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Abstract. Snow depth (SD) is a crucial parameter for describing the spatiotemporal variations of snow cover, and passive 

microwave SD products (10-25 km) are widely used for monitoring SD changes. However, as one of the three major snow-

covered regions in China, the Qinghai-Tibet Plateau (QTP) has complex terrain and rapid change in snow cover with strong 

spatial heterogeneity, making it difficult for coarse-resolution SD products to accurately describe its spatiotemporal 10 

characteristics. This study proposes a high spatial resolution (500 m) SD estimation method based on AMSR-2 brightness 

temperature (BT) data and an Automated Machine Learning (AutoML). Firstly, using Pearson correlation coefficient, 19 key 

factors influencing SD, including AMSR-2 BT, slope, and surface roughness, were selected as input data (independent 

variables) for AutoML. Meanwhile, a passive microwave downscaled SD data and ground-based SD measurements were 

introduced as dependent variables for AutoML. Then, the AutoML model was trained separately for four different types of 15 

snow cover surfaces (forest, grassland, water, and bare land). Finally, through the ten folds cross validation method, the 

optimal machine learning model for SD estimation under each type of underlying surface coverage was selected, thus 

sequential SD datasets were obtained for ten-year snow cover periods of the QTP from 2012 to 2021. Results show that the 

estimated SD values are consistent with ground-based observations (R=0.81), and the accuracy is high with an RMSE of 

3.65 cm. Compared with Landsat-8, the estimated SD spatial distribution is consistent with the snow cover extent on optical 20 

images, which can provide reliable data for monitoring snow cover changes in mountainous regions. 
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1 Introduction 

Snow cover is one of the key elements of the cryosphere, which is critical for global ecosystems, hydrological cycles, and 

human societies. Snow depth (SD) is an important attribute describing the spatiotemporal variation of snow cover, and a 25 

crucial parameter in various fields, such as climate change and hydrological cycle. The Qinghai-Tibet Plateau (QTP), known 

as the "Roof of the World," is one of the three major snow-covered regions in China and a sensitive area for global climate 

change (Tedesco et al., 2010; Zhang et al., 2008). With global warming, the temperature in the QTP has changed 

significantly, and snow cover has decreased over the years, with extremely uneven spatial distribution. Especially since the 
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2000s, the SD on the QTP has shown a significant downward trend, and there are large differences in its spatiotemporal 30 

distribution characteristics (Che et al., 2019; Wang et al., 2022; Yu, 2014). Therefore, monitoring the SD changes on the 

QTP is highly significant for meteorological forecasting, water resource management, hydrological modeling, and other 

related fields. 

Research on SD inversion based on passive microwave remote sensing has been conducted for more than 40 years. Multiple 

mature inversion algorithms have been developed, and various SD products have been released. Currently, there are three 35 

main methods for using passive microwave remote sensing to invert SD: physical model method, semi-empirical statistical 

method, and machine learning (ML). Among them, the physical model simulates the scattering and absorption characteristics 

of snow in microwave bands, fully considering snow properties such as snow density and snow grain size. However, due to 

the complexity of the microwave radiation transmission model and the difficulty in accurately obtaining these snow 

characteristic parameters, the reliability of SD physical model is reduced. 40 

The SD inversion of semi-empirical statistical method primarily utilizes the correlation between the difference in the snow 

scattering characteristics of different frequency brightness temperature (BT) and SD. The “brightness temperature gradient 

method”, initially proposed by Chang et al. (1987) (Chang et al., 1987), has been widely used. and numerous scholars have 

subsequently improved SD inversion algorithms based on Chang algorithm (Cao et al., 1993; Che et al., 2008; Foster et al., 

1997; Jiang et al., 2014; Kelly, 2009). Among them, Che et al. (2008) improved the Chang algorithm based on SD 45 

measurements from Chinese meteorological stations in response to the low snow density in China, and released two long-

term time series SD datasets in China: Che_SSMI/S product and Che_SMSR2 product. In addition, some studies considered 

the influence of different snow underlying surface types on the accumulation and spatial distributionthe of snow cover, and 

proposed a SD inversion algorithms based on multi-frequency BT data. Jiang et al. (2014) combined four frequencies (10 

GHz, 18 GHz, 36 GHz, and 89 GHz) BT data to establish a semi-empirical SD inversion algorithm with four snow 50 

underlayment cover types (grassland, farmland, bare land, and forest). 

However, owing to the low spatial resolution (10-25 km) of these passive microwave SD products, the accuracy of SD 

inversion is significantly limited in mountainous areas. Some scholars have conducted downscaling research on passive 

microwave SD products based on snow cover distribution data. Tang et al. (2016) downscaled the Che_SSMI/S product to 

obtain daily SD (0.05°) for the QTP based on 500 m MODIS fractional snow cover (FSC) dataset (2000-2011) using 55 

empirical fusion rules and snowmelt regression curves. Hu et al. (2021) developed a spatially dynamic SD downscaling 

algorithm for the northern Xinjiang region using AMSR-2 BT combined with MODIS FSC data, improving the downscaling 

accuracy of SD (RMSE=3.47 cm). Xu et al. (2024) conducted a downscaling comparation of two widely used SD datasets 

(Che_SSMI/S and Che_AMSR2) using MODIS FSC products. The results showed that the downscaled SD of Che_AMSR2 

(Che_AMSR2_NSD) was more consistent with the SD observations. 60 

In recent years, ML has become a significant means of SD inversion. By training ML models, such as Support Vector 

Machine (SVR), Random Forest Method (RF), and Artificial Neural Network (ANN), a nonlinear relationship between 

microwave radiation BT and SD is established, and the SD inversion accuracy is improved by integrating multisource remote 
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sensing data (Xiao et al., 2018; Zhong et al., 2021). Yang et al. (2020) proposed a SD inversion algorithm based on RF that 

considers multiple factors (BT at different frequencies, geographic location information, and land cover types), but the 65 

accuracy of SD inversion is still limited by the acquisition of prior knowledge of SD. Hu et al. (2021) compared three ML 

methods (ANN, SVR, and RF) using five SD products and ground-based SD measurements as prior data, and found. that RF 

had the highest accuracy. The aforementioned studies indicated that the SD estimation method based on ML models exhibits 

significant advantages, however, they still have two shortcomings in mountainous area. (1) ML methods require a large 

number of SD data as training samples, but existing SD products have low spatial resolution, and ground-based 70 

measurements are often scarce and unevenly distributed. (2) Generally, single or several ML models are used to train data 

for specific regions, and there are many challenges in data processing, feature selection, and the selection of the best model, 

which are accomplished through intuition or trial and error (Du et al., 2020).  

