the 1-D VBS framework. Equation (2) in- 60

corporates O/C as an additional factor, which is used in
2D-VBS. Both equations yield similar predictions, particu-
larly for compounds with low O/C ratios (Li et al., 2020).
Equation (3) is a semi-empirical formula derived from the
measurements of isoprene SOA components, which relates 65

Tg to volatility and includes molar mass Mi (Zhang et al.,
2019). The overall Tg of OA mixtures under dry conditions
(Tg,org) can be calculated using the Gordon-Taylor equation
(see Sect. S2 in the Supplement).

OA viscosity depends on aerosol water content, since wa- 70

ter significantly influences the phase state of aerosols (Koop
et al., 2011). Under humid conditions, the Tg of organic-
water mixtures (Tg,ωorg) is calculated based on the mass frac-
tion of organics (ωorg) in the mixtures, along with the Tg val-
ues of pure water (136 K) and dry OA (using Eqs. 1, 2 or 75

3). Notably, ωorg varies with ambient relative humidity (RH)
and the effective hygroscopicity parameter of OA (κorg). Fur-
ther details can be found in previous studies (DeRieux et
al., 2018; Shiraiwa et al., 2017) and Sect. S2 in the Sup-
plement. The temperature-dependent viscosity (η) can be es- 80

timated using the modified Vogel-Tammann-Fulcher (VTF)
equation, as given in Eq. (4) (Angell, 1991), when the ambi-
ent temperature T is at or above Tg,ωorg; otherwise η is fixed
at 1012 Pa s.

η = η∞e
T0D
T−T0 (4) 85

where η∞ and D denote the viscosity at infinite temperature
and the fragility parameter, with the values of 10−5 Pa s and
10, respectively (DeRieux et al., 2018). T0 represents the Vo-
gel temperature, and can be estimated using Eq. (5) (Angell,
1991; DeRieux et al., 2018): 90

T0 =
39.17Tg,ωorg

D+ 39.17
(5)

2.5 Measurement Data

Two sets of observational data from field campaigns were
used to evaluate the simulations. One campaign was con-
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ducted in the spring (17 March–21 April) of 2018 in DY,
at a site located in the Yellow River Delta National Nature
Reserve and strongly influenced by urban outflows from the
North China Plain (NCP) (Feng et al., 2023). The obser-
vational data include the mass concentration and elemen-5

tal ratios (e.g., O/C, H/C) of OA, measured using a high-
resolution time-of-flight aerosol mass spectrometer (HR-
AMS). The volatility distribution of OA (expressed as VBS)
was estimated using an empirical method based on data from
a thermodenuder (TD) combined with AMS. The sources of10

OA components were characterized using the positive matrix
factorization (PMF) method, which resolved OA factors, in-
cluding hydrocarbon-like OA (HOA), biomass-burning OA
(BBOA), transported OOA and background OOA. The other
campaign, led by the same team, was conducted in the au-15

tumn (29 September–21 November) of 2018 in urban GZ
surrounded by transportation and residential districts, with
significant impacts from local emissions (Chen et al., 2021).
The resolved OA factors in GZ identified three POA groups
(cooking OA (COA), HOA, and nitrogen-containing OA20

(NOA)) along with two types of SOA (low-volatility oxy-
genated OA, LV-OOA, and semi-volatile oxygenated OA,
SV-OOA).

3 Results

3.1 Evaluation of mass concentration25

Figure 1 compared the observed and simulated diurnal vari-
ations of OA and its components, POA and SOA, in DY and
GZ, respectively. The simulation with updated O/C ratios of
POA emissions in the 2D-VBS framework (i.e., 2D-VBS_A)
did not alter the emission magnitudes or volatility, and there-30

fore had a minimal impact on the predicted POA mass con-
centration or volatility distribution. As a result, this case is
not discussed in Sect. 3.1 and 3.2. The observations indicated
that SOA dominated OA at both sites, contributing 72 % and
64 % at DY and GZ, respectively. The model generally un-35

derestimated the SOA contribution in DY (except for the 2D-
VBS case), while slightly overestimating it in GZ (Table S9).
In general, the 2D-VBS case predicted higher contributions
of SOA to total OA (> 80 %) than in the 1D-VBS simula-
tions.40

The base 1D-VBS significantly underestimated SOA pro-
duction, with NMBs of −72 % in DY and −71 % in GZ
(Table S10). Adding L/S/IVOC emissions and their contri-
butions to SOA in the 1D-VBS_E case resulted in approxi-
mately a two-fold enhancement in SOA mass concentration.45

This finding was consistent with earlier studies showing that
64 % to 100 % of observed SOA in GZ can be explained
when both conventional precursors and S/IVOCs are consid-
ered (Hu et al., 2022), and that simulated S/IVOC contribu-
tions to SOA exceeded 50 % across most of China (Li et al.,50

