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18  Abstract

19  Lake Albano is a monomictic volcanic crater lake in Central Italy with CO,-rich waters

20  presenting CO; concentration varying over time. Depending on the period of the year, the

21 lake is characterized by strong stratification or rather overturning events. In the warm season,
22  the heating of the surface water results in a highly stratified vertical density profile, while in
23  the cold season, the surface water cooling leads to a potential vertical instability of the water
24 column. In this case, a partial/deep overturning of the lake water column may occur with the
25  degassing in the atmosphere of the CO2 which was accumulated as dissolved species in the
26  deep water layers following seismically induced gas recharge, months to years before. Such a
27  process has been periodically observed in Lake Albano in the past and could pose a potential
28  hazard to the surrounding environment and population. A 3D numerical model is

29  implemented to investigate the lake dynamics and the occurrence of overturning events. The
30  model is validated and calibrated using both historical observations and measurements

31  acquired during this study. These include temperature and salinity profiles from the deepest
32  central portion of the lake, surface water temperature time series recorded by sensors installed
33  on the lake shores, mounted on remotely operated vehicles, and on low-cost, innovative, self-
34  powered drifting buoys. The latter have also been used to assess the modeled surface

35  circulation of the lake.

36
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37 1. Introduction

38  After the limnic eruption of Lake Nyos in 1986 (Kanari 1989; Kling et al. 1989), volcanic

39 lakes have been recognized as a rare but devastating source of disasters (Kusakabe 2017,

40 Kling et al. 2015). Limnic eruptions are caused by the accumulation of magmatic CO> in non-
41 acidic crater lakes, reaching supersaturation, or triggered by an external factor (e.g.

42  earthquake, landslide, strong winds). The gas recharge might occur for two reasons: a) a

43  sudden injection through the lake bottom of a relevant quantity of CO>, or b) a high CO;

44  concentration built up within the lake for a long time (Rouwet et al. 2019).

45  Ttaly hosts twelve volcanic lakes (Albano, Nemi, Averno, Lucrino, the two Monticchio lakes,
46  Bolsena, Bracciano, Vico, Mezzano, Martignano, Monterosi, Specchio di Venere-Pantelleria,
47  Telese) with different physical and chemical characteristics (Cioni et al. 2003; Chiodini et al.
48  2000; Chiodini et al. 2004; Stoch et al. 2007). The Albano maar is the deepest among the

49  volcanic crater lakes of Italy, being about 167 m deep (in 2007, see Anzidei et al., 2007). It is
50  the youngest of the monogenetic and polygenetic phreatomagmatic craters located along the
51 northern and the western slopes of the Colli Albani volcanic complex (De Rita et al.1987; De
52  Rita et al.1988; Trigila 1995; Villa et al.1999; Funiciello et al. 2003; Marra et al. 2003; Freda
53  etal. 2006; Giordano et al. 2010). The lake has a long history of level changes and

54  catastrophic events, which started with the formation of the Albano crater ~70 ka B.P., and
55  continued during pre-historical times. Geological and historical evidence suggests that a large
56  overflow of the lake occurred in 396 B.C.E. due to a rapid increase of the water level. The

57  event contributed to fill the valleys on the north flank of the Albano maar crater forming the
58  Tavolato di Ciampino, an area characterized by a flat topography which is presently the site
59  of the international airport (Funiciello et al. 2003). In Lake Albano, a water overturning or a
60  mixing of deep and shallow waters could bring CO; from the bottom of the lake to the

61  surface with a potentially hazardous release of CO» (Funiciello et al. 2003; Carapezza et al.
62  2008; Chiodini et al. 2012). Such overturns may occur when the equilibrium of the water-

63  column stratification is modified by water density variations. The potential risk of Lake

64  Albano (20 km southeast of the centre of Rome) is due to exposed elements (people presence,
65 economic and touristic activities). As such, to estimate the potential gas hazard of Lake

66  Albano, numerical modeling of the lake water dynamics is crucial for understanding its

67  current and future behavior and stability.

