

1 Baseflow in karst regions is significantly higher than the
2 global average and exhibits spatial variability

3
4 Author :Ze Yuan ^{a,b}, Qiuwen Zhou ^{a,b*}, Yuan Li ^{a,b*}, Yuluan Zhao ^{a,b}, Shen
5 gtian Yang ^{c,d}

6 Affiliation:

7 a. School of Geography and Environmental Science, Guizhou Normal Un
8 iversity, 550001 Guiyang, China

9 b. Karst Ecosystem Field Scientific Observation and Research Station of
10 Guizhou Normal University & Guanling Autonomous County, 561300 G
11 uanling, China

c. Institute of Ecological Civilization, Guizhou Normal University, 55000
1 Guiyang, China

College of Water Sciences, Beijing Normal University, 100875 Beijing, China

14 d. Con

Corresponding author: Qiuwen Zhou * Yuan Li*

10 Corresponding author: Qiaowen Zhou¹, Yuan Li²
11 Email: zqw@gznu.edu.cn, Yuan Li: liyuan7pro@

17 Email: zqw@gzhu.edu.cn; Yuan Li: hyuan/pro@163.com
18

19

20 Abstract: The distinct hydrogeological configurations of karst terrains engender
21 fundamentally divergent baseflow regimes compared with non-karst systems. However,
22 there is still some uncertainty in the understanding of baseflow in global karst regions
23 due to the variability of methods and differences in natural conditions in different
24 regions. In this study, runoff data from 1375 karst basins around the world were
25 summarized, and graphical and digital filtering methods were used to estimate baseflow
26 in global karst regions and to analyze their spatial differences and trends. The results
27 show that the baseflow index of global karst areas is about $78 \pm 6.9\%$, which is
28 significantly higher than the global average baseflow index (60%). The baseflow index
29 of karst regions in different climatic zones also differed significantly, in which the
30 average baseflow index of arid karst regions (82%) was significantly higher than the
31 average baseflow index of subtropical karst regions (77%). Even within the same
32 climate zone, the base flow index of different regions may also have significant
33 differences, and the difference of some regions is even $>10\%$. Vegetation factors
34 reflected in primary productivity have the highest influence on baseflow in karst regions
35 (15%), while climatic factors (relative humidity, air temperature, etc.) have a lower
36 influence on BFIs in karst regions (less than 5%). From the time series trend, the global
37 karst baseflow index shows an increasing trend, about 1.5% from 1960 to 2015. These
38 results help us to further understand karst hydrological processes and the response
39 mechanism of karst hydrology under climate change.

40

41 Key words: Baseflow; Karst; Hydrographic graphical method; climate zone; global
42 runoff data; hydrogeology

43

44 **1. Introduction**

45 Baseflow plays a central role as a slow recharge component of groundwater to
46 runoff as a hydrological stabiliser (Mukherjee et al., 2018; Chen et al., 2019). The
47 proportion and dynamic characteristics of baseflow in runoff not only regulate the
48 ecological balance threshold of rivers, but also profoundly affect the resilience of
49 watersheds in response to climate fluctuations (Saedi et al., 2022; Hare et al., 2021;
50 Yang et al., 2023). Therefore, accurate quantification of the characteristics of baseflow
51 can help to understand the runoff evolution pattern and its response mechanism to
52 regional environmental changes (Mei et al., 2024; Kuehne et al., 2023).

53 Recent studies on baseflow estimation have revealed its spatial variability
54 characteristics. Among them, Xie et al (2023), based on a coupled analysis of baseflow
55 separation and climate models for 15,000 catchments worldwide, pointed out that the
56 average contribution of baseflow to river runoff was about 60%. However, there are
57 significant regional differences under this macroscopic pattern, e.g., baseflow index
58 (BFI) calculations by Beck et al (2013) for 3,394 watersheds globally show that BFI is
59 generally higher in tropical and temperate-cold regions than in arid and semi-arid zones
60 (e.g., North and South Africa, Central Asia, and Australia). Regional scale studies
61 further refine the spatial differentiation pattern, such as the United States, where the
62 BFI is higher in the east than in the west, India, where the BFI is higher in the east than
63 in the west, and the Yellow River basin, where it is higher in the upstream and
64 downstream and lower in the middle reaches, whereas the BFI of the Wei River basin
65 in the Loess Plateau shows a gradual decrease from the upstream to the downstream
66 (Mei et al., 2024 ; Sharma and Mujumdar, 2024 ; Lyu et al., 2023 ; Zhang et al.,
67 2019).

