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 19 

Abstract: The distinct hydrogeological configurations of karst terrains engender 20 

fundamentally divergent baseflow regimes compared with non-karst systems. However, 21 

there is still some uncertainty in the understanding of baseflow in global karst regions 22 

due to the variability of methods and differences in natural conditions in different 23 

regions. In this study, runoff data from 1375 karst basins around the world were 24 

summarized, and graphical and digital filtering methods were used to estimate baseflow 25 

in global karst regions and to analyze their spatial differences and trends. The results 26 

show that the baseflow index of global karst areas is about 78±6.9%, which is 27 

significantly higher than the global average baseflow index (60%). The baseflow index 28 

of karst regions in different climatic zones also differed significantly, in which the 29 

average baseflow index of arid karst regions (82%) was significantly higher than the 30 

average baseflow index of subtropical karst regions (77%). Even within the same 31 

climate zone, the base flow index of different regions may also have significant 32 

differences, and the difference of some regions is even >10%. Vegetation factors 33 

reflected in primary productivity have the highest influence on baseflow in karst regions 34 

(15%), while climatic factors (relative humidity, air temperature, etc.) have a lower 35 

influence on BFIs in karst regions (less than 5%). From the time series trend, the global 36 

karst baseflow index shows an increasing trend, about 1.5% from 1960 to 2015. These 37 

results help us to further understand karst hydrological processes and the response 38 

mechanism of karst hydrology under climate change. 39 
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1．Introduction 44 

Baseflow plays a central role as a slow recharge component of groundwater to 45 

runoff as a hydrological stabiliser (Mukherjee et al., 2018; Chen et al.,2019). The 46 

proportion and dynamic characteristics of baseflow in runoff not only regulate the 47 

ecological balance threshold of rivers, but also profoundly affect the resilience of 48 

watersheds in response to climate fluctuations (Saedi et al ., 2022; Hare et al., 2021; 49 

Yang et al., 2023). Therefore, accurate quantification of the characteristics of baseflow 50 

can help to understand the runoff evolution pattern and its response mechanism to 51 

regional environmental changes (Mei et al., 2024; Kuehne et al., 2023). 52 

Recent studies on baseflow estimation have revealed its spatial variability 53 

characteristics. Among them, Xie et al (2023), based on a coupled analysis of baseflow 54 

separation and climate models for 15,000 catchments worldwide, pointed out that the 55 

average contribution of baseflow to river runoff was about 60%. However, there are 56 

significant regional differences under this macroscopic pattern, e.g., baseflow index 57 

(BFI) calculations by Beck et al (2013) for 3,394 watersheds globally show that BFI is 58 

generally higher in tropical and temperate-cold regions than in arid and semi-arid zones 59 

(e.g., North and South Africa, Central Asia, and Australia). Regional scale studies 60 

further refine the spatial differentiation pattern, such as the United States, where the 61 

BFI is higher in the east than in the west, India, where the BFI is higher in the east than 62 

in the west, and the Yellow River basin, where it is higher in the upstream and 63 

downstream and lower in the middle reaches, whereas the BFI of the Wei River basin 64 

in the Loess Plateau shows a gradual decrease from the upstream to the downstream 65 

(Mei et al ., 2024 ; Sharma and Mujumdar ., 2024 ; Lyu et al ., 2023 ; Zhang et al ., 66 

2019). 67 

The current study characterises global baseflow features, but the unique 68 

hydrological structure of karst landscapes (e.g., pipes and fissures) makes the baseflow 69 

features obtained from the above study significantly less applicable in karst regions 70 

(Jiang et al., 2024 ; Ford & Williams, 2007). The current study found significant 71 

regional differences in BFI characteristics in karst regions around the world. In 72 

particular, the high permeability of karst media in tropical karst regions (e.g., Sumatra, 73 

Java) contributes to the rapid conversion of precipitation to groundwater, as analysed 74 

in three sub-basins of the Brantas Hulu watershed, where the BFI exceeds 80% 75 

(Pratama and Adji., 2020), and the study of three basins in Jonggrangan area also 76 

showed BFI of more than 87 per cent (Khomsiati et al., 2021). Seasonal differences in 77 
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BFI are highlighted in subtropical karst regions (Mediterranean Sea, Southern China), 78 

such as central Italian basins with baseflow contributions spanning 30-76%, rising to 79 

88-90% in dry months (Longobardi and Loon., 2017), and southeastern France has 80 

significant differences in baseflow contributions (27%-61%) in years of abundant and 81 

dry water (Guisiano et al., 2024). Temperate karst regions such as the Sierra Nevada 82 

karst region in North America generally have BFI higher than 65% (Tobin and 83 

Schwartz., 2019). The BFI in the karst region of southwest China is 57% (Mo et al., 84 

2025), a stable BFI of ≥55% in temperate karst in central Ireland (Foran et al., 2021), 85 

and a BFI of 36±10% in the karst mountains of eastern China (Lyu et al., 2022). 86 