68 In 1989, Lake Albano was affected by a large CO> input pulse during a seismic swarm below
69  Colli Albani volcano. On the basis of historical literature, at least two similar anomalous

70  degassing events took place between 1829 and 1927, when five seismic crises occurred

71 (Rouwet et al. 2019). A recent (August 2020), short seismic swarm resulted in a minor CO>
72 recharge in deep water layers (Rouwet et al. in prep.). Apart from those significant episodes,
73 amoderate degassing of likely magmatic origin is present at irregular intervals. Lake Albano
74 is considered a monomictic lake and almost every winter, during the water overturning

75  (Figure 1) the lake commonly releases CO> (Chiodini et al. 2012) in non-hazardous amounts,
76  thereby preventing long-term CO» accumulation in the bottom waters. This is in contrast to
77  the dynamics of tropical stratified lakes, such as Lake Nyos (Rouwet et al. 2021), where lake
78  overturn does not occur and gas build-up can thus occur to eventually reach CO2
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79  supersaturation conditions, followed by a sudden gas burst.

80 In this study, we investigate the characteristics of lake stratification and overturning events at
81  Lake Albano through the results of 3D numerical model simulations, supported by

82 instrumental data collected from temperature sensors attached to drifters and buoys, used to
83 calibrate and validate the model.

COLD SEASON WARM SEASONS
WINTER SPRING - SUMMER - AUTUMN

low air temperatures

]

high air temperatures

84

85  Figure 1: Schematic illustration of the lake seasonal conditions with a typical winter
86  overturning and summer stratification (depth and horizontal extension of the lake are not in
87  scale).

88
89 2. Modeling the volcanic Lake Albano

90  In this study, the physics of the lake dynamics is investigated for the first time for Lake

91  Albano by a numerical model. It was not explored by previous works (Carapezza et al. 2008;
92  Chiodini et al. 2012; Rouwet et al. 2021) because the usual description of the lake behavior
93  was provided by analyzing vertical profiles of the physical-chemical properties along the

94  vertical profile at maximum lake depth. This 2D description may be adequate for a general
95  characterization of the lake conditions, but a 3D representation is essential for fully resolving
96 the lake dynamics and variations of physical-chemical characteristics in time and space.

97  The general ocean circulation numerical model SHYFEM (System of HydrodYnamic Finite
98  Element Modules) (Umgiesser et al. 2004) is implemented for Lake Albano in order to (1)
99  reproduce the lake dynamics throughout the year, and (2) given its importance in hazard
100  evaluation, represent the volcanic lake system during the winter overturning.
101  The volcanic lake system is subjected to recurrent phases of recharging and emission of CO».
102  The yearly release of CO, depends on the vertical stratification, which is determined by the
103  lake surface-atmosphere heat fluxes. Thus, the implementation of a numerical model forced



https://doi.org/10.5194/egusphere-2025-286
Preprint. Discussion started: 28 February 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

104 by atmospheric reanalysis fields enables the representation of seasonal and interannual
105  cycles.

106 2.1 System of HydrodYnamic Finite Element Modules (SHYFEM)

107 A configuration of the SHYFEM model was implemented for Lake Albano (Figure 2).

108 SHYFEM is a framework of numerical models (SHYFEM, http://www.ismar.cnr.it/shyfem
109 and https://github.com/georgu/shyfemcm-ismar) to simulate the water movement and
110  temperature and salinity variables in an aquatic environment. It is a community model
111 developed by Italian and international institutes. SHYFEM consists of a finite element 3-D
112 hydrodynamic model, a transport and diffusion model and a radiation transfer model of heat at

113 the water surface. SHYFEM was previously successfully applied to many coastal environments
114 (Ferrarin and Umgiesser 2005; Ferrarin et al. 2010; Bellafiore et al. 2011; De Pascalis et al.
115 2011; Ferrarin et al. 2013, Umgiesser et al. 2014) and lakes (De Pascalis et al., 2009; Le Thi et
116  al. 2012). For more details of the model equations and their solution, please see Umgiesser et
117  al. (2004).