68 The current study characterises global baseflow features, but the unique
69 hydrological structure of karst landscapes (e.g., pipes and fissures) makes the baseflow
70 features obtained from the above study significantly less applicable in karst regions
71 (Jiang et al., 2024 ; Ford & Williams, 2007). The current study found significant
72 regional differences in BFI characteristics in karst regions around the world. In
73 particular, the high permeability of karst media in tropical karst regions (e.g., Sumatra,
74 Java) contributes to the rapid conversion of precipitation to groundwater, as analysed
75 in three sub-basins of the Brantas Hulu watershed, where the BFI exceeds 80%
76 (Pratama and Adji., 2020), and the study of three basins in Jonggrangan area also
77 showed BFI of more than 87 per cent (Khomsati et al., 2021). Seasonal differences in

78 BFI are highlighted in subtropical karst regions (Mediterranean Sea, Southern China),
79 such as central Italian basins with baseflow contributions spanning 30-76%, rising to
80 88-90% in dry months (Longobardi and Loon., 2017), and southeastern France has
81 significant differences in baseflow contributions (27%-61%) in years of abundant and
82 dry water (Guisiano et al., 2024). Temperate karst regions such as the Sierra Nevada
83 karst region in North America generally have BFI higher than 65% (Tobin and
84 Schwartz., 2019). The BFI in the karst region of southwest China is 57% (Mo et al.,
85 2025), a stable BFI of $\geq 55\%$ in temperate karst in central Ireland (Foran et al., 2021),
86 and a BFI of $36 \pm 10\%$ in the karst mountains of eastern China (Lyu et al., 2022).

87 In summary, studies of baseflow in karst regions have revealed their obvious
88 spatial heterogeneity. A large number of studies have characterised the baseflow
89 characteristics of karst under different climatic zones, and also outlined the regional
90 baseflow characteristics of karst under different climatic zones (Tagne and Dowling.,
91 2018). However, existing studies still have obvious limitations, starting with an over-
92 focus on localised features in small regions, such as watershed studies in southern China
93 and the Mediterranean (Guisiano et al., 2024; Mo and Ruan., 2021), which makes the
94 results of the study not necessarily representative of the global karst region. The second
95 is the variability of research methods, such as hydrographic methods (graphical
96 methods, digital filtering methods), isotope tracer methods, etc. (He et al., 2019; Yang
97 et al., 2021 ; Arnold et al., 2013). The difference in focus of the different methods also
98 reduces the commonality of the findings. These two reasons have led to a lack of
99 characterisation of overall features and reasonable quantification of regional differences,
100 despite the exploration of baseflow characteristics of karst basins in different regions
101 of the world (Wu et al., 2017; Mei et al., 2024). Therefore, the complete characterisation
102 of baseflow in the global karst region using reasonable methods and the accurate
103 quantification of the overall characteristics and regional differences of baseflow in the
104 global karst region are still urgently needed.

105 The aim of this study is to explore the baseflow characteristics and their internal
106 differences in the global karst region and to discuss the influence of different factors on
107 baseflow in karst regions. Global public runoff data were selected for the study, and
108 daily-scale runoff data from 1375 watersheds within the karst region were selected.
109 Twelve baseflow separation methods, including four graphical methods and eight
110 digital filtering methods, were used to separate the baseflow from the runoff data and
111 calculate BFIs. The reliability of the results was assessed using the Kling-Gupta

112 Efficiency (KGE) (Gupta et al., 2009) and Nash-Sutcliffe Efficiency (NSE) (Nash and
113 Sutcliffe., 1970) coefficients, and finally, the XGBoost model was used to analyse the
114 influencing factors of the 12 indices on baseflow.

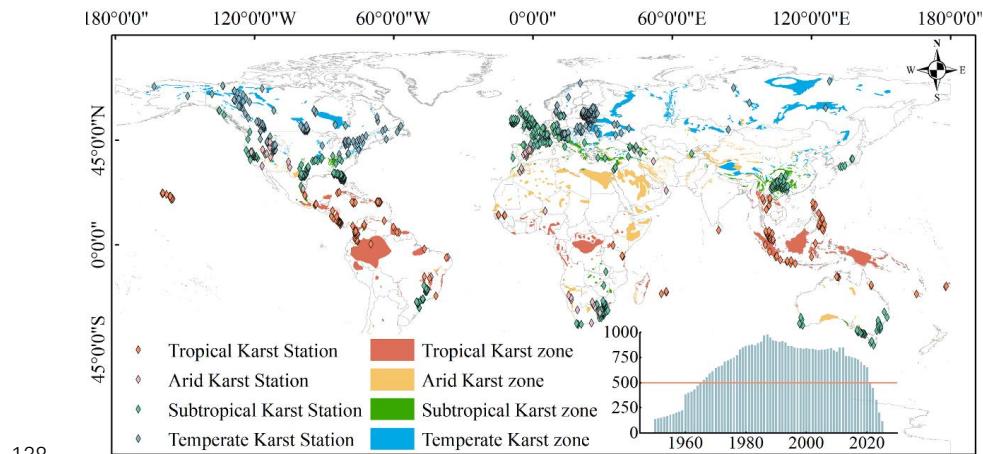
115 2. Materials and methods

116 2.1 Data sources

117 2.1.1 Runoff data

118 We have selected regions with a concentrated distribution of karst landscapes
119 worldwide. And combined with global watershed data (Lehner and Grill, 2013),
120 Köppen climate zoning, and urban distribution, select runoff observation stations with
121 less human activity and watershed areas less than 2500 km². Thus daily runoff data for
122 1412 watersheds with different time spans have been selected. The runoff data mainly
123 comes from the Global Runoff Data Center (<https://www.bafg.de/GRDC>), The
124 European Water Archive (<https://ne-friend.bafg.de/servlet/>), National River Flow
125 Archive, UK (<https://nrfaapps.ceh.ac.uk/nrfa/nrfa-api.html>), Brazilian National Water
126 Authority (<https://zenodo.org>), The National Hydrological Data Archive of Canada
127 (<https://wateroffice.ec.gc.ca/>), The Chinese Ministry of Water Resources
128 (<http://www.cjh.com.cn/>), The National Hydrological Information System of the United
129 States (<https://waterdata.usgs.gov/nwis>).