To address the issues in ML models mentioned above, the Automated Machine Learning (AutoML) has emerged (Benghzial 

et al., 2023). Without human intervention, AutoML can autonomously execute a series of processes, including data 75 

processing and model performance evaluation, and ultimately identify the optimal ML model. The Auto WEKA proposed by 

Thorntond et al. (2013) is one of the earliest AutoML frameworks (Kotthoff et al., 2017; Thornton et al., 2012), subsequently 

various AutoML frameworks have emerged, such as Auto-Sklearn, TPOT, H2O, and Pycaret (Feurer et al., 2015; LeDell and 

Poirier, 2020; Olson and Moore, 2016). Among them, Pycaret provides a simple and easy-to-use interface that not only 

selects the optimal model by comparing the performance of multiple ML models, but also combines the prediction results of 80 

multiple models together, improving overall performance and robustness. Therefore, AutoML, specifically the Pycaret 

model is expected to be an effective tool for SD inversion, although there are currently few applied studies on this area. 

The study proposes a method for estimating SD in in mountainous areas based on the AutoML: Pycaret model. Firstly, the 

Che-AMSR2 downscaled SD data and ground-based SD observations are used as input data (dependent variables) for the 

Pycaret model, whilst the AMSR-2 BT data and 28 factors, such as slope and surface roughness, are used as independent 85 

variables. Then, a total of 19 key factors were screened using the Pearson correlation coefficient method, and the input 

sample data was trained for four snow underlying surface types (forest, grassland, water, and unused land). Finally, the 

optimal AutoML model is obtained for each snow subsurface coverage type is subsequently selected to estimate SD on the 

QTP. The study employs snow cover products to identify the presence or absence of snow in 500 m pixels. For snow-free 

pixels, the SD value is set to 0, while for snow-covered pixels, the proposed SD estimation method is utilized to obtain the 90 

SD values anew. 

2 Study area and data 

2.1 Study area 

The QTP is situated in the southwestern region of China, renowned as the "Roof of the World" and the "Water Tower of 

Asia"(Pu and Xu, 2009). As illustrated in Figure 1, the terrain of the QTP is complex and fragmented, and characterized by 95 
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high northwest and low southeast, resulting in extremely spatial heterogeneity of snow cover (Huang et al., 2019; Ke and Li, 

1998; Li et al., 2022b). Moreover, the seasonal variation of snow cover on the QTP is pronounced, with the widest 

distribution in winter, gradually decreasing snow cover in spring and autumn, and the smallest snow coverage in summer. 

Usually, the snow cover period spans from October to March of the following year, with October to December being the 

accumulation period, January to February being the stable period, and March being the melting period (Lu et al., 2008; Qin, 100 

2012). 

 

Figure 1: Location of study area and ground-based SD observations. 

2.2 Data Sources and Preprocessing 

As shown in Table 1, the dataset used for this research experiment comprises five main categories: AMSR-2 (Advanced 105 

Microwave Scanning Radiometer 2) BT; downscaled SD data (Che_AMSR2_NSD); daily cloud-free snow cover products; 

ground-based SD observations; and other auxiliary data. 

Table 1: Basic Information of the Experimental Dataset. 

Datasets 
Spatial 

Resolution 
Data period Data sources Application 

AMSR-2 BT 10 km 
2012.10～
2021.03 

https://gportal.jaxa.jp/ Establish model 

Che_AMSR2_NSD 500 m 
2012.10～
2018.03 

- Input data 

Daily cloud-free snow cover dataset 500 m 
2012.10～
2021.03 

https://poles.tpdc.ac.cn/zh-

hans/ 

Snow 

Identification 

SD 

observations 
Meteorological station  - 2015～2019 https://data.tpdc.ac.cn/home/ 

Input data and 

verification  
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Measurement routes - 2018～2019 
https://www.csdata.org 

https://www.ncdc.ac.cn/ 

Auxiliary 

Data 

SRTM DEM 90 m - 
https://earthexplorer.usgs.gov

/ 

Aspect、slope 

et al 

CNLUCC 1 km 2020 https://www.resdc.cn/ 
Land cover 

types 

ERA5-Land 1 km 
2012.10～
2021.03 

https://climate.copernicus.eu/ 

Average 

monthly 

temperature 

Landsat-8 30 m 
2012.10～
2018.03 

https://www.usgs.gov 
Assessment of 

snow cover  

2.2.1 AMSR-2 BT 

AMSR-2, a microwave sensor mounted on the GCOM-W1 satellite launched by the Japan Aerospace Exploration Agency 110 

(JAXA), conducts observations at seven frequencies, each with horizontal and vertical polarization modes (Imaoka et al., 

2012). It has a spatial resolution of 10 km and revisits the QTP region every two days. Some studies have demonstrated that 

the quality of descending BT data is significantly superior to that of ascending BT data (Huang et al., 2022). Therefore, for 

this study, descending AMSR-2 L1B data were downloaded for five frequencies (10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 

GHz and 89.0 GHz), including two polarization modes, during the snow cover periods of the QTP from 2012 to 2021. The 115 

AMSR-2 data were then resampled to 500 m using nearest neighbour interpolation to extract the BT values corresponding to 

the SD sample points. 

2.2.2 Che_AMSR2_NSD 

Che_AMSR2_NSD is a 500-m downscaled Che_AMSR2 dataset, which was obtained from the results of a published study 

that utilised empirical fusion rules and snowmelt regression curves (Xu et al., 2024). In comparison to the SD data from 120 

meteorological stations, it exhibits a higher degree of concordance with measured SD, with an R of 0.72 and a root mean 

square error (RMSE) of 3.21 cm. Therefore, the Che_AMSR2_NSD, in conjunction with ground-based SD observations, 

was utilised as a training sample for the AutoML. 