In summary, studies of baseflow in karst regions have revealed their obvious 87 

spatial heterogeneity. A large number of studies have characterised the baseflow 88 

characteristics of karst under different climatic zones, and also outlined the regional 89 

baseflow characteristics of karst under different climatic zones (Tagne and Dowling., 90 

2018). However, existing studies still have obvious limitations, starting with an over-91 

focus on localised features in small regions, such as watershed studies in southern China 92 

and the Mediterranean (Guisiano et al., 2024; Mo and Ruan., 2021), which makes the 93 

results of the study not necessarily representative of the global karst region. The second 94 

is the variability of research methods, such as hydrographic methods (graphical 95 

methods, digital filtering methods), isotope tracer methods, etc. (He et al., 2019; Yang 96 

et al ., 2021 ; Arnold et al.,2013). The difference in focus of the different methods also 97 

reduces the commonality of the findings. These two reasons have led to a lack of 98 

characterisation of overall features and reasonable quantification of regional differences, 99 

despite the exploration of baseflow characteristics of karst basins in different regions 100 

of the world (Wu et al., 2017; Mei et al., 2024). Therefore, the complete characterisation 101 

of baseflow in the global karst region using reasonable methods and the accurate 102 

quantification of the overall characteristics and regional differences of baseflow in the 103 

global karst region are still urgently needed. 104 

The aim of this study is to explore the baseflow characteristics and their internal 105 

differences in the global karst region and to discuss the influence of different factors on 106 

baseflow in karst regions. Global public runoff data were selected for the study, and 107 

daily-scale runoff data from 1375 watersheds within the karst region were selected. 108 

Twelve baseflow separation methods, including four graphical methods and eight 109 

digital filtering methods, were used to separate the baseflow from the runoff data and 110 

calculate BFIs. The reliability of the results was assessed using the Kling-Gupta 111 
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Efficiency (KGE) (Gupta et al., 2009) and Nash-Sutcliffe Efficiency (NSE) (Nash and 112 

Sutcliffe., 1970) coefficients, and finally, the XGBoost model was used to analyse the 113 

influencing factors of the 12 indices on baseflow. 114 

2．Materials and methods 115 

2.1 Data sources 116 

2.1.1 Runoff data 117 

We have selected regions with a concentrated distribution of karst landscapes 118 

worldwide. And combined with global watershed data (Lehner and Grill, 2013), 119 

Köppen climate zoning, and urban distribution, select runoff observation stations with 120 

less human activity and watershed areas less than 2500 km2. Thus daily runoff data for 121 

1412 watersheds with different time spans have been selected. The runoff data mainly 122 

comes from the Global Runoff Data Center (https://www.bafg.de/GRDC), The 123 

European Water Archive (https://ne-friend.bafg.de/servlet/), National River Flow 124 

Archive, UK (https://nrfaapps.ceh.ac.uk/nrfa/nrfa-api.html), Brazilian National Water 125 

Authority (https://zenodo.org ), The National Hydrological Data Archive of Canada 126 

(https://wateroffice.ec.gc.ca/), The Chinese Ministry of Water Resources 127 

(http://www.cjh.com.cn/), The National Hydrological Information System of the United 128 

States (https://waterdata.usgs.gov/nwis). 129 

Due to quality differences in data from different hydrological observation stations, 130 

it is necessary to clean the data from these 1412 stations. Exclude sites with severe data 131 

gaps and supplement data from sites with a small amount of missing data. We use cubic 132 

spline interpolation and linear interpolation to supplement data with missing amounts 133 

less than 30 days. Finally, daily runoff data of 1375 watersheds in different time ranges 134 

of karst regions worldwide were obtained. This includes 221 watersheds in tropical 135 

karst zones, 91 watersheds in arid karst zones, 490 watersheds in subtropical karst zones, 136 

and 568 watersheds in temperate karst zones (Figure 1). 137 
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 138 

Figure 1. The distribution of karst landscapes and hydrological stations in various 139 

climate zones around the world. The bar chart represents the number of hydrological 140 

stations selected in each year, with the vertical axis indicating the number of selected 141 

hydrological stations and the horizontal axis indicating the year. We selected years with 142 

over 500 hydrological stations that meet the requirements within the same year for 143 

subsequent analysis. 144 

2.1.2 Selection of potential influencing factors of base flow 145 

In order to analyse the influencing factors of baseflow, we further selected daily-146 

scale runoff data from 744 hydrological stations during 2011-2012 out of the 1375 147 

hydrological stations mentioned earlier to calculate baseflow. The purpose of further 148 

selecting the hydrological stations is to ensure the continuity of the data while at the 149 

same time ensuring that the stations can cover the major karst regions of the world. We 150 

selected a total of 12 potential influences. Climatic factors included temperature and 151 

rainfall, and geological factors included depth to bedrock, water storage in epikarst, 152 

slope, elevation, and soil evaporation. Other factors included runoff, population density, 153 

gross primary productivity (GPP), relative humidity, and surface radiation, for a total 154 

of 12 factors (Table 1). 155 

Table 1. Detailed information on the 12 influencing factors 156 

Name 
Temporal 

scale 

Spatial 

resolution 
Data sources 

Runoff volume 
Monthly 

everage 
- 

The same as the runoff data in Section 

2.1.1 

Epikarst water 

storage volume 

Monthly 

everage 
30 arc-second 

GES(Goddard Earth Sciences)DISC(Li et 

al .,2019) 