130 Due to quality differences in data from different hydrological observation stations,
131 it is necessary to clean the data from these 1412 stations. Exclude sites with severe data
132 gaps and supplement data from sites with a small amount of missing data. We use cubic
133 spline interpolation and linear interpolation to supplement data with missing amounts
134 less than 30 days. Finally, daily runoff data of 1375 watersheds in different time ranges
135 of karst regions worldwide were obtained. This includes 221 watersheds in tropical
136 karst zones, 91 watersheds in arid karst zones, 490 watersheds in subtropical karst zones,
137 and 568 watersheds in temperate karst zones (Figure 1).



138

139 Figure 1. The distribution of karst landscapes and hydrological stations in various
140 climate zones around the world. The bar chart represents the number of hydrological
141 stations selected in each year, with the vertical axis indicating the number of selected
142 hydrological stations and the horizontal axis indicating the year. We selected years with
143 over 500 hydrological stations that meet the requirements within the same year for
144 subsequent analysis.

145 2.1.2 Selection of potential influencing factors of base flow

146 In order to analyse the influencing factors of baseflow, we further selected daily-
147 scale runoff data from 744 hydrological stations during 2011-2012 out of the 1375
148 hydrological stations mentioned earlier to calculate baseflow. The purpose of further
149 selecting the hydrological stations is to ensure the continuity of the data while at the
150 same time ensuring that the stations can cover the major karst regions of the world. We
151 selected a total of 12 potential influences. Climatic factors included temperature and
152 rainfall, and geological factors included depth to bedrock, water storage in epikarst,
153 slope, elevation, and soil evaporation. Other factors included runoff, population density,
154 gross primary productivity (GPP), relative humidity, and surface radiation, for a total
155 of 12 factors (Table 1).

156 Table 1. Detailed information on the 12 influencing factors

Name	Temporal scale	Spatial resolution	Data sources
Runoff volume	Monthly average	-	The same as the runoff data in Section 2.1.1
Epikarst water storage volume	Monthly average	30 arc-second	GES(Goddard Earth Sciences)DISC(Li et al .,2019)
Bedrock depth	-	0.25km×0.25 km	ISRIC — World Soil Information (Hengl et al .,2017)

Air temperature	Monthly average	30 arc-second	
Precipitation	Monthly average	30 arc-second	Climatic Research Unit gridded Time Series(arris et al .,2020)
Relative humidity	Monthly average	$0.1^\circ \times 0.1^\circ$	
Elevation	-	30 arc-second	Worldclim(Fick and Hijmans .,2017)
Slope steepness	-	30 arc-second	
Available soil moisture	multi-year average	1km×1km	HWSD(Harmonized World Soil Database)(Wieder et al .,2014)
Population density	multi-year average	30 arc-second	LandScan Global 30 Arcsecond Annual Global Gridded Population Datasets (Bright et al., 2013)
Gross primary production	multi-year average	$0.25^\circ \times 0.25^\circ$	TU Data Repository(Wild et al.,2022)
Land-surface radiation	Monthly average	10km	Data Center of the Qinghai-Tibet Plateau(Tang .,2019)

157

158 2.2 Methods

159 2.2.1 Baseflow separation methods

160 Commonly used methods for baseflow separation include isotope tracer methods,
161 hydrological modelling methods and hydrographic methods (including graphical
162 methods and digital filtering methods). However, the isotope tracer method relies on
163 high-precision isotope data and is difficult to be extended in data-poor areas, while the
164 hydrological modelling method is limited by the empirical nature of the parameters as
165 well as the regional nature. Therefore, considering the characteristics of the study area
166 (wide range and insufficient observational data), we chose the hydrographic method,
167 which requires less data and is relatively simple.

168 The computational tool used for baseflow separation in this study is from the
169 Python library baseflow (<https://pypi.org/project/baseflow>) developed by the team of
170 Xiaomang Liu at the Chinese Academy of Sciences, which contains four graphical
171 methods and eight digital filtering methods that allow simultaneous implementation of
172 multiple methods for baseflow separation (Xie et al. 2024). In addition to this the
173 baseflow library evaluates each method when separating the baseflow and obtains an
174 optimal method. In this study, the baseflow library was used to separate baseflow from
175 global runoff data and calculate its multi-year average BFI (Figure 6).

176 Graphical methods are techniques for isolating baseflow by analysing runoff
177 hydro-graph. The four graphical methods used in this study are Fixed Interval Method

178 (FIM), Local Minimum Method (LMM), Sliding Window Method (SW) and UK
179 Institute of Hydrology (UKIH).