2.2.3 The daily cloud-free snow cover dataset 

The daily cloud-free snow cover dataset is freely available on the Big Earth Data Platform for Three Poles, with a spatial 125 

resolution of 500 m and a temporal resolution of 1 day (Huang et al., 2018). The present study sought to ascertain whether 

there is a distribution of snow in pixels by downloading daily snow cover data from 2012 to 2021 over the QTP during the 

snow cover periods. 

2.2.4 SD observations 

The ground-based SD observations utilised in this study can be categorised into two distinct types: measurement routes and 130 

meteorological stations. The initial step in this research involved the procurement of a comprehensive set of data pertaining 
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to snow surveys, which was obtained from the "Survey of Snow Characteristics and Distribution in China" project. This data 

set was derived from measurement routes, providing a detailed and precise overview of the study's subject. The study 

encompasses three snow survey routes in China from 2018 to 2019, encompassing over 200 manually observed snow sample 

points (Li et al., 2022a). Secondly, meteorological station observations in SD were obtained from an automatic measurement 135 

dataset on the SD in the QTP (2015-2016) (Jiang et al., 2017) and regular stations in typical regions of China during 2017-

2019 (Li et al., 2021). The data presented herein were obtained from the China Scientific Data and the National Cryosphere 

Desert Data Center. The present study utilised all ground-based SD observations on even dates as the input data for the 

AutoML model, with observations on odd dates serving as the validation data for SD estimation.In this study, all ground-

based SD observations from even-numbered dates were selected as the input data for the AutoML model, while data from 140 

odd-numbered dates was employed to validate the SD estimation results. 

2.2.5 Auxiliary Data 

The auxiliary data utilised in this study is predominantly categorised into four distinct groups: SRTM DEM, China Multi-

period Land Use Remote Sensing Monitoring Dataset, ERA5 Land Temperature Data, and Landsat-8 optical images. The 

SRTM Digital Elevation Model (DEM) data was generated by the National Aeronautics and Space Administration (NASA) 145 

during Earth observation missions. The data has a spatial resolution of 30 metres and is stored in Geo-TIFF format. It is 

freely available from the United States Geological Survey (USGS). Preprocessing steps such as cropping and resampling 

were applied to obtain a 500 m resolution DEM dataset for the QTP. The China's Multi-temporal Land Use Remote Sensing 

Monitoring Dataset (CNLUCC) is derived from Landsat remote sensing images and manually interpreted to produce a 

dataset with a spatial resolution of 30 m. This dataset is available for download at no cost from the Resource and 150 

Environmental Science Data Center. (Xu et al., 2018). The present study utilised the classification results of the 

aforementioned dataset to calculate the proportion of each land cover type in the QTP, thereby identifying major land cover 

types such as forests, grasslands, water, and unused land. The establishment of distinct ML models was undertaken for the 

purpose of estimating the SD of each of the designated land cover types. Landsat-8 optical remote sensing images are 

utilised predominantly for comparative analysis of SD spatial distribution in the Auto_NSD dataset. These images were 155 

obtained from the official website of the United States Geological Survey, with a spatial resolution of 30 m and a revisit 

period of 16 days. For the purposes of this study, cloud-free images from seven consecutive days were selected as validation 

data for the Auto_NSD dataset. The ERA5-Land reanalysis dataset is a set of meteorological data concerning the monthly 

average air temperature at 2 metres above ground level. The monthly average temperature data during the snow season from 

October 2012 to March 2021 were obtained free of charge from the Copernicus Climate Change Service data platform. 160 

These data were then utilised to analyse the SD results obtained from AutoML estimation. 
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3 Methodology 

As demonstrated in Figure 2, the estimation of SD based on AMSR-2 BT data and the Pycaret model involves three distinct 

steps. Initially, 19 key factors influencing SD, including AMSR-2 BT data, slope, and surface roughness, were selected using 

the Pearson correlation coefficient method and designated as input parameters for AutoML. Furthermore, the ground-based 165 

SD measurements and the 500 m downscaled SD data from a passive microwave SD product were introduced as dependent 

variables for the model. Subsequently, the AutoML model was trained using the aforementioned input data for four distinct 

snow underlayment cover types: forest, grassland, water, and unused land. Ultimately, the optimal ML model for each snow 

underlayment cover type was selected through ten-fold cross-validation. Moreover, the spatiotemporal variation 

characteristics of SD during the snow cover period on the QTP were obtained from 2012 to 2021. The present study utilised 170 

AMSR-2 BT data and selected influencing factors of SD, such as slope and surface roughness, evaluated through Pearson 

correlation coefficients, as independent variables. The Che_AMSR2 downscaled SD and ground SD observation data were 

utilised as input data (dependent variables) for the AutoML models. The samples were trained under four different types of 

snow-covered surfaces. Finally, ten-fold cross-validation was conducted to assess the performance. The selection of the 

optimal ML models was conducted for each category of snow-covered surface, and the SD during the snow cover period on 175 

the QTP from 2012 to 2021 was estimated. The technical roadmap of this study is illustrated in Figure 2. 

 

Figure 2: Flowchart of this algorithm. 
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3.1 AMSR-2 SD estimation based on AutoML 

The present study elected to utilise the Pycaret AutoML framework to execute a series of steps, including data processing 180 

and SD model selection. Its workflow involves the generation of multiple models following the optimisation of the 

hyperparameters of each model based on user-defined inputs and outputs, as well as specific performance metrics (Xu, 2023). 

It mainly consists of three parts: meta-learning, Bayesian optimization, and model integration (Figure 3). The model is 

composed of three constituent elements: meta-learning, Bayesian optimisation, and model integration (Figure 3). During the 

meta-learning phase, Pycaret continuously refines the learning strategy and model selection by analysing the learning of 185 

historical data and the performance of the models to enhance overall performance. Through comprehensive exploration of 

data features, model algorithms, and hyperparameters, metalearning enables Pycaret to comprehend the complexity of the 

data and provide more accurate prediction results. Bayesian optimization represents a pivotal technique employed by the 

Pycaret framework to calibrate model hyperparameters. By leveraging Bayesian optimization, Pycaret intelligently selects 

subsequent combinations of hyperparameters to evaluate based on the results of previous model performance assessments. 190 

This process efficiently searches the parameter space and accelerates the model optimization process (Silva et al., 2025). In 

essence, the process of model integration involves the amalgamation of multiple high-performing models into a unified 

entity. This integration serves to augment the accuracy and stability of predictions. 