Bedrock depth - 
0.25km×0.25

km 

ISRIC — World Soil Information (Hengl 

et al .,2017) 
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Air temperature 
Monthly 

everage 
30 arc-second 

Climatic Research Unit gridded Time 

Series(arris et al .,2020) 
Precipitation 

Monthly 

everage 
30 arc-second 

Relative 

humidity 

Monthly 

everage 
0.1°×0.1° 

Elevation - 30 arc-second 
 Worldclim(Fick and Hijmans .,2017) 

Slope stepness - 30 arc-second 

Available soil 

moisture 

multi-year 

average 
1km×1km 

HWSD(Harmonized World Soil 

Database)(Wieder et al .,2014) 

Population 

density 

multi-year 

average 
30 arc-second 

LandScan Global 30 Arcsecond Annual 

Global Gridded Population Datasets 

(Bright et al., 2013) 

Gross primary 

production 

multi-year 

average 
0.25°×0.25° TU Data Repository(Wild et al.,2022) 

Land-surface 

radiation 

Monthly 

everage 
10km 

Data Center of the Qinghai-Tibet 

Plateau(Tang .,2019) 

 157 

2.2 Methods 158 

2.2.1 Baseflow separation methods 159 

Commonly used methods for baseflow separation include isotope tracer methods, 160 

hydrological modelling methods and hydrographic methods (including graphical 161 

methods and digital filtering methods). However, the isotope tracer method relies on 162 

high-precision isotope data and is difficult to be extended in data-poor areas, while the 163 

hydrological modelling method is limited by the empirical nature of the parameters as 164 

well as the regional nature. Therefore, considering the characteristics of the study area 165 

(wide range and insufficient observational data), we chose the hydrographic method, 166 

which requires less data and is relatively simple. 167 

The computational tool used for baseflow separation in this study is from the 168 

Python library baseflow (https://pypi.org/project/baseflow) developed by the team of 169 

Xiaomang Liu at the Chinese Academy of Sciences, which contains four graphical 170 

methods and eight digital filtering methods that allow simultaneous implementation of 171 

multiple methods for baseflow separation (Xie et al. 2024). In addition to this the 172 

baseflow library evaluates each method when separating the baseflow and obtains an 173 

optimal method. In this study, the baseflow library was used to separate baseflow from 174 

global runoff data and calculate its multi-year average BFI (Figure 6). 175 

Graphical methods are techniques for isolating baseflow by analysing runoff 176 

hydro-graph. The four graphical methods used in this study are Fixed Interval Method 177 
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(FIM), Local Minimum Method (LMM), Sliding Window Method (SW) and UK 178 

Institute of Hydrology (UKIH). 179 

Digital filtering is a baseflow segmentation method that uses digital signal 180 

processing techniques to separate baseflow from runoff by designing specific filters. 181 

These methods usually involve one or two parameters, such as the recession coefficient. 182 

The recession constant is automatically estimated in the baseflow library using the 183 

Brutsaert method, and the second parameter is calibrated using the multi-objective 184 

optimisation method proposed by Arnold (Brutsaert., 2008; Rammal et al., 2018). The 185 

methods used in this work include the Boughton Method (Boughton), Chapman-186 

Maxwell Filter Method (CM), Chapman Filter Method (Chapman), Exponential 187 

Weighted Moving Average (EWMA), Eckhardt Filter Method (Eckhardt), Furey Digital 188 

Filter Method (Furey), Lyne-Hollick Digital Filter Method (LH), and Willems Digital 189 

Filter Method (Willems). 190 

2.2.2 Evaluation metrics for baseflow separation methods 191 

In order to validate the accuracy of different baseflow separation methods in 192 

karstic regions, we chose two metrics, KGE and NSE coefficients, to measure the 193 

effectiveness of different methods in separating baseflows. The methodology used by 194 

