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Abstract. Volatility and oxygen-to-carbon (O/C) molar ratios are critical properties of organic aerosols (OA), influencing 

their viscosity, hygroscopicity, and light absorption thereby resulting in impacts on air quality and climate. While atmospheric 

models often track these properties to simulate OA evolution, their performance remains insufficiently evaluated. This study 

assessed OA volatility and O/C simulations by comparing CMAQ model outputs using official AERO7i and community-

contributed two-dimensional volatility basis set (2D-VBS) schemes, against two field measurements in eastern China. Apart 25 

from baseline modelling, two additional simulations using AERO7i incrementally incorporated low-volatility/semi-

volatile/intermediate-volatility organic compound (L/S/IVOC) emissions and enhanced anthropogenic secondary organic 

aerosol (SOA) yields. An optimized 2D-VBS simulation further constrained O/C ratios of primary organic aerosol (POA) 
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emissions using observations. The results showed that OA mass concentrations were underestimated by 24% in 2D-VBS and 

27-34% with updated AERO7i, likely due to underrepresented vehicular POA emissions and nighttime SOA formation. All 30 

simulations captured the substantial contribution of low-volatility products (C* <0.1 μg m⁻3) but failed to reproduce the 

detailed volatility distributions within this range. Simulated O/C ratios were biased low in aged air masses (notably with 2D-

VBS) and slightly overestimated in areas with more local emissions using updated AERO7i. Misrepresentations of OA 

volatility primarily led to biases in viscosity predictions, while the hygroscopicity parameter played a more important role. 

These findings highlight the need to better constrain OA volatility and O/C in models to improve projections of OA air quality 35 

and climate impacts. 

1 Introduction 

Organic aerosols (OA) are a major component of fine particulate matter (PM2.5), accounting for 20–90% of its mass (Jimenez 

et al., 2009;Zhang et al., 2007), and play a critical role in global air quality, climate, and public health (Nault et al., 

2021;Shrivastava et al., 2017;Wu et al., 2018). OA can be classified as either primary organic aerosol (POA), emitted directly 40 

from sources such as combustion, or secondary organic aerosol (SOA), formed through the oxidation of volatile organic 

compounds (VOCs) and semi-volatile and intermediate volatility organic compounds (S/IVOCs) (Hallquist et al., 2009;Heald 

and Kroll, 2020). The chemical aging of OA involves functionalization (incorporation of oxygen-containing groups), 

fragmentation, and oligomerization. These processes alter OA’s composition and physicochemical properties, including 

volatility, oxidation state, viscosity, hygroscopicity, and light absorption (Chacon-Madrid and Donahue, 2011;Tritscher et al., 45 

2011;Massoli et al., 2010;Rothfuss and Petters, 2017;Hems et al., 2021). Understanding these evolving properties is crucial 

for accurately predicting the impacts of OA on climate, air quality, and public health in atmospheric and climate models 

(Tsigaridis and Kanakidou, 2018). 

 

Among the various properties of OA, volatility and the oxygen-to-carbon molar ratio (O/C, an indicator of the extent of 50 

oxygenation) are pivotal for constraining their atmospheric fate and impacts, and they are therefore important parameters in 
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chemical transport models (CTMs) (Donahue et al., 2013;Rao and Vejerano, 2018). The two-dimensional volatility basis set 

(2D-VBS), a widely adopted framework in OA modeling, tracks volatility and O/C to simulate chemical evolution (Donahue 

et al., 2011). Volatility primarily governs the partitioning of organic compounds between particulate and gas phases at 

equilibrium, thereby influencing their atmospheric behavior (e.g., chemical aging, transport, and deposition) and overall OA 55 

concentrations (Donahue et al., 2014;Shiraiwa and Seinfeld, 2012). Li et al. (2020) recently parameterized the glass transition 

temperature (Tg, at which a phase transition between amorphous solid and semi-solid states occurs, and viscosity changes 

dramatically) as a function of volatility and O/C. This parametrization highlights the link between volatility and phase state 

(or viscosity), which influence the kinetics of gas-particle interactions, with implications for diffusion, partitioning, and 

heterogeneous reaction rates (Zaveri et al., 2014;Reid et al., 2018;Marshall et al., 2018;Li and Shiraiwa, 2019). Furthermore, 60 

OA volatility affects cloud condensation nuclei (CCN) activity due to its connection with particle hygroscopicity and growth 

dynamics (Liu and Matsui, 2022;Zhang et al., 2023). 

 

The O/C ratios of OA influence their viscosity and hygroscopicity, similar to the effects of volatility (Massoli et al., 2010;Koop 

et al., 2011). The O/C ratios and volatility of OA components are largely coupled, with more volatile components typically 65 

exhibiting lower O/C ratios. Lower O/C ratios favor phase separation under specific relative humidity conditions (Pye et al., 

2017). Conversely, elevated O/C ratios indicate increased hygroscopicity resulting in enhanced water uptake, thereby 

increasing their potential to act as cloud condensation nuclei and ice nuclei (Mahrt et al., 2022;Malek et al., 2023;Song et al., 

2012;Tian et al., 2022). Furthermore, O/C ratios substantially impact the optical properties of OA (Xu et al., 2024). During 

aging, bulk OA generally darkens with increasing O/C, while excessive oxidation at higher O/C levels diminishes light 70 

absorption (Jiang et al., 2022;Duan et al., 2024). These findings suggest that O/C could serve as a critical parameter in radiative 

forcing estimation in climate models. 

 

A few prior studies have revealed significant uncertainties in OA volatility and O/C simulations with CTMs. For instance, 

Saha et al. (2017) demonstrated that the VBS module in WRF-Chem significantly underestimated OA concentrations, and 75 
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failed to reproduce low-volatility OA components with effective saturation concentration (C*) between 10-4 and 10-1 μg m-3. 

This discrepancy could be partially explained by underestimated SOA formation due to wall losses of condensable vapors, and 

missing yields of low-volatility products with the parameters empirically derived from aerosol growth experiments. In contrast, 

parameters derived from dual thermodenuder (TD) measurements predicted 2–4× higher SOA yields, and produced more low-

volatility products under atmospherically relevant conditions (Saha and Grieshop, 2016). Additionally, the lack of S/IVOC 80 

emissions in the model likely contributed to biases in simulated OA volatility distributions (Xu et al., 2019). Regarding O/C 

simulations, Tsimpidi et al. (2018) introduced the ORACLE 2-D module into a global chemistry-climate model, which tended 

to overpredict OA O/C ratios in urban downwind areas. Overall, the model exhibited a 5–7% overestimation of O/C for OA 

and SOA, with the most pronounced positive biases in summer. The regional model Community Multiscale Air Quality 

(CMAQ) also overestimated OM/OC ratio (closely related to O/C) of OA compared to observations in the southeastern US 85 

(Pye et al., 2017). However, accounting for interactions between OA and aerosol water, which enhance semi-volatile 

partitioning by increasing the available partitioning medium, could reduce model biases in OM/OC. The air quality model 

Polyphemus underestimated O/C in the northwestern Mediterranean region, even after implementing multi-generational 

oxidation processes, highlighting insufficient representation of aging processes in the model (Chrit et al., 2018). While model 

performance varies across different regions and models globally, simulations of OA volatility and O/C ratios in the polluted 90 

atmospheres of China remain insufficiently explored. 

