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Abstract. The temperature sensitivity of fine particulate matter (PM2.5) critically influences air quality and human health under 

a warming climate, yet models struggle to accurately reproduce observed sensitivities. This study improves the representation 

of PM2.5-temperature relationships in the chemical transport model GEOS-Chem through targeted improvements and analyses 

of the underlying drivers based on simulations across the contiguous US (2000-2022). Our simulations reveal that chemical 15 

production processes, particularly isoprene secondary organic aerosols (SOA) and sulfate formation, determine the magnitude 

of PM2.5 sensitivity in the eastern US. In the Western US, primary emissions drive the increasing PM2.5-temperature sensitivity. 

Transport processes contribute to interannual variability in PM2.5 sensitivity across all regions. We quantified the contributions 

from individual temperature-sensitive processes for the first time. Sulfate concentration plays a pivotal role in modulating the 

sensitivity of isoprene SOA due to its direct influence on isoprene SOA formation. Furthermore, the increased SO2 emissions 20 

on warm days dictates both the magnitude and variability of sulfate sensitivity in the Eastern and Central US. In the Western 

US, however, sulfate sensitivity is primarily controlled by the temperature response of hydroxyl radicals (·OH). These findings 

highlight the impact of anthropogenic emission reductions on declining PM2.5–temperature sensitivity in the eastern US, 

improve our understanding of climate-driven air quality changes, and underscore the importance of accurately representing 

temperature-dependent processes in future air quality projections. 25 

1 Introduction 

Climate change represents one of the most crucial global challenges of the 21st century, adversely impacting human health 

through multiple pathways. These include exposure to extreme temperatures beyond habitual ranges, heightened food and 

water insecurity due to shifting average temperature and precipitation patterns, and the expanded transmission of infectious 

diseases in environments increasingly favorable to viruses (Romanello et al., 2021). Epidemiological studies reveal that a 1°C 30 
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rise in summer mean temperature correlates with an estimated 1% and 2.5% increase in mortality among older adults in the 

northeastern and southeastern US Medicare populations, respectively (Shi et al., 2015, 2016a). While numerous studies have 

explored the health impacts of climate change and the associated burden of rising temperatures (Achakulwisut et al., 2019; 

Costello et al., 2009; Ebi et al., 2021; Mora et al., 2017; Vicedo-Cabrera et al., 2021), one critical yet underexplored pathway 

is the health burden arising from climate-induced deterioration of ambient air quality.  35 

Ambient air pollution, recognized as a leading environmental risk factor for global mortality, is suggested to play an 

increasingly important role in health outcomes under a warming climate  (Murray et al., 2020). Among air pollutants, fine 

particulate matter (PM2.5, particulate matter with an aerodynamic diameter less than 2.5 µm) is of particular concern due to its 

well-documented associations with increased all-cause mortality and elevated risks of cardiovascular, respiratory, and 

neurological diseases for both long-term and short-term exposure (Burnett et al., 2001; Cohen et al., 2017; Medina-Ramón et 40 

al., 2006; Shi et al., 2016b, 2020, 2023; Wang et al., 2017; Wei et al., 2019, 2020). PM2.5 level is controlled by primary and 

precursor emissions, photochemical reactions, transport, and deposition, and many of these factors are highly sensitive to 

temperature changes. Higher temperatures are generally associated with exacerbated PM2.5 pollution, a phenomenon termed 

the "climate penalty," which reflects the potential deterioration of air quality due to warming in the absence of changes in 

anthropogenic activities (Bloomer et al., 2009; Duffy et al., 2019; Jacob and Winner, 2009; Schnell and Prather, 2017; Tai et 45 

al., 2010; Wu et al., 2008). This deterioration, in turn, adversely impacts human health and contributes to climate feedbacks 

via aerosol radiative effects. 

PM2.5 comprises several components, including sulfate, nitrate, ammonium, organic aerosols (OA), and elemental carbon (EC). 

The response of each component to temperature is governed by complex interactions of chemical and physical processes. 

Sulfate, for instance, forms in the gas-phase oxidation of sulfur dioxide (SO2) and aqueous-phase oxidation of dissolved SO2 50 

in cloud droplets. Fossil fuel combustion remains the principal source of SO2. Abel et al., (2017) found that the SO2 emission 

from power plants exhibited a 3.35%±0.50% increase per °C increase during summer months, attributed to heightened energy 

demand. While gas-phase oxidation of SO2 accelerates at higher temperatures due to increased reaction rates, aqueous-phase 

oxidation exhibits competing effects: elevated temperatures enhance reaction rates but reduce dissolved gas concentrations 

due to equilibrium shifts, with cloud cover changes introducing further uncertainty (Xie et al., 2019). Nitrate is formed through 55 

the oxidation of nitrogen oxides (NOₓ), and organic aerosols are generated both directly through combustion and indirectly via 

the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs). Biogenic NMVOCs emissions are highly 

temperature sensitive (Guenther et al., 2012). Recent studies have suggested that emissions of anthropogenic NMVOCs can 

also increase with temperature (Pfannerstill et al., 2024; Qin et al., 2025; Wu et al., 2024). Both nitrate and organic aerosols 

are semi-volatile, with their partitioning between particle and gas phases strongly influenced by temperature. With warming 60 

and drought events intensifying wildfire activity, biomass burning emissions can be highly temperature sensitive, contributing 

to primary organic aerosol (POA) and EC. The formation of SOA is influenced by the presence of inorganic aerosols, such as 

sulfate and nitrate (Marais et al., 2016, 2017; Xu et al., 2015). The reactive uptake of semi-volatile or low-volatility organics 

into the aqueous phase introduces additional complexity to SOA temperature sensitivity. Xu et al. (2015) demonstrated that 
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the isoprene-derived SOA and monoterpene SOA are directly modulated by the abundance of sulfate and NOₓ, respectively. 65 

However, the extent to which anthropogenic pollutants impact the temperature sensitivity of biogenic SOA remains 

insufficiently explored. Beyond emissions and chemical production, temperature changes are associated with changes in 

meteorological factors such as ventilation (which is dependent on wind speed, mixing depth, convection, and frequency of 

frontal passages), precipitation, and atmospheric stagnation, all of which influence aerosol transport and removal rates, further 

modulating PM2.5 response to rising temperatures (Jacob and Winner, 2009). 70 

Atmospheric aerosols play a critical role in modulating the Earth's energy balance by reducing the solar radiation that reaches 

the surface, thereby offsetting greenhouse effects and slowing global warming. Understanding the interactions between climate 

and air pollution is crucial for predicting future climate scenarios and mitigating the adverse health impacts of climate change. 

Despite this importance, comprehensive studies on the temperature sensitivity PM2.5 remain limited, largely due to the 

complicated and diverse response of PM2.5 components to temperature rises (Shen et al., 2017; Tai et al., 2010; Vannucci et 75 

al., 2024; Vannucci and Cohen, 2022; Westervelt et al., 2016). The relationship between elevated PM2.5 levels and temperature 

is often quantified as the slope of the best-fit line between detrended PM2.5 anomalies and temperature anomalies. Recent 

research has highlighted the decreasing temperature sensitivity of ammonium sulfate aerosols, accompanied by growing 

contributions from organic aerosols in recent years, driven by anthropogenic emission reductions (Hass-Mitchell et al., 2024; 

Nussbaumer and Cohen, 2021; Pfannerstill et al., 2024; Vannucci et al., 2024; Vannucci and Cohen, 2022). Our previous work, 80 

leveraging machine learning-derived high-resolution datasets combined with ground-based measurements, demonstrated 

widespread climate penalty effects across the contiguous United States (CONUS) (Yin et al., 2025). These effects show that 

the degradation of air quality due to rising temperatures has been partially mitigated by reductions in anthropogenic emissions, 

especially in the Eastern US. However, while observations and machine learning provide insights into the overall temperature 

sensitivity of air pollution (e.g., dPM2.5/dT, dsulfate/dT, dSOA/dT), they cannot disentangle the contributions of individual 85 

processes. To address this, chemistry transport models (CTMs) can be helpful in decomposing total sensitivity into specific 

process contributions, such as precursor emissions (𝜕[sulfate]/𝜕[SO2]* 𝜕[SO2]/𝜕[T], 𝜕[SOA]/𝜕[VOC]* 𝜕[VOC]/𝜕[T],), 

chemical reaction rates (𝜕[sulfate]/𝜕[reaction rate]* 𝜕[reaction rate]/𝜕[T]), transport and removal processes 

(𝜕[sulfate]/𝜕[transport]* 𝜕[transport]/𝜕[T]), etc. By employing CTMs, these contributions may be dissected and quantified, 

potentially enabling a deeper understanding of the processes that govern temperature sensitivity and air quality. 90 

Numerous studies have attempted to forecast air quality and the associated health risks under future climate conditions using 

global coupled climate-chemical models. However, these models often yield conflicting results, with disagreements even on 

the direction of future PM2.5 changes (Jacob and Winner, 2009; Nolte et al., 2018; Vannucci et al., 2024). This variability 

underscores significant uncertainties in how climate change will affect air quality (West et al., 2023) The discrepancies among 

model results stem from challenges in projecting climate variables such as precipitation and cloud cover and in capturing the 95 

temperature sensitivities of air pollution. For example, Shen et al. (2017) found that GEOS-Chem underestimated the 

temperature sensitivity of sulfate, potentially due to an overly sensitive response of cloud fractions to temperature in the 

meteorological fields. Given these limitations, it is essential to evaluate CTMs against observational data before relying on 
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them for future projections. A model's ability to accurately resolve present-day relationships between climate variables and air 

quality serves as a robust criterion for identifying biases and building confidence in its application for forecasting future air 100 

quality responses to climate change (Fiore et al., 2012).  