118 2.2 Lake Albano model settings and parameterizations

119  The lake bathymetry is derived from Anzidei et al. (2006; 2007; 2010), originally provided at
120 2 m of resolution. The model grid horizontal resolution ranges from 34 m to 66 m, due to the
121 varying size of the grid elements (Figure 2). The grid consists of 3016 nodes, 5831 elements,
122 and 89 vertical z levels, with thickness variable from 1 m (from the surface to the depth of 50
123 m) to 3 m (from 50 m to the maximum depth of 167 m). This horizontal and vertical

124  discretization appears adequate to satisfactorily resolve the major horizontal dynamical

125  structures and the vertical stratification of the lake.

126  No slip condition is set at the boundary/bottom (u# and v velocity components equal 0). At the
127  boundary, water fluxes could be activated to account for sources such as groundwater

128  contributions. However, despite qualitative indications on the locations of inflow/outflow
129  (Mazza et al. 2015), the absence of data throughout the year prevents the inclusion of

130  groundwater flux values in the model used in the present study.
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132 Figure 2: Model bathymetry of Lake Albano with the model mesh superimposed.
133

134  The model starts from rest. The initial conditions are based on homogeneous temperature (7)
135  and salinity (S) fields derived from averaging the vertical profiles of background observations
136  available from previous studies (Cioni et al. 2003; Carapezza et al. 2008; Ellwood et al.

137  2009). The temperature and salinity observed data were collected along the vertical profile of
138  the deepest part of Lake Albano. A set of monthly temperature measurements was available,
139  so the initial T field is based on the time-averaged observed values for the month used to start
140  the simulation, in this case January (Figure 3a). On the contrary, the paucity of salinity data
141 (main components are Na, K, Mg, Ca, HCO3, SO4, CI), allowed only the setting of a mean
142  annual S field profile (Figure 3b). In order to construct the 3D initial conditions fields

143  required by the model, the temperature and salinity profiles are replicated across all the points
144 of the model grid.
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147  Figure 3: a) Initial Conditions for temperature (T) and b) salinity (S) fields derived from
148  observations available in the deepest part of Lake Albano.

149

150  The atmospheric fields forcing used in the numerical model (10 m zonal and meridional wind
151 components, 2 m dew point temperature, mean sea level pressure, 2 m temperature, total
152  precipitation, total cloud cover, surface solar radiation downwards) are derived from the
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153  ERAS reanalyses product (Hersbach et al. 2020; Bell et al. 2021), which has a 1/4-degree
154  horizontal resolution and an hourly temporal resolution.

155  In order to exclude bias and trends in the numerical solution due to atmospheric forcing, a set
156  of perpetual year experiments is performed. The simulations are forced by ERAS5 reanalysis
157  fields averaged over the period 1979 - 2019 to build a climatological forcing data set.

158  Two numerical experiments were performed with the aim of

159 1) reproducing the seasonal thermocline according to the available observations, and
160 2) avoiding trends and biases that could cause deviations from the observed vertical
161 temperature profiles after several years, especially in the deepest levels.

162  In the case of the numerical experiment 1 the tested model parameter was the vertical
163  diffusivity, while in the case of the numerical experiment 2 the tested model parameters were
164  related to the air-water fluxes bulk formulas and were tested in absence of precipitation input.

165  The results of the numerical experiments showed that the vertical diffusivity value which
166  optimizes the agreement between the modeled temperature profiles and the available
167  observations is 1.0x107°, This setting in the numerical experiment 1 maintains the thermocline
168  shallower than 40 m depth during the year (Figure 4).

169  The heat flux formulation that minimizes the temperature trends over the course of the
170  simulation is the one proposed by Large and Pond (1981), used also in Princeton Ocean Model
171 (POM). This setting in the numerical experiment 2 avoids trends and keeps the temperature
172 variation below 0.05 °C (well below the observed monthly mean variability) along the vertical
173  profiles. The interannual differences of the temperature profiles in the deepest part of the lake
174  are calculated month by month and are shown in Figure 5.
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176  Figure 4: Numerical experiment 1 for different vertical diffusivity values used to maintain the
177  seasonal thermocline below 40 m depth.
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Figure 5: Numerical experiment 2 for air-water fluxes bulk formulas as in the Princeton
Ocean Model used to reduce temperature deviation from observed data over time.