 

In this study, we evaluated the performance of the CMAQ model in simulating OA mass concentration, volatility distribution 

and O/C ratio, by comparing with the observations at two sites in eastern China. The evaluation focused on two OA schemes 

that differed in their level of complexity regarding the representation of volatility and O/C. Additionally, two adjustments to 95 

the default CMAQ scheme were evaluated: (1) adding S/IVOC emissions with SOA formation from these precursors, 

and (2) updating the SOA yields of aromatic species (benzene, toluene, xylene) and polycyclic aromatic hydrocarbons 

(PAHs).The assessment also explored how uncertainties in OA volatility and O/C propagated to Tg and viscosity predictions. 

These efforts aimed to provide valuable insights into improving OA simulations (in terms of both mass concentrations and 



5 
 

properties), and their implications for phase state and viscosity modeling in CTMs. 100 

2 Methods and Data 

2.1 Model configuration 

In this study, two versions of the CMAQ model (https://epa.gov/cmaq), the official v5.3.2 (Appel et al., 2021) (available from 

https://doi.org/10.5281/zenodo.4081737) and v5.4 with a community contribution (available from 

https://doi.org/10.5281/zenodo.7218076), were used to perform nested simulations with horizontal resolutions of 36 km and 105 

12 km. The outer domain encompassed most of China, while the inner domain focused on eastern China (Fig. S1). The 

simulation period covered March 17–April 21 and September 29–November 21, 2018, aligning with the campaigns conducted 

in Dongying (DY) and Guangzhou (GZ). Meteorological fields were generated using the Weather Research and Forecasting 

(WRF) model version 4.2.1. Anthropogenic emissions for China were represented using the 2018 high-resolution (0.25°×0.25°) 

Multi-resolution Emission Inventory for China (MEIC) v1.4 (http://www.meicmodel.org), while the Regional Emission 110 

Inventory in Asia (REAS) v3.2.1 (https://www.nies.go.jp/REAS/) was used for the rest of Asia. Emissions from open burning 

were obtained from the Fire Inventory from NCAR (FINN) v1.5 (https://www2.acom.ucar.edu/modeling/finn-fire-inventory-

ncar), and biogenic emissions were calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

v2.1 (Guenther et al., 2012). The simulations utilized the SAPRC07tic gas-phase mechanism within CMAQ (Xie et al., 2013). 

The capabilities of WRF and CMAQ in simulating meteorological factors and major pollutants (NO2, O3 and PM2.5) were 115 

evaluated (Tables S1-S2). 

2.2 OA representations 

All the simulations modeled SOA formation from isoprene, glyoxal, and methylglyoxal, as well as NO3-initiated oxidation of 

monoterpenes, using consistent parameterizations from CMAQ’s official AERO7i module (see Fig. S2). Specifically, isoprene 

SOA formed via the aqueous uptake of isoprene epoxydiols (IEPOX)/methacrylic acid epoxide (MAE), and monoterpene-120 

derived organic nitrates (ONs) via NO3 oxidation were explicitly represented (Pye et al., 2013;Pye et al., 2015). Semi-volatile 

https://epa.gov/cmaq
https://doi.org/10.5281/zenodo.4081737
https://doi.org/10.5281/zenodo.7218076
http://www.meicmodel.org/
https://www.nies.go.jp/REAS/
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
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isoprene SOA, including contributions from non-aqueous pathways, was parameterized with the two-product model (Carlton 

et al., 2010), which utilized mass yields of two products (𝛼𝛼𝑖𝑖, i=1, 2) and their effective saturation concentrations (𝐶𝐶𝑖𝑖∗, i=1,2) to 

simulate aerosol growth observed in experiments (Pankow, 1994). All the simulations accounted for multiphase SOA formation 

from glyoxal and methylglyoxal both in cloud (Carlton et al., 2008) and on wet aerosol surfaces (Pye et al., 2015). 125 

 

Five simulations were conducted to evaluate model performance regarding OA mass concentrations, volatility distributions, 

and O/C ratios against observational data (Table 1). All simulations retain the same AERO7i heterogeneous chemistry and 

select other systems (see above) and focus on different representations of key volatility-based systems (Table 1). The simulation 

using the standard AERO7i treatment including SOA from anthropogenic precursors (e.g., aromatics, long-chain alkanes) (Qin 130 

et al., 2021), monoterpene oxidation via O3/OH oxidation (Xu et al., 2018), and sesquiterpenes (Carlton et al., 2010) is referred 

to as a 1-D VBS for simplicity. In another simulation, the 2D-VBS framework (Zhao et al., 2015;Zhao et al., 2016;Chang et 

al., 2022) was used for anthropogenic VOCs, monoterpenes (excluding NO3 oxidation pathways), and sesquiterpenes. 

Additionally, in 2D-VBS, the oxidation of POA (or L/S/IVOCs) was represented differently compared to the 1D-VBS 

simulations (Murphy et al., 2017). 135 

Table 1: Description of the five simulations conducted in this study. 

Case OA modeling 

1D-VBS Default CMAQv5.3 AERO7i configuration 

1D-VBS_E 
1D-VBS with added emissions of L/S/IVOCs, with SOA formation from IVOC oxidation and an 

updated volatility distribution of semi-volatile POA 

1D-VBS_EY 
1D-VBS_E with updated SOA yields for aromatic and PAH precursors, accounting for vapor wall 

loss effects and autoxidation pathways 

2D-VBS 
CMAQv5.4 with the 2D-VBS community contribution. Emission inputs closely align with the 1D-

VBS_E simulation 
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2D-VBS_A 2D-VBS with modified O/C ratio distribution of POA, optimized based on observational constraints 

 

The 1D-VBS simulation reflects the default CMAQ configuration without modifications to emissions or chemistry. The 1D-

VBS_E simulation incorporated additional IVOC emissions, and updated emissions of S/LVOCs (historically classified as 

POA), based on MEICv1.4 (Supplementary Note 1). L/SVOC and IVOC emissions in each volatility bin were scaled from 140 

POA and total VOC emissions, respectively, using source-specific scaling factors (Table S3). Since the lowest volatility bin 

for emissions in the standard 1D-VBS parameterization was set to C*=10-1 μg m-3, the difference between original POA 

emissions and L/SVOC emissions within the model-resolved volatility range (-1≤logC*(μg m-3)≤2) was reclassified as non-

volatile (C*=10-10 μg m-3, see Fig. S3) and treated with heterogeneous aging chemistry (Simon and Bhave, 2012). This 

adjustment conserved POA mass while addressing the model’s limitations in volatility coverage. The estimated nation-wide 145 

L/SVOC and IVOC emissions, which were 3.18 Tg yr-1 and 6.68 Tg yr-1, respectively, were higher than those reported by 

Zheng et al. (2023), but agreed well with Chen et al. (2024) in magnitude (Table S4, Figs. S4-S5), as both this study and Chen 

et al. (2024) applied a ratio-based methodology combined with the MEIC emission inventory. In contrast, Zheng et al. (2023) 

employed a different approach, using emission factors and activity data obtained from ABaCAS (Air Benefit and Cost and 