2021a; Miao et al., 2021). The 1D-VBS_EY case substan-
tially increased SOA production from aromatics and PAHs

with updated yields (Fig. S6), and the diurnal variation was
similar to that in the 2D-VBS simulation in DY. In GZ, the
notable daytime differences in SOA between the 2D-VBS 55

and 1D-VBS_EY cases were driven by variations in ASOA
representations (Fig. S7). Mass increases in ASOA as a re-
sult of gas-phase aging were likely overestimated with the
4 km grid spacing in the 1D-VBS_EY simulation (Bilsback
et al., 2023). While both simulations significantly improved 60

SOA predictions, they still underestimated SOA concentra-
tions compared to observations by 11 %–14 % (2D-VBS)
and 30 %–33 % (1D-VBS_EY), respectively. Diagnosing the
causes of these underestimations remains challenging due
to the lack of chemically resolved SOA measurements. Al- 65

though POA was underestimated (as discussed below), the
sensitivity simulations indicated that its impact on SOA was
limited (Fig. S8). At the GZ site, for example, increasing
POA emissions by 70 % in the 1D-VBS_EY simulation to
match the observed POA concentrations led to only 4 % in- 70

crease in SOA, suggesting that missing or incomplete SOA
formation pathways are likely the primary drivers of the SOA
low biases. We infer that the nighttime low biases in both
cases were likely attributed to insufficient formation of or-
ganic nitrates in the presence of NO3 radicals. This might re- 75

sult from missing anthropogenic terpene and phenolic emis-
sions from sources such as biomass burning and volatile
chemical products (Wang et al., 2022; Coggon et al., 2021;
Xie et al., 2025; Liu et al., 2024). The underestimated noc-
turnal SOA formation could also be attributed to the under- 80

prediction of aqueous-phase formation pathways, which are
enhanced under high RH conditions at night (Wang et al.,
2019; Gu et al., 2023).

Simulated POA also exhibited underestimation at both lo-
cations. In the comparison, BBOA and COA were excluded 85

from the observations, due to the complexity and consider-
able uncertainties associated with cooking and biomass burn-
ing (particularly open burning) emission estimation (Li et
al., 2023; Zhou et al., 2017). Therefore, the POA underes-
timation was most likely attributable to uncertainties in mo- 90

bile emissions. Observed POA concentrations at both sites
showed peaks during traffic rush hours, which were not well
captured by the simulations. At the DY site, the resolved
HOA in observations was partially aged, as noted in Feng
et al. (2023) and included some SOA transported over long 95

distances, which may also explain the POA underestimation.
At the GZ site, which is more influenced by local emissions,
the simulated peak concentration exhibited an earlier shift
compared to the observed peak, suggesting that the diurnal
patterns of POA emissions may differ from those specified in 100

the model. Additionally, the POA volatility distributions (see
Methods) and aging schemes in the 1D-VBS and 2D-VBS
simulations were different: (1) The 1D-VBS involved het-
erogeneous aging of non-volatile POA. (2) In 2D-VBS, POA
aging led to its complete transformation into SOA, whereas 105

in the 1D-VBS, some oxidation products remained as POA.
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Figure 1. Simulated diurnal variations of OA, POA, and SOA with different SOA schemes compared to the observations in DY (a–c) and
GZ (d–f). The light grey shading indicates the standard deviations (±1σ ) from the mean concentration in the observations.

These differences led to distinct POA levels between the two
cases.

Overall, total mass concentrations of OA were underesti-
mated. The 1D-VBS_EY case, which had the smallest neg-
ative biases among the 1D-VBS simulations, underestimated5

OA by approximately 27 % in DY and 34 % in GZ. These dis-
crepancies were dominated by SOA underestimation at both
sites (Fig. S9). The 2D-VBS simulation demonstrated bet-
ter performance in OA predictions than 1D-VBS_EY, with
NMBs of−24 % in both DY and GZ, primarily due to higher10

predicted SOA mass concentrations.

3.2 Volatility simulations

The mass distributions of OA, POA, and SOA across dif-
ferent volatility bins (i.e., volatility distribution) were ex-
amined. This study primarily focused on compounds with15