Xie et al (2020) for measuring and assessing the effectiveness of baseflow separation 195 

methods in the US region was used, which centred on screening for strict baseflow 196 

points. 197 

2.2.3 Attributional analysis methods 198 

Due to the significant differences in magnitude of the potential influences selected 199 

at the global scale (a few hydrological stations are at extremely high elevations, whose 200 

actual differences are compressed after normalisation, making it difficult to adequately 201 

characterise the effect of elevation on baseflow), traditional linear models or distance 202 

metric-based algorithms are susceptible to magnitude interference. Therefore, we chose 203 

the magnitude-insensitive XGBoost model, which naturally circumvents the feature 204 

scale difference problem through the splitting rule of the tree structure (Niazkar et 205 

al.,2024; Zhang et al., 2022). In addition, the model's built-in regularisation mechanism 206 

and subsampling strategy can effectively suppress overfitting and guarantee the model's 207 

generalisation ability in complex geographic data. The model also supports parallel 208 

computing with automatic processing of missing values, which significantly improves 209 

the computational efficiency of large-scale spatial datasets (Chen and Guestrin.,2016). 210 

3．Results 211 
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3.1 Validation of the applicability of baseflow separation methods 212 

We counted the best separation methods filtered in the Baseflow library for 213 

baseflow separation for each hydrological station data. From the results in Fig. 2, 28% 214 

of the hydrological stations are suitable for baseflow separation using the graphical 215 

method, 71% of the stations are suitable for baseflow separation using the digital filter 216 

method, and 1% of the stations have no obvious suitable separation method. Among 217 

them, the EWMA method is the most effective for baseflow separation in karst area, 218 

with 24% of hydrological stations suitable for baseflow separation, followed by the 219 

Eckhardt method, with 21% of hydrological stations suitable for baseflow separation. 220 

 221 

Figure 2. Percentage of best separation methods in the karst region and number of best 222 

separation methods in each climatic zone. Graphical methods are shown within the 223 

white background, digital filtering methods are shown within the light blue background, 224 

and different coloured bars correspond to different climatic zones.The X-axis shows the 225 

12 baseflow separation methods, the Y-axis (left) shows the number of hydrological 226 

stations, and the Y-axis (right) shows the number of hydrological stations covered by 227 

each of the optimal baseflow separation methods as a proportion of the number of all 228 

hydrological stations, which corresponds to the black curve. 229 

Figure 3(a) shows the KGE coefficient distributions of different methods, from the 230 

results, some digital filtering methods (orange) have concentrated KGE coefficient 231 

distributions and the values are close to 1. For example, the five methods, Boughton, 232 

Eckhardt, EWMA, Furey, and Willems, which indicate that the applicability of these 233 
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five base-flow separation methods is high and effective in the karst region. The KGE 234 

coefficients of the graphical method (green) are also well distributed, with most of the 235 

KGE coefficient distribution ranges greater than 0.5 and the average KGE coefficients 236 

of each method are greater than 0.75. It indicates that the graphical method also has 237 

high applicability in the karst region. On the other hand, the three digital filtering 238 

methods of Chapman, CM and LH have discrete distributions from the distribution of 239 

KGE coefficients, although their average values are all greater than 0.5. It indicates that 240 

the results obtained by these three methods are more fluctuating when dealing with data 241 

from different hydrological stations, and it also shows that these three methods are less 242 

stable when performing baseflow separation. 243 

The distribution pattern of the NSE coefficients of the different methods in Fig. 244 

3(b) is similar to that of Fig. 3(a). The NSE coefficients of the five methods, Boughton, 245 

Eckhardt, EWMA, Furey, and Willems, have a concentrated distribution and high mean 246 

values, which further suggests that these five methods are effective in separating the 247 

baseflow in karst regions. The distribution of NSE coefficients of the four graphical 248 

methods (in green) is generally stable although the range of NSE coefficients increases 249 

compared to the KGE coefficients, and their mean values are all greater than 0.5. The 250 

distribution of NSE coefficients of the three digital filtering methods of Chapman, CM, 251 

and LH is still more discrete (-0.5 to 1), which further indicates that the applicability of 252 

these methods in karstic regions is low. 253 

 254 
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Figure 3. KGE coefficients (a) versus NSE coefficients (b) for 12 baseflow separation 255 

methods. The X-axis indicates each separation method and the Y-axis indicates the 256 

value of the coefficients. The green color in the graph indicates the graphical method 257 

and the orange color indicates the digital filtering method. The black lines within the 258 

boxplot indicate the mean values, with upper and lower limits of 1.5 times Interquartile 259 

Range(IQR), and exceeding the range is considered as an outlier, which is labeled in 260 

the form of dots at the top and bottom of the boxplot.  261 

From the distribution characteristics of KGE and NSE coefficients in different 262 

climatic zones (Figure 4), the KGE coefficients of multiple separation methods in 263 

tropical karst have discrete distributions, with CM and Chapman ranging from -1.5 to 264 

1. The NSE coefficients are similar to those of the KGE, but with a relatively centralised 265 

distribution. The distribution of coefficients of graphical methods in the arid karst 266 

region are all discrete, and the digital filtering method is still the CM and Chapman 267 

methods presenting a low concentration. The distribution of KGE coefficients in 268 

subtropical and temperate karst is relatively stable and concentrated, and the overall 269 

distribution of KGE coefficients of Chapman and CM are also discrete, while the KGE 270 

coefficients of FIM and SW are close to 1, which indicates that these methods are more 271 

effective in separating the baseflow in subtropical and temperate karst regions. 272 