Attainment Assessment System) and Chang et al. (2022), which led to larger discrepancies relative to our estimates. The source 150 

contributions and volatility distributions of L/S/IVOCs differed slightly between studies. For example, our estimates 

indicated a lower contribution of solvent use to IVOCs compared with Zheng et al. (2023) (40% vs. 57%), and a higher 

contribution from residential sources to S/LVOCs (49% vs. 30%). In addition, the differences in emission magnitudes 

were primarily in the IVOC volatility range, whereas discrepancies in L/SVOCs were smaller. The aging of L/SVOCs 

followed the POA treatment established in prior studies (Donahue et al., 2012;Murphy et al., 2017), where a fraction of 155 

L/SVOCs was oxidized to form SOA in the gas phase and the volatility distribution in continually updated. The IVOC-derived 

SOA formation adopted the parameterization of Lu et al. (2020). In the 1D-VBS_EY simulation, SOA yields for benzene, 

toluene, xylene, and naphthalene oxidation (Table S5) were updated to account for vapor wall losses and formation of highly 

oxygenated organic molecules (HOMs) via autoxidation (Bilsback et al., 2023). 
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 160 

The 2D-VBS scheme (Zhao et al., 2015;Zhao et al., 2016;Chang et al., 2022), was implemented into CMAQv5.4 and evaluated 

using emission inputs largely consistent with the 1D-VBS_E simulation. The major differences in emissions included (1) 

reallocating non-volatile POA to the LVOC species with C*of 10-2 μg m-3 (i.e., the least volatile primary emission category in 

2D-VBS); and (2) mapping SVOC emissions with C*of 10-1 μg m-3 to the C*=10-2 μg m-3 bin as well (due to the absence of a 

corresponding volatility bin in the 2D-VBS scheme). L/SVOC aging products were classified as SOA. Initial O/C ratio 165 

distributions for L/S/IVOC emissions across volatility bins followed 2D-VBS default profiles. However, these default 

assumptions led to underestimated POA O/C ratios (see Section 3.2). Therefore, we conducted the 2D-VBS_A simulation, 

wherein sector-specific O/C ratios for POA emissions from gasoline/diesel vehicles, non-road mobile sources, power plants 

and industrial sources were constrained using observational averages in eastern China (Table S6). 

2.3 Volatility distribution and O/C ratio modelling 170 

The volatility (expressed in terms of C*) and O/C ratios for OA surrogate species across all the simulations were summarized 

in Tables S7-S8. Volatilities for all species, except those in VBS-based parameterizations, were aligned with surrogate data in 

chamber experiments. Non-volatile POA and SOA formed via pathways such as aromatic oxidation under low-NOx conditions, 

aqueous-phase uptake of IEPOX/MAE/glyoxal/methylglyoxal, ON hydrolysis and particle-phase oligomerization were 

assigned a fixed C* of 10-10 μg m-3 for simplicity. The volatility of primary L/S/IVOCs in the condensed phase and aged OA, 175 

was described in detail by Murphy et al. (2017). In the 1D -VBS_EY simulation, a new SOA species with C*=0.1 μg m-3 

(unrepresented in the base 1D-VBS in CMAQ) was explicitly incorporated. The volatility distribution of total SOA (POA) was 

then derived using simulated concentrations of individual SOA (POA) species. 

 

The overall O/C ratios for SOA, POA, and OA were calculated using the mole-weighted averages of the O/C values for 180 

individual species. The O/C ratios of OA species were calculated based on mass-based OM/OC ratios provided with the CMAQ 

code. The OM/OC ratios for SOA were primarily derived from chamber experiments (Pye et al., 2017;Carlton et al., 2010;Xu 
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et al., 2018). For example, SOA species with relatively well-known structures (e.g., IEPOX-/MAE-derived SOA, isoprene 

dinitrates and monoterpene nitrates), along with seven VBS bins representing monoterpene SOA formed via O3 and OH 

oxidation, adopted OM/OC values and other molecular properties from surrogate compounds identified in chamber studies. 185 

For other SOA species, once their C* values were determined (as described above) and the number of carbons (nC) was 

assumed, the OM/OC ratios were either inferred based on plausible structures (Pankow et al., 2015) or estimated using the 

relationship between volatility, nC and the number of oxygens (nO) used in 2D-VBS (Pye et al., 2017). Additionally, OM/OC 

ratios for primary L/S/IVOCs and their aging products were constrained by laboratory work and filed observations as 

documented in previous studies (Murphy et al., 2017;Lu et al., 2020). The non-volatile POA emissions were assumed to have 190 

an OM/OC ratio of 1.6 (Turpin and and Lim, 2001), which was equivalent to O/C of 0.35. 

 

In the base 2D-VBS, the O/C distributions for L/S/IVOC emissions in each volatility bin followed the default settings in the 

community-contributed 2D VBS. These O/C ratios were primarily based on Chang et al. (2022), which used emission test data 

for specific sectors when available and otherwise adopted values from prior studies. However, in the 2D VBS, the O/C ratios 195 

for emissions were capped at 0.4. For SOA products overlapping with AERO7i, such as isoprene SOA, the O/C ratios were set 

to match those in AERO7i. However, for other SOA surrogate species, the O/C ratios were determined either by adjusting the 

O:C distribution of first-generation products to align with experimental data (OH/O3-intitiated monoterpene and sesquiterpene 

SOA), or based on explicit chemical mechanisms for initial oxidation (anthropogenic SOA), followed by aging through 

functionalization and fragmentation within 2D-VBS (Zhao et al., 2015). As a result, the O/C ratios for OH/O3-intitiated 200 

monoterpene and sesquiterpene SOA in 2D-VBS generally ranged from 0 to 1.0 in 0.1 increments. In contrast, anthropogenic 

SOA (ASOA) exhibited a broader range, with a maximum O/C ratio of 2.0, to account for the high degree of oxygenation 

observed in toluene SOA in chamber experiments. 

2.4 Predictions of Tg and viscosity 

Previous measurements have demonstrated a close relationship between volatility and viscosity. For instance, Champion et al. 205 
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(2019) found that SOA with higher fractions of EL/LVOCs showed increased viscosity. Similarly, an inverse correlation 

between Tg and vapor pressure was observed for isoprene SOA components (Zhang et al., 2019). Although the dependence of 

Tg on atomic O/C ratios is generally weaker than on vapor pressure (Koop et al., 2011), strong correlations between Tg and 

O/C ratios have been observed for oxidation products formed from specific precursors, such as α-pinene (Dette et al., 2014), 

n-heptadecane, and naphthalene (Saukko et al., 2012). Therefore, the uncertainties in volatility and O/C ratios may impact Tg 210 

and viscosity predictions when using the parameterizations that relate Tg and viscosity to volatility and O/C ratios (Li et al., 

2020;Zhang et al., 2019).  