180 Digital filtering is a baseflow segmentation method that uses digital signal
181 processing techniques to separate baseflow from runoff by designing specific filters.
182 These methods usually involve one or two parameters, such as the recession coefficient.
183 The recession constant is automatically estimated in the baseflow library using the
184 Brutsaert method, and the second parameter is calibrated using the multi-objective
185 optimisation method proposed by Arnold (Brutsaert., 2008; Rammal et al., 2018). The
186 methods used in this work include the Boughton Method (Boughton), Chapman-
187 Maxwell Filter Method (CM), Chapman Filter Method (Chapman), Exponential
188 Weighted Moving Average (EWMA), Eckhardt Filter Method (Eckhardt), Furey Digital
189 Filter Method (Furey), Lyne-Hollick Digital Filter Method (LH), and Willems Digital
190 Filter Method (Willems).

191 2.2.2 Evaluation metrics for baseflow separation methods

192 In order to validate the accuracy of different baseflow separation methods in
193 karstic regions, we chose two metrics, KGE and NSE coefficients, to measure the
194 effectiveness of different methods in separating baseflows. The methodology used by
195 Xie et al (2020) for measuring and assessing the effectiveness of baseflow separation
196 methods in the US region was used, which centred on screening for strict baseflow
197 points.

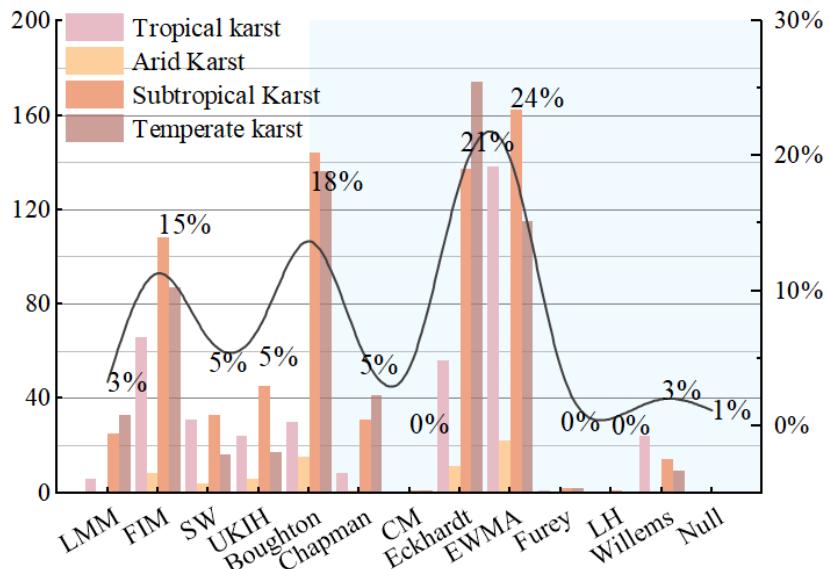
198 2.2.3 Attributional analysis methods

199 Due to the significant differences in magnitude of the potential influences selected
200 at the global scale (a few hydrological stations are at extremely high elevations, whose
201 actual differences are compressed after normalisation, making it difficult to adequately
202 characterise the effect of elevation on baseflow), traditional linear models or distance
203 metric-based algorithms are susceptible to magnitude interference. Therefore, we chose
204 the magnitude-insensitive XGBoost model, which naturally circumvents the feature
205 scale difference problem through the splitting rule of the tree structure (Niazkar et
206 al., 2024; Zhang et al., 2022). In addition, the model's built-in regularisation mechanism
207 and subsampling strategy can effectively suppress overfitting and guarantee the model's
208 generalisation ability in complex geographic data. The model also supports parallel
209 computing with automatic processing of missing values, which significantly improves
210 the computational efficiency of large-scale spatial datasets (Chen and Guestrin., 2016).

211 3. Results

212 3.1 Validation of the applicability of baseflow separation methods

213 We counted the best separation methods filtered in the Baseflow library for
214 baseflow separation for each hydrological station data. From the results in Fig. 2, 28%
215 of the hydrological stations are suitable for baseflow separation using the graphical
216 method, 71% of the stations are suitable for baseflow separation using the digital filter
217 method, and 1% of the stations have no obvious suitable separation method. Among
218 them, the EWMA method is the most effective for baseflow separation in karst area,
219 with 24% of hydrological stations suitable for baseflow separation, followed by the
220 Eckhardt method, with 21% of hydrological stations suitable for baseflow separation.