C∗ equal or below 10−1 µg m−3 (logC∗ ≤−1, referred to
as low-volatility OA hereafter), and on SVOCs (i.e., −1<
logC∗ ≤ 2), which exist in both gas and condensed phases.
Despite variations in OA mass concentrations across differ-
ent cases, CMAQ generally reproduced the observed volatil-20

ity distributions of OA, SOA, and POA in all the simula-
tions (Fig. 2). Specifically, the observations indicated that
more than 70 % of OA was low-volatility OA, consistent
across the simulations. The base 1D-VBS significantly un-
derestimated low-volatility OA concentrations, leading to25

underestimation in total OA mass (Fig. S10). The 1D-
VBS_E simulation, which included L/S/IVOC emissions, in-
creased low-volatility SOA formation by 1.1 µg m−3 in DY

and 1.5 µg m−3 in GZ, although the contributions of low-
volatility SOA to total SOA decreased. It also replaced the 30

default volatility distribution of POA in CMAQv5.3 with
source-specific gas/particle partitioning, resulting in a signif-
icant amount of non-volatile POA (Fig. S11). Collectively,
these adjustments led to slightly higher fractions of low-
volatility OA with the inclusion of L/S/IVOC emissions, as 35

proposed by Xu et al. (2019), albeit for a different reason
(mainly due to changes in POA rather than SOA volatil-
ity distributions). The updated SOA yields for aromatics
and PAHs had minor effects on POA but increased SOA
mass concentrations across three of the four volatility bins in 40

Fig. S10, slightly changing the SOA volatility distributions.
The simulated OA volatility distributions, particularly for

POA, differed between the 2D-VBS and 1D-VBS_EY sim-
ulations. The observations presented a higher fraction of
low-volatility POA in GZ than in DY. The spatial variation 45

in POA volatility was captured by the 1D-VBS_EY case.
However, both 1D-VBS_EY and 2D-VBS overestimated the
contributions of low-volatility POA. In 1D-VBS_EY, non-
volatile POA was substantial in mass, and increased with
aging (Fig. 3); semi-volatile POA underwent aging, with a 50

portion remaining as POA (rather than fully converting into
SOA as in 2D-VBS) but becoming more volatile. This ulti-
mately led to a higher low-volatility POA mass and a lower
contribution compared to 2D-VBS. The SOA volatility dis-
tributions in the 1D-VBS_EY and 2D-VBS cases both agreed 55

well with the observations, which were similar at the two lo-
cations. However, the 2D-VBS simulation predicted a lower
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Figure 2. Simulated volatility distributions of OA, POA, and SOA across volatility bins with C∗ up to 102 µg m−3, compared to the ob-
servations in DY (a–c) and GZ (d–f). The compounds with C∗ equal or below 10−1 µg m−3 were grouped into a single volatility bin, and
referred to as low-volatility OA in this study.TS3

fraction of low-volatility BSOA in GZ compared to the 1D-
VBS simulations (over 73 % vs. less than 86 %), primarily
due to differences in the treatment of monoterpene-derived
SOA through O3/OH oxidation pathways. Additionally, the
contribution of low-volatility ASOA was also lower in the5

2D-VBS simulation (over 62 % vs. over 69 %; see Fig. S12).
It is important to note that LVOCs (−4< logC∗ (µg m−3)
≤−1) and ELVOCs (extremely low-volatility VOCs with
logC∗ (µg m−3) ≤−4) were not explicitly resolved in
this study (Fig. 3). In all simulations, SOA formation10

was dominated by species within C∗ bins ranging from
10−2 to 104 µg m−3. In addition, certain assumed “non-
volatile” products (IEPOX/MAE-derived SOA, oligomers,
etc.) were arbitrarily assigned to the volatility bin of C∗ =
10−10 µg m−3 (see Methods). The abundance of mass in the15

C∗ = 10−2 µg m−3 bin was particularly high for the 2D-VBS
and largely due to aging. The absence of predicted SOA be-
tween the C∗ bins at 10−10 µg m−3 and C∗ = 10−2 µg m−3

was in contrary to the observed more uniform distribution
across C∗ bins spanning from 10−9 to 10−1 µg m−3. The 1D-20

VBS_EY case included formation of mass for the volatility
bin at C∗ = 10−6 µg m−3 for HOMs formed from aromat-
ics and PAHs under low-NOx conditions, but the predicted
mass concentration was negligible and biased low relative to
the observations. Major ELVOC formation pathways, includ-25

ing autoxidation and bimolecular peroxy radical reactions
for monoterpenes, have been incorporated into the Commu-
nity Regional Atmospheric Chemistry Multiphase Mecha-

nism (CRACMM) (Pye et al., 2023). However, the volatility
distribution of the resulting products remained insufficiently 30

resolved. Furthermore, anthropogenic ELVOC formation is
not yet well understood (Shrivastava et al., 2024; Yin et al.,
2024). As ambient observations consistently reported signif-
icant amounts of LVOCs and ELVOCs (Chen et al., 2024;
Huang et al., 2024), future work should refine and expand the 35

representation of autoxidation and other chemical processes
contributing to LVOC and ELVOC formation from both an-
thropogenic and biogenic precursors. These improvements
will enhance model accuracy in predicting SOA volatility
and new particle formation. 40