 

Figure 3: Flowchart of this algorithm. 195 

The objective of the Pycaret framework is to reduce the barriers to entry for ML, thereby facilitating a more streamlined and 

efficient process. This will enable users to compare, select and deploy models with greater ease. Pycaret comprises three 

primary categories of ML models: namely, generalized linear, tree-based, and ensemble learning models. Linear models 

encompass a variety of algorithms, including Ridge regression, Lasso regression, Bayesian ridge, Lasso least angle 

regression, and Huber regressor. Tree-based models consist of the following elements: the Decision Tree Regressor, the 200 

Random Forest Regressor, and the Extra Trees Regressor. It is evident that ensemble learning models are predominantly 
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composed of gradient boosting regressors, XGBoost, light gradient boosting machines, and CatBoost regressors (Silva et al., 

2025; Xu, 2023). 

3.1.1 Key factor selection 

The SD inversion is affected by multiple factors, and initial research focused on the sensitivity of various microwave 205 

frequencies to snow cover. The SD inversion was carried out by using the BT values of each microwave frequency. Chang's 

algorithm is chiefly reliant on BT data from 18 GHz and 36 GHz in order to derive SD. Nevertheless, in regions 

characterised by shallow snow cover, the SD inversion results obtained using this algorithm demonstrate poor performance 

(Chang et al., 1987). Consequently, a number of scholars have employed the BT data supplied at 89 GHz, 23 GHz and 10 

GHz in the context of SD inversion studies (Jiang et al., 2014; Kelly, 2009; Yang et al., 2020a). Nonetheless, recent research 210 

has demonstrated that, in addition to the BT values at different frequencies, geographical location and topographic conditions 

also exert a significant influence on SD inversion (Huang et al., 2019; Wei et al., 2021). In order to consider the 

aforementioned factors in a more comprehensive manner, the present study is based on the BT(10H/V, 18H/V, 23H/V, 

36H/V, 89H/V) and BT difference data (18H23H, 18V23H, 10H36H, 10H23H, 10V23H, 10V23V, 23V23H, 10V36H, 

36H89H, 36V89V, 18H36H, 18V36V). The following additional geographical parameters are to be considered: longitude 215 

(Lat), latitude (Lon), elevation, slope, aspect and surface roughness (roughness). The study incorporated a comprehensive set 

of 28 SD influencing factors. In order to evaluate the interrelationship between the respective variables in depth, the Pearson 

correlation coefficient (r) was used to analyse them. The coefficient was calculated using the following Eq. (1): 
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Where r is the Pearson correlation coefficient, Xi and Yi represent the sample of the two independent variables, and X̄ and Ȳ, 220 

respectively, represent the average value of each independent variable, while n represents the number of samples. The value 

of r ranges from -1 to 1. The presence of a strong positive or negative correlation between two variables is indicated by a 

value of R greater than 0.90 or less than -0.90, respectively. 

3.1.2 Model selection and construction 

The distribution of meteorological stations across the QTP is characterised by a relative paucity of stations, with manual 225 

field SD data being limited in scope and predominantly concentrated in the eastern region. Moreover, the preponderance of 

meteorological stations is located on grassland or unutilised land surface types. Consequently, the utilisation of solely ground 

SD observation data as sample data for AutoML may not ensure sufficient representativeness. In order to solve this problem, 

in addition to the observation data of ground SD, 471 sample points (Figure 4) were selected from the Che_AMSR2_NSD 
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data. In selecting the sample points, the influences of slope direction, elevation and gradient of different terrain conditions 230 

were comprehensively considered, and ensured to be uniformly distributed across the QTP. Furthermore, the subsurface 

types have been demonstrated to exert a substantial influence on the aggregation and distribution of snow cover, which in 

turn has a considerable impact on the accuracy of SD inversion. The resolution of AMSR-2 passive microwave remote 

sensing pixels is coarser (10 km), which gives rise to a more significant problem of mixed pixels. This problem constitutes 

one of the primary sources of error in SD inversion (Jiang et al., 2014). Distinctive algorithms for SD inversion have been 235 

developed by a number of foreign scholars for a range of land cover types (Derksen et al., 2005; Goïta et al., 2003; Jiang et 

al., 2014). For example, Derksen et al. (2005) established an inversion algorithm for the predominant land cover types when 

inverting SD in the forested regions of Canada (Derksen et al., 2005). They subsequently calculated the SD under mixed 

image elements. Meanwhile, Jiang et al. (2014) established a semi-empirical statistical inversion algorithm for SD in China 

under different land cover types. The present study investigates the impact of mixed pixels on the precision of SD inversion, 240 

and establishes an AutoML model under various land cover types. 

 

Figure 4: Spatial distribution of input sample data from the AutoML. 

In this study, 60 forests, 80 water bodies, 171 grasslands and 160 unused land were selected with reference to the major land 

cover types on the QTP. Initially, the SD data corresponding to each sample point and 19 influencing factors, such as BT, 245 

bright temperature difference and topographic characteristics evaluated and screened by Pearson correlation coefficient, were 

extracted. In the event that any of the factors were missing, all the corresponding data were eliminated. The final selection 

comprised 25,926 forest land samples, 340,326 grassland samples, 157,252 water samples and 273,672 unused land samples. 