 According to Figures 2 and 3, considering the high KGE and NSE coefficients and 273 

the number of most suitable hydrological stations, we selected four more suitable 274 

methods for baseflow separation in karst regions, which are one graphical method (FIM) 275 

and three digital filtering methods (Boughton, Eckhardt, EWMA). 276 

 277 
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 278 

 279 

 280 

Figure 4. KGE coefficients (left column) versus NSE coefficients (right column) for 281 

karst regions in different climatic zones (labeled at the bottom right of each component 282 

Figures). The X-axis indicates each separation method and the Y-axis indicates the 283 

value of the coefficients. The green color in the graph indicates the graphical method 284 

and the orange color indicates the digital filtering method. The black lines within the 285 

boxplot indicate the mean values, with upper and lower limits of 1.5 times IQR, and 286 
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exceeding the range is considered as an outlier, which is labeled in the form of dots at 287 

the top and bottom of the boxplot. 288 

3.2 Differences in baseflow indices obtained by different methods 289 

over time 290 

From Figure 5a, it can be found that the four graphical methods have different 291 

effects on baseflow separation in karst regions. Among them, the BFIs derived by FIM 292 

and SW are similar, with an average value of about 86%. Moreover, the BFI shows an 293 

increasing trend of low amplitude with the year, with low fluctuation degree and high 294 

stability. The mean value of BFI derived from LMM is about 83%, and the trend of 295 

change with years shows a decreasing and then increasing trend, while the result of 296 

UKIH method is low, with a mean value of about 77%, and its BFI also shows a slow 297 

increasing trend with years. 298 

The results in Figure 5b can be found that although there are differences in the base 299 

flow indices obtained by different digital filtering methods, most of the methods obtain 300 

similar base flow indices and have similar trends with respect to year. In contrast, the 301 

results of the two methods Chapman and CM differ significantly from those of the other 302 

six methods. The mean value of the BFI obtained by the two methods is about 58%, 303 

and there is a small decrease followed by a slow increase in the trend. 304 

 305 

Figure 5. Global BFIs for karst regions calculated by the 12 baseflow separation 306 

methods, with the x-axis indicating the year and the y-axis the BFI. 307 

In order to analyze the reasons for the differences between these two methods (CM 308 

and Chapman) and other methods in separating baseflows, we selected one hydrological 309 

station in each climatic zone and generated baseflow curves obtained by the different 310 

methods in different climatic zones (Figure 6). Since the CM method is an improvement 311 
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of Chapman by adding a maximum baseflow limit to the Chapman method, and its 312 

internal mechanism is consistent, Chapman was used as a proxy. In addition, the 313 

Eckhardt method with high KGE and NSE coefficients is chosen as a comparison. From 314 

Figure 6, we find that when runoff increases, the Eckhardt method can respond quickly 315 

and baseflow increases rapidly, while the Chapman method responds to the increase in 316 

runoff to a lesser extent and by a lower amount than Eckhardt. Overall, Chapman 317 

responds more slowly to the recharge of precipitation than the other methods, and this 318 

feature also makes the Chapman method less discriminating for baseflow compared to 319 

the other methods. 320 

 321 
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 322 

Figure 6. baseflow curves for different climatic zones (Eckhardt and Chapman methods 323 

were chosen as representatives), where the X-axis represents time and the Y-axis 324 

represents runoff. The black curve (Value) represents the runoff volume. Names of 325 

hydrological stations are in parentheses. 326 

3.3 Global base flow characteristics 327 

In order to more clearly characterize the BFI in karst basins, we calculated the BFI 328 

in non-karst basins globally using the same method. Figure 7 shows that BFIs in karst 329 

basins are significantly higher than in non-karst basins. The BFI of karst basins is 78±330 

6.9%, while the BFI of non-karst basins is about 60%. This indicates that baseflow in 331 

karst basins is significantly underestimated if only global average conditions are 332 

considered and baseflow in karst basins is not calculated separately. 333 

As can be seen from Figure 7, there are differences in the characteristics of BFIs 334 

over time in different climatic zones. The BFI in the tropical karst region generally 335 

shows an increasing trend. From 1960 to about 1990, the base flow index in tropical 336 

karst showed an increasing trend, and since 1990 the base flow index remained at about 337 

80% and then stabilized. The BFI in arid karst region is the highest, with a mean value 338 

of about 85%. In general, the BFI in arid karst region shows a decreasing trend, and the 339 

annual mean BFI fluctuates greatly, with poor stability. The BFI of subtropical karst 340 

region is more stable, always maintained at about 78%. The characteristics of BFI in 341 

temperate karst regions are similar to those of tropical karst, showing a slow increase 342 

and remaining stable at around 80%. 343 
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 344 