In this study, we evaluated the performance of the standard GEOS-Chem model in capturing the temperature sensitivity of 

PM2.5 over CONUS. We implement targeted model modifications to improve simulations and quantify the contributions of 

various temperature-sensitive processes. By identifying the primary drivers of PM2.5 temperature sensitivity, this work 

advances our understanding of the complex interactions between climate, air quality, and health, thus providing greater 105 

confidence in projections of future air quality. 

2 Methodology 

2.1 Temperature Sensitivity Diagnosis 

Following the methodology outlined by Fu et al. (2015), the sensitivity of air pollution to temperature was calculated as the 

slope of the linear regression line between detrended anomalies of air pollutant concentrations (e.g., ∆PM2.5) and detrended 110 

temperature anomalies (∆T). Interannual anomalies of pollutant concentration and temperature were derived by removing 

long-term means to eliminate apparent associations caused by overarching trends. For instance, a decreasing long-term trend 

in PM2.5 coupled with an increasing temperature trend could create a misleading negative correlation, obscuring the true 

relationships between PM2.5 and temperature driven by factors such as chemistry, emissions, and transport. 

This study focused on the temperature sensitivity of ground-level PM2.5 concentrations due to their direct implications for 115 

public health. Different regions in the CONUS were investigated separately to illustrate the spatial heterogeneity of pollutant-

temperature relationships. The CONUS was divided into four regions (Supplementary Figure 1): the Southeastern US, the 

Northeastern US, the Western US, and the Central US. The regional responses were obtained by regressing all detrended air 

pollution anomalies on temperature anomalies within each region. The study examined the temperature sensitivity of PM2.5, as 

well as its five primary components, including sulfate, nitrate, ammonium, OA, and EC. The analysis utilized both ground-120 

based observations from the Air Quality System (AQS) monitoring sites (for PM2.5 and the five major components) and a high-

resolution ground-level PM2.5 concentration dataset generated through an ensemble machine-learning (ML) approach 

constrained by ground and satellite observations and by output from chemistry models (Di et al., 2019, 2021). Detailed 

descriptions of the AQS data, ML dataset, the methodology for deriving temperature sensitivities, and the obtained results are 

provided in Yin et al. (2025). Overall, observational evidence reveals that positive temperature sensitivity of summer PM2.5 is 125 

pervasive across the continental US. While stringent emission control policies have markedly mitigated this sensitivity in the 

eastern US, an increasing temperature responsiveness of PM2.5 has been observed in the western US. Temperature sensitivity 

values derived from observational and ML-modeled data were compared to those from GEOS-Chem simulations to evaluate 

model performance. 
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2.2 Evaluation of model performance with archived data 130 

As a baseline, we utilized archived outputs from an 18-year GEOS-Chem simulation (2000–2017) to evaluate the model 

performance in reproducing the temperature sensitivity of surface air pollution (Silvern et al., 2019). The simulation was 

conducted using GEOS-Chem version 11-02c, driven by NASA MERRA-2 assimilated meteorological data. A nested 

simulation over North America was performed at a horizontal resolution of 0.5° × 0.625°, with dynamic boundary conditions 

obtained from a global simulation at a coarser resolution of 4° × 5°. Anthropogenic emissions for the United States were based 135 

on the National Emission Inventory for 2011 (NEI 2011) and scaled to individual years using national annual scaling factors 

provided by the Environmental Protection Agency (EPA). Non-electricity generation NOₓ emissions in NEI11 were reduced 

by 60% for all years following Travis et al. (2016) to reduce model bias for NOx, inorganic nitrate, and ozone simulation. 

Biomass burning emissions were derived from the daily Quick Fire Emissions Database (QFED) (Darmenov and da Silva, 

2015). The simulation incorporated the complex SOA scheme, which accounts for the gas-phase oxidation of biogenic and 140 

anthropogenic volatile organic compounds (VOCs) and aqueous-phase oxidation of isoprene (Marais et al., 2016). 

We focused on the model performance in simulating responses of summertime PM2.5 to summer mean temperatures due to the 

strong positive correlation and important implications in public health and climate projections (Yin et al., 2025). Figure 1 

compared the temperature sensitivity derived from GEOS-Chem outputs (Figure 1 a2-a5) with diagnosis from ground-based 

observation and ML-modeled data for 2000-2016 (Figure 1 a1). Maps showing only statistically significant results (p < 0.05) 145 

are illustrated in Supplementary Figure 2. The results derived from the archived GC outputs are denoted as the ‘BASE’ case. 

As shown in Fig. 1 a2, the temperature sensitivities of PM2.5 in the western and southeastern US derived from the BASE case 

were significantly higher than results from observations and ML-modeled data. This overestimate was primarily driven by 

contributions from POA emitted by wildfires in the West and Central US and from SOA formed via aqueous-phase oxidation 

of isoprene in the Southeast and Northeast US (Figure 1 b1-b5). The similarly overestimated PM2.5 and OA concentrations in 150 

the West and Southeast US (Supplementary Figure 3-4) suggest that these discrepancies may stem from overestimated biomass 

burning emissions and uncertainties in the parameterization of isoprene SOA formation through aqueous-phase processes. 

Many studies have shown that QFED tends to overestimate fire emissions in the US, while the Global Fire Emissions Database 

(GFED) shows a much better agreement with observed OA concentrations (Carter et al., 2020; Pan et al., 2020). Regarding 

the aqueous-phase oxidation of isoprene, Zheng et al. (2020) demonstrated that GEOS-Chem overestimates the dependence of 155 

acid-catalyzed reactive uptake of epoxy-diols (IEPOX) to inorganic aerosols, leading to an overestimated SOA concentration 

and exaggerated monthly variability. Additionally, the relatively low NH3 emissions in August (compared to June and July) 

from NEI11 resulted in a highly acidic environment, which facilitates the aqueous SOA formation and contributes to the large 

simulated monthly variability (Supplementary Figure 5) (Zheng et al., 2020).  

In addition, in the BASE case, the GEOS-Chem model underestimated the temperature sensitivity of sulfate in the US (Figure 160 

1 b1-b5, Supplementary Figure 6-7), despite reasonably reproducing sulfate concentration (Supplementary Figure 3-4). Shen 

et al., (2017) attributed this underestimation to the excessive sensitivity of cloud fraction in GEOS-5 assimilated meteorological 
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data (used in older version of GEOS-Chem) to temperature. This exaggerated response leads to a rapid decrease in cloud 

fraction with rising temperatures, reducing aqueous-phase sulfate production and resulting in a negative correlation between 

sulfate concentrations and temperature in GEOS-Chem simulations. However, the MERRA-2 meteorological data used in this 165 

study shows a weak cloud cover response to temperature rise (~0.01 K−1, Supplementary Figure 8), more consistent with the 

satellite-derived results than GEOS-5 (Shen et al., 2017). For SO2 emissions from electricity generation, the GEOS-Chem 

model relies on the National Emissions Inventory (NEI), which adopts data from the Power Sector Emissions Data collected 

by the EPA’s Clean Air Markets Division (CAMD, https://campd.epa.gov). However, the NEI scaling factors for individual 

years do not fully capture interannual variations in SO2 emissions from power plants, which are often temperature-dependent. 170 

Supplementary Figure 9 shows that the national variations used to scale NEI11 SO2 emissions fail to align with the raw CAMD 

data, potentially limiting the model's ability to reproduce the observed temperature sensitivity of sulfate. To address this, we 

replaced the default GEOS-Chem scaling method for NEI, which applies uniform annual scaling factors across all months and 

regions, with a more detailed approach. In brief, year-to-year variations in monthly SO2 emissions for each subregion were 

derived from CAMD data and incorporated into the simulations. Supplementary Figure 10 illustrates the time series of SO2 175 

and NOₓ emissions during June, July, and August for four subregions in the CONUS. The northeastern US exhibited the highest 

emissions, followed by the Central US, Southeast, and West. These region-specific monthly variations are expected to enhance 

the model’s capability to capture the temperature sensitivity of sulfate more accurately. 

2.3 Model setup 

To address the potential sources of discrepancies mentioned above and improve the performance of GEOS-Chem in estimating 180 

the temperature sensitivity, we conducted a new simulation covering 2000 to 2022 with GEOS-Chem version 12.9.3 

(https://doi.org/10.5281/zenodo.3974569).  The nested simulation at 0.5°×0.625° horizontal resolution over the US was 

conducted with dynamic boundary conditions from a global simulation with 4°×5° horizontal resolution. The model is driven 

by offline meteorology from NASA MERRA-2. Global anthropogenic emissions are derived from the Community Emissions 

Data System (CEDS) inventory (https://doi.org/10.5281/zenodo.3606752), with the US region replaced by NEI 2016 to address 185 

the large discrepancies in NH3 emissions between August and June-July (Supplementary Figure 5). Monthly mean 

anthropogenic emissions were scaled from 2016 to the simulated year using the EPA’s national annual scaling factors, except 

for SO2 and NOₓ emissions from the power sector, which were scaled based on the CAMD annual trends, as described earlier 

(Supplementary Figure 10). Biomass burning emissions were obtained from GFED version 4 (Randerson et al., 2018). 

Biogenic emissions of isoprene and terpenes were calculated using the Model of Emissions of Gases and Aerosols from Nature 190 

(MEGAN2.1) (Guenther et al., 2012). ISORROPIA Ⅱ thermodynamic model is employed to estimate aerosol water content 

and aerosol acidity (Fountoukis and Nenes, 2007). 