3. Model validation and observations
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183  After the testing phase shown in the previous section, which was devoted to identifying the
184  optimal model setup, a numerical simulation over the period 1st January 2020 - 31st December
185 2023, was performed. To monitor the thermodynamic characteristics of the lake and support
186  the validation activities of the implemented numerical model, in the framework of the
187  MACMAP project (https.//progetti.ingv.it/it/progetti-dipartimentali/ambiente/macmap) data
188  loggers at fixed locations (since May 2022) and drifters deployed into the waters of the lake
189  (August 2022 campaign) were used to collect temperature data and information on surface
190  circulation, respectively.

191 3.1 Eulerian data

192  Two temperature loggers (Tinytag Aquatic 2, Gemini TG-4100, resolution £ 0.01 °C) were
193  installed in May 2022 on the southeastern and western shores of the lake to continuously
194  record the surface water temperature. Measurements were collected every 30 minutes, stored
195  and retrieved during field campaigns (Figure 6).
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197  Figure 6: Locations of the installed temperature loggers (Tinytag Aquatic 2, Gemini

198  TG-4100, resolution + 0.01 °C, https://it.rs-
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203  aN_9m92kMODvESYGS9zfyw-5d6pNkXBoCf7QQAvD_BwE ) and the nearest model grid
204  points. In addition, the black dots indicate the section shown in Figures 10-13.

205

206  The recorded time series were used to assess the model's capability in reproducing the lake
207  temperature and its variability throughout the year. The average root mean square error

208 (RMSE) between modeled and observed temperature is slightly larger than 3 °C. However, in
209 the winter time the RMSE is reduced. In fact, in the temporal interval 01-Jan-2023 00:30:00-
210 31-Jan-2023 00:30:00 the RMSE is 2.12. The temperature seasonal variability is correctly
211 reproduced by the model, as confirmed by Figure 7, although an evident bias is present with
212 respect to the data recorded by the data logger installed on the southeastern shore of the lake
213 (blue curve in Figure 7). It is worth to note that the southeastern Tinytag data logger

214 probably moved and emerged from the lake waters in 2022, but it was not possible to

215  reconstruct the exact time window of this unplanned displacement.

35 Daily Temperature Albano Lake

30¢F

5 |- = OBSERVATION SE
OBSERVATION W
== MODEL

0 1 1
01/01/2020 01/01/2021 01/01/2022 01/01/2023 01/01/2024
216

217  Figure 7: Temperature recorded by the data loggers (blue and cyan curves indicate the SE
218  and W observations, respectively) and modeled temperature at the nearest locations where
219  the data loggers (Tinytags) were installed (red curve).

220
221 3.2 Lagrangian data

222 The lake's surface circulation was investigated using in-house assembled, low-cost drifters
223  originally employed to study the dynamics of litter of riverine origin (as described in Merlino
224 etal. 2023). The initial drifters (http://carthe.org, Novelli et al. 2017) were entirely

225  transformed for the purpose of this project. The innovative, reliable, robust, self-powered and
226  low cost “Marine Litter Trackers” (MLT) were developed in the framework of the ML-DAR

11
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227  project (A multidisciplinary method to study the Marine Litter Dispersion from the Arno
228  River mouth: a study case to support citizen science, funded by INGV) and finally they were
229  re-adapted to be utilized as surface current trackers for this study. Two different kinds of
230  support were used: wooden tablets and floating supports. Some types of drifters were

231 equipped with cloth drogues that allow them to better follow the surface current and be less
232  affected by wind at the lake surface. Moreover, temperature sensors were installed on the
233  devices, in order to acquire surface water temperature data, in addition to tracking surface
234  currents.
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236  Figure 8: Images of the types of drifter deployed in Lake Albano and trajectories acquired by
237  the instruments (identified by the ID numbers) during the second survey (13-15 May 2023).
238  Solid lines indicate the trajectories of the drifters deployed on day 13th, dashed lines are the
239  trajectories of the same drifters deployed on day 14th. Picture of the drifters used, including
240  the modified CARTHES, from which the battery packs and satellite antenna were removed,
241 replaced by the small central box with the consumer electronics of our mini drifters (SD card,
242 batteries, GPS antenna, GSM antenna), from the 4 photovoltaic cells in a halo, and to which
243 a temperature sensor was added (Merlino et al. 2023, DATA SET-repository: https.//data-
244  nautilos-h2020.eu/erddap/tabledap/mini_drifter.html).