The entire sample was subjected to an AutoML system, and the random search function was used to identify the optimal 

parameters of various algorithms. These were subsequently employed to assess the accuracy of each ML model under each 250 

land cover type using ten-fold cross-validation. The machine is programmed to automatically partition the training set and 
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the test set, with the training set comprising 90% of the total number of samples and the test set comprising 10% of the total 

number of samples. The average value of the accuracy evaluation index is then taken to describe the performance of the 

model after 10 tests. Finally, the most ML model was employed to simulate the snowpack period of the QTP from 2012 to 

2021. 255 

3.2 Accuracy evaluation method 

In this study, the performance of the ML model was evaluated by using ten-fold cross-validation, which entails the random 

division of the original dataset into 10 equal-sized subsets. Thereafter, one subset is selected as the test dataset, with the 

remaining nine subsets being designated as the training dataset for each cross-validation. The model is then trained on the 

training dataset, and the model performance is evaluated on the test dataset. This process is repeated ten times, following the 260 

previously outlined steps. For each iteration, a distinct test dataset should be selected, with each subset of the data serving as 

a test set. In conclusion, a comprehensive evaluation of the results of each test is conducted, with the mean value typically 

serving as the performance index of the model. This evaluation aims to ascertain the model's accuracy and reliability. Three 

evaluation indexes, the R2, the RMSE and the mean absolute error (MAE), were selected to evaluate the performance of each 

ML model. 265 

Four precision evaluation indexes, namely R2, RMSE, BIAS and MAE, were selected for the purpose of quantitatively 

analysing the SD results estimated based on AutoML. R2 and R are utilised to evaluate the regression model's capacity to 

explain the variations in the dependent variable. These metrics range from 0 to 1, with higher values indicating a stronger 

correspondence between the model and the data. RMSE is defined as the standard deviation of fit in the regression system, 

which quantifies the average distance between the predicted value of the model and the actual value; MAE is the mean 270 

absolute difference between the predicted and actual values of the model; and BIAS is the positive or negative bias of the SD 

inversion results, where a smaller absolute value indicates higher accuracy in SD estimation. RMSE, MAE, MAPE and 

BIAS are metrics that quantify the discrepancy between observed and predicted values. It is generally accepted that lower 

values for these metrics are indicative of superior model performance. 

4 Results 275 

4.1 Evaluation of SD estimation model 

4.1.1 Factor selection results 

The study utilised a Pearson correlation coefficient analysis on 28 independent variables, the results of which are presented 

in the form of a heatmap (Figure 5). This facilitates intuitive visualisation of the relationships between variables based on 

colour intensity. The figure demonstrates a strong correlation between the BT of horizontally and vertically polarized values 280 

at identical frequency bands, with correlation coefficients exceeding 0.9. Therefore, in order to mitigate the impact of 
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autocorrelation between variables on the SD estimation model, one of the BT data at the same frequency but with different 

polarizations was removed. Additionally, robust correlations were observed between 10H23H & 10V23H, 36H89H & 

36V89V, 10H36H & 18H36H, and 10H36H & 18V36V, all exceeding 0.95. In order to ensure the accuracy of the model, 

variables with correlation coefficients greater than 0.90 were removed. The voltages under consideration are 10V, 18V, 23V, 285 

36V, 89V, 10H23H, 10H36H, 18H36H and 36H89H. In conclusion, a total of 19 independent variables were selected for 

utilisation as input data for the AutoML model. The dependent variable, SD data, was applied in conjunction with the model 

during the training process. 

 

Figure 5: Heat map of Pearson correlation coefficient analysis results. 290 

4.1.2 Model selection results 

The study incorporated a total of 25,926 forest samples, 340,326 grassland samples, 157,252 water samples, and 273,672 

unused land samples into the AutoML models. The study evaluated the accuracy of each ML model for each land cover type 

using ten-fold cross-validation. The results of three accuracy evaluation metrics (R2, RMSE, and MAE) for ten ML models 

(ET, RF, XGBoost, Catboost, LightGBM, KNN, GBDT, LR, Lasso, DT) across four land cover types are presented in Figure 295 
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6 (a), (b), and (c). It is evident that in forest regions, the XGBoost model demonstrates the highest level of accuracy (R2 = 

0.71, RMSE = 3.30 cm, MAE = 2.24, MAPE = 0.52), followed by the Catboost and LightGBM ensemble learning models, 

both of which achieve R2 values in excess of 0.7. In grassland regions, the Catboost model demonstrates the highest level of 

accuracy, with an R2 of 0.77 and RMSE of 3.11 cm, followed by the RF model, which attains an R2 of 0.76. The XGBoost 

and ET models also demonstrate relatively high accuracy, with R2 values exceeding 0.75. In water regions, the ET model 300 

demonstrates the highest level of accuracy, with an R2 of 0.75 and RMSE of 2.20 cm, while four other ML models achieve 

R2 values in excess of 0.70: RF, Catboost, XGBoost, and LightGBM. In regions where land use is minimal, the Catboost 

model demonstrates the highest level of accuracy, with an R2 of 0.82, closely followed by the ET model. The XGBoost, RF, 

and LightGBM models also demonstrate good simulation accuracy and minimal errors, with R2 values all exceeding 0.80. In 

general, linear models demonstrate comparatively reduced accuracy in comparison to gradient boosting models and tree-305 

based models. 

In conclusion, the SD estimation accuracy of each ML model exhibits variation across different land cover types, with the 

best model training results observed in unutilized land and the worst results in forested regions. Concurrently, the simulation 

accuracies of the integrated learning models (Catboost, XGBoost) and the tree models (ET, RF) demonstrate superior 

performance, whereas the linear model exhibits comparatively lower accuracy. Consequently, extreme gradient boosting tree 310 

models are employed to estimate SD in forest and water regions, while CatBoost integrated learning models are utilised for 

SD estimation in grassland and unused land regions over the QTP. 
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Figure 6: The results of the accuracy evaluation index of each model under four land cover types: (a) R2, (b) RMSE; (c)MAE. 

4.2 Evaluation of the accuracy of SD estimation 315 

This study integrated AMSR-2 passive microwave BT data and geographical factors (longitude, latitude), terrain conditions 

(slope, aspect, elevation, surface roughness), and other SD influencing factors to develop AutoML models for SD estimation 
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in forest, grassland, water, and unused land regions. The study was based on the Che_AMSR2_NSD dataset. Subsequently, 

the optimal models for each land cover type were utilised to estimate 500m SD data (Auto_NSD) over the QTP for nine 

snow seasons from October 2012 to March 2021, encompassing 1,603 days. The present study utilised ground-based SD 320 

observations for the purpose of conducting a quantitative analysis of the accuracy of Auto_NSD results. Furthermore, the 

spatial distribution of snow cover was analysed on the basis of extent by means of a qualitative analysis of Landsat-8 optical 

imagery captured under clear-sky conditions. 