We employed the complex SOA scheme in GEOS-Chem with specific modifications to improve SOA modeling. The complex 

scheme utilizes a more advanced volatility basis set approach for non-isoprene SOA, incorporating an explicit aqueous uptake 

https://doi.org/10.5194/egusphere-2025-2872
Preprint. Discussion started: 7 July 2025
c© Author(s) 2025. CC BY 4.0 License.



7 
 

mechanism for isoprene SOA (Marais et al., 2016). The semi-volatile POA was disabled by default in the model configuration. 195 

A study assessing model performance across different OA schemes found that the non-volatile POA treatment more accurately 

reproduces the low-troposphere POA profile compared to the semi-volatile approach (Pai et al., 2020a). Additionally, since 

oxidized POA is not included in the SOA mass, disabling the semi-volatile POA scheme does not impact SOA simulation 

results and helps reduce computational costs. The default aqueous-phase isoprene SOA formation scheme in GEOS-Chem did 

not account for the mixing of inorganic aerosols with organics, which is common in the real atmosphere (Li et al., 2021; Riva 200 

et al., 2016). This omission can lead to overestimations, as organic coatings on aerosols may suppress the uptake of IEPOX 

onto acidified sulfate aerosols (Riva et al., 2016; Schmedding et al., 2019; Zhang et al., 2018). To address this, we implemented 

the linear coating effect following the method described by Zheng et al. (2020) for IEPOX-SOA formation. This modification 

aims to reduce the overestimated SOA concentration and its sensitivity to inorganic aerosols present in the default GEOS-

Chem setup. Additionally, we fixed the aerosol acidity aH+ level at 0.1 mol L-1 for the IEPOX uptake rate calculation, based 205 

on findings from Zheng et al., (2020),  which demonstrated the best agreement with observed SOA levels in the southeastern 

US. Importantly, the aerosol acidity level was fixed only for the IEPOX uptake process and did not affect other chemical 

processes in the model. 

GEOS-Chem also includes a simple SOA scheme, which treats POA as non-volatile and employs a fixed-yield approach for 

SOA formation. Despite their differing levels of complexity, the simple and complex schemes have demonstrated comparable 210 

performance in capturing overall OA magnitudes (Pai et al., 2020b). To assess the ability of these two schemes to reproduce 

the temperature sensitivity of PM2.5, we conducted simulations using the simple SOA scheme. This simulation was performed 

at a coarser horizontal resolution of 4° × 5° for the period 2000–2016, matching the resolution of the boundary condition (BC) 

simulations used in nested simulations for other cases. Table 1 provides a summary of all simulation cases conducted in this 

study. 215 

 

Table 1: Case configurations used in this study. 

Case BASE MOD MOD_BC* SIM_BC 

Spatial resolution 0.5°×0.625° 0.5°×0.625° 4° × 5° 4° × 5° 

Fire emission QFED GFED4 GFED4 GFED4 

SO2 emission NEI11 
NEI16 with CAMD 

trend 

NEI16 with CAMD 

trend 

NEI16 with CAMD 

trend 

SOA scheme Complex SOA 
Complex SOA with 

coating effect 

Complex SOA with 

coating effect 
Simple SOA 

Simulation period 2000-2017 2000-2022 2000-2022 2000-2017 
* BC represents Boundary Condition. 
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3 Results 

3.1 Model evaluation 220 

The observed and simulated spatial distribution and regional mean of summertime PM2.5 and its species concentrations during 

2000-2022 are shown in Supplementary Figure 3-4. The simulated regional mean were calculated based on grid points co-

located with observation sites. Two primary metrics were used in this study to evaluate model performance against ambient 

observations: the coefficient of determination (r2) and the root-mean-square error (RMSE). The r2 metric represents the 

proportion of variance in observational data that is accurately captured by the model, while RMSE quantifies the average 225 

magnitude of differences between simulations and observed data. A comparison of these metrics across four cases is shown in 

Supplementary Figure 11. The modified GEOS-Chem (MOD case) outperformed the BASE case for most PM2.5 species, 

demonstrating higher r2 values and lower RMSE. For nitrate, however, the RMSE of MOD is 30% higher than that of the 

BASE case in the CONUS, likely due to in the improved NOₓ emissions used in BASE simulations (Silvern et al., 2019). 

However, accurate measurement for nitrate is challenging due to its temperature-sensitive thermodynamic equilibrium. The 230 

EPA’s Federal Reference Method (FRM) standard for sampling PM has been shown to underestimate PM2.5 concentrations, 

primarily due to the volatilization of aerosol nitrate from filters (Hering and and Cass, 1999; Ward et al., 2025). OA metrics 

are significantly improved in the Southeast, West, and Central US, with r2 ranging from 0.63 to 0.80. Across the CONUS, the 

r2 of OA improved markedly from 0.30 in the BASE case to 0.68 in the MOD case. The higher RMSE for OA simulations in 

some regions can be attributed to overestimated concentrations in 2021, likely caused by extremely high wildfire emissions in 235 

the GFED4 inventory in that year (Supplementary Figure 4). In summary, the modified GEOS-Chem model demonstrates 

reasonable accuracy in simulating concentrations of PM2.5 and its components, supporting its suitability for diagnosing 

temperature sensitivity. 

3.2 Model performance in temperature sensitivity simulation 

As shown in Fig. 1 a3, the magnitudes of simulated sensitivity of summertime (JJA) PM2.5 to summertime temperature in 240 

2000-2016 by the modified GEOS-Chem were significantly reduced, bringing them closer to the machine-learning and 

observation-derived results. For the CONUS, the PM2.5 sensitivities across the four cases BASE, MOD, MOD_BC, and 

SIM_BC are 1.75, 0.88, 0.63, and 0.15 µg m−3 ˚C−1, respectively. In comparison, ML-derived and observation-derived PM2.5 

sensitivity are 0.63 and 0.76 µg m−3 ˚C−1, respectively.  

The PM2.5 sensitivity is significantly reduced in the MOD case in all subregions. Specifically, in the Southeast US, the PM2.5 245 

sensitivity was reduced from 2.39 µg m−3 ˚C−1 in BASE to 0.75 µg m−3 ˚C−1 in MOD, better aligning with the ML-derived and 

observation-derived values of 0.99 and 0.94 µg m−3 ˚C−1, respectively. The temperature sensitivity of POA and aqueous-phase 

formed isoprene SOA (ISOAAQ), two key drivers of OA sensitivity and overall PM2.5 sensitivity, decreased by approximately 

80% and 50%, respectively, in the MOD case compared to the BASE case. In the Northeast, the POA sensitivities remained 

consistent across cases, but the ISOAAQ sensitivity decreased from 0.52 in the BASE case to 0.27 µg m−3 ˚C−1 in the MOD 250 
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case. In the West, the temperature sensitivity of POA dominates PM2.5 sensitivity. The MOD case estimated a POA sensitivity 

of 1.92 µg m−3 ˚C−1, substantially reducing the overestimation observed in the BASE case. In the Central US, the POA and 

ISOAAQ sensitivities decreased from 0.44 and 0.26 µg m−3 ˚C−1 in the BASE case to 0.04 and 0.13 µg m−3 ˚C−1 in the MOD 

case, respectively. These reductions in POA and ISOAAQ sensitivities contribute to narrowing the discrepancy between 

observed/ML-derived PM2.5 sensitivities and standard GEOS-Chem simulations. This highlights the effectiveness of 255 

incorporating GFED4s for wildfire emissions and accounting for coating effects in aqueous SOA formation from IEPOX 

uptake in improving temperature sensitivity simulations.  

 
Figure 1: Spatial distribution and regionally aggregated temperature sensitivity of summertime PM2.5 and its major components 
during 2000–2016, derived from ground-based observations, machine-learning (ML) modeled datasets, and GEOS-Chem 260 
simulations. Maps show the spatial distribution of PM2.5 temperature sensitivity derived from ML-modeled data and observations 
(a1), GEOS-Chem BASE case simulations (a2), MOD case simulations (a3), MOD_BC case (a4), and SIM_BC case (a5). Triangle 
markers represent fitted sensitivities from observations with p-value<0.05. Stippling represents fitted temperature sensitivities with 
p-value<0.05 in GEOS-Chem. Bar charts show regionally aggregated temperature sensitivities for PM2.5 and its major components 
across the contiguous United States (b1), the Southeastern US (b2), the Northeastern US (b3), the Western US (b4), and the Central 265 
US (b5). 

In the MOD case, we incorporated the annual variation in SO2 emissions from electricity generation units to enhance the 

simulation of sulfate temperature sensitivity. As shown in Fig. 1 b1, the temperature sensitivity of sulfate in the CONUS 

increased 40% in the MOD case (0.07 µg m−3 ˚C−1) compared to the BASE case (0.05 µg m−3 ˚C−1), with the most notable 

improvement observed in the Northeast, where the sensitivity was two times higher in the MOD. In the Southeast, the sulfate 270 

sensitivity increased from 0.10 to 0.13 µg m−3 ˚C−1. Despite these improvements, the MOD case still underestimated sulfate 

sensitivity by 42%, 49%, and 74% in the Southeast, Northeast, and Central US, respectively. In the Western US, sulfate 

 a1 ML/OBS                                                                a2 BASE                                                                    a3 MOD                                      

OBS
BASE

MOD
MOD_BC

SIM_BCML

Obs_OA
Sulfate
Ammonium
Nitrate
EC
Soil

POA
ISOAAQ
TSOA
ASOA
SOAS_SimpleSOA
PM2.5

S
en

si
tiv

ity
 (μ

g 
m

- 3
 ˚C

-1
)

b1 CONUS                          b2 Southeast                        b3 Northeast                             b4 West                              b5 Central

a4 MOD_BC                                                       a5 SIM_BC                                     

OBS
BASE

MOD
MOD_BC

SIM_BCML
OBS

BASE
MOD

MOD_BC

SIM_BCML OBS
BASE

MOD
MOD_BC

SIM_BCML OBS
BASE

MOD
MOD_BC

SIM_BCML

–1.5–1.0–0.5 0 0.51.0 1.5

m(ΔPM2.5, JJA)(μg m-3 ˚C-1)

https://doi.org/10.5194/egusphere-2025-2872
Preprint. Discussion started: 7 July 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

sensitivity remained negligible (0.02 µg m−3 ˚C−1) across both simulations and observations. While using CAMD-derived 

scaling factors improved sulfate sensitivity simulations to some extent, a more accurate representation of the temperature 

dependence of SO2 emissions and sulfate formation is needed for further refinement. Additionally, the parameterization of 275 

temperature-sensitive processes related to sulfate concentration should be improved to better capture the observed high 

sensitivities. The low regional sulfate sensitivity may also result from subregional aggregation, which includes both urban and 

rural areas. Most ground-based stations are located in urban areas, where sulfate is more temperature-dependent due to higher 

energy consumption. However, as shown in the spatial distributions of species’ temperature sensitivity (Supplementary Figure 

6-7), GEOS-Chem systematically underestimated sulfate sensitivity at most sites in the eastern US, particularly in the Northeast 280 

and Appalachian regions.  