3.3 Oxygen-to-carbon ratio simulations

Both observed and simulated OA showed higher O/C ratios
during the day and lower ratios at night (Fig. S13), align-
ing with the temporal patterns of SOA mass concentrations.
The higher O/C ratios in the afternoon were linked to ele- 45

vated oxidant levels, which facilitated SOA formation (typi-
cally characterized by higher O/C ratios compared to POA,
see Table 2) and the photochemical aging of OA. In contrast,
during the night and early morning, the increased contribu-
tions of fresh POA led to lower O/C ratios. 50

Most simulations underestimated the O/C ratios of OA,
with a more pronounced underestimation at the DY site,
where both POA and SOA O/C ratios were lower than ob-
served (Table 2). In DY, OA underwent prolonged aging dur-
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Figure 3. Simulated mass concentrations of OA, POA, and SOA across volatility bins with C∗ ranging from 10−10 to 102 µg m−3, compared
to observations in DY (a–c) and GZ (d–f).

Table 2. Simulated and observed O/C ratios of OA, POA and SOA in DY and GZ.

Site Case OA POA SOA

SIM OBS SIM OBS SIM OBS

DY

1D-VBS 0.52

0.83

0.15

0.55

0.81

1.04
1D-VBS_E 0.56 0.29 0.77
1D-VBS_EY 0.61 0.29 0.83
2D-VBS 0.49 0.26 0.57
2D-VBS_A 0.50 0.29 0.57

GZ

1D-VBS 0.58

0.59

0.15

0.25

0.72

0.82
1D-VBS_E 0.59 0.33 0.71
1D-VBS_EY 0.66 0.33 0.78
2D-VBS 0.51 0.20 0.58
2D-VBS_A 0.52 0.25 0.58

ing transport, resulting in a higher O/C ratio (0.84) than the
national average (0.3–0.65) (Feng et al., 2023). Although
the 1D-VBS_EY case predicted the highest O/C ratio of
OA (due to potentially overestimated multi-generational ox-
idation as discussed in Sect. 3.1), it was still lower than5

the observed value (0.61 vs. 0.83). This discrepancy sug-

gests that accurately simulating the evolution of OA O/C
ratios with aging remains a significant challenge for current
CTMs (despite satisfactory mass simulations). The observed
POA contained aged HOA, which, although essentially SOA, 10

could not be separated from HOA in DY (Feng et al., 2023),
partly explaining the underestimation of POA O/C ratios.
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In the 1D-VBS_E case, the inclusion of L/S/IVOC emis-
sions increased the O/C ratio of POA but decreased that
of SOA, consistent with the impacts on volatility, i.e., in-
creased (decreased) the contribution of low-volatility POA
(SOA) (see Figs. 2 and S11). The 1D-VBS_EY case pro-5

moted SOA formation at C∗ = 0.1 µg m−3 through the newly
added volatility bin for ASOA, which was highly oxygenated
(O/C= 2.53, see Table S7), thereby increasing the O/C ra-
tios of SOA. However, the impacts of HOMs were negligible
due to their minimal contribution to mass.10

At the GZ site, the overestimation of POA O/C ratios in
certain cases (i.e., 1D-VBS_E and 1D-VBS_EY) partially
offset the underestimation of SOA O/C ratios. As a result,
the O/C ratio of total OA in 1D-VBS_E was closest to the
observed value (both were 0.59), while the 1D-VBS_EY case15

overpredicted the O/C ratio (0.66 vs. 0.59). The more oxy-
genated POA in both simulations than observed could be at-
tributed to overestimations in non-volatile POA mass con-
centrations. Additionally, COA, with an observed O/C ra-
tio of 0.19 in GZ, were likely underestimated in the simula-20

tions given uncertainties in cooking emissions. If COA were
well represented, it could slightly lower the simulated POA
O/C ratios and reduce the positive biases in the 1D-VBS_E
and 1D-VBS_EY simulations in GZ. It was also found that
wind speeds were overestimated at GZ (Fig. S14), which25

could lead to excessive dilution and consequently reduce the
simulated concentrations of locally emitted POA and freshly
formed SOA (both of which typically exhibit lower O/C ra-
tios than aged POA or SOA). This effect would be expected
to increase the simulated O/C. However, the low biases in30

O/C at GZ indicate that meteorological biases are unlikely
to be the dominant factor, and that limitations in the SOA
representations may play a more important role.