Figure 7. Annual BFIs for each region of global karst versus global annual BFIs. x-axis 345 

indicates the year, y-axis indicates the BFI, and the red straight line is the overall mean 346 

of the BFI. The orange curve at the bottom indicates the global BFI, and the dark blue 347 

line indicates the BFI for global karst regions. 348 

The average of BFIs obtained by the four methods (FIM, Boughton, Eckhardt, 349 

EWMA) was used as the BFI for the global karst region and linearly regressed against 350 

the year (Figure 8). The results show an increasing trend in the BFI in the global karst 351 

region, with an increase of about 1.5% from 1960 to 2015. One of the obvious increase 352 

periods is from 1980 to 2000. Since 2000, the BFI in the global karst region has 353 

stabilised, fluctuating in the range of 78.5% ± 0.5%. 354 
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 355 

Figure 8. Annual mean BFIs over time for global karst regions. x-axis indicates year, y-axis 356 

indicates BFIs, and red bars indicate 95% confidence interval. 357 

Figure 9 shows that, despite being in the same climatic zone, different regions can 358 

exhibit differences in BFIs. For example, in the northern part of South America and the 359 

Southeast Asian region, which are both tropical karst, the BFI is significantly higher in 360 

the Southeast Asian region (81%) than in the northern part of South America (73%). 361 

There is also a significant difference in BFIs between the eastern part of the United 362 

States and the northern part of Africa, which are both arid karst climate zones. From 363 

figure 9 and figure 10 we find that BFI stability is lower and BFI values are higher in 364 

arid karst regions. The degree of variation of BFI in tropical karst regions is lower than 365 

that in arid karst regions. And subtropical and temperate karst regions have the lowest 366 

trend of base flow index change and their stability is higher. 367 

 368 
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 369 

Figure 9. Distribution of BFIs in karst basins in different regions within the same 370 

climatic zone. In figure (d), orange represents tropical karst regions, magenta represents 371 

arid karst regions, green bars represent subtropical karst regions, and brownish-purple 372 

represents temperate karst regions. 373 

 374 
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Figure 10. Characteristics of BFIs with respect to year for different regions within the 375 

same climatic zone. Where Y-axis indicates BFI and X-axis indicates year. 376 

3.4 Factors influencing baseflow indices in karst regions 377 

Using the XGBoost model, we conducted an attribution analysis of the 12 factors 378 

that may affect the BFI (Figure 11), and finally concluded that Gross Primary 379 

Productivity (GPP) has the greatest influence on baseflow, reaching 15.0%. Elevation 380 

was the next most influential factor with 12.4%, in addition to this, slope and runoff 381 

volume (Flow) also had a large influence (>10%) on base flow index. In contrast, 382 

climatic factors such as relative humidity (RH), Land-surface radiation (SR) and air 383 

temperature (Temp) had a low influence on base flow index, each characterized by less 384 

than 5%. 385 

 386 

Figure 11. Influence of different factors on baseflow, where the X-axis indicates 387 

different factors, the Y-axis indicates the contribution of the influencing factor to the 388 

baseflow, and the number above the bar indicates the contribution of the current factor. 389 

4．Discussion 390 

4.1 Mechanisms of formation of baseflow characteristics in karst 391 

regions 392 

The results of the study show that the BFI in karst regions is significantly higher 393 

than the global average (Figure 7). We attribute this difference to the unique geological 394 

structure and hydrological cycle characteristics of karst regions. Extensively developed 395 

fissures, vertical seepage zones, and subsurface dissolution piping systems in karst 396 
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regions constitute complex hydrological channels, which significantly alter surface 397 

water-groundwater exchange patterns (Ford & Williams, 2007; Li et al., 2024). 398 

Compared with the homogeneous water storage medium dominated by fissures and 399 

pores in non-karst areas, the network of dissolution channels in karst regions 400 

significantly shortens the infiltration path of precipitation, and its infiltration rate can 401 

reach several to tens of times of that in non-karst areas(Fu et al .,2016). For example, 402 

the monitoring of karst slopes in Huanjiang, Guangxi, shows that the wet front transport 403 

rate is as high as 1373 mm/h, compared with 17-610 mm/h in non-karst regions, which 404 

indicates that the rate of water infiltration in karst regions is much higher than that in 405 

non-karst regions (Medici et al., 2019; Zhang et al., 2024). This part of precipitation 406 

recharge into the subsurface, under the action of gravity and pressure, squeezes the ‘old 407 

water’ out of the underground aquifer, which indirectly enhances the baseflow ratio 408 

(Reimann et al., 2011; Bailly-Comte et al., 2010; Evans. 1983; Ronayne. 2013). Studies 409 

have shown that this mechanism can result in significantly higher baseflow 410 

contributions in karst regions, even above 80% in specific environments (Zhang et al., 411 