Nitrate concentrations are observed to exhibit minimal sensitivity to temperature changes, whereas the model estimates a strong 

negative correlation between nitrate and temperature (Figure 1 b1-b5). Using satellite-derived NOₓ emissions in the BASE 

case partially mitigated this issue, but strong negative correlations persist across much of the central and eastern US 

(Supplementary Figure 6-7). One plausible explanation is that the temperature dependence of NOₓ emissions is not adequately 285 

represented in the emission inventories and scaling factors, making it challenging for the model to reproduce the observed 

positive correlation. Additionally, the gas-particle phase partitioning of nitrate in GEOS-Chem appears overly sensitive to 

temperature, reinforcing the strong negative relationship, which competes with the positive correlation expected from 

emissions (Shen et al., 2017). Evaporation artifacts in nitrate measurements, which affect absolute concentrations, may also 

introduce bias in the calculation of temperature sensitivity. As the ammonium concentration tracks the sulfate and nitrate, the 290 

model also simulated negative correlations between ammonium and temperature in the eastern US, driven by the strong 

negative response of nitrate to temperature. In contrast, observations indicate positive correlations for ammonium. The 

temperature sensitivity of EC and dust are negligible in both observations and simulations, consistent across the analyzed 

regions. 

The role of complex SOA formation schemes in temperature sensitivity simulations can be investigated by comparing the 295 

MOD_BC case and SIM_BC case. In the MOD_BC case, which employed the complex SOA scheme, the temperature 

sensitivity of SOA is primarily driven by ISOAAQ, with a smaller contribution from monoterpene SOA (TSOA). By contrast, 

the simple SOA scheme in the SIM_BC case represents total SOA concentrations as a single variable (SOAS). The overall 

SOA sensitivity in the MOD_BC case is 0.31, 1.19, 0.71, 0.07, and 0.26 µg m−3 ˚C−1 in the CONUS, Southeast, Northeast, 

West, and Central US, respectively. These values compare to sensitivities of -0.05, 0.27, 0.15, -0.39, and 0.09 µg m−3 ˚C−1 in 300 

the SIM_BC case. Our findings indicate that, while the simple SOA scheme performs reasonably well in reproducing observed 

PM2.5 and OA concentrations (Supplementary Figure 4 and Supplementary Figure 11), it fails to capture the temperature 

dependence of SOA formation. This limitation suggests that using the simple scheme for predicting air pollution levels under 

future climate scenarios could result in significant discrepancies, particularly in regions where temperature-driven processes 

strongly influence SOA production. 305 
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3.3 Long-term variabilities of PM2.5 temperature sensitivity 

We further investigate the model performance in reproducing the variabilities of temperature sensitivity of PM2.5 and its 

species. Figure 2 shows the 5-year rolling window of temperature sensitivity for summertime PM2.5 derived from observations, 

ML-modeled data, and four GEOS-Chem cases. The sensitivities of two primary key species, sulfate and OA, are also included 

in Fig. 2. Supplementary Figure 12 shows the variability for summertime ammonium, nitrate, and BC sensitivity. The results 310 

reveal that the BASE case consistently overestimated PM2.5 sensitivity in the Southeast and the West across all 5-year windows 

from 2000 to 2017. By contrast, the MOD case significantly reduced this overestimation, accurately capturing both the 

magnitude and variability of PM2.5 sensitivity in each subregion.  

 
Figure 2: Regional-aggregated temperature sensitivity of PM2.5, organic aerosols (OA), and sulfate for 5-year running time windows, 315 
derived from ground-based observations, machine-learning-modeled data (2000–2016), and four GEOS-Chem simulation cases. The 
shaded areas represent the 95% confidence interval across each region. Panels (a1–a5) show the PM2.5 sensitivity for the contiguous 
US (a1), the Southeast US (a2), the Northeast US (a3), the West US (a4), and the Central US (a5); panels (b1–b5) show the OA 
sensitivity for each region; panels (c1–c5) show the sulfate sensitivity for each region. 

In the Southeast, observed PM2.5 sensitivities to temperature in 2000-2013 were relatively high, ranging from 0.15 to 2.54 µg 320 

m−3 ̊ C−1 with substantial interannual variations. After 2014, the PM2.5 sensitivity stabilized at lower levels, ranging from -0.63 

to 0.39 µg m−3 ˚C−1. Two notable peaks were observed during 2004-2008 and 2008-2012, which coincided with peaks in OA 

and sulfate sensitivities. Since the primary source of OA sensitivity in the Southeast is ISOAAQ, the formation of which is 

sensitive to the sulfate concentration, the OA sensitivity could also be affected by the sulfate sensitivity. Both the BASE and 

MOD cases captured sulfate sensitivity peaks in 2006 and 2012 (Figure 2 b2, c2). However, the BASE case exhibited 325 
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exaggerated OA sensitivity with two pronounced peaks during this period, resulting in substantial overestimation of both OA 

and PM2.5 sensitivities. This result aligns with findings by Zheng et al. (2020), which highlighted that the ISOAAQ formation 

in GEOS-Chem is overly sensitive to sulfate concentrations. Incorporating the coating effects in the MOD case effectively 

reduced these discrepancies, yielding more accurate simulations of OA and PM2.5 sensitivities. 

In the Northeast, observed PM2.5 sensitivity to temperature decreased from 1.53 µg m−3 ˚C−1 during 2000-2004 to -0.32 µg 330 

m−3 ˚C−1 during 2012-2016 and has remained at low levels since then. The MOD case successfully reproduced the overall 

decreasing tendency, except for a significant overestimation during 2017–2022, primarily driven by overestimated OA 

sensitivity in this region (Figure 2 b3). This discrepancy may be attributed to high POA emissions in the GFED4 inventory for 

2021 (Supplementary Figure 4). Observed OA concentrations in the Northeast exhibit minimal temperature sensitivity from 

2000 to 2011, ranging from 0.06 to 0.96 µg m−3 ˚C−1. After 2011, observations show a negative relationship between OA and 335 

temperature, with sensitivities ranging from −0.03 to −0.34 µg m−3 ˚C−1. The GEOS-Chem cases reasonably captured this 

transition, with an average OA sensitivity of 0.75 µg m−3 ˚C−1 before 2011 and −0.53 µg m−3 ˚C−1 afterward. Observed sulfate 

sensitivity in the Northeast shows a decreasing tendency from 2000 to 2013, stabilizing at approximately 0.01 µg m−3 ˚C−1 in 

recent years. This decrease is primarily driven by efficient emission controls implemented in the eastern US during the study 

period (Yin et al., 2025). 340 

In the western US, observed PM2.5 sensitivity shows a substantial increase after 2014. The MOD case shows good consistency 

with observed data from 2000-2016, while overestimating PM2.5 sensitivity in the West US from 2016-2022 (Figure 2 a4, b4), 

which could also be attributed to the overestimated OA concentration in 2021 (Supplementary Figure 4). These results show 

that the short-term temperature sensitivity examination could be significantly affected by a single-year emission or 

concentration anomaly. This underscores the critical role of accurately representing temperature dependence in emission 345 

inventories, especially for primary pollutants, in sensitivity simulations. In the case of OA, this entails a robust representation 

of the burned area, which can be temperature sensitive, during emission estimation. 

In the Central US, observed PM2.5 sensitivity decreased from 1.46 µg m−3 ˚C−1 during 2000-2004 to -0.63 µg m−3 ˚C−1 during 

2012-2016 and then increased to 1.09 µg m−3 ˚C−1 during 2018-2022 (Figure 2 a5).  As shown in Fig. 2 c5, the decrease before 

2016 was mainly driven by declines in sulfate sensitivity, whereas the OA sensitivity remained stable during this period. After 350 

2016, sulfate sensitivity increased slightly by ~0.17 µg m−3 ˚C−1, and the OA increased by ~0.73 µg m−3 ˚C−1, dominating the 

increases of PM2.5 sensitivity from 2016 to 2022 (Figure 2 b5).  Similar to the OA sensitivity observed in the western U.S., the 

increased OA sensitivity in the central U.S. may also be associated with wildfire emissions, reflecting the growing influence 

of wildfires on both regional and national air quality (Burke et al., 2023). The MOD case reproduced variabilities for both 

PM2.5 and its species, although it underestimated sulfate sensitivity during 2000-2006. Notably, PM2.5 sensitivity derived from 355 

ML-modeled datasets is lower than that from ground-based observations and more closely matches the GEOS-Chem 

simulations. The low spatial coverage of ground monitoring sites in the Central US makes observed PM2.5 sensitivity less 

representative of the broader regional response; it also means that the ML-modeled dataset is likely more influenced in this 

region by the chemistry models used in the ML training. Additionally, the high sulfate sensitivity observed in this region could 
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also be partly attributed to the lack of stations in the southern part of the Central US, where GEOS-Chem simulations show 360 

negative correlations between sulfate and temperature (Supplementary Figure 6). 