245

246  The drifters were deployed in Lake Albano during two different surveys: a first one carried
247  out on 30th August and 1st September 2022 (mainly devoted to testing the drifters in a lake

12
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248  environment) and a second one from 13th to 15th May 2023 (the acquired trajectories are
249  shown in Figure 8). A comparison was then performed between the trajectories recorded by
250  the drifters and the modeled surface currents for the three days of the second survey. A first
251  numerical experiment, forced by ERAS atmospheric reanalyses, did not yield satisfactory
252 results, with drifter trajectories following a cyclonic pattern and modeled surface currents an
253  anticyclonic one in the same time frames (not shown). The reason for this discrepancy could
254 be due to the coarse, for our study area, spatial resolution of the ERAS dataset (0.25 degree),
255  which probably limits the possibility to correctly reproduce the local wind regime. For this
256  reason, another numerical experiment was performed, retrieving the wind components from
257  an anemometer station located a few kilometers north-east of the lake

258  (https.//www.wunderground.com/dashboard/pws/IMARINGS/graph/2023-05-15/2023-05-
259  15/daily). In this case a better agreement between the modeled surface currents and the drifter
260 trajectories is observed (Figure 9). Some discrepancies may be due to the course model

261  resolution which is not able to catch small features that drifters may be capable to follow.
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264  Figure 9: Modeled surface currents on 13-15 May 2023 using the wind velocity field from the
265  anemometer IMARINGS (model snapshots shown in the 1-5 panels) and trajectory of the
266  drifter ID_128 (first lower left panel).

267
268 3.3 Winter Overturning

13



https://doi.org/10.5194/egusphere-2025-286
Preprint. Discussion started: 28 February 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

269  The model simulation covers a four-year period (01/01/2020 - 31/12/2023), with analyses
270  conducted on both a seasonal and interannual basis. Figures 10-13 show temperature

271  longitudinal section for the winter period (January, February, and March, although some deep
272 vertical water temperature variations occur also in April). From the beginning of spring

273 (April) to the beginning of autumn (October), a remarkable vertical stratification is present
274  (Figure 14 and Supplementary Materials), while from November a vertical mixing that
275  deepens progressively is observable from the temperature profiles.

276  Spatial variations in water density are basically driven by temperature, since salinity does not
277  show significant temporal and spatial variability (see Figure 3). The winter overturning is
278  strongly correlated with vertical temperature variations. Among the four years of simulation,
279  two years (2020 and 2022) exhibit winter overturning, which begins in the second decade of
280  January. Colder, and hence denser, water formation occurs in the northern shallow part of the
281  lake. Then, due to the lake’s bathymetric configuration, denser waters move towards the deep
282  central part of the lake. Later, in February, cold water formation also occurs at the center of
283  Lake Albano (Supplementary Materials).

284  On some days in February and March it is possible to notice cold water patches moving from
285  the deeper layers towards the surface (Supplementary Materials).

286  In some cases, intermediate layers (around 75-80 m depth, see video in Supplementary

287  material), exhibit colder temperatures compared to the layers directly above and below, until
288  the bottom, after the winter overturning. In these cases, vertical stability is still maintained,
289  because it is the total density that determines the stratification: despite being slightly warmer,
290 the deepest water layers are more saline, resulting in a higher total density at depth.
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292  Figure 10: Modeled temperature T [°C] longitudinal sections in winter 2020.
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Figure 11: Modeled temperature T [°C] longitudinal sections in winter 2021.
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Figure 12: Modeled temperature T [°C] longitudinal sections in winter 2022.
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301  Figure 13: Modeled temperature longitudinal T [°C] sections in winter 2023.
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Figure 14: Monthly averaged modeled and observed temperature profiles for the years 2020-
2023 (no observations available for October).