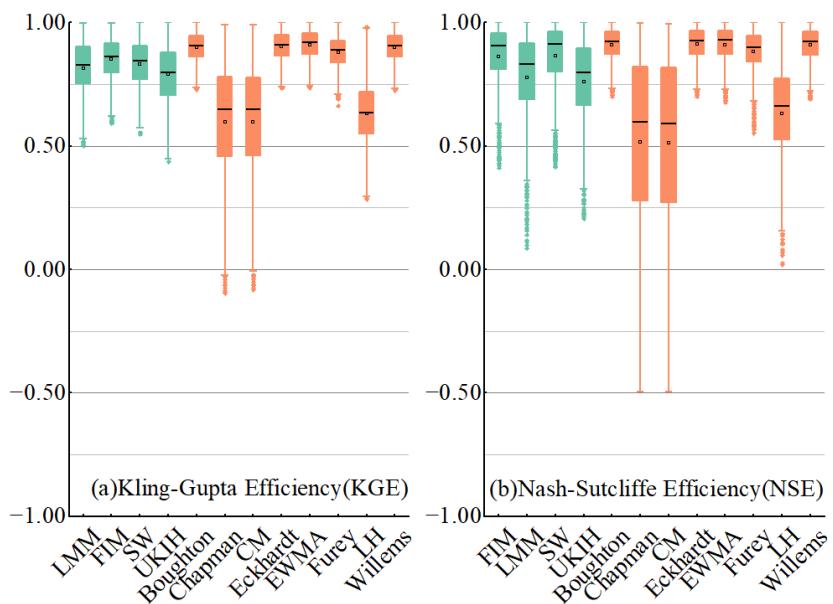
221

222 Figure 2. Percentage of best separation methods in the karst region and number of best
223 separation methods in each climatic zone. Graphical methods are shown within the
224 white background, digital filtering methods are shown within the light blue background,
225 and different coloured bars correspond to different climatic zones. The X-axis shows the
226 12 baseflow separation methods, the Y-axis (left) shows the number of hydrological
227 stations, and the Y-axis (right) shows the number of hydrological stations covered by
228 each of the optimal baseflow separation methods as a proportion of the number of all
229 hydrological stations, which corresponds to the black curve.

230 Figure 3(a) shows the KGE coefficient distributions of different methods, from the
231 results, some digital filtering methods (orange) have concentrated KGE coefficient
232 distributions and the values are close to 1. For example, the five methods, Boughton,
233 Eckhardt, EWMA, Furey, and Willems, which indicate that the applicability of these

234 five base-flow separation methods is high and effective in the karst region. The KGE
235 coefficients of the graphical method (green) are also well distributed, with most of the
236 KGE coefficient distribution ranges greater than 0.5 and the average KGE coefficients
237 of each method are greater than 0.75. It indicates that the graphical method also has
238 high applicability in the karst region. On the other hand, the three digital filtering
239 methods of Chapman, CM and LH have discrete distributions from the distribution of
240 KGE coefficients, although their average values are all greater than 0.5. It indicates that
241 the results obtained by these three methods are more fluctuating when dealing with data
242 from different hydrological stations, and it also shows that these three methods are less
243 stable when performing baseflow separation.

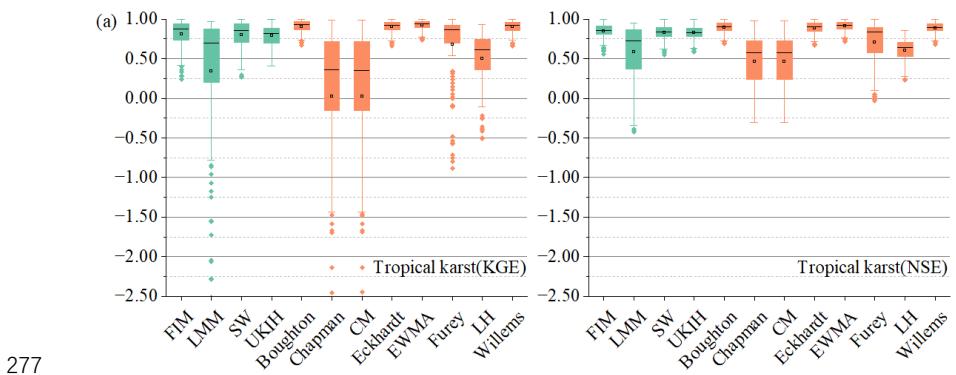
244 The distribution pattern of the NSE coefficients of the different methods in Fig.
245 3(b) is similar to that of Fig. 3(a). The NSE coefficients of the five methods, Boughton,
246 Eckhardt, EWMA, Furey, and Willems, have a concentrated distribution and high mean
247 values, which further suggests that these five methods are effective in separating the
248 baseflow in karst regions. The distribution of NSE coefficients of the four graphical
249 methods (in green) is generally stable although the range of NSE coefficients increases
250 compared to the KGE coefficients, and their mean values are all greater than 0.5. The
251 distribution of NSE coefficients of the three digital filtering methods of Chapman, CM,
252 and LH is still more discrete (-0.5 to 1), which further indicates that the applicability of
253 these methods in karstic regions is low.



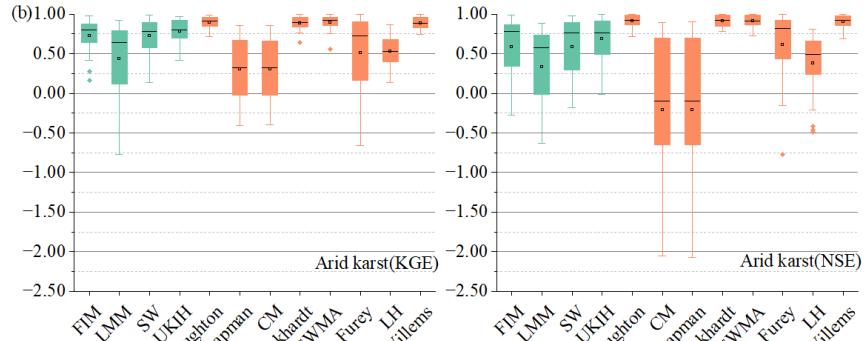
255 Figure 3. KGE coefficients (a) versus NSE coefficients (b) for 12 baseflow separation
256 methods. The X-axis indicates each separation method and the Y-axis indicates the
257 value of the coefficients. The green color in the graph indicates the graphical method
258 and the orange color indicates the digital filtering method. The black lines within the
259 boxplot indicate the mean values, with upper and lower limits of 1.5 times Interquartile
260 Range(IQR), and exceeding the range is considered as an outlier, which is labeled in
261 the form of dots at the top and bottom of the boxplot.