Temperature sensitivities of ammonium, nitrate, and BC make a minor contribution to the overall PM2.5 sensitivity, as shown 

in the ground-based observations (Figure 1 and Supplementary Figure 12). However, in GEOS-Chem, the strong negative 

response of nitrate to temperature increases leads to an underestimation of PM2.5 sensitivity in the northeastern and central US 

(Figure 1 b3, b5). As shown in Supplementary Figure 12 b1-b5, observations suggest a near-zero nitrate sensitivity in most 365 

regions of the CONUS, whereas the MOD case predicts negative sensitivities ranging from -0.3 µg m−3 ˚C−1 to -0.05 µg m−3 

˚C−1. The incorporation of the satellite-derived NOₓ emission inventory in the BASE case significantly reduced this 

discrepancy. It resulted in nitrate sensitivities of approximately  -0.1 µg m−3 ˚C−1 in the Eastern and Central US and +0.1 µg 

m−3 ˚C−1 in the Western US, aligning more closely with observational data. These findings underscore the critical role of 

temperature-dependent emissions in determining the response of air pollutants to temperature changes. They highlight the 370 

necessity of accounting for detailed temperature-dependent processes during the development of emission inventories to 

improve model accuracy. 

3.4 Processes driving the changing PM2.5 temperature sensitivity 

The modified model (MOD case) reasonably reproduces the spatial distribution, magnitude, and variability of PM2.5 

temperature sensitivity. Consequently, its outputs can be utilized to gain insights into the processes governing the magnitude, 375 

long-term pattern, and interannual variations of temperature sensitivity. The budget diagnostic in GEOS-Chem calculates mass 

changes due to major processes, providing valuable information on the factors driving temperature sensitivity. This diagnostic 

quantifies the mass tendencies per grid cell (in kg s−1) for each species within defined regions of the atmospheric column and 

across each GEOS-Chem component. The diagnostic is calculated by taking the difference in vertically summed column mass 

before and after major GEOS-Chem components. Three column regions are defined for this diagnostic: troposphere-only, 380 

planetary boundary layer (PBL)-only, and full column. This analysis focused on the PBL-only budget diagnostic, as it 

represents mass changes within the PBL and is most relevant to the temperature response of surface PM2.5 and its species. The 

major GEOS-Chem components represent major chemical and physical processes controlling species concentrations. The 

budget diagnostics for chemistry, mixing, cloud convection, transport, and wet deposition were used in this study. Chemistry 

represents the changes in net chemical production, which is determined by the change in reaction rate and the concentration of 385 

precursors. Transport represents the change in horizontal and vertical advection of species. The mixing process describes 

turbulence diffusion in the boundary layer and represents the total exchange of the PBL with the free troposphere. Cloud 

convection and wet deposition capture removal processes through precipitation and convective activity. Emissions and dry 

deposition processes are combined in the diagnostic due to their simultaneous application. However, this diagnostic does not 

capture all fluxes from these sources and sinks, as our simulations use a non-local PBL mixing scheme which accounts for the 390 

stability of PBL and has been shown to better simulate the concentration and vertical distribution of chemical tracers (Lin et 

al., 2008; Lin and McElroy, 2010). Consequently, the emissions and dry deposition budget are not included in further analysis, 
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except for the discussion on the POA budget. The impact of this omission should be minimal, as our focus is primarily on 

secondary pollutants formed through chemical reactions. Additionally, for secondary pollutants, emissions are inherently 

accounted for in the chemistry budget through precursor concentrations. To avoid misunderstanding, the chemistry budget is 395 

referred to as the production budget in the following text. Since the budget diagnostic is mass-based, removal processes such 

as mixing, cloud convection, transport, and wet deposition are inherently influenced by the existing mass of species in the 

PBL. To disentangle the contributions of these processes from the original mass, we calculated the efficiency of each removal 

process. Efficiency is defined as the budget output divided by the total species mass in the PBL, with units of s-1. The sign of 

efficiency is as follows: a negative value indicates that the process reduces species mass, while a positive value indicates an 400 

increase. Using efficiency allows for an independent assessment of the effects of removal processes, making comparisons 

across regions with varying species concentrations more meaningful. This approach provides a clearer understanding of how 

specific processes influence temperature sensitivity and supports more accurate regional and interannual analyses. 

As previously mentioned, the temperature sensitivity of POA, biogenic SOA, and sulfate are the main contributors to the 

overall PM2.5 sensitivity in the GEOS-Chem model. Among these, POA sensitivity is predominantly driven by the temperature 405 

sensitivity of wildfire emissions. Therefore, we focused our analysis on the driving factors influencing biogenic SOA and 

sulfate sensitivity. Figure 1 b1-b5 and Supplementary Figure 13 show that the aqueous-phase formed isoprene SOA is the 

primary source of biogenic SOA sensitivity in all regions in the CONUS. Therefore, this analysis primarily investigates the 

mechanisms and processes driving the temperature sensitivities and temporal distribution pattern of ISOAAQ and sulfate, 

using budget diagnostics from the modified GEOS-Chem model. Additional discussions address the mechanisms influencing 410 

monoterpene SOA and POA.  

The temperature sensitivity of each process was calculated using the same method as for PM2.5 and species concentrations. 

Figures 3 and 4 present the 23-year averaged chemical production budget diagnostics, removal efficiencies, and their respective 

temperature sensitivities for ISOAAQ and sulfate. The absolute budgets for removal processes and their temperature 

sensitivities are provided in Supplementary Figures 14-15. Time series for regional budget diagnostics for each process and 415 

removal efficiencies are shown in Supplementary Figures 16–17 for reference. It is important to note that the variations in 

removal processes reflect contributions from both concentration changes and efficiency changes. The use of removal efficiency 

helps isolate the effect of efficiency changes, eliminating the influence of declining concentrations on removal process changes. 

The efficiency of transport, mixing, wet deposition, and convection for ISOAAQ and sulfate remains largely stable throughout 

the study period in most regions, except for a decreasing transport efficiency of sulfate observed in the Southeast US 420 

(Supplementary Figure 17). 
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Figure 3: Budget diagnostics for aqueous-phase-formed isoprene SOA (ISOAAQ) and the temperature sensitivity of each process. 
Results are from the MOD case spanning 2000 to 2022. Stippling represents fitted temperature sensitivities with p-value<0.05. Panels 
(a1–a2) show the Production budget diagnostic (a1) and its derived temperature sensitivity (a2). Other panels represent the average 425 
efficiencies (lefthand column) and corresponding temperature sensitivities (righthand column) for transport (b1, b2), mixing (c1, 
c2), wet deposition (d1, d2), and convection processes (e1, e2).  

The results show that chemical production leads to a positive mass change in ISOAAQ in the PBL across the CONUS from 

2000 to 2022, with the largest increase occurring in the Southeast (Figure 3 a1).  Horizontal and vertical transport generally 

reduce the PBL ISOAAQ mass in most regions, except for the middle parts of the CONUS (Figure 3 a2). Mixing into the free 430 

troposphere also results in decreases in ISOAAQ mass throughout the CONUS. Wet deposition contributes to mass loss in the 

PBL in the Eastern US but leads to a mass increase in the Western US, likely due to re-evaporation of precipitation and particle 

resuspension processes. Cloud convection predominantly reduces ISOAAQ mass across most regions. Overall, chemical 

production is the primary driver of ISOAAQ mass increases, while transport emerges as the most efficient process for particle 

removal, followed by mixing, wet deposition, and cloud convection. 435 

Figure 3 a2–e2 illustrates the temperature sensitivity of the chemical production budget and the efficiencies of other processes. 

The chemical production of ISOAAQ shows a positive relationship with temperature across the CONUS, with the highest 

sensitivity in the Southeast, which could be related to the increased isoprene emissions from forests and accelerated reaction 

rates. Because the chemical production process leads to an increase in mass, a positive production-temperature relationship 
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indicates that as temperature increases, the mass increases, contributing to the positive temperature sensitivity of species, i.e., 440 

ISOAAQ in this case. In contrast, the temperature sensitivities of the other processes – transport, mixing, wet deposition, and 

convection – show a range of positive and negative values across the CONUS. For much of the CONUS, the temperature 

sensitivity of these processes is negative, and so a negative relationship between the efficiency of these processes and 

temperature means that as temperature increases, efficiency increases, resulting in greater mass removal. The opposite is true 

for a positive efficiency-temperature relationship.  445 

For example, although transport processes lead to decreased ISOAAQ mass in the Southeastern US, the temperature sensitivity 

of transport efficiency is positive in many grid cells in this region (Figure 3 b1-b2). This suggests that in warmer summers, 

transport efficiency could decline, allowing ISOAAQ to accumulate, thereby contributing to a positive temperature response. 

This reduced efficiency is likely linked to more stagnant, wind-free conditions typical of warmer weather in much of 

Southeastern US. The mixing efficiency shows less temperature dependence overall, with increases in the Northeast and 450 

decreases in the Southern US as temperatures rise (Figure 3 c1-c2). Wet deposition efficiency shows a positive correlation 

with temperature, which aligns with expectations of reduced precipitation and more frequent drought events in warmer 

summers, leading to decreased removal (Figure 3 d1-d2). Similarly, convection efficiency decreases with rising temperatures, 

as illustrated in Fig. 3 e1-e2. 