2022), whereas only less than 50% of precipitation can be converted to baseflow in non-412 

karst regions due to the blocking effect of loose sedimentary layers (Cusano et al., 2024). 413 

Significant differences in surface cover conditions further reinforce baseflow 414 

differences. In some karst areas, bedrock is exposed to more than 60%, and thin layers 415 

of residual soil (<30 cm) cover only 20% of the surface, a geologic feature that results 416 

in reduced surface interception and elevated subsurface recharge (Anker et al., 2023;Li 417 

et al .,2024 ;Wang et al .,2024). The karst fissure system is directly exposed to the 418 

atmospheric interface, avoiding water loss through evaporation from the soil layer, and 419 

the lack of continuous surface cover allows for direct infiltration of large amounts of 420 

precipitation (Yang et al., 2025; Li et al., 2023). On the contrary, in non-karst areas, the 421 

soil-vegetation system formed by thicker weathered crust constitutes a natural 422 

evapotranspiration interface, and the average annual evapotranspiration can reach 40% 423 

of the precipitation, and surface runoff accounts for 30% of the precipitation, which 424 

significantly weakened the intensity of groundwater recharge (Jiang et al., 2020; Wang 425 

et al., 2020; Wetzel et al.,1996). This double hydrological barrier effect ultimately leads 426 

to systematic differences between BFIs in karst regions and non-karst regions. 427 

4.2 Reasons for differences in baseflow in karst regions in different 428 

climatic zones 429 
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The results show that BFIs in karst regions in different climatic zones exhibit 430 

significant differences (Figure 9 and Figure 10). The underlying driving force lies in 431 

the heterogeneity of the geologic structure and its coupling effect with long-term 432 

climatic erosion(Liu et al .,2023). Among them, the control of the spatial structure of 433 

the water storage medium by the geologic context is the decisive factor for the 434 

differences in BFIs(Luo et al ., 2023). For example, in Southeast Asian karst regions 435 

(e.g., Halong Bay, Vietnam), the development of high-purity, thick-bedded limestone, 436 

and the formation of a pipeline network with vertical dominance under the background 437 

of tectonic uplift, the short groundwater runoff paths and efficient recharge mechanisms 438 

directly enhance the baseflow (Duringer et al., 2012). In contrast, siliceous interbedding 439 

in dolomite formations in northern South America (e.g., Caatinga, Brazil) significantly 440 

increases the resistance to dissolution and reduces the connectivity of the dissolution 441 

network, a primary geologic feature that fundamentally constrains the baseflow 442 

(Teixeira et al., 2023). The intensity of tectonic activity and the stage of geomorphic 443 

evolution further strengthen regional differences. For example, strong Cenozoic uplift 444 

in Southeast Asia formed steep young landforms that promoted vertical permeability 445 

dominance. In contrast, Paleozoic stable landmasses in northern Africa (e.g., the 446 

Saharan Atlas Mountains) are dominated by horizontal cave systems, a geologic feature 447 

that also makes the baseflow in this region significantly different from other regions 448 

(Klimchouk, 2007; Jiang et al., 2020). Surface cover characteristics are equally critical 449 

as secondary geologic elements. For example, thicker soil layers in temperate zones 450 

(e.g., Slovenia) increase surface runoff diversion through delayed infiltration, whereas 451 

large areas of exposed bedrock in equatorial zones infiltrate directly through solution 452 

gaps, creating a multiplicative effect on the BFI (Li et al., 2023). 453 

Climate elements reshape geological structures over large time scales through 454 

geological erosion processes, thereby indirectly influencing baseflow patterns. While 455 

short-term hydrological dynamics are affected by climate parameters such as 456 

precipitation intensity and seasonal distribution (Mo et al., 2021 ; Cheng et al .,2023), 457 

the profound control of climate on the baseflow index is evident in its long-term 458 

modification of karst systems. For example, the strong coupling of heavy precipitation 459 

and high temperatures in equatorial regions significantly accelerates the dissolution of 460 

carbonate rocks, forming a dense network of highly permeable dissolution fissures. 461 

Conversely, the persistent moisture associated with temperate maritime climates 462 

enhances the dissolution of carbonate rocks (with an average annual dissolution rate 463 
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approximately 40% higher than that of non-karst areas at the same latitude), leading to 464 

the formation of cave clusters characterized by labyrinthine structures and interwoven 465 

underground river systems. This climate-driven differentiation in dissolution alters the 466 

capacity of groundwater storage spaces, ultimately reflecting in the characteristic values 467 

of regional baseflow indices (Ford and Williams, 2007; Goldscheider, 2015; Tapiador 468 

et al., 2012). 469 

4.3 Reasons for changes in baseflow indices over time 470 

The results of the experiment revealed an increasing trend in the BFI in the karst 471 

region (Figure 8). Although the degree of increase is low (about 1.5% from 1960 to 472 