4.2.1 Evaluation of the overall accuracy of SD results 

In order to evaluate the accuracy of the SD results estimated using AutoML, 432 SD data from odd dates of the QTP 325 

Meteorological Station SD dataset were utilised as verification data.  Four quantitative metrics, namely R, RMSE, BIAS, and 

MAE, were selected for the accuracy analysis of the SD data obtained from 2012 to 2021. The results of the accuracy 

validation process are illustrated in Figure 7, demonstrating a high level of consistency with meteorological station SD 

measurements, with an R value of 0.84. The root RMSE is 3.64 cm, indicating a slight underestimation (bias = -1.72). 

Nevertheless, the MAE is comparatively negligible (MAE = 2.93), signifying a high degree of accuracy in SD estimation 330 

based on AutoML. 

 

Figure 7: Scattered plot of SD observed by meteorological stations and SD estimation based on AutoML. 

The present study is based on a survey project that focused on the characteristics and distribution of snow cover in China. 

The study obtained a dataset on snow cover observations from typical snow cover regions in China. The QTP primarily 335 

comprises survey data from three routes from 2018 to 2019, and the SD measured by 49 routes is compared with the SD 

estimation based on AutoML as the "true value". As demonstrated in Figure 8, the statistical outcomes exhibit minimal 

discrepancies and consistent trends between the Auto_NSD data and SD measurements along the surveyed routes. The mean 

SD for Auto_NSD is 12.77 cm, with a maximum depth of 38.88 cm, whereas the mean depth from route measurements is 

14.55 cm, with a maximum depth of 33 cm. Of the sample points examined, 30 exhibited underestimations, accounting for 340 
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61% of the cases. The maximum underestimation error was observed on 20 January 2019, at 21.93 cm, while the maximum 

overestimation error was 8.22 cm on 18 January 2019. The smallest error recorded was 0.15 cm, on 7 December 2018. 

 

Figure 8: Line chart of SD estimation and line measurement SD based on AutoML. 

4.2.2 Evaluation of the spatial accuracy of SD results 345 

In this study, meteorological station SD observation data was utilised as a reference to calculate the mean SD at each station 

and the corresponding mean SD from Auto_NSD data. The accuracy of the Auto_NSD data was subsequently analysed 

using two precision evaluation metrics, RMSE and BIAS. As demonstrated in Figure 9, subplot (a) and (b) illustrate the 

mean SD for meteorological stations and Auto_NSD data, respectively. Among the meteorological stations where the 

discrepancy in mean SD is within 5 cm, 63% were categorised within this range. It is noteworthy that stations such as Henan, 350 

Yege, and Zhenqin demonstrate average SD disparities of -0.23 cm, -0.34 cm, and 0.43 cm, respectively, when juxtaposed 

with Auto_NSD data. The most substantial average standard deviation difference is observed at Niela station, reaching 23 

cm. In March 2019, the observed SD at Niela station was notably higher (up to 120 cm) than the approximately 30 cm 

simulated by the AutoML model, a discrepancy that may be attributable to the original input data of the ML model. The 

maximum SD values recorded at sample points in close proximity to the Niela station did not exceed 50 cm. With the 355 

exception of this particular station, the mean  SD difference at other stations does not exceed 8 cm. Subplot (c) and (d) 

illustrate the RMSE and BIAS, respectively, between the Auto_NSD data and the meteorological station SD. Stations 

including Henan, Yegor, Muli, Yanshiping, Haibei, Biru and Dulan demonstrate superior accuracy in SD results, with RMSE 

values less than 5 centimetres. With the exception of Niela station, the Jiali and Cuona stations demonstrate the lowest levels 

of accuracy in SD measurements, with RMSE values of 10.92 cm and 13.95 cm, respectively. A spatial analysis reveals a 360 

marked underestimation at Niela station, with Cuona station exhibiting a BIAS of -7.23. Stations such as Zhenqin, Wosai, 

Henan, and Yegor present SD values that are more closely aligned with those of Auto_NSD data, with BIAS values ranging 
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from -0.5 to 0.5. A significant correlation between spatial accuracy and SD values is observed through spatial accuracy 

analysis of SD on the QTP. 

 365 

Figure 9: Spatial error distribution between Auto_NSD data and observed SD at meteorological stations: (a) average SD at 

meteorological stations; (b) the average SD of Auto_NSD data; (c) Auto_NSD data and RMSE of SD at meteorological stations; (d) 

Auto_NSD data and the BIAS of SD at meteorological stations. 

In order to analyse the spatial distribution of snow cover in the QTP region at different times and in different representative 

terrain regions in more detail, this study selected six cloud-free Landsat-8 satellite images based on their transit times. These 370 

images were selected based on the SD results estimated by AutoML. Subsequently, a comparison was conducted between 

these images and the corresponding Auto_NSD data, alongside downscaled SD data. The results are illustrated in Figure 10, 

where the colour cyan is used to denote snow cover and red is employed to represent non-snow regions in Landsat-8 images. 

The figure indicates significant variations in snow distribution across different temporal periods. Specifically, the analysis of 

Landsat-8 images from 5 March 2013, 16 November 2015 and 9 November 2016 reveals relatively low snow cover, 375 

predominantly concentrated in lower-altitude regions. In contrast, analysis of Landsat-8 images from 5 January 2014, 19 

November 2017 and 25 February 2018 revealed higher snow cover, predominantly in high-altitude mountainous regions. In 

addition, it is evident that both the SD results and the snow distribution observed in the Landsat-8 images are closely 

correspondent. Nevertheless, discrepancies have been observed between Auto_NSD data and downscaled data in specific 

regions. For instance, on 16 November 2015, the Auto_NSD data reflected the actual snow distribution more accurately, 380 

while the downscaled SD data exhibited rasterization issues. Furthermore, it was observed that utilising downscaled SD data 

on 5 January 2014 and 19 November 2017 resulted in the manifestation of more pronounced rasterisation issues in 

comparison to the utilisation of Auto_NSD data. This discrepancy may be attributed to the comprehensive consideration of 

multiple SD influencing factors in the AutoML model, resulting in more precise adjustments of pixel SD values. In summary, 

both SD estimated by AutoML and downscaled SD data can depict detailed characteristics of SD spatial distribution in 385 
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mountainous regions. However, the former provides a more consistent representation of snow distribution in accordance 

with observed conditions, which may be attributable to limitations in the accuracy of the original passive microwave SD 

product influencing the precision of downscaled SD results, although it substantially mitigates the issue of blackness in the 

original SD product. 