 455 
Figure 4: Same as Figure 3 but for budget diagnostic and temperature sensitivity of sulfate. 
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The budget analysis for sulfate reveals a pattern similar to that of ISOAAQ (Figure 4), with a high production budget diagnostic 

observed in the eastern US. While most regions in the CONUS exhibit a positive temperature sensitivity for sulfate production, 

negative production-temperature relationships are identified in South Texas. This anomaly may be attributed to reduced 

aqueous-phase sulfate formation caused by decreased cloud coverage at higher temperatures. The transport processes reduce 460 

sulfate concentrations in more polluted areas, such as the Eastern US, while increasing concentrations in less polluted regions, 

like the Western US. The temperature sensitivity of transport is generally opposite to its efficiency, indicating that transport 

efficiency decreases during warmer summers. Consistent with the findings for ISOAAQ, mixing efficiency exhibits a limited 

temperature dependency, while the removal efficiencies of wet deposition and cloud convection decline in warmer summers. 

This reduction in removal efficiency contributes to higher sulfate concentrations and a positive temperature sensitivity in these 465 

processes. 

Figure 5 shows the time series of the temperature sensitivity for each process affecting ISOAAQ and sulfate over 5-year 

windows during 2000-2022. For comparison, the temperature sensitivities of ISOAAQ and sulfate concentrations are also 

shown. The results highlight that chemical production is the primary driver of both the signs and variabilities of ISOAAQ and 

sulfate sensitivities. Specifically, in the CONUS, as the production sensitivity decreased from 0.005 kg s−1 ˚C−1 to zero, the 470 

sensitivity of ISOAAQ concentration also decreased from 0.2 µg m−3 ˚C−1 to zero following similar interannual variations. At 

the regional scale, wet deposition and convection efficiency are positively correlated with temperature, with a temperature 

sensitivity of 0.3×10−6 and 0.1×10−6 s−1 ˚C−1, respectively. This reflects reduced precipitation during warmer summers, leading 

to a positive response of air pollution to temperature. Conversely, mixing efficiency shows minimal temperature sensitivity, 

typically exhibiting a weak negative correlation with temperature, promoting dispersion of air pollution in the boundary layer 475 

during warmer summers. Transport efficiency demonstrates larger year-to-year variations compared to other removal 

processes. No significant temporal pattern is observed in the temperature sensitivities of transport, mixing, wet deposition, or 

convection efficiencies over the studied period. In the Southeast, the production sensitivity of ISOAAQ decreased by ~40% 

from 2005 to 2007 and continued declining after 2007. During the same period, the sensitivity of ISOAAQ concentration 

dropped by ~75% from 2005 to 2007 but then increased and stabilized at ~0.6 µg m−3 ˚C−1 between 2008 and 2014. This 480 

apparent inconsistency is likely due to variations in transport efficiency and its positive correlation with temperature during 

this period. During the 2005-2009 window, the temperature sensitivity of transport efficiency decreased from +2.6×10−7 to 

−6.4×10−8, and then increased to +3.6×10−7 during the 2006-2009 window. The negative sensitivity during 2005-2007 indicates 

that the transport efficiency increased with rising temperatures, reducing ISOAAQ concentration. The combined effects of 

decreased chemical production sensitivity and increased transport efficiency contributed to the sharp decline in ISOAAQ 485 

sensitivity during this period. From 2006 to 2014, while chemical production sensitivity continued to decline, transport 

efficiency sensitivity remained positive, indicating reduced transport efficiency with rising temperatures. This facilitated the 

buildup of ISOAAQ in the boundary layer, partially offsetting the impact of decreased chemical production sensitivity and 

resulting in stable ISOAAQ sensitivity during this period. A similar effect of reduced transport efficiency likely contributed 

to the increased ISOAAQ sensitivity observed in the Northeastern US during 2006-2014. These findings underscore that while 490 
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ISOAAQ sensitivity is primarily driven by the temperature sensitivity of chemical production, fluctuations in the temperature 

sensitivity of transport efficiency also play a critical role in modulating the interannual variations of ISOAAQ  sensitivity. 

 
Figure 5: Regionally aggregated temperature sensitivities of the concentrations of isoprene SOA (ISOAAQ) and sulfate (left axes) 
and of the processes driving these concentrations (right axes). Shading represents the 95% confidence interval.  The top row shows 495 
the time series from ISOAAQ diagnostics for the contiguous US (a1), Southeastern US (a2), Northeastern US (a3), Western US (a4), 
and Central US (a5).  The bottom row shows the results for sulfate in each region. 

Similar to the ISOAAQ sensitivity, the decrease in the temperature sensitivity of sulfate concentration is primarily driven by 

the temperature response of chemical production, whereas the temperature response of transport efficiency plays an important 

role in interannual variations. The negative transport efficiency, which means higher transport efficiency in warmer summers, 500 

contributes to notable decreases in sulfate sensitivity. This impact is particularly evident during 2005-2009 in the Southeastern 

US and Central US (Figure 5 b2, b5) and 2010-2014 in the Northeastern US (Figure 5 b3). In summary, the budget diagnostic 

analysis reveals that chemical production is the dominant factor determining the decrease in ISOAAQ  and sulfate sensitivities 

to temperature, which in turn drive the decrease in PM2.5 sensitivity. Additionally, transport processes play a crucial role in 

shaping the interannual variation in ISOAAQ  and sulfate sensitivities to temperature. 505 

The temperature sensitivity of major processes contributing to POA concentration is shown in Supplementary Figure 18 a1-

a5. Unlike the other species considered here, POA is directly emitted from fire events, making the emission process the 

dominant factor driving POA sensitivity. Additionally, the temperature sensitivity of transport significantly influences the 

interannual variation in POA sensitivity, particularly in the Southeast and Northeast US. TSOA, formed from monoterpene 

oxidation, is an important component of biogenic SOA. We find that the temperature sensitivity of TSOA is approximately an 510 

order of magnitude lower than that of isoprene SOA, typically ranging from 0 to 0.2 µg m−3 ̊ C−1 in most regions in the CONUS 

(Supplementary Figure 13). As with ISOAAQ, chemical production dominates the variability in TSOA sensitivity, whereas 

transport sensitivity contributes to the variations in certain years (Supplementary Figure 18 b1-b5). 
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As previously discussed, GEOS-Chem tends to underestimate the sulfate sensitivity (Figure 1 b1-b5, Supplementary Figure 6 

b1-b4). Shen et al. (2017) attributed this underestimate to the overly rapid decrease in cloud fraction with rising temperatures 515 

in GEOS-5 meteorological reanalysis data. This rapid reduction significantly decreases aqueous-phase sulfate production at 

higher temperatures, contributing to the underestimation of sulfate sensitivity in GEOS-Chem. Xie et al. (2019) noted that 

while cloud fraction representation in MERRA2 has been substantially improved, cloud coverage still decreases too quickly 

under droughts which frequently occurs with high temperatures in the summertime. As a result, aqueous-phase sulfate 

production decreases under dry conditions in the MERRA2-driven GEOS-Chem, leading to lower sulfate concentrations than 520 

is observed from ground-based measurements. In the MOD case, using CAMD scaling factors slightly improves sulfate 

sensitivity simulations but the results still fall short of observed values (Figure 1).  

Considering that the magnitude of aerosol sensitivity is determined by the chemical production process, we investigated the 

contribution of different sulfate formation mechanisms based on the production rates diagnostic in GEOS-Chem. There are 

three major sulfate production pathways in GEOS-Chem: (1) gas phase SO2 oxidation by hydroxyl radical (·OH), (2) in-cloud 525 

SO2 oxidation by H2O2, and (3) in-cloud SO2 oxidation by O3. The production rate and temperature sensitivity for each pathway 

in the MOD case are shown in Supplementary Figure 19. Gas-phase SO2 oxidation is the dominant sulfate production 

mechanism, followed by aqueous-phase oxidation by H2O2 and O3. Gas-phase production hotspots are scattered across the 

Eastern US, while aqueous-phase production is concentrated in the Northeastern US and Appalachian regions (Supplementary 

Figure 19 a1-a3). Gas-phase production rates exhibit positive correlations with temperature, particularly in the Northeastern 530 

US. Conversely, aqueous-phase production rates negatively correlate with temperature across the CONUS, with the strongest 

negative correlations observed in the southern Appalachian region and Texas. As shown in Supplementary Figure 19 b1-b5 

and Supplementary Figure 6 b2, the underestimate of sulfate sensitivity to temperature in the Appalachian region in the MOD 

case is likely due to a combination of low gas-phase production sensitivity and a strong negative temperature sensitivity of 

aqueous-phase production. Although MERRA2 meteorological reanalysis data improved the issue of rapid cloud coverage 535 

decline with temperature increases (Supplementary Figure 8), cloud coverage in the Appalachian region and Texas remains 

relatively more sensitive to temperature changes than in other areas. This heightened sensitivity leads to the pronounced 

negative temperature sensitivity of aqueous-phase sulfate formation in these regions, contributing to the underestimate of 

sulfate sensitivity in the model.  