The O/C ratios predicted by the 2D-VBS case were lower
than those in other simulations, primarily due to the under-35

estimation in SOA O/C ratios. In particular, the distribu-
tion of ASOA O/C ratios differed significantly from those
in the 1D-VBS simulations (see Fig. S15), highlighting the
constraint of ASOA O/C ratios in future work. Simulated
POA O/C ratios were mainly influenced by how emissions40

were specified in the model. As the default settings in 2D-
VBS underestimated POA O/C ratios, an additional simu-
lation, 2D-VBS_A, was conducted with updated O/C ratios
for emissions, constrained by those of POA factors in obser-
vations from prior studies (Table S6 and Fig. S16). For in-45

stance, in the default configuration, mobile sources were as-
sumed to emit primarily hydrocarbons and low-oxygenated
compounds, with over 90 % of emissions distributed in the
O/C bins of 0 and 0.1. The optimized parameters in the 2D-
VBS_A case reflected a higher degree of oxygenation, with50

more than 60 % of emissions allocated to the O/C bins of 0.2
and 0.4. As a result, the POA O/C increased from 0.26 (DY)
and 0.20 (GZ) in 2D-VBS to 0.29 and 0.25 in 2D-VBS_A, re-
spectively, and showed good agreement with the observation
in GZ. However, the persistent low bias in POA O/C ratios in55

DY was likely attributable to uncertainties in emissions from
sources with higher O/C, such as biomass burning (with an
observed O/C ratio of 0.37 for BBOA) in the simulations, as
well as potential overestimation of observed POA O/C ratios
due to the influence of aged HOA. 60

Apart from underestimations in OA O/C ratios in most
cases, the simulations struggled to capture the spatiotempo-
ral variability on an hourly basis (Fig. 4). The observations
revealed significant differences in the O/C ratios between
DY and GZ, reflecting distinct aging processes associated 65

with site characteristics (i.e., regional transport at DY ver-
sus dominant local emissions at GZ), rather than differences
in oxidant levels, as comparable O3 concentrations were ob-
served at both sites. As discussed above, current SOA param-
eterizations inadequately represent chemical aging processes 70

and thereby fail to reproduce the observed spatial contrasts in
oxidation state. The observations also exhibited considerable
temporal variability, particularly at the GZ site with abundant
fresh emissions. Specifically, the interquartile range (IQR) of
hourly O/C ratios was 0.77–0.89 in DY and 0.52–0.68 in GZ 75

in the observations. However, the simulated O/C ratios of
OA showed less variability than observed in GZ, with nar-
rower IQRs and Standard Deviation Ratios (SDR) lower than
1.0.

The responses of daily OA O/C ratios to ambient O3 con- 80

centrations were also examined (Fig. 5). All the simulations
demonstrated an increased in O/C ratios as O3 levels rose
(indicating a higher atmospheric oxidative capacity), with
the rates in the range of 0.0023–0.0045 per ppb O3. The
2D-VBS simulations exhibited a steeper slope, suggesting 85

stronger sensitivity to O3 levels. This implied that oxidant
abundance in the gas phase was an important driver of the in-
crease in O/C ratios in the simulations. However, the obser-
vations did not show a clear correlation between O/C ratios
and O3. In DY, this could be due to the decoupling of O/C 90

ratios from local O3 in aged air masses. Other factors, such
as fresh emissions in GZ (see Fig. S17) or aqueous formation
pathways, may also contribute to the observed variations in
O/C ratios.

3.4 Implications for Tg and viscosity predictions 95

Several widely used CTMs, including WRF-Chem and
GEOS-Chem, have been utilized to predict OA viscosity and
phase state based on volatility and O/C (Zhang et al., 2024;
Luu et al., 2025). In this study, three parameterizations of
Tg were employed to investigate how model capability in 100

representing volatility and O/C influences the predictions
of Tg (and the resulting viscosity using the VTF equation,
see Methods): (1) one incorporating both O/C and volatil-
ity (Eq. 2)TS4 , (2) one accounting for both volatility and
molecular mass (Eq. 3), and (3) one based solely on volatil- 105

ity (Eq. 1). Given that Eq. (3) was developed from labora-
tory experiments focused on isoprene SOA, its applicability
to POA and ASOA warrants further evaluation (which is be-
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Figure 4. Density distribution of simulated versus observed hourly O/C ratios of OA in DY (a–e) and GZ (f–k). The edges of the grey shading
represent the 25th and 75th percentiles in both the observations and simulations, with the shading indicating the interquartile range (IQR).
The Index of Agreement (IOA, reflecting both bias and variability) and Standard Deviation Ratio (σsim/σobs, comparing the magnitude of
variability in simulations and observations) are calculated.

Figure 5. Simulated changes in OA O/C ratios with daily mean
ozone (O3) concentrations, compared to observations in DY (a) and
GZ (b). The paired data of O/C ratios and O3 were grouped into
three bins with equal intervals of O3 levels. Dashed lines represent
fitted trends, and the values of N denote the sample size within each
bin.

yond the scope of this study). Nevertheless, it was included
here as a comparative parameterization to evaluate impacts
of volatility representations. The simulation at the DY site
was selected for detailed analysis as a representative case.