3.4 Overturning Index and Stability Index

In order to quantify the potential occurrence of overturning events, we computed the
overturning depth Doyers
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Lp
310 Dovert = Z iever (D) - 1(D)

i=Lg
311 where Ly = I m and L, = 167 m are the surface and the bottom levels, d;,p,; is the depth of
312 each single level in the model, and L, is the overturning index defined as following:

313 L) =0, if Tiever(1) = Trmean

314 L@ =1, if Tiever(D) < Trmean

315  with the mean temperature Tppeqn, = mean (Tygyeris » TLb ). The Tyqyer; and TL,, are,

316  respectively, the water temperature at the top of layer II (defined in Chiodini et al. 2012)
317  which is located below 95 m, and the temperature of the deepest layers.

318  In other words, the index I, compares the surface temperature with the temperature at

319  maximum lake depth, so when surface temperatures are lower than deep temperatures,

320  overturning conditions may be present. Figure 15 shows the Howmoller diagram of the
321 temperature profiles at the deepest point of the lake for the entire simulation period. As such,
322 the levels involved in the overturning mechanism can extend below 100 m, reaching depths
323  ofup to 120 m, hence deeper than previously thought (Chiodini et al. 2012).

Temperature [°C]

Depth [m]

12

01/01/2020 01/01/2021 01/01/2022 01/01/2023 01/01/2024
date

324
325  Figure 15: Howmoller diagram of the temperature profiles at the deepest point of the lake
326  and I, index values (red line).

327

328 By comparing temperature values at different lake depths, the results show that temperatures
329 at 1 m(T1) are lower than those at depths below 95 m for 35 days in the 2020 winter and 29
330 days in the 2022 winter at the point of maximum lake depth. This time window indicates
331 when and for how long the surface water is colder than the deeper layers, making it able to
332 sink and trigger lake overturning. In 2021 and 2023, by contrast, surface temperatures (T1)
333  never fall below the temperature at 40 m.

20
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334  For completeness, the Schmidt stability index (Schmidt, 1928) was computed to characterize
335 the stability of a stratified water column. It is a measure of the energy required to completely
336  mix a stratified lake with an arbitrary vertical density distribution, taking into account the
337  volume of the lake basin (Kirillin and Shatwell, 2016). It represents the work required for its
338 mechanical mixing without heat exchange with the environment per unit area (Smirnov et al.,
339  2024). The Schmidt stability index St is expressed by

340 Si=g4, [

0 (Z_Zv)pzAde

341 where g is acceleration of gravity, p , is water density at depth z, 4, is lake surface area, A,
342 s lake area under the isobath z, Hmax is maximal lake depth, z;; is the depth to the center of

343 lake volume, calculated as: z;,= é fOHmax (z — z,) A, dz, V being the lake volume. The

344  adequate assessment of Schmidt stability requires eliminating variations in temperature

345  profiles, so model daily averaged temperature values are used in the analysis. The computed
346 St values (shown in Figure 16) fall within a range consistent with recent studies on the

347  physical limnology of Italian lakes (Ambrosetti et al. 2002) and confirm that the energy

348  required to vertically mix the water column is lower for 2020 and 2022.

Schmidt Stability Index
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349

350  Figure 16: Schmidt stability index computed for the years 2020-2023.

351

352 4. Discussion and Conclusions
353  The 3D SHYFEM model was implemented to simulate the physical dynamics of the volcanic
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354  Lake Albano. A numerical experiment was performed from 01/01/2020 to 31/12/2023 for
355  investigating seasonal and interannual lake variability.

356  Major findings of this study are:

357 - the winter overturning mechanism is driven by atmospheric forcing and does not occur
358 every year, but only when the surface thermal conditions are suitable. Atmospheric
359 forcing causes the cooling of the lake surface and triggers the overturning, typically in
360 January. Over the four years simulation, winter overturning occurred twice (in 2020
361 and 2022), starting after mid-January and lasting for a few weeks, before the spring-
362 summer stratification resumes until the following winter. In both 2021 and 2023, the
363 stratification starts very early and surface cooling results insufficient for the lake to
364 overturn.