2015), we still feel that this degree of increase in BFI is a cause for concern given that 473 

the average BFI in the karst region is already at a high level. The reason for the 474 

increasing trend in BFI in the karst region is presumably caused by the large loss of 475 

groundwater. Extensive monitoring has shown that groundwater levels globally show a 476 

rapid declining trend, and this systematic attenuation has triggered multiple crises such 477 

as basin hydrological process anomalies and regional climate feedback imbalances 478 

(Jasechko et al., 2024, de Graaf et al. 2019; Liu et al.,2015). It is the rapid decline of 479 

the water table that leads to a constant unsaturated state of groundwater storage. 480 

Therefore, when recharged by precipitation, large amounts of precipitation 481 

preferentially fill the void in the water table, making the generation of surface runoff 482 

require longer recharge cycles. 483 

In addition to this, the geological and hydrological characteristics of the karst 484 

region further amplify this effect of reduced surface runoff and increased Baseflow 485 

(Zhu et al.,2025). On the one hand, there is the rapid water-conducting effect of the 486 

karst fissure network, where the extensive development of dissolution pipes and 487 

fissures in the karst bedrock accelerates vertical infiltration of precipitation into deep 488 

groundwater, leading to difficulties in retaining soil moisture and a significant increase 489 

in the runoff generation threshold (Hartmann et al., 2014). On the other hand, there is 490 

the dissipative effect of the surface-subsurface dichotomy, where the thickness of the 491 

unsaturated zone of the karst aquifer increases in the context of persistent groundwater 492 

overdraft (D'Ettorre et al., 2024), further weakening the immediate contribution of 493 

precipitation events to runoff. 494 

4.4 Applicability and limitations of this study 495 

With regard to data sources, the original data sources are diverse and complex. 496 
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Although we have made a lot of efforts to eliminate a large number of original 497 

documents with distorted data and to screen out some unreasonable data in the 498 

calculation, it is always difficult to fully balance the deficiencies in the original data. 499 

On the boundaries of applicability of the method itself. For example, the 500 

parameterization framework of digital filtering methods (e.g., Eckhardt and Chapman 501 

algorithms) based on the assumption of linear recession is at variance with the nonlinear 502 

characteristics of karst hydrological processes. Together with the rapid recession 503 

processes dominated by karst pipe flow (rates up to 2-3 times that of porous media 504 

basins) leads to a general underestimation of the recession coefficient (Kang et al 2022; 505 

Rattayová & Hlavč ová., 2023), which leads to differences in baseflow separation 506 

between methods with different principles. For example, the Chapman and CM 507 

methods used in this study, from the results of the two methods, the separation of 508 

baseflow is significantly lower than the other methods, which is due to the lower degree 509 

of response of the Chapman and CM methods to precipitation recharge, which is also 510 

reflected in Helfer's study (Helfer et al., 2024). In addition, empirical parameters such 511 

as maximum baseflow (BFI_max) are mostly derived from rate-determined results for 512 

temperate homogeneous aquifers, and their physical mechanisms have not been fully 513 

adapted for applicability in karst regions (Zhou et al., 2017). 514 

Despite the above limitations, this study ensures the spatial representativeness and 515 

methodological reliability of the study conclusions by integrating a global-scale multi-516 

source dataset of karst region (covering more than 85% of the typical karst 517 

geomorphological units) and adopting standardized validation indexes (KGE, NSE). 518 

The results show that the karst baseflow separation results can effectively characterize 519 

the regional hydrological features and provide data support for water resource 520 

management and eco-hydrological model construction in karst region. Future research 521 

can integrate geophysical exploration and isotope tracer technology to develop a 522 

dynamic parameterization scheme adapted to non-homogeneous media. 523 

5．Conclusion 524 

This study systematically analyzes the spatial distribution characteristics and trends 525 

of BFIs in global karst regions. The results show that the BFI (78%) in karst regions is 526 

generally significantly higher than the global BFI. This phenomenon confirms the 527 

differential regulation of the runoff partitioning mechanism by the unique surface-528 

groundwater dichotomy in karst regions. Meanwhile, the study systematically evaluates 529 

the applicable boundary of the hydrographic method in karst region and proves the 530 
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applicability of the hydrographic method in karst region. It is noteworthy that the BFI 531 

in the karst region shows a phased upward trend against the background of the general 532 

decay of global groundwater reserves. This may be related to the buffering effect of 533 

karst aquifers on extreme climatic events and human activity-induced changes in the 534 

subsurface bedding. In future research, we can integrate high-precision geological 535 

tectonic data and multi-source remote sensing information to construct a coupled 536 

climate-hydrology-geology model to quantitatively analyze the response characteristics 537 

of hydrological fluxes of karst systems under the background of climate change, and 538 

further improve the spatial and temporal resolution dimensions of karst water cycle 539 

theory. 540 
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