In DY, the mean Tg,org values for POA and SOA showed5

differences across parameterizations, ranging from 15.5 to
24.4 K for POA and 19.3 to 23.0 K for SOA (Fig. 6). The pa-
rameterization based on Eq. (1) generally predicted the high-
est Tg,org values, closely aligning with those from Eq. (2)
as has been reported in Li et al. (2020). This suggests that10

simulated volatility distributions exerted a stronger influ-
ence on Tg,org predictions than O/C ratios, as further ev-
idenced by the Tg,org values of individual SOA surrogates
(Fig. S18). Equation (3) predicted the lowest Tg,org values,
including for nearly all SOA components except a few iso- 15

prene SOA surrogates. For isoprene SOA components, Tg es-
timates remained constant using either Eqs. (1) or (3), due to
the use of a fixed C∗ of 10−10 µg m−3 in CMAQ (see Meth-
ods), which resulted in unrealistically high Tg values, e.g.,
∼ 400 K with Eq. (1). However, 2-methyltetrol (AIETET), 20

despite its unexpectedly high ambient concentrations, might
be semi-volatile, with predicted C∗ of 102 µg m−3, while 2-
methyltetrol sulfate (AIEOS) has a relatively low volatility,
with C∗ of 10−1 µg m−3 (Budisulistiorini et al., 2017). These
values resulted in much lowerTg estimates of approximately 25

230 and 276 K, respectively (Zhang et al., 2019). Therefore,
the C∗ values for these compounds should be revisited when
applied in Tg predictions.

The discrepancies in POA Tg,org derived from observed
versus simulated volatility and O/C ratios using Eq. (2) 30

ranged from 12.4 to 33.7 K across the five simulations.
Compared to observation-based Tg,org, the 2D-VBS, 2D-
VBS_A, and 1D-VBS simulations underestimated POA
Tg,org, whereas the 1D-VBS_E and 1D-VBS_EY simula-
tions overpredicted it, primarily due to a substantial con- 35

tribution from non-volatile POA (Fig. S11). Although the
2D-VBS simulation exhibited the highest fraction of low-
volatility POA (Fig. 2), these species were mainly allocated
to the volatility bin of C∗ = 10−2 µg m−3, which led to lower
Tg,org values than those inferred from observations. The bi- 40

ases in SOA Tg,org were smaller, ranging from 2.5 to 17.2 K.
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Figure 6. Predicted Tg,org of (a) POA and (b) SOA using three parameterizations across different simulation cases. The solid line represents
Tg,org derived from observed volatility and O/C ratios. Symbols denote Tg,org estimated from: volatility and O/C ratio using Eq. (2) (circles),
volatility and molecular weight using Eq. (3) (triangles), and volatility only using Eq. (1) (diamonds). Error bars indicate one standard
deviation.

Most simulations exhibited a slight underestimations of SOA
Tg,org relative to observation-derived values. Conversely, the
1D-VBS case overestimated SOA Tg,org, with an excessive
proportion of SOA at C∗ = 10−10 µg m−3 (Fig. S11). Since
Eqs. (1) and (2) were developed for use within the 1D-VBS5

and 2D-VBS frameworks, respectively, the evaluation pre-
sented here suggests that the differences in Tg,org estimates
were driven by the volatility representations in the 1D-VBS
versus 2D-VBS, rather than by the specific Tg parameteriza-
tions. Notably, the 2D-VBS implementation in CMAQv5.410

generally produced lower SOA Tg,org values.
The values of OA viscosity η, which determine their phase

state, were calculated using the VTF equation, with Tg pa-
rameterized as a function of volatility and O/C ratios (Eq. 2),
and incorporating additional variables including κorg, RH,15

and T (see Methods). Figure 7a and e compared viscosity
estimated from simulations and observations, with all in-
put variables (i.e., Tg,org, κorg, RH and T ) obtained consis-
tently from either model output or observations. In the sim-
ulations, κorg for each OA species was parameterized as a20

function of OM/OC (Eq. S7), assuming a constant density of
1.4 g cm−3. Bulk κorg for SOA and POA was calculated as a
mass-weighted average across species. For observations, κorg
was inferred from f44 (i.e., the fraction of m/z 44 signal in
total organic signals) following Feng et al. (2023). The sim-25

ulations generally reproduced the diurnal variability in OA
viscosity, predicting higher η values during the daytime than
at night, in line with the observed diurnal patterns. Field mea-
surements indicated that POA was predominantly semi-solid
(102
≤ η ≤ 1012 Pa s) with a transition to the solid phase30

(η > 1012 Pa s) between 12:00 and 17:00 LT. However, the
model overestimated viscosity. Consequently, the 2D-VBS
and 2D-VBS_A simulations predicted prolonged solid phase
for POA, while 1D-VBS_E and 1D-VBS_EY predicted POA
to remain solid throughout the day. For SOA, observations35

showed that it was semi-solid, while the simulations repro-
duced this phase state during nighttime hours only.