365 - cold water formation begins in the shallow northern part of the lake and spreads
366 southeastward toward the deeper lake levels. When surface cooling is intense in the
367 middle of the winter, the cold water sinks down to the lake bottom at 167 m;

368 - the winter overturning in 2020 and 2022 involves the rise of water layers from depths
369 greater than 95 m, with cold water patches moving towards the surface. Given that (i)
370 CO; is more soluble in cold water, (ii) deep water layers are enriched in CO3, and (iii)
371 no bubble degassing is observed during winter overturn, this upward movement of cold
372 COz-enriched deep water may be the physical mechanism behind CO» release during
373 winter overturning, in agreement with previous degassing models and trends
374 (Carapezza et al. 2008; Chiodini et al. 2012; Rouwet et al. 2021);

375 - after the winter overturning, surface temperatures follow the seasonal variations of the
376 atmospheric temperature. Strong thermal stratification of the lake persists above the
377 thermocline during the warmest seasons. Below 40-50 m, the temperature usually

378 remains between 8.0-9.5 °C throughout the year, as confirmed by the available

379 observations.

380  Although the spatial resolution of ERAS atmospheric fields may be considered too coarse for
381 the lake area, the air-lake heat fluxes in this region are considered suitable for investigating the
382  winter overturning mechanism. In fact, the modeled surface temperature follows the observed
383  seasonal temperature variations. To better reproduce surface circulation patterns, local wind
384  forcing would be required, in order to introduce finer-scale variability.

385  Another limitation is the lack of groundwater data. Even if the SHYFEM model can simulate
386  water fluxes at the lake boundaries, the lack of this data prevents the inclusion of interactions
387  between groundwater and lake water, as well as processes related to further temperature
388  variations. Including such processes would require a multi-scale approach that combines
389  multiple measurement methods, considerable constraints and uncertainties, and the estimation
390  of the fluxes between groundwater and lake water at different spatial and temporal scales.

391 Increasing surface water temperatures due to global warming could enhance vertical water
392  stratification and potentially inhibit or reduce the frequency of the overturning process. As a
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393  consequence, in the case of less frequent winter overturning, CO> accumulated over the years
394  (following seismically induced recharge, Chiodini et al. 2012), may increase limnic gas hazard
395  for Lake Albano when overturn does occur. In the extreme case where Lake Albano ceases to
396  overturn due to ongoing atmospheric warming, CO; could remain stored in the deep lake layers
397  until supersaturation conditions will be reached, potentially triggering a “Nyos-type” gas burst.
398  So, the numerical model implemented in this study, tracking atmospheric and surface water
399  temperatures at Lake Albano, could provide a basic framework for monitoring future degassing
400  dynamics. Moreover, simulations of Lake Albano could reproduce the past dynamical
401  evolution of the lake and may also reconstruct its behaviour in relation to both the seismic
402  swarms in the Colli Albano area in 1987-1990 and the decline of the lake water surface levels
403  due to anthropic activities over the last decades, which is expected to continue in the coming
404  years. Concerning the fluctuation of the lake level, a continuous lowering of its level started in
405 1970 (Anzidei et al. 2010) with a continuous acceleration during the following decades (Capelli
406 et al. 2000; Capelli and Mazza 2005; Riguzzi et al. 2008; Mazza and Capelli 2010). The lake
407  level remained about stable between 1940 and 1960. Then, a lake level fall occurred at a mean
408 rate of 8.8 cm/yr in 1960-2005 and then at 20 cm/yr in 1990-1997 (Anzidei and Esposito 2010).
409 The cause of the lake level fall has been largely attributed to the excessive ground water
410  withdrawal (Capelli and Mazza 2005) or in connection with shallow seismicity (Bianchi et al.
411 2008; Chiarabba et al. 2010) and ground uplift (Amato and Chiarabba 1995; Riguzzi et al.
412  2009; Anzidei et al. 2010). The hypocenters of the latest earthquakes occurred in 1987-1990 in
413  this area were aligned along a NW-SE striking structure across the Lake Albano and the other
414  craters of the Colli Albano volcano (Amato et al. 1994, Bianchi et al. 2008). It is worth noting,
415  that during this seismic period, a significant lake level drop occurred in 1990. This phenomenon
416  has been addressed to an increased permeability of the lake basin in response of endogenous
417  processes.

418  Finally, despite the lake level changes, the model implemented could be applied to other
419  volcanic lakes to investigate their dynamics and associated physical and chemical processes.
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