262 From the distribution characteristics of KGE and NSE coefficients in different
263 climatic zones (Figure 4), the KGE coefficients of multiple separation methods in
264 tropical karst have discrete distributions, with CM and Chapman ranging from -1.5 to
265 1. The NSE coefficients are similar to those of the KGE, but with a relatively centralised
266 distribution. The distribution of coefficients of graphical methods in the arid karst
267 region are all discrete, and the digital filtering method is still the CM and Chapman
268 methods presenting a low concentration. The distribution of KGE coefficients in
269 subtropical and temperate karst is relatively stable and concentrated, and the overall
270 distribution of KGE coefficients of Chapman and CM are also discrete, while the KGE
271 coefficients of FIM and SW are close to 1, which indicates that these methods are more
272 effective in separating the baseflow in subtropical and temperate karst regions.

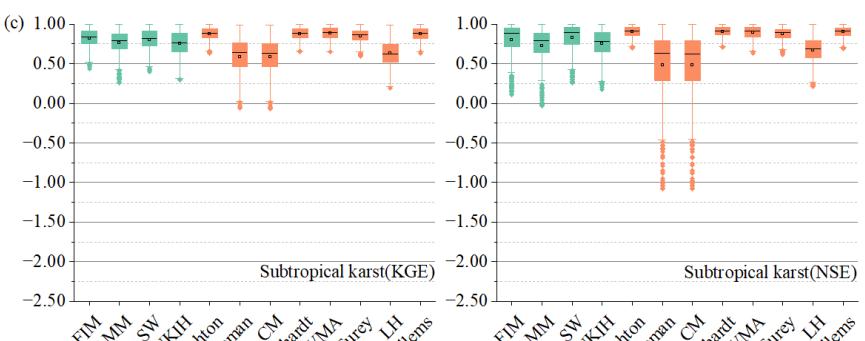
273 According to Figures 2 and 3, considering the high KGE and NSE coefficients and
274 the number of most suitable hydrological stations, we selected four more suitable
275 methods for baseflow separation in karst regions, which are one graphical method (FIM)
276 and three digital filtering methods (Boughton, Eckhardt, EWMA).



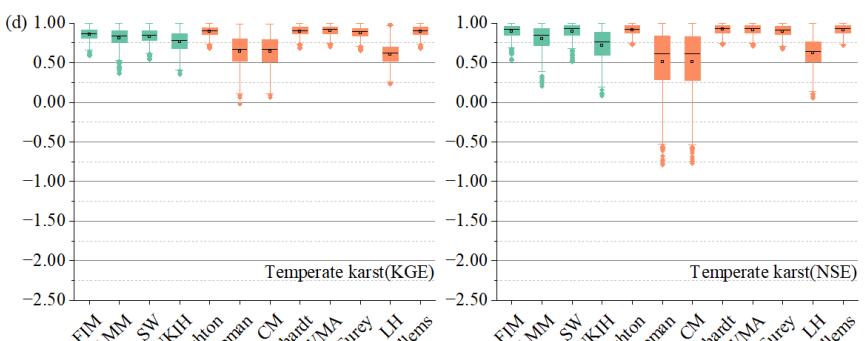
278



279



280



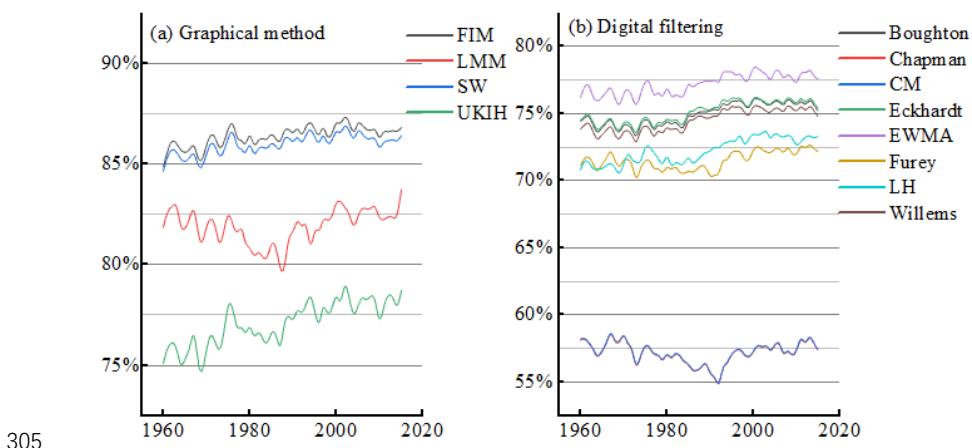
281 Figure 4. KGE coefficients (left column) versus NSE coefficients (right column) for
282 karst regions in different climatic zones (labeled at the bottom right of each component
283 Figures). The X-axis indicates each separation method and the Y-axis indicates the
284 value of the coefficients. The green color in the graph indicates the graphical method
285 and the orange color indicates the digital filtering method. The black lines within the
286 boxplot indicate the mean values, with upper and lower limits of 1.5 times IQR, and

287 exceeding the range is considered as an outlier, which is labeled in the form of dots at
288 the top and bottom of the boxplot.