 

Here we calculated the Tg of individual OA surrogate species i (Tg,i) using Eqs. (1), (2) (Li et al., 2020) or (3)(Zhang et al., 

2019): 215 

𝑇𝑇𝑔𝑔,𝑖𝑖 = 288.70− 15.33 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑖𝑖0)− 0.33 × [𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑖𝑖0)]2                       (1) 

𝑇𝑇𝑔𝑔,𝑖𝑖 = 289.10− 16.5 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑖𝑖0)− 0.29 × [𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑖𝑖0)]2 + 3.23 × 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐶𝐶𝑖𝑖0) × (𝑂𝑂/𝐶𝐶)               (2) 

𝑇𝑇𝑔𝑔,𝑖𝑖 = 480.07− 54395

�𝑙𝑙𝑙𝑙𝑙𝑙10�
𝑅𝑅𝑅𝑅
𝑀𝑀𝑖𝑖
𝐶𝐶𝑖𝑖
0�−7.7929�

2
+116.49

                               (3) 

Where Eq. (1) relies solely on volatility (𝐶𝐶𝑖𝑖0 represents the saturation concentration at 298K, and is equal to 𝐶𝐶𝑖𝑖∗ assuming 

ideal thermodynamic mixing), and was developed for coupling into the 1-D VBS framework. Equation (2) incorporates O/C 220 

as an additional factor, which is used in 2D-VBS. Both equations yield similar predictions, particularly for compounds with 

low O/C ratios (Li et al., 2020). Equation (3) is a semi-empirical formula derived from the measurements of isoprene SOA 

components, which relates Tg to volatility and includes molar mass Mi (Zhang et al., 2019). The overall Tg of OA mixtures 

under dry conditions (Tg,org) can be calculated using the Gordon-Taylor equation (see Supplementary Note 2). 

 225 

OA viscosity depends on aerosol water content, since water significantly influences the phase state of aerosols (Koop et al., 

2011). Under humid conditions, the Tg of organic-water mixtures (Tg,ωorg) is calculated based on the mass fraction of organics 

(ωorg) in the mixtures, along with the Tg values of pure water (136 K) and dry OA (using Eqs (1), (2) or (3)). Notably, ωorg 
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varies with ambient relative humidity (RH) and the effective hygroscopicity parameter of OA (κorg). Further details can be 

found in previous studies (DeRieux et al., 2018;Shiraiwa et al., 2017) and Supplementary Note 2. The temperature-dependent 230 

viscosity (η) can be estimated using the modified Vogel-Tammann-Fulcher (VTF) equation, as given in Eq. (4) (Angell, 1991), 

when the ambient temperature T is at or above Tg,ωorg; otherwise η is fixed at 1012 Pa s. 

η = η∞e
T0D
T−T0                                         (4) 

where η∞ and D denote the viscosity at infinite temperature and the fragility parameter, with the values of 10-5 Pa s and 10, 

respectively (DeRieux et al., 2018). 𝑇𝑇0  represents the Vogel temperature, and can be estimated using Eq. (5) (Angell, 235 

1991;DeRieux et al., 2018): 

T0 = 39.17Tg,ωorg

D+39.17
                                        (5) 

2.5 Measurement Data 

Two sets of observational data from field campaigns were used to evaluate the simulations. One campaign was conducted in 

the spring (March 17–April 21) of 2018 in DY, at a site located in the Yellow River Delta National Nature Reserve and strongly 240 

influenced by urban outflows from the North China Plain (NCP) (Feng et al., 2023). The observational data include the mass 

concentration and elemental ratios (e.g., O/C, H/C) of OA, measured using a high-resolution time-of-flight aerosol mass 

spectrometer (HR-AMS). The volatility distribution of OA (expressed as VBS) was estimated using an empirical method based 

on data from a thermodenuder (TD) combined with AMS. The sources of OA components were characterized using the positive 

matrix factorization (PMF) method, which resolved OA factors, including hydrocarbon-like OA (HOA), biomass-burning OA 245 

(BBOA), transported OOA and background OOA. The other campaign, led by the same team, was conducted in the autumn 

(September 29-November 21) of 2018 in urban GZ surrounded by transportation and residential districts, with significant 

impacts from local emissions (Chen et al., 2021). The resolved OA factors in GZ identified three POA groups (cooking OA 

(COA), HOA, and nitrogen-containing OA (NOA)) along with two types of SOA (low-volatility oxygenated OA, LV-OOA, 

and semi-volatile oxygenated OA, SV-OOA).  250 
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3 Results  

3.1 Evaluation of mass concentration 

Figure 1 compared the observed and simulated diurnal variations of OA and its components, POA and SOA, in DY and GZ, 

respectively. The simulation with updated O/C ratios of POA emissions in the 2D-VBS framework (i.e., 2D-VBS_A) did 

not alter the emission magnitudes or volatility, and therefore had a minimal impact on the predicted POA mass 255 

concentration or volatility distribution. As a result, this case is not discussed in Section 3.1 and 3.2. The observations 

indicated that SOA dominated OA at both sites, contributing 72% and 64% at DY and GZ, respectively. The model 

generally underestimated the SOA contribution in DY (except for the 2D-VBS case), while slightly overestimating it in 

GZ (Table S9). In general, the 2D-VBS case predicted higher contributions of SOA to total OA (>80%) than in the 1D-VBS 

simulations. 260 
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Figure 1: Simulated diurnal variations of OA, POA, and SOA with different SOA schemes compared to the observations in DY (a-

c) and GZ (d-f). The light grey shading indicates the standard deviations (±1𝝈𝝈) from the mean concentration in the observations. 

 265 

The base 1D-VBS significantly underestimated SOA production, with NMBs of −72% in DY and −71% in GZ (Table S10). 

Adding L/S/IVOC emissions and their contributions to SOA in the 1D-VBS_E case resulted in approximately a two-fold 

enhancement in SOA mass concentration. This finding was consistent with earlier studies showing that 64% to 100% of 

observed SOA in GZ can be explained when both conventional precursors and S/IVOCs are considered (Hu et al., 2022), and 

that simulated S/IVOC contributions to SOA exceeded 50% across most of China (Li et al., 2021a;Miao et al., 2021). The 1D-270 

VBS_EY case substantially increased SOA production from aromatics and PAHs with updated yields (Fig. S6), and the diurnal 

variation was similar to that in the 2D-VBS simulation in DY. In GZ, the notable daytime differences in SOA between the 2D-

VBS and 1D-VBS_EY cases were driven by variations in ASOA representations (Fig. S7). Mass increases in ASOA as a result 

of gas-phase aging were likely overestimated with the 4-km grid spacing in the 1D-VBS_EY simulation (Bilsback et al., 2023). 

While both simulations significantly improved SOA predictions, they still underestimated SOA concentrations compared to 275 

observations by 11-14% (2D-VBS) and 30-33% (1D-VBS_EY), respectively. Diagnosing the causes of these underestimations 

remains challenging due to the lack of chemically resolved SOA measurements. Although POA was underestimated (as 

discussed below), the sensitivity simulations indicated that its impact on SOA was limited (Fig. S8). At the GZ site, for 

example, increasing POA emissions by 70% in the 1D-VBS_EY simulation to match the observed POA concentrations led to 

only 4.0% increase in SOA, suggesting that missing or incomplete SOA formation pathways are likely the primary drivers of 280 

the SOA low biases. We infer that the nighttime low biases in both cases were likely attributed to insufficient formation of 

organic nitrates in the presence of NO3 radicals. This might result from missing anthropogenic terpene and phenolic emissions 

from sources such as biomass burning and volatile chemical products (Wang et al., 2022;Coggon et al., 2021;Xie et al., 