Supplementary Figure 19 c1-c5 illustrates the time series of the temperature sensitivity of each sulfate production pathway 540 

during the studied period. The gas-phase production rate, highly sensitive to ambient SO2 concentrations, exhibited a 

significant decline in temperature sensitivity from 2000 to 2014, driven by effective emission control measures. After 2014, 

the temperature sensitivity of the gas-phase production rate decreased by an order of magnitude, stabilizing at a negligible 

level of approximately ~0.0005 kg−1 s−1 ˚C−1. These changes in gas-phase sulfate production have been the primary drivers of 

sulfate concentration sensitivity over the past two decades. By contrast, no significant pattern was observed in the temperature 545 

sensitivity of aqueous-phase sulfate formation rates during this period. 
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3.5 Quantifying the contributions from individual processes 

As previously mentioned, ground-based observations and machine learning data can provide information on the total derivative 

of air pollution with respect to temperature (dPM2.5/dT, dSOA/dT, dsulfate/dT,). Chemistry transport models such as GEOS-

Chem are helpful for breaking down the total sensitivity and quantifying the contributions from the individual processes. Based 550 

on the simulations from the modified GEOS-Chem model, we further investigated the contributions from various temperature-

sensitive processes in the chemical formation to the aerosol-temperature sensitivity. The production of ISOAAQ and sulfate, 

the primary source of the overall PM2.5 sensitivity, were used as examples for the quantification (Figure 6). Additional 

discussions were made for TSOA production. The temperature sensitivities of ISOAAQ, sulfate, and TSOA are expressed as: 
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The temperature dependence of the reaction rates were not included due to the lack of GEOS-Chem output. For sulfate, only 

gas phase production was considered as it predominantly drives the magnitude and variability of the production sensitivity 

(Supplementary Figure 19). It is important to note that the partial derivatives were not calculated under the assumption that 560 

other factors remain constant, as this would require substantial computational resources. Instead, similar to the temperature 

sensitivity calculations, each term was determined as the slope of the linear regression line for detrended anomalies as a first-

order estimate. We acknowledge that this method may introduce uncertainties in our results due to interdependencies among 

the variables, but our analysis indicates that this approximation can well capture the total temperature sensitivity and provide 

useful insights about contributions from different processes. 565 
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Figure 6: Contributions from major temperature-dependent processes to the overall temperature sensitivity of aqueous-phase 
formed isoprene SOA (ISOAAQ), sulfate, and monoterpene SOA (TSOA). Top row shows the results for ISOAAQ for the contiguous 
US (a1), Southeastern US (a2), Northeastern US (a3), Western US (a4), and Central US (a5). Middle row shows the results for sulfate 
in each region. Bottom rows show the results for TSOA in each region. Eq. (1)-(3) provide detailed explanations of the terms. 570 

The temperature sensitivity of ISOAAQ and relative contributions from the temperature dependence of isoprene and sulfate 

concentration are shown in Fig. 6 a1-a5. These two mediating processes exhibit similar long-term temporal pattern, with the 

sulfate-mediated temperature sensitivity being the most important factor influencing the magnitude and variations of the 

ISOAAQ-temperature relationship. It is important to note that these two processes are not entirely independent, and their 

combined contributions exceed the ISOAAQ sensitivity calculated directly from detrended anomalies of ISOAAQ 575 

concentration and temperature.  

Supplementary Figure 20 a1-a5 shows the time series of the two processes contributing to the temperature dependence of 

ISOAAQ mediated by the temperature dependence of isoprene concentration: (1) (")*+,-.-
('

, the sensitivity of isoprene 

concentration to temperature; and (2)	 ("#$%%&
(")*+,-.-

, the sensitivity of ISOAAQ concentration to isoprene concentration. Our results 

indicate that the variability of this term is mainly driven by	 ("#$%%&
(")*+,-.-

, which has experienced a significant decrease in the 580 

Eastern and Central US over the time period. For example, in the Southeast, ("#$%%&
(")*+,-.-

 ranged from 0.10 to 0.61 µg m−3 ppb−1 

during 2000-2014, with an average of 0.38 µg m−3 ppb−1, but dropped to −0.24 to 0.11 µg m−3 ppb−1 (average: −0.03 µg m−3 

ppb−1) in recent years. Similarly, the average ("#$%%&
(")*+,-.-

 before 2016 was 0.30 µg m−3 ppb−1 in the Northeast US and 0.31 µg m−3 
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ppb−1 and the Central US, respectively. After 2016, these values decreased to 0.00 and 0.04 µg m−3 ppb−1, respectively. The 

isoprene concentration positively correlates with temperature, and no significant temporal pattern was found during the study 585 

period.  

Supplementary Figure 20 b1-b5 illustrates the temperature dependence of ISOAAQ mediated by the temperature dependence 

of the sulfate aerosol. This relationship is quantified as the product of two terms: the sensitivity of sulfate to temperature change 

((#$/
('

) and the sensitivity of ISOAAQ concentration to sulfate concentration change (("#$%%&
(#$/

). As previously discussed, (#$/
('

 

exhibits substantial variability and a clear decreasing pattern over the study period. Additionally, the average ("#$%%&
(#$/

 decreased 590 

by more than 60% in the Eastern US from 2000-2014 to 2014-2022. Specifically, in the Southeast US, a unit increase in sulfate 

concentration could lead to 1.34 µg m−3 increase in ISOAAQ concentration during 2000-2014, whereas this value decreased 

to 0.52 µg m−3 during 2014-2022. The reduced sensitivity of isoprene SOA formation to sulfate concentration can be attributed 

to changes in the relative abundance of organic and inorganic compounds. Over recent years, the increasing fraction of organic 

compounds could intensify the coating effect, which inhibits the uptake of IEPOX to form SOA. This may have led to a decline 595 

in the sensitivity of ISOAAQ to sulfate concentration. The product of ("#$%%&
(#$/

 and (#$/
('

 generally follows variations in (#$/
('

, 

emphasizing the critical role of sulfate-temperature sensitivity in shaping the overall temperature dependence of ISOAAQ. 

The term ("#$%%&
(")*+,-.-

  reflects the conversion of isoprene to IEPOX and the subsequent uptake of IEPOX and SOA formation. 

These processes are related to factors that are closely linked to sulfate concentration, for instance, aerosol liquid water and 

availability of proton donors and nucleophiles (Marais et al., 2016, 2017; Xu et al., 2015). Additionally, the coating effect 600 

considered in the modified GEOS-Chem model depends on the ratio between organic and inorganic aerosols, which is also 

influenced by the sulfate concentration. Consequently, the ("#$%%&
(")*+,-.-

 is mediated by sulfate concentration, explaining its similar 

interannual variations and decreasing pattern alongside (#$/
('

. Our findings suggest that sulfate concentration is the primary 

driver of the temperature sensitivity of aqueous-phase-formed isoprene SOA, underscoring the pivotal role of sulfate in 

regulating ISOAAQ temperature sensitivity. 605 

Figure 6 b1-b5 shows the contribution of the temperature sensitivity of SO2, ·OH radical, and cloud fraction to the overall 

sulfate sensitivity. The contribution of SO2 can be represented as the product of the temperature response of SO2 ((#$0('
) and 

the sensitivity of sulfate to changes in SO2 concentration ((#$/
(#$0

). As shown in Supplementary Figure 21 a1-a5, (#$/
(#$0

 shows no 

significant change over the study period. The average (#$/
(#$0

 values during 2000-2014 were 1.7, 1.0, 0.2, and 2.1 µg m−3 ppb−1 

in the Southeast, Northeast, West, and Central US, respectively. During 2014-2022, the averages in these subregions changed 610 

to 1.8, 1.5, 0.2, and 1.6 µg m−3 ppb−1, respectively. In contrast, (#$0
('

 decreased from ~0.1 ppb ˚C−1 to near zero in most regions, 

except for the Western US, where wildfire emissions influenced SO2 concentrations. This decline in the temperature sensitivity 

of SO2 concentration drives the decrease in the first term in Eq. (2).  
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Similarly, the sulfate sensitivity mediated by the temperature response of the ·OH can be calculated as the product of the 

sensitivity of the ·OH concentration to temperature change (($1
('

) and the sensitivity of sulfate concentration to changes in ·OH 615 

concentration ((#$/
($1

) (Supplementary Figure 21 b1-b5). The temperature sensitivity of ·OH exhibits an increasing tendency in 

the Eastern US and Central US but shows a decrease in the Western US. From 2000-2014 to 2014-2022, the average ($1
('

 

increased from −0.0009, 0.0006, 0.0041, and 0.0033 ppt ˚C−1 to 0.003, 0.0045, 0.0014, and 0.0051 ppt ˚C−1 in Southeast, 

Northeast, West, and Central US, respectively. The increased ($1
('

 could be partially attributed to reductions in primary 

pollutant emissions, which lead to the accumulation of ·OH in the atmosphere. Meanwhile, the sensitivity of sulfate 620 

concentration to ·OH concentration shows a decreasing pattern from 2000 to 2014 and remains stable from 2014 to 2022 in 

most regions. Across the CONUS, the average (#$/
($1

 decreased from 3.5 µg m−3 ppt−1 during 2000-2014 to −5.7 µg m−3 ppt−1 

during 2014-2022 during these two periods. Overall, the contribution of the temperature dependence of ·OH to sulfate 

sensitivity decreases throughout the study period, although its magnitude remains small.  

Supplementary Figure 21 c1-c5 illustrates the time series of two components of cloud fraction-mediated temperature sensitivity 625 

of sulfate. This term is calculated as the product of the temperature sensitivity of cloud fraction ((234562
('

) and the sensitivity 

of sulfate to changes in cloud fraction ( (#$/
(234562

). As expected, (234562
('

 is consistently negative in GEOS-Chem, indicating a 

decrease in cloud fraction with increasing temperature. However, (#$/
(234562

 varies between positive and negative values. This 

variability reflects not only the influence of aqueous-phase formation but also processes related to precipitation and wet 

scavenging. Supplementary Figure 19 c1–c5 demonstrates that the aqueous-phase production rate decreases with rising 630 

temperatures during the study period. Despite this, the cloud-mediated process contributes positively to sulfate sensitivity in 

the earlier years, potentially driven by reduced wet scavenging during warmer summers with diminished cloud coverage.  