To identify the dominant source of overestimation in pre-
dicted viscosity, three sensitivity experiments were con-
ducted (Table 3), each isolating the influence of a specific 40

input variable. The results from sensitivity experiment A
(Fig. 7b and f) revealed that the evident model-observation
discrepancies in POA and SOA viscosity were positively cor-
related with the biases in Tg,org. For instance, in the 1D-VBS
case, POA viscosity was significantly underestimated (by up 45

to five orders of magnitude) due to a ∼ 40 K negative bias in
Tg,org (Fig. S19a), while an overestimation of Tg,org for SOA
(∼ 20 K, Fig. S19d) led to viscosity exceeding observation-
based values by up to two orders of magnitude. In contrast,
simulations such as 1D-VBS_E and 1D-VBS_EY, which bet- 50

ter captured SOA Tg,org, yielded viscosity values in good
agreement with observations. Thus, by comparing Fig. 7e
and f, we conclude that the considerable overestimation of
SOA viscosity in Fig. 7e, except in 1D-VBS, cannot be at-
tributed to Tg,org bias. O’Brien et al. (2021) also reported 55

a moderate sensitivity of predicted OA viscosity to Tg,org,
e.g., under conditions of RH= 60 %, a reduction in Tg,org by
∼ 200 K resulted in a decrease in predicted viscosity from
1012 to 10 Pa s (with κorg of 0.14).

On the other hand, the OA hygroscopicity parameter (κorg) 60

was an important parameter in viscosity estimation. Sensi-
tivity experiment B predicted viscosity comparable to those
in Fig. 7a and e, indicating that the discrepancies between
simulation- and observation-based viscosity values was due
to the variation in κorg. Specifically, the κorg values used in 65

the simulations underestimated the hygroscopicity of both
POA and SOA relative to the values derived from m/z 44
(Fig. S20), e.g. 0.16 versus 0.048–0.069 (1D-VBS)/0.064–
0.068 (2D-VBS) for POA, and 0.35 verus 0.013–0.014(1D-
VBS)/0.12 (2D-VBS) for SOA. Earlier sensitivity simula- 70



Y. Li et al.: Simulations of organic aerosol volatility and degree of oxygenation 13

Figure 7. Diurnal variations in predicted OA viscosity using Eq. (2), based on observations and simulations. Black points indicate
observation-based values, while colored lines represent predictions using combinations of Tg,org, κorg, RH, and T from observations or
simulations as defined in Table 3. Red points indicate viscosity estimated using observation-based Tg,org and κorg values, along with sim-
ulated RH and T . The OA phase state is determined based on viscosity: liquid (η < 102 Pa s), semi-solid (102

≤ η ≤ 1012 Pa s), and solid
(η > 1012 Pa s) (Reid et al., 2018). Viscosity values in the figure are capped at 1012 Pa s, beyond which values are not physically meaningful
for solid-phase OA.

Table 3. Combinations of Tg,org, κorg, RH and T used in sensitivity cases for OA viscosity estimation.

Cases Tg,org κorg RH and T

Base_case Simulation-based Simulation-based Simulation
Sensitivity case A Simulation-based Observation-based Observation
Sensitivity case B Observation-based Simulation-based Observation
Sensitivity case C Observation-based Observation-based Simulation

tions showed that a perturbation of ±0.05 in κorg resulted
in changes of Tg,ωorg by ∼ 5 %–15 % over high RH areas,
supporting a critical role of κorg in viscosity estimation (Shi-
raiwa et al., 2017). Consistently, the underestimation in κorg
led to an overestimation in simulated viscosity in this study5

(given the inverse relationship between viscosity and hygro-
scopicity), and even offset the underestimations of viscosity
that were caused by low biases in Tg,org (see Sensitivity ex-
periment A). In CMAQ, κorg was parameterized as a function
of OM/OC. In light of the notable underestimation of O/C10

ratios at the DY site (Table 2), this could be a key driver of
the bias in viscosity predictions. While the impact of rela-
tive humidity on viscosity has also been emphasized in other
studies (Maclean et al., 2021; Rasool et al., 2021; Li et al.,
2021b), its effect is minimal in this study due to the strong15

agreement between simulated and observed meteorological

variables (Fig. S21). This was further supported by the sim-
ilarity in viscosity estimates derived using identical κorg and
Tg,org but different RH and T inputs (Fig. 7d and h).