2025;Liu et al., 2024). The underestimated nocturnal SOA formation could also be attributed to the underprediction of aqueous-

phase formation pathways, which are enhanced under high RH conditions at night (Wang et al., 2019;Gu et al., 2022).  285 
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Simulated POA also exhibited underestimation at both locations. In the comparison, BBOA and COA were excluded from the 

observations, due to the complexity and considerable uncertainties associated with cooking and biomass burning (particularly 

open burning) emission estimation (Li et al., 2023;Zhou et al., 2017). Therefore, the POA underestimation was most likely 

attributable to uncertainties in mobile emissions. Observed POA concentrations at both sites showed peaks during traffic rush 290 

hours, which were not well captured by the simulations. At the DY site, the resolved HOA in observations was partially aged, 

as noted in Feng et al. (2023) and included some SOA transported over long distances, which may also explain the POA 

underestimation. At the GZ site, which is more influenced by local emissions, the simulated peak concentration exhibited an 

earlier shift compared to the observed peak, suggesting that the diurnal patterns of POA emissions may differ from those 

specified in the model. Additionally, the POA volatility distributions (see Methods) and aging schemes in the 1D-VBS and 295 

2D-VBS simulations were different: (1) The 1D-VBS involved heterogeneous aging of non-volatile POA. (2) In 2D-VBS, 

POA aging led to its complete transformation into SOA, whereas in the 1D-VBS, some oxidation products remained as POA. 

These differences led to distinct POA levels between the two cases.  

 

Overall, total mass concentrations of OA were underestimated. The 1D-VBS_EY case, which had the smallest negative biases 300 

among the 1D-VBS simulations, underestimated OA by approximately 27% in DY and 34% in GZ. These discrepancies were 

dominated by SOA underestimation at both sites, with POA biases in the 1D-VBS negligible in GZ (Fig. S9). The 2D-VBS 

simulation demonstrated better performance in OA predictions than 1D-VBS_EY, with NMBs of −24% in both DY and GZ, 

primarily due to higher predicted SOA mass concentrations. 

3.2 Volatility simulations 305 

The mass distributions of OA, POA, and SOA across different volatility bins (i.e., volatility distribution) were examined. This 

study primarily focused on compounds with C* equal or below 10⁻¹ μg m⁻³ (logC*≤−1, referred to as low-volatility OA 

hereafter), and on SVOCs (i.e., −1<logC*≤2), which exist in both gas and condensed phases. Despite variations in OA mass 

concentrations across different cases, CMAQ generally reproduced the observed volatility distributions of OA, SOA, and POA 
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in all the simulations (Fig. 2). Specifically, the observations indicated that more than 70% of OA was low-volatility OA, 310 

consistent across the simulations. The base 1D-VBS significantly underestimated low-volatility OA concentrations, leading to 

underestimation in total OA mass (Fig. S10). The 1D-VBS_E simulation, which included L/S/IVOC emissions, increased low-

volatility SOA formation by 1.1 μg m⁻³ in DY and 1.5 μg m⁻³ in GZ, although the contributions of low-volatility SOA to total 

SOA decreased. It also replaced the default volatility distribution of POA in CMAQv5.3 with source-specific gas/particle 

partitioning, resulting in a significant amount of non-volatile POA (Fig. S11). Collectively, these adjustments led to slightly 315 

higher fractions of low-volatility OA with the inclusion of L/S/IVOC emissions, as proposed by Xu et al. (2019), albeit for a 

different reason (mainly due to changes in POA rather than SOA volatility distributions). The updated SOA yields for aromatics 

and PAHs had minor effects on POA but increased SOA mass concentrations across three of the four volatility bins in Fig. S10, 

slightly changing the SOA volatility distributions. 
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Figure 2: Simulated volatility distributions of OA, POA, and SOA across volatility bins with C* up to 102 μg m⁻³, compared to the 

observations in DY (a-c) and GZ (d - f). The compounds with C* equal or below 10⁻¹ μg m⁻³ were grouped into a single volatility bin, 

and referred to as low-volatility OA in this study. 

 

The simulated OA volatility distributions, particularly for POA, differed between the 2D-VBS and 1D-VBS_EY simulations. 325 

The observations presented a higher fraction of low-volatility POA in GZ than in DY. The spatial variation in POA volatility 

was captured by the 1D-VBS_EY case. However, both 1D-VBS_EY and 2D-VBS overestimated the contributions of low-

volatility POA. In 1D-VBS_EY, non-volatile POA was substantial in mass, and increased with aging (Fig. 3); semi-volatile 

POA underwent aging, with a portion remaining as POA (rather than fully converting into SOA as in 2D-VBS) but becoming 

more volatile. This ultimately led to a higher low-volatility POA mass and a lower contribution compared to 2D-VBS. The 330 

SOA volatility distributions in the 1D-VBS_EY and 2D-VBS cases both agreed well with the observations, which were similar 

at the two locations. However, the 2D-VBS simulation predicted a lower fraction of low-volatility BSOA in GZ compared to 

the 1D-VBS simulations (over 73% vs. less than 86%), primarily due to differences in the treatment of monoterpene-derived 

SOA through O₃/OH oxidation pathways. Additionally, the contribution of low-volatility ASOA was also lower in the 2D-VBS 

simulation (over 62% vs. over 69%; see Fig. S12). 335 
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Figure 3: Simulated mass concentrations of OA, POA, and SOA across volatility bins with C* ranging from 10⁻10 to 102 μg m⁻³, 

compared to observations in DY (a-c) and GZ (d-f). 

 

It is important to note that LVOCs (−4<logC* (μg m-3) ≤−1) and ELVOCs (extremely low-volatility VOCs with logC* (μg m-340 

3) ≤−4) were not explicitly resolved in this study (Fig. 3). In all simulations, SOA formation was dominated by species within 

C* bins ranging from 10⁻2 to 104 μg m⁻³. In addition, certain assumed “non-volatile” products (IEPOX/MAE-derived SOA, 

oligomers, etc.) were arbitrarily assigned to the volatility bin of C*=10⁻10 μg m⁻³ (see Methods). The abundance of mass in the 

C*=10⁻2 μg m⁻³ bin was particularly high for the 2D-VBS and largely due to aging. The absence of predicted SOA between the 
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C* bins at 10⁻10 μg m⁻³ and C*=10⁻2 μg m⁻3 was in contrary to the observed more uniform distribution across C* bins spanning 345 

from 10⁻9 to 10⁻1 μg m⁻3. The 1D-VBS_EY case included formation of mass for the volatility bin at C*=10-6 μg m⁻3 for HOMs 

formed from aromatics and PAHs under low-NOx conditions, but the predicted mass concentration was negligible and biased 

low relative to the observations. Major ELVOC formation pathways, including autoxidation and bimolecular peroxy radical 

reactions for monoterpenes, have been incorporated into the Community Regional Atmospheric Chemistry Multiphase 

Mechanism (CRACMM) (Pye et al., 2023). However, the volatility distribution of the resulting products remained 350 

insufficiently resolved. Furthermore, anthropogenic ELVOC formation is not yet well understood (Shrivastava et al., 2024;Yin 

et al., 2024). As ambient observations consistently reported significant amounts of LVOCs and ELVOCs (Chen et al., 

2024;Huang et al., 2024), future work should refine and expand the representation of autoxidation and other chemical processes 

contributing to LVOC and ELVOC formation from both anthropogenic and biogenic precursors. These improvements will 

enhance model accuracy in predicting SOA volatility and new particle formation.  355 

3.3 Oxygen to carbon ratio simulations 

Both observed and simulated OA showed higher O/C ratios during the day and lower ratios at night (Fig. S13), aligning with 

the temporal patterns of SOA mass concentrations. The higher O/C ratios in the afternoon were linked to elevated oxidant 

levels, which facilitated SOA formation (typically characterized by higher O/C ratios compared to POA, see Table 2) and the 

photochemical aging of OA. In contrast, during the night and early morning, the increased contributions of fresh POA led to 360 

lower O/C ratios. 