289 **3.2 Differences in baseflow indices obtained by different methods
290 over time**

291 From Figure 5a, it can be found that the four graphical methods have different
292 effects on baseflow separation in karst regions. Among them, the BFIs derived by FIM
293 and SW are similar, with an average value of about 86%. Moreover, the BFI shows an
294 increasing trend of low amplitude with the year, with low fluctuation degree and high
295 stability. The mean value of BFI derived from LMM is about 83%, and the trend of
296 change with years shows a decreasing and then increasing trend, while the result of
297 UKIH method is low, with a mean value of about 77%, and its BFI also shows a slow
298 increasing trend with years.

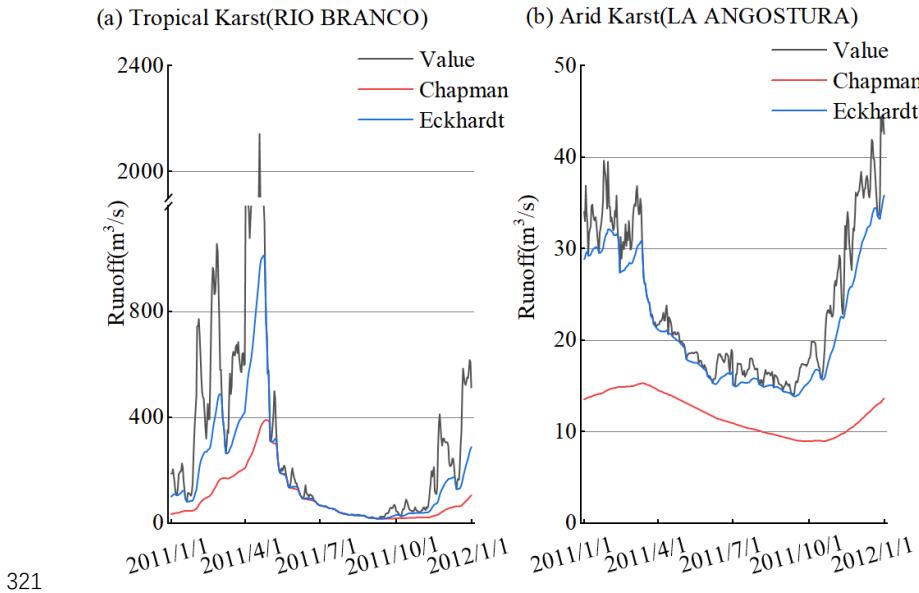
299 The results in Figure 5b can be found that although there are differences in the base
300 flow indices obtained by different digital filtering methods, most of the methods obtain
301 similar base flow indices and have similar trends with respect to year. In contrast, the
302 results of the two methods Chapman and CM differ significantly from those of the other
303 six methods. The mean value of the BFI obtained by the two methods is about 58%,
304 and there is a small decrease followed by a slow increase in the trend.

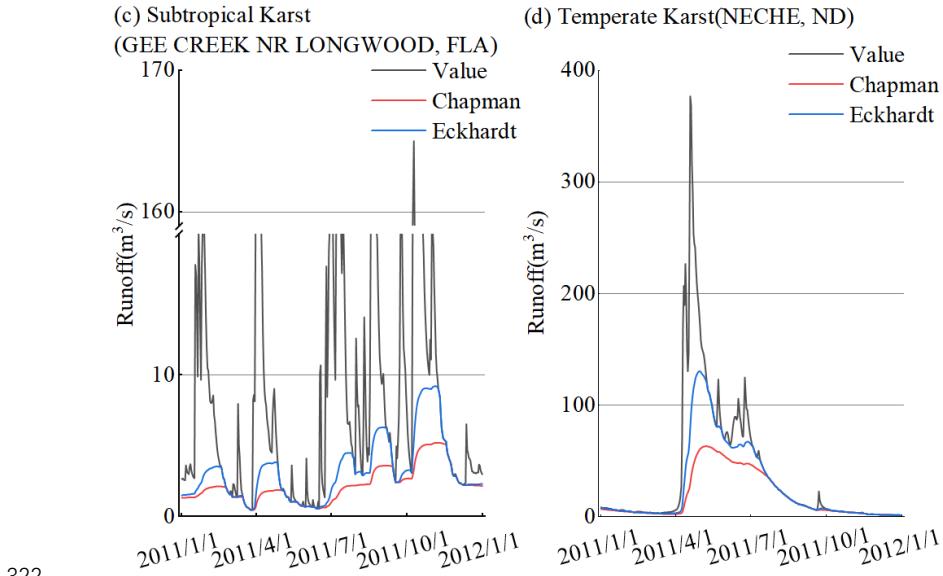


305
306 Figure 5. Global BFIs for karst regions calculated by the 12 baseflow separation
307 methods, with the x-axis indicating the year and the y-axis the BFI.