All three processes significantly influence the magnitude of sulfate sensitivity. The SO2-related process contributing more 

prominently in the Eastern and Central US, whereas in the Western US, the overall magnitude is primarily determined by the 

·OH-related process (Figure 6 b1-b5). The temperature dependence of SO2 concentration largely determined the variability of 635 

sulfate sensitivity over time. During 2000-2010, the sum of contributions from these processes was lower than the overall 

sulfate sensitivity in the Eastern US, indicating that the other processes, including the temperature dependence of reaction rates 

and transport efficiency, may also play an essential role in driving the positive temperature sensitivity of sulfate. In conclusion, 

these findings demonstrated that the temperature sensitivity of sulfate is primarily governed by the temperature dependence of 

SO2 concentration. The observed decrease in sulfate sensitivity after 2016 can be attributed to reductions in SO2 concentrations 640 

during warmer summers. 

The temperature sensitivity of SOA formed by monoterpene oxidation makes a non-negligible contribution to the overall SOA 

sensitivity, especially in the Southeast US (Figure 1).  To better understand this contribution, we decomposed the temperature 

sensitivity of TSOA into components mediated by TSOG (semi-volatile oxidations in the gas phase), which reflect the gas-

https://doi.org/10.5194/egusphere-2025-2872
Preprint. Discussion started: 7 July 2025
c© Author(s) 2025. CC BY 4.0 License.



24 
 

particle phase partitioning, and concentrations of monoterpenes, NOx, and ·OH (Figure 6 c1-c5 and Supplementary Figure 22).  645 

Our results reveal that phase partitioning plays a significant role in determining the magnitude of TSOA temperature 

sensitivity, particularly in the Southeast and Northeast US. Additionally, the temperature sensitivities of ·OH and NOₓ 

contribute to both the temporal pattern and interannual variations in TSOA sensitivity. This phenomenon is especially 

pronounced in the Western US, where NOₓ concentrations are heavily influenced by wildfire emissions (Campbell et al., 2022), 

which have shown a consistent increase in recent years. The rising NOₓ temperature sensitivity, combined with the temperature 650 

sensitivity of ·OH, has driven a substantial increase in TSOA sensitivity in the West. The influence of NOx is less significant 

in other regions. Zheng et al. (2023) suggested that the impact of anthropogenic NOₓ on monoterpene SOA formation is missing 

from current models, highlighting the need for future studies to evaluate how this omission may affect simulations of 

temperature sensitivity. 

4 Conclusions 655 

Understanding the mechanisms driving the response of PM2.5 and its components to rising temperatures is critical for improving 

future air quality and climate projections, given the complex interactions between aerosols and climate change. While previous 

studies have established observational correlations between aerosols and temperature and highlighted model biases, our study 

advances this field by comprehensively evaluating and improving the performance GEOS-Chem model in simulating the 

temperature sensitivity of PM2.5 and its species across the contiguous United States. We further quantify the contributions of 660 

relevant processes to this sensitivity, thereby identifying the dominant drivers for both total PM2.5 and its individual 

components. The baseline model significantly overestimated PM2.5 temperature sensitivity, particularly in the Southeast and 

West US, driven by excessive contributions from biomass burning POA emissions and SOA formation processes, which 

increased with increasing temperatures. Additionally, the model underestimated the temperature sensitivity of sulfate. To 

address these issues, targeted modifications were implemented, including adopting the GFED4 inventory for biomass burning 665 

emissions, incorporating the coating effects on the aqueous-phase isoprene SOA formation, and applying updated scaling 

factors for SO2 and NOₓ emissions from energy-generated units. These adjustments significantly reduced the discrepancies, 

aligning simulated results more closely with observations and machine-learning-derived datasets. 

The GFED4 inventory proved effective in reproducing more reasonable temperature sensitivities of wildfire emissions and 

their increasing patterns. The default complex SOA scheme in GEOS-Chem overestimated SOA temperature sensitivity, 670 

especially in the southeastern US, primarily due to its overly strong dependence on sulfate concentrations. This led to an 

overestimation of isoprene SOA levels. Incorporating coating effects into the aqueous-phase isoprene SOA formation process 

addressed this issue effectively, aligning model results more closely with observations. Conversely, while the simple SOA 

scheme demonstrated reasonable performance in simulating overall SOA concentrations, it failed to capture the strong positive 

temperature sensitivity of SOA formation and its decreasing pattern observed in the US. This limitation highlights the necessity 675 
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of incorporating improved formation mechanisms to accurately simulate the temperature dependence of air pollution, 

particularly in projecting future air quality under changing climatic conditions and for understanding climate-aerosol feedback. 

The modified GEOS-Chem model successfully reproduced the magnitude and variability of PM2.5 temperature sensitivity. 

Analysis of model outputs revealed that chemical production primarily determines the sign and long-term changes of 

temperature sensitivity for isoprene SOA and sulfate, which are key contributors to PM2.5 sensitivity. However, transport 680 

processes play a critical role in shaping the interannual variability of temperature sensitivity. In addition, the temperature 

sensitivity of POA, a significant contributor to overall OA and PM2.5 sensitivity, is predominantly influenced by wildfire 

emissions, with transport processes further modulating interannual variations. The temperature sensitivity of monoterpene 

SOA is driven by temperature-dependent phase partitioning and chemical production processes. 

Improvements in sulfate sensitivity estimation were achieved by applying CAMD scaling factors to improve interannual 685 

variability in SO2 emissions, but underestimates persisted in regions such as the Appalachian Mountains. These biases were 

attributed to an overly rapid decrease in cloud coverage with temperature in the MERRA2 meteorological data, which reduced 

aqueous-phase sulfate production. Regionally, gas-phase oxidation dominated sulfate temperature sensitivity during the study 

period, but its influence has declined and stabilized since 2014 as a result of emission control strategies. The response of 

aqueous-phase formation is insensitive to SO2 emission change and shows no significant variations over the study period. The 690 

persistent underestimate of sulfate sensitivity in regions where aqueous-phase formation plays a critical role highlights the 

urgent need to refine our understanding and parameterization of cloud-temperature interactions in meteorological models, 

specifically for fair weather cumulus clouds, which are challenging to capture in models. Improving these processes is essential 

for enhancing the accuracy of air quality and climate predictions. 

We quantified the contributions from temperature-dependence of isoprene and sulfate to ISOAAQ sensitivity. The sum of the 695 

temperature sensitivities mediated by these two processes reasonably matches the observed ISOAAQ sensitivity, despite their 

interdependence. Our results highlight a dominant role of sulfate sensitivity due to its influence on ISOAAQ formation through 

the aerosol liquid water content and coating thickness, which is determined by the relative abundance of organic and inorganic 

compounds. Given the important role of gas-phase production in sulfate sensitivity, as indicated by our findings, we further 

quantified the contributions from the temperature response of precursors of gas phase reaction (SO2 and ·OH) and cloud 700 

fraction to sulfate temperature sensitivity. The long-term temporal pattern of temperature sensitivity of sulfate is mainly driven 

by the decreasing response of SO2 concentration to temperature rise as SO2 emissions declined. The combined contributions 

of SO2, ·OH and cloud fraction adequately explain sulfate sensitivity after 2014. The remaining sensitivity during 2000–2014 

is likely attributable to temperature-sensitive reaction rates. Our findings suggest that reductions in anthropogenic SO2 

emissions have decreased the temperature sensitivities of both sulfate and isoprene SOA, thereby reducing overall PM2.5 705 

temperature sensitivity. For monoterpene SOA, gas-particle phase partitioning plays a significant role in overall sensitivity, 

while its dependence on precursor concentrations including monoterpene, ·OH, and NOₓ, collectively contributes to 

interannual variability. 
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There are several limitations to the present study. First, when using the budget diagnosis from GEOS-Chem simulations to 

quantify the contribution of each process, the partial derivatives were calculated in the same manner as total derivatives, 710 

without holding other variables constant, as required by the strict physical definition of partial derivatives. Although the results 

show acceptable agreement with total derivatives, it should be noted that potential interdependencies among different processes 

may exist. Second, due to the lack of available observational data to validate the mass changes associated with the relevant 

physical and chemical processes simulated by GEOS-Chem, the results should be interpreted with a reasonable degree of 

caution. Third, one dataset used to evaluate the performance of GEOS-Chem was the temperature sensitivity derived from ML 715 

models, which included GEOS-Chem estimates (BASE case) as one of the input features. Although the incorporation of 

ground-based observations, satellite data, and simulations from other models was intended to reduce dependence on GEOS-

Chem outputs, potential residual dependence in the model evaluation cannot be entirely ruled out, particularly for regions with 

sparse observations. Nevertheless, this limitation does not affect the conclusion regarding the improved performance of our 

modified model, as the evaluation also included PM2.5 and its species-specific temperature sensitivities derived from 720 

observations. Lastly, regarding the methodology for deriving temperature sensitivity, we used local measurements or 

simulations of PM2.5 and temperature. We acknowledge that in regions where PM2.5 is strongly influenced by long-range 

transport, this approach may introduce bias. However, the use of summer mean concentrations helps mitigate this issue in areas 

where air pollution is primarily driven by local sources. 

Overall, this study establishes a robust framework for evaluating and improving the representation of air pollutant temperature 725 

sensitivity in chemistry transport models. These insights will contribute to more accurate predictions of future air quality under 

climate change scenarios and will provide valuable guidance for developing strategies to mitigate the health and environmental 

impacts of air pollution. 
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