 

Table 2: Simulated and observed O/C ratios of OA, POA and SOA in DY and GZ. 

Site Case 
OA POA SOA 

SIM OBS SIM OBS SIM OBS 

DY 
1D-VBS 0.52 

0.83 
0.15 

0.55 
0.81 

1.04 
1D-VBS_E 0.56 0.29 0.77 
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1D-VBS_EY 0.61 0.29 0.83 

2D-VBS 0.49 0.26 0.57 

2D-VBS_A 0.50 0.29 0.57 

GZ 

1D-VBS 0.58 

0.59 

0.15 

0.25 

0.72 

0.82 

1D-VBS_E 0.59 0.33 0.71 

1D-VBS_EY 0.66 0.33 0.78 

2D-VBS 0.51 0.20 0.58 

2D-VBS_A 0.52 0.25 0.58 

 

Most simulations underestimated the O/C ratios of OA, with a more pronounced underestimation at the DY site, where both 365 

POA and SOA O/C ratios were lower than observed (Table 2). In DY, OA underwent prolonged aging during transport, resulting 

in a higher O/C ratio (0.84) than the national average (0.3–0.65) (Feng et al., 2023). Although the 1D-VBS_EY case predicted 

the highest O/C ratio of OA (due to potentially overestimated multi-generational oxidation as discussed in Section 3.1), it was 

still lower than the observed value (0.61 vs. 0.83). This discrepancy suggests that accurately simulating the evolution of OA 

O/C ratios with aging remains a significant challenge for current CTMs (despite satisfactory mass simulations). The observed 370 

POA contained aged HOA, which, although essentially SOA, could not be separated from HOA in DY (Feng et al., 2023), 

partly explaining the underestimation of POA O/C ratios. In the 1D-VBS_E case, the inclusion of L/S/IVOC emissions 

increased the O/C ratio of POA but decreased that of SOA, consistent with the impacts on volatility, i.e., increased (decreased) 

the contribution of low-volatility POA (SOA) (see Fig. 2 and Fig. S11). The 1D-VBS_EY case promoted SOA formation at 

C*=0.1 μg m⁻³ through the newly added volatility bin for ASOA, which was highly oxygenated (O/C=2.53, see Table S7), 375 

thereby increasing the O/C ratios of SOA. However, the impacts of HOMs were negligible due to their minimum contribution 

to mass.  

 

At the GZ site, the overestimation of POA O/C ratios in certain cases (i.e., 1D-VBS_E and 1D-VBS_EY) partially offset the 
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underestimation of SOA O/C ratios. As a result, the O/C ratio of total OA in 1D-VBS_E was closest to the observed value 380 

(both were 0.59), while the 1D-VBS_EY case overpredicted the O/C ratio (0.66 vs. 0.59). The more oxygenated POA in both 

simulations than observed could be attributed to overestimations in non-volatile POA mass concentrations. Additionally, COA, 

with an observed O/C ratio of 0.19 in GZ, were likely underestimated in the simulations given uncertainties in cooking 

emissions. If COA were well represented, it could slightly lower the simulated POA O/C ratios and reduce the positive biases 

in the 1D-VBS_E and 1D-VBS_EY simulations in GZ. 385 

 

The O/C ratios predicted by the 2D-VBS case were lower than those in other simulations, primarily due to the underestimation 

in SOA O/C ratios. In particular, the distribution of ASOA O/C ratios differed significantly from those in the 1D-VBS 

simulations (see Fig. S14), highlighting the necessity for improved representation of ASOA O/C ratios in future work. 

Simulated POA O/C ratios were mainly influenced by how emissions were specified in the model. As the default settings in 390 

2D-VBS underestimated POA O/C ratios, an additional simulation, 2D-VBS_A, was conducted with updated O/C ratios for 

emissions, constrained by those of POA factors in observations from prior studies (Table S6 and Fig. S15). For instance, in the 

default configuration, mobile sources were assumed to emit primarily hydrocarbons and low-oxygenated compounds, with 

over 90 % of emissions distributed in the O/C bins of 0 and 0.1. The optimized parameters in the 2D-VBS_A case reflected a 

higher degree of oxygenation, with more than 60 % of emissions allocated to the O/C bins of 0.2 and 0.4. As a result, the POA 395 

O/C increased from 0.26 (DY) and 0.20 (GZ) in 2D-VBS to 0.29 and 0.25 in 2D-VBS_A, respectively, and showed good 

agreement with the observation in GZ. However, the persistent low bias in POA O/C ratios in DY was likely attributable to 

uncertainties in emissions from sources with higher O/C, such as biomass burning (with an observed O/C ratio of 0.37 for 

BBOA) in the simulations, as well as potential overestimation of observed POA O/C ratios due to the influence of aged HOA. 

 400 

Apart from underestimations in OA O/C ratios in most cases, the simulations struggled to capture the spatiotemporal variability 

on an hourly basis (Fig. 4). The observations revealed significant differences in the O/C ratios between DY and GZ, along with 

considerable temporal variability, particularly at the GZ site with abundant fresh emissions. In the observations, the 
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interquartile range (IQR) of hourly O/C ratios was 0.77-0.89 in DY and 0.52-0.68 in GZ. However, the simulated O/C ratios 

of OA showed less variability than observed in GZ, with narrower IQRs and Standard Deviation Ratios (SDR) lower than 1.0.  405 

 

Figure 4: Density distribution of simulated versus observed hourly O/C ratios of OA in DY (a-e) and GZ (f-k). The edges of the grey 

shading represent the 25th and 75th percentiles in both the observations and simulations, with the shading indicating the interquartile 

range (IQR). The Index of Agreement (IOA, reflecting both bias and variability) and Standard Deviation Ratio (𝝈𝝈𝒔𝒔𝒔𝒔𝒔𝒔 𝝈𝝈𝒐𝒐𝒐𝒐𝒐𝒐⁄  , 

comparing the magnitude of variability in simulations and observations) are calculated. 410 

 

The responses of daily OA O/C ratios to ambient O3 concentrations were also examined (Fig. 5). All the simulations 

demonstrated an increased in O/C ratios as O3 levels rose (indicating a higher atmospheric oxidative capacity), with the rates 

in the range of 0.0023-0.0045 per ppb O3. The 2D-VBS simulations exhibited a steeper slope, suggesting stronger sensitivity 

to O3 levels. This implied that oxidant abundance in the gas phase was an important driver of the increase in O/C ratios in the 415 

simulations. However, the observations did not show a clear correlation between O/C ratios and O3. In DY, this could be due 

to the decoupling of O/C ratios from local O3 in aged air masses. Other factors, such as fresh emissions in GZ (see Fig. S16) 

or aqueous formation pathways, may also contribute to the observed variations in O/C ratios.   