 390 

Figure 10: Comparison of the spatial distribution of Landsat-8 false-color composite images, SD estimation based on AutoML, and 

downscale SD estimation in 2012-2018. 
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4.3 Inverse correlation between temperature and SD 

Statistical analysis of the monthly average SD time-series trends was conducted on the basis of the Auto_NSD data for the 

snow season from 2012 to 2021 on the QTP. In conjunction with the temperature observation data, further analysis of the 395 

temporal changes in SD from the Auto_NSD data was performed, as illustrated in Figure 11. The figure demonstrates that, in 

general, the SD variations during each snow season (from October to March of the following year) are relatively consistent, 

exhibiting a trend of initially increasing and then decreasing, which is inversely correlated with the changes in ERA5-Land 

temperature data, showing a trend of initially decreasing and then increasing. The snow season, defined as the period from 

October 2013 to March 2014, was selected for analysis. It was observed that as temperatures increased, the average SD 400 

exhibited a gradual decrease. In October 2013, the mean SD was 6.16 cm, with a mean monthly temperature of -2.82°C. As 

time progressed, the temperature underwent a gradual decline, with the November mean temperature dropping to -11.61°C, 

and the SD of the temperature measurements increased to 8.71 cm. During the period spanning December 2013 to January 

2014, the temperature underwent a significant decline, reaching a nadir of -14.49°C and -14.81°C, respectively. This decline 

led to the observation of maximum SD values, which exceeded 9 cm. From February to March, as temperatures gradually 405 

increased, the SD continued to decrease, with the March SD decreasing to 5.37 cm. The maximum average SD was observed 

in December 2013, with an average temperature of -14.49°C. In contrast, the minimum average SD was recorded in October 

2020, when temperatures rose above freezing, reaching 0.046°C. 

 

Figure 11: Trends in Monthly Average SD during the Snow Seasons from 2012 to 2021 on the QTP. 410 

5 Discussion 

The QTP is characterised by complex terrain, comprising a mosaic of mountains, plateaus, and basins, resulting in 

heterogeneous snow distribution and significant interannual variability. It is acknowledged that there are numerous factors 

influencing SD retrieval, apart from the topographical conditions considered in this study. The accuracy of SD retrieval can 

be significantly affected by snow characteristics such as snow density, grain size, liquid water content, as well as vegetation 415 
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canopy (Ni et al., 2024; Zhang et al., 2021). In this study, meteorological station data on SD observations were utilised to 

analyse the SD results obtained from AutoML estimations, considering different SDs, different snow periods and land cover 

type. 

5.1 Impact of SD 

Research has indicated the possibility of variations in SD retrieval accuracy across different SD ranges (Wang et al., 2022; 420 

Wei et al., 2021). The majority of observation stations on the QTP are distributed in shallow snow regions (<10cm). In order 

to facilitate analysis, this study divides SD into four categories: less than 5 cm, 5-10 cm, 10-20 cm and greater than 20 cm. 

The accuracy of SD estimation derived from AutoML and downscaled SD methodologies was assessed using meteorological 

station SD measurements. The results of the study are presented in Table 2. It is evident that when the SD is less than 5 cm, 

the Auto_NSD data provides the most accurate SD results, exhibiting the minimum RMSE of 1.69 cm. The bias is 2.71, and 425 

the MAE is 2.43 cm, with accuracy evaluation indicators that surpass those of the Che_AMSR2_NSD results. When the SD 

ranges from 5 to cm, the RMSE of the two SD datasets is 2.94 cm and 6.39 cm, respectively. When the SD exceeds 20 cm, 

the SD result error reaches its maximum. The RMSE of the Auto_NSD data is 6.43 cm higher than when the SD is less than 

5 cm. However, the data comparison results indicate that, irrespective of the SD, the accuracy of SD results based on 

AutoML estimation is superior to the Che_AMSR2_NSD results. 430 

It is evident that the accuracy of both SD results is subject to a decline as the standard deviation increases. This phenomenon 

can be attributed to the continuous increase in SD. Snowmelt may occur on the surface and within the snow layer, leading to 

alterations in temperature, humidity, and dielectric constant beneath the snow surface. This, in turn, reduces the sensitivity of 

microwave signals to snow characteristics and affects microwave radiation transmission. The result is an increasing disparity 

between the estimated SD and ground SD observation data (Picard et al., 2022; Tanniru and Ramsankaran, 2023; Vuyovich 435 

et al., 2017). Concurrently, microwave signals may undergo multiple reflections and scattering within the snow layer, 

rendering the received signals more complex and unstable(de Gélis et al., 2025). Furthermore, a number of studies have 

indicated that in instances where the SD exceeds a specified range, saturation issues may emerge in the BT difference 

between 18 GHz and 36 GHz (10 GHz) (de Gélis et al., 2025; Derksen et al., 2005; Huang et al., 2018). 