4 Conclusions and Discussion 20

This study evaluated the CMAQ model’s performance in
predicting OA mass concentrations, volatility distributions,
and O/C ratios, and examined their implications for Tg and
viscosity estimates, using observations at two representa-
tive sites in Eastern China, i.e., DY, influenced by aged air 25

masses, and GZ, more impacted by local emissions. The ma-
jor findings include:

1. The base 1D-VBS simulation with AERO7i underesti-
mated OA by∼ 70 %. However, the optimized 1D-VBS
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simulation, which incorporated additional L/S/IVOC
emissions and enhanced SOA production from aromat-
ics and PAHs (accounting for vapor wall losses and
autooxidation), significantly improved OA predictions
with NMBs of −27 % (DY) and −34 % (GZ). The5

2D-VBS simulation exhibited similar performance with
NMBs of −24 %. The OA biases were mainly driven
by SOA underestimation, with the optimized 1D-VBS
underestimating SOA by ∼ 32 % and 2D-VBS underes-
timating it by ∼ 13 %.10

2. All the simulations accurately captured the observed
fraction of low-volatility products in OA (> 70 %), al-
though the detailed distributions within these volatility
bins (10−9 µg m−3

≤ C∗ ≤ 0.1 µg m−3) were not well
represented. Simulated SOA was abundant in volatil-15

ity bins of C∗ = 10−2 µg m−3 or 10−10 µg m−3. The
volatility distributions of POA showed notable varia-
tions across the simulations, influenced by the gas/par-
ticle partitioning of L/SVOC emissions specified in the
model.20

3. OA O/C ratios were generally underestimated across
all the simulations, particularly in DY, where aged
air masses prevailed. In the 1D-VBS simulations, the
inclusion of L/S/IVOC emissions increased O/C ra-
tios with more non-volatile POA, while updated SOA25

yields added SOA at C∗ = 0.01 µg m−3 , contributing to
higher SOA O/C ratios. The 2D-VBS simulations pre-
sented lower O/C ratios than 1D-VBS overall, whereas
constraining POA with observations improved its O/C
representation.30

The simulated volatility distribution strongly influenced Tg
estimates. In particular, the fraction of POA and SOA in the
lowest volatility bin (C∗ = 10−10 µg m−3) played an impor-
tant role. The assumption of C∗ = 10−10 µg m−3 resulted in
unrealistically high Tg values for some OA components (e.g.,35

isoprene SOA). Although the high (low) biases in Tg led to
overestimation (underestimation) of viscosity in the case of
DY, uncertainties in OA hygroscopicity parameter, parame-
terized as a function of O/C ratios in CMAQ, were the dom-
inant source of model-observation gaps in viscosity.40

These findings highlight the limitations of the CMAQ
model in predicting the volatility distribution of OA and the
associated O/C ratios. While the allocation of OA in low-
volatility bins may have a limited impact on simulated mass
concentrations under atmospherically relevant conditions, it45

is closely linked to key physicochemical properties, such as
Tg, viscosity, and phase state. These properties, which have
received insufficient attention in previous studies, play a cru-
cial role in the kinetics of multiphase SOA formation. Addi-
tionally, estimates of OA hygroscopicity and light absorp-50

tivity – both of which influence climate effects – may be
subject to uncertainties when parameterized based on O/C
ratios. In some cases, inaccurate treatment of these proper-

ties could also influence OA mass concentrations. For exam-
ple, OA hygroscopicity affects water uptake, which can, in 55

turn, enhance SOA mass through interactions between water
and organics. Therefore, we summarize several recommen-
dations based on this study for future improvements in OA
modeling:

Given the substantial contribution of L/S/IVOCs to SOA, 60

emission inventories should be further refined not only in
terms of total magnitudes but also volatility-resolved dis-
tributions, and constrained using ambient measurements. In
addition, primary emissions from sources such as cooking,
open biomass burning, and mobile sources require improved 65

representation. Better treatment of nighttime SOA formation
pathways, particularly NO3 oxidation and aqueous-phase
chemistry, is also needed to reduce SOA mass underestima-
tion.

While updated SOA yields can partially improve model 70

performance, explicitly accounting for autoxidation pro-
cesses and the formation of HOMs (including both biogenic
and anthropogenic origins) would provide a more physically
based description of O/C evolution. Moreover, SOA aging
schemes should be better constrained by chamber experi- 75

ments, particularly with respect to the relationship between
the degree of oxygenation and multigenerational aging. Con-
straining POA O/C ratios using source-specific measure-
ments also represents a promising approach for improving
the modeled elemental composition of OA. 80

The linkage between OA volatility and Tg,org (and vis-
cosity) requires revisiting the volatility assignments of exist-
ing SOA surrogates (e.g., isoprene-derived SOA in CMAQ)
and developing more accurate, dynamic parameterizations of
κorg. 85
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