22 
 

 

Figure 5: Simulated changes in OA O/C ratios with daily mean ozone (O3) concentrations, compared to observations in DY (a) and 420 

GZ (b). The paired data of O/C ratios and O3 were grouped into three bins with equal intervals of O3 levels. Dashed lines represent 

fitted trends, and the values of N denote the sample size within each bin. 

3.4 Implications for Tg and viscosity predictions 

Several widely used CTMs, including WRF-Chem and GEOS-Chem, have been utilized to predict OA viscosity and phase 

state based on volatility and O/C (Zhang et al., 2024;Luu et al., 2025). In this study, three parameterizations of Tg were 425 

employed to investigate how model capability in representing volatility and O/C influences the predictions of Tg (and the 

resulting viscosity using the VTF equation, see Methods): (1) one incorporating both O/C and volatility (Eq. 2), (2) one 

accounting for both volatility and molecular mass (Eq. 3), and (3) one based solely on volatility (Eq. 1). Given that Eq. 3 was 

developed from laboratory experiments focused on isoprene SOA, its applicability to POA and ASOA warrants further 

evaluation (which is beyond the scope of this study). Nevertheless, it was included here as a comparative parameterization to 430 

evaluate impacts of volatility representations. The simulation at the DY site was selected for detailed analysis as a 

representative case.  

 

In DY, the mean Tg,org values for POA and SOA showed differences across parameterizations, ranging from 15.5 to 24.4 K for 

POA and 19.3 to 23.0 K for SOA (Fig. 6). The parameterization based on Eq. 1 generally predicted the highest Tg,org values, 435 
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closely aligning with those from Eq.2 as has been reported in Li et al. (2020). This suggests that simulated volatility 

distributions exerted a stronger influence on Tg,org predictions than O/C ratios, as further evidenced by the Tg,org values of 

individual SOA surrogates (Fig. S17). Eq. 3 predicted the lowest Tg,org values, including for nearly all SOA components except 

a few isoprene SOA surrogates. For isoprene SOA components, Tg estimates remained constant using either Eq. 1 or Eq. 3, 

due to the use of a fixed C* of 10−10 𝜇𝜇g m−3 in CMAQ (see Methods), which resulted in unrealistically high Tg values, e.g., 440 

~400 K with Eq.1. However, 2-methyltetrol (AIETET), despite its unexpectedly high ambient concentrations, might be semi-

volatile, with predicted C* of 102 𝜇𝜇g m−3, while 2-methyltetrol sulfate (AIEOS) has a relatively low volatility, with C* of 10−1 

𝜇𝜇g m−3 (Budisulistiorini et al., 2017). These values resulted in much lower Tg estimates of approximately 230K and 276K, 

respectively (Zhang et al., 2019). Therefore, the C* values for these compounds should be revisited when applied in Tg 

predictions. 445 

 

Figure 6: Predicted Tg,org of (a) POA and (b) SOA using three parameterizations across different simulation cases. The solid line 

represents Tg,org derived from observed volatility and O/C ratios. Symbols denote Tg,org estimated from: volatility and O/C ratio using 

Eq. 2 (circles), volatility and molecular weight using Eq. 3 (triangles), and volatility only using Eq. 1 (diamonds). Error bars indicate 

one standard deviation. 450 

 

The discrepancies in POA Tg,org derived from observed versus simulated volatility and O/C ratios using Eq. 2 ranged from 12.4 

to 33.7 K across the five simulations. Compared to observation-based Tg,org, the 2D-VBS, 2D-VBS_A, and 1D-VBS 

simulations underestimated POA Tg,org, whereas the 1D-VBS_E and 1D-VBS_EY simulations overpredicted it, primarily due 
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to a substantial contribution from non-volatile POA (Fig. S11). Although the 2D-VBS simulation exhibited the highest fraction 455 

of low-volatility POA (Fig. 2), these species were mainly allocated to the volatility bin of C*=10−2 𝜇𝜇g m−3, which led to lower 

Tg,org values than those inferred from observations. The biases in SOA Tg,org were smaller, ranging from 2.5 to 17.2 K. Most 

simulations exhibited a slight underestimations of SOA Tg,org relative to observation-derived values. Conversely, the 1D-VBS 

case overestimated SOA Tg,org, with an excessive proportion of SOA at C*=10−10 𝜇𝜇g m−3 (Fig. S11). Since Eq. 1 and Eq. 2 were 

developed for use within the 1D-VBS and 2D-VBS frameworks, respectively, the evaluation presented here suggests that the 460 

differences in Tg,org estimates were driven by the volatility representations in the 1D-VBS versus 2D-VBS, rather than by the 

specific Tg parameterizations. Notably, the 2D-VBS implementation in CMAQv5.4 generally produced lower SOA Tg,org values. 

 

The values of OA viscosity η, which determine their phase state, were calculated using the VTF equation, with Tg parameterized 

as a function of volatility and O/C ratios (Eq. 2), and incorporating additional variables including κorg, RH, and T (see Methods). 465 

Figure 7a and 7e compared viscosity estimated from simulations and observations, with all input variables (i.e., Tg,org, κorg, RH 

and T) obtained consistently from either model output or observations. In the simulations, κorg for each OA species was 

parameterized as a function of OM/OC (Eq. S7), assuming a constant density of 1.4 g cm⁻³. Bulk κorg for SOA and POA was 

calculated as a mass-weighted average across species. For observations, κorg was inferred from f44 (i.e., the fraction of m/z 44 

signal in total organic signals) following Feng et al. (2023). The simulations generally reproduced the diurnal variability in OA 470 

viscosity, predicting higher η values during the daytime than at night, in line with the observed diurnal patterns. Field 

measurements indicated that POA was predominantly semi-solid (10²≤η≤10¹² Pa·s) with a transition to the solid phase (η>10¹² 

Pa·s) between 12:00 and 17:00. However, the model overestimated viscosity. Consequently, the 2D-VBS and 2D-VBS_A 

simulations predicted prolonged solid phase for POA, while 1D-VBS_E and 1D-VBS_EY predicted POA to remain solid 

throughout the day. For SOA, observations showed that it was semi-solid, while the simulations reproduced this phase state 475 

during nighttime hours only. 
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Figure 7: Diurnal variations in predicted OA viscosity using Eq. 2, based on observations and simulations. Black points indicate 

observation-based values, while colored lines represent predictions using combinations of Tg,org, κorg, RH, and T from observations 

or simulations as defined in Table 3. Red points indicate viscosity estimated using observation-based Tg,org and κorg values, along with 480 

simulated RH and T. The OA phase state is determined based on viscosity: liquid (η < 10² Pa·s), semi-solid (10² ≤ η ≤ 10¹² Pa·s), 

and solid (η > 10¹² Pa·s) (Reid et al., 2018). Viscosity values in the figure are capped at 10¹² Pa·s, beyond which values are not 

physically meaningful for solid-phase OA.  

 

To identify the dominant source of overestimation in predicted viscosity, three sensitivity experiments were conducted (Table 485 

3), each isolating the influence of a specific input variable. The results from sensitivity experiment A (Fig. 7b and 7f) revealed 

that the evident model-observation discrepancies in POA and SOA viscosity were positively correlated with the biases in Tg,org. 