Table 2: Accuracy indexes of SD estimation results at different measured SDs. 440 

in-situ measurements（cm） 
AutoML_NSD Che_AMSR2_NSD 

RMSE BIAS MAE RMSE BIAS MAE 

<5 1.69 2.71 2.43 4.93 2.89 3.95 

5-10 2.94 -0.21 3.74 6.39 0.61 5.21 

10-20 5.13 1.47 3.80 8.36 -1.07 7.29 

>20 8.12 2.31 5.89 12.13 -3.26 8.26 
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5.2 Impact of Snow Accumulation Periods 

As time progresses, the properties of snow undergo changes, primarily manifested in variations in snow density and particle 

size. It is well established that freshly fallen snow is characterised by reduced density and diminished particle size. However, 

as snow is subjected to changes in temperature and time, it undergoes processes of compaction and ice formation, resulting 

in increased density and augmented particle size (Yang et al., 2020b). The present study therefore analysed the influence of 445 

differing periods of snow accumulation on the results of SD. The ground-based SD observation data were utilised as the 

"true value" of SD. The RMSE, BIAS, and MAE between the Auto_NSD and Che_AMSR2_NSD SD results and the "true 

value" were calculated, as demonstrated in Figure 12. The figure presents a comparative analysis of SD results. It can be 

observed that, for the corresponding period, the Auto_NSD data demonstrates superior accuracy compared to downscaled 

SD data. During the accumulation period, the RMSE of the Auto_NSD model was 4.86 cm lower than that of the 450 

Che_AMSR2_NSD model. During the stable snow period, the SD results demonstrate the highest level of accuracy, with 

RMSE values of 2.11 cm and 5.09 cm, respectively. However, during the snowmelt period, the accuracy of SD results is 

significantly diminished. The RMSE of the most accurate Auto_NSD data is a mere 5.21 cm, while the less accurate 

Che_AMSR2_NSD data has an RMSE as high as 12.3 cm. 

 455 

Figure 12: Comparison of the accuracy of SD data under different snow cover periods with the SD observation data of 

meteorological stations. 

This discrepancy may be attributed to the fact that during the stable snow period, temperatures are relatively low, snow 

properties are relatively stable, and changes are minimal, thus exerting less influence on the radiation transmission process 

within the snow layer. Conversely, during the snowmelt period, with rising temperatures, snow transitions from dry snow to 460 

wet snow, resulting in higher snow density and dielectric constant compared to dry snow, leading to microwave radiation 

attenuation and weakening of the received signal intensity (Picard et al., 2022; Vuyovich et al., 2017). Moreover, the 

presence of liquid water in the snow has been shown to enhance the reflection and scattering of microwave signals. This 
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phenomenon has the potential to impede the penetration of microwave signals to the base of the snow layer, thereby 

affecting the accuracy of SD estimation (de Gélis et al., 2025; Yang et al., 2020b). 465 

5.3 Impact of Snow Accumulation Periods 

The effects of differing land cover types on the accuracy of SD estimation were found to vary. The model simulation results 

indicated that the accuracy of SD estimation was lower in forested regions. This is likely due to the attenuation of microwave 

radiation received by microwave radiometers from the snow-covered surface layer after it has traversed the vegetation 

canopy. This is further compounded by the attenuation of microwave signals to snow caused by the radiation emitted by the 470 

vegetation canopy itself and reflected by the snow layer (Foster et al., 1997; Tanniru and Ramsankaran, 2023).  

Whilst the majority of models exhibited satisfactory performance in subaquatic environments, a certain degree of uncertainty 

regarding SD estimation persisted. The presence of ice layers in water, which often freeze during the winter months, has 

been shown to significantly affect the accuracy of SD estimation. This is due to changes in the physical properties of the 

surface, which alter the propagation and reflection of microwave radiation signals. The high dielectric constant and low 475 

reflectivity of ice layers differ significantly from those of snow layers (Cheng et al., 2008). This results in changes to the 

path and intensity of the signals, which consequently affects the accuracy of the SD estimation (Newman et al., 2014; Quéno 

et al., 2020). Furthermore, the scarcity of ground SD observations in proximity to water bodies within the study may have 

led to inaccurate predictions in these regions. 

5.4 Shortcomings and prospects 480 

The present study has developed a novel methodology for estimating SD in the QTP region. This methodology has been 

refined through the use of AutoML techniques. By increasing the spatial resolution of SD data and considering factors 

influencing SD inversion, the study established optimal models for four main land cover types, thereby more accurately 

representing the heterogeneity of SD pixel distribution. This method has been demonstrated to be particularly efficacious in 

the context of rapid SD monitoring in mountainous regions.  485 

Nevertheless, it should be noted that the study is not without its limitations. The distribution of meteorological stations in the 

QTP region is characterised by sparsity and heterogeneity. Line-based SD measurements are limited in scope, with a notable 

concentration observed in the eastern region. In order to address the non-uniform distribution of ground SD observations, the 

approach involved the introduction of downscaled SD data, which was utilised in conjunction with ground SD observations 

as training data for AutoML models. Despite the fact that this approach enhanced the precision of SD estimation in the QTP 490 

region to a certain degree, the downscaled SD data itself is inherently uncertain. Consequently, this has led to inconsistencies 

between the downscaled and observed SDs. Furthermore, the QTP region displays considerable spatiotemporal heterogeneity 

in SD. It is evident that variations in SD distribution are exhibited by different terrains, altitudes and underlying surfaces 

during the various stages of the snow season. Despite the study utilising ground SD observations from multiple locations to 
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verify the accuracy of ML estimates, limitations in observational data coverage precluded the inclusion of further SD 495 

observations from diverse terrain regions. 

6 Conclusion 

The present study concentrated on the QTP, employing an ML model with downscaled SD data, ground SD observations, 

and 19 SD influencing factors as input data. The input data samples were subjected to training under four distinct types of 

snow cover (forest, grassland, water, and unused land), and the optimal ML model was selected for each type of snow cover 500 

using ten-fold cross-validation. Consequently, the SD sequence data for the QTP from 2012 to 2021 were obtained. A 

thorough investigation was undertaken to evaluate the precision of Auto_NSD and Che_AMSR2_NSD SD data. This 

investigation encompassed both quantitative and qualitative analyses, with a focus on a comparison with downscaled SD 

data. The findings suggested that the SD estimates derived from ML techniques exhibited superior accuracy in characterising 

the snow distribution in the QTP region, closely resembling the ground observations, with an R value of 0.81, RMSE of 3.65 505 

cm, BIAS of 0.26 cm, and MAE of 2.62 cm. A comparison with snow cover ranges identified through Landsat-8 imagery 

demonstrated that both types of SD data were capable of reflecting the detailed spatial features of snow distribution in 

mountainous regions. However, the Auto_NSD data provided a more consistent description of SD distribution compared to 

the real SD distribution, fulfilling the monitoring requirements for SD in mountainous regions. 

 510 
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