For instance, in the 1D-VBS case, POA viscosity was significantly underestimated (by up to five orders of magnitude) due to 

a ~40 K negative bias in Tg,org (Fig. S18a), while an overestimation of Tg,org for SOA (~20 K, Fig. S18d) led to viscosity 

exceeding observation-based values by up to two orders of magnitude. In contrast, simulations such as 1D-VBS_E and 1D-490 

VBS_EY, which better captured SOA Tg,org, yielded viscosity values in good agreement with observations. Thus, by comparing 
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Fig. 7e and 7f, we conclude that the considerable overestimation of SOA viscosity in Fig. 7e, except in 1D-VBS, cannot be 

attributed to Tg,org bias. O'Brien et al. (2021) also reported a moderate sensitivity of predicted OA viscosity to Tg,org, e.g., under 

conditions of RH=60%, a reduction in Tg,org by ~200 K resulted in a decrease in predicted viscosity from 10¹² Pa·s to 10 Pa·s 

(with κorg of 0.14).  495 

Table 3: Combinations of Tg,org, κorg, RH and T used in sensitivity cases for OA viscosity estimation. 

Cases Tg,org κorg RH and T 

Base_case Simulation-based  Simulation-based  Simulation 

Sensitivity case A Simulation-based Observation-based Observation 

Sensitivity case B Observation-based Simulation-based Observation 

Sensitivity case C Observation-based Observation-based Simulation 

 

On the other hand, the OA hygroscopicity parameter (κorg) was an important parameter in viscosity estimation. Sensitivity 

experiment B predicted viscosity comparable to those in Fig. 7a and 7e, indicating that the discrepancies between simulation- 

and observation-based viscosity values was due to the variation in κorg. Specifically, the κorg values used in the simulations 500 

underestimated the hygroscopicity of both POA and SOA relative to the values derived from m/z 44 (Fig. S19), e,g, 0.16 versus 

0.048-0.069 (1D-VBS)/0.064-0.068 (2D-VBS) for POA, and 0.35 verus 0.013-0.014(1D-VBS)/0.12 (2D-VBS) for SOA. 

Earlier sensitivity simulations showed that a perturbation of ±0.05 in κorg resulted in changes of Tg,ωorg by ~5-15% over high 

RH areas, supporting a critical role of κorg in viscosity estimation (Shiraiwa et al., 2017). Consistently, the underestimation in 

κorg led to an overestimation in simulated viscosity in this study (given the inverse relationship between viscosity and 505 

hygroscopicity), and even offset the underestimations of viscosity that were caused by low biases in Tg,org (see Sensitivity 

experiment A). In CMAQ, κorg was parameterized as a function of OM/OC. In light of the notable underestimation of O/C 

ratios at the DY site (Table 2), this could be a key driver of the bias in viscosity predictions. While the impact of relative 

humidity on viscosity has also been emphasized in other studies (Maclean et al., 2021;Rasool et al., 2021;Li et al., 2021b), its 

effect is minimal in this study due to the strong agreement between simulated and observed meteorological variables (Fig. 510 
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S20). This was further supported by the similarity in viscosity estimates derived using identical κorg and Tg,org but different RH 

and T inputs (Fig. 7d and 7h).  

4 Conclusions and Discussion 

This study evaluated the CMAQ model’s performance in predicting OA mass concentrations, volatility distributions, and O/C 

ratios, and examined their implications for Tg and viscosity estimates, using observations at two representative sites in Eastern 515 

China, i.e., DY, influenced by aged air masses, and GZ, more impacted by local emissions. The major findings include: 

(1) The base 1D-VBS simulation with AERO7i underestimated OA by ~70%. However, the optimized 1D-VBS simulation, 

which incorporated additional L/S/IVOC emissions and enhanced SOA production from aromatics and PAHs (accounting 

for vapor wall losses and autooxidation), significantly improved OA predictions with NMBs of −27% (DY).and −34% 

(GZ). The 2D-VBS simulation exhibited similar performance with NMBs of −24%. The OA biases were mainly driven 520 

by SOA underestimation, with the optimized 1D-VBS underestimating SOA by ~32% and 2D-VBS underestimating it by 

~13%.  

(2) All the simulations accurately captured the observed fraction of low-volatility products in OA (>70%), although the 

detailed distributions within these volatility bins (10-9 μg m⁻³≤C*≤0.1μg m⁻³) were not well represented. Simulated SOA 

was abundant in volatility bins of C*=10−2 𝜇𝜇g m−3 or 10−10 𝜇𝜇g m−3. The volatility distributions of POA showed notable 525 

variations across the simulations, influenced by the gas/particle partitioning of L/SVOC emissions specified in the model.  

(3) OA O/C ratios were generally underestimated across all the simulations, particularly in DY, where aged air masses 

prevailed. In the 1D-VBS simulations, the inclusion of L/S/IVOC emissions increased O/C ratios with more non-volatile 

POA, while updated SOA yields added SOA at C*=0.01 μg m⁻³, contributing to higher SOA O/C ratios. The 2D-VBS 

simulations presented lower O/C ratios than 1D-VBS overall, whereas constraining POA with observations improved its 530 

O/C representation. 

(4) The simulated volatility distribution strongly influenced Tg estimates. In particular, the fraction of POA and SOA in the 



28 
 

lowest volatility bin (C*=10-10 μg m⁻³) played an important role. The assumption of C*=10-10 μg m⁻³ resulted in 

unrealistically high Tg values for some OA components (e.g., isoprene SOA). Although the high (low) biases in Tg led to 

overestimation (underestimation) of viscosity in the case of DY, uncertainties in OA hygroscopicity parameter, 535 

parameterized as a function of O/C ratios in CMAQ, were the dominant source of model-observation gaps in viscosity.  

 

These findings highlight the limitations of the CMAQ model in predicting the volatility distribution of OA and the associated 

O/C ratios. While the allocation of OA in low-volatility bins may have a limited impact on simulated mass concentrations 

under atmospherically relevant conditions, it is closely linked to key physicochemical properties, such as Tg, viscosity, and 540 

phase state. These properties, which have received insufficient attention in previous studies, play a crucial role in the kinetics 

of multiphase SOA formation. Additionally, estimates of OA hygroscopicity and light absorptivity—both of which influence 

climate effects—may be subject to uncertainties when parameterized based on O/C ratios. In particular, representing the 

evolution of O/C ratios during air parcel transport remains a major challenge for CTMs. In some cases, inaccurate treatment 

of these properties could also influence OA mass concentrations. For example, OA hygroscopicity affects water uptake, which 545 

can, in turn, enhance SOA mass through interactions between water and organics. Therefore, future improvements to SOA 

modeling, including the incorporation of missing precursors, new SOA formation pathways, and more accurate 

parameterizations, must be rigorously evaluated to ensure they simultaneously reduce model-observation discrepancies in mass 

concentrations, volatility, and O/C ratios.  

 550 

Code and Data availability 

The measurement data are publicly available in previous publications listed in the references. The CMAQ source code can be 

accessed via the EPA CMAQ GitHub repository (https://github.com/USEPA/CMAQ). CMAQ model output data and Python 

scripts used to generate the figures are available upon request from the corresponding author. 

https://github.com/USEPA/CMAQ
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