308 In order to analyze the reasons for the differences between these two methods (CM
309 and Chapman) and other methods in separating baseflows, we selected one hydrological
310 station in each climatic zone and generated baseflow curves obtained by the different
311 methods in different climatic zones (Figure 6). Since the CM method is an improvement

312 of Chapman by adding a maximum baseflow limit to the Chapman method, and its
313 internal mechanism is consistent, Chapman was used as a proxy. In addition, the
314 Eckhardt method with high KGE and NSE coefficients is chosen as a comparison. From
315 Figure 6, we find that when runoff increases, the Eckhardt method can respond quickly
316 and baseflow increases rapidly, while the Chapman method responds to the increase in
317 runoff to a lesser extent and by a lower amount than Eckhardt. Overall, Chapman
318 responds more slowly to the recharge of precipitation than the other methods, and this
319 feature also makes the Chapman method less discriminating for baseflow compared to
320 the other methods.





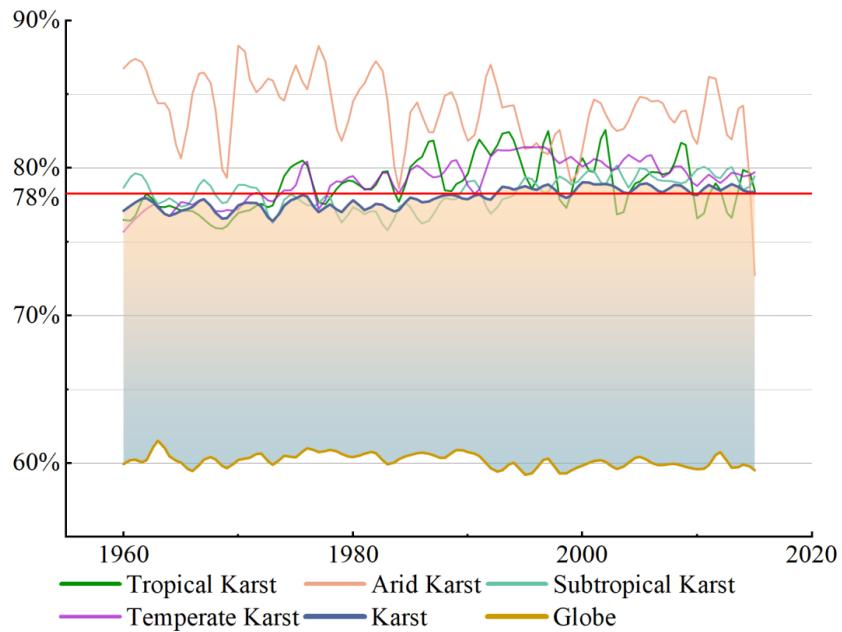
322

323 Figure 6. baseflow curves for different climatic zones (Eckhardt and Chapman methods
324 were chosen as representatives), where the X-axis represents time and the Y-axis
325 represents runoff. The black curve (Value) represents the runoff volume. Names of
326 hydrological stations are in parentheses.

327 3.3 Global base flow characteristics

328 In order to more clearly characterize the BFI in karst basins, we calculated the BFI
329 in non-karst basins globally using the same method. Figure 7 shows that BFIs in karst
330 basins are significantly higher than in non-karst basins. The BFI of karst basins is $78 \pm$
331 6.9%, while the BFI of non-karst basins is about 60%. This indicates that baseflow in
332 karst basins is significantly underestimated if only global average conditions are
333 considered and baseflow in karst basins is not calculated separately.

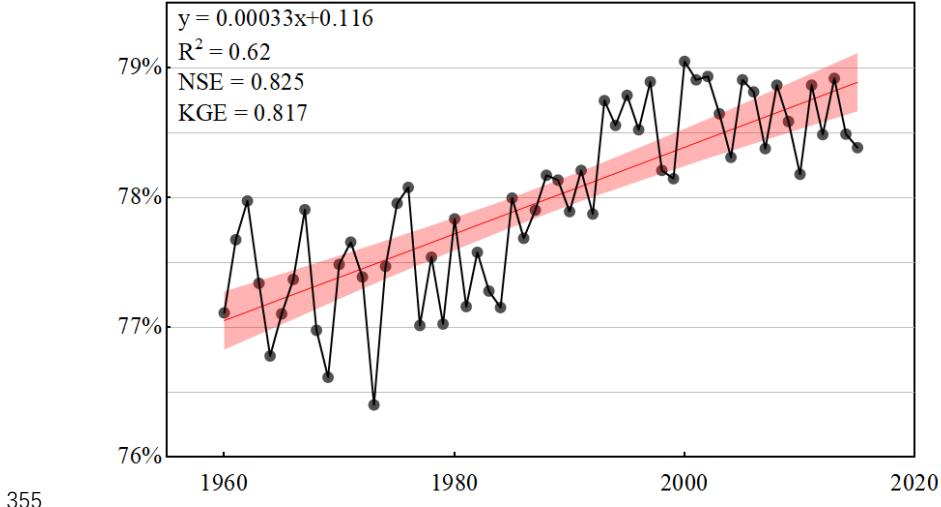
334 As can be seen from Figure 7, there are differences in the characteristics of BFIs
335 over time in different climatic zones. The BFI in the tropical karst region generally
336 shows an increasing trend. From 1960 to about 1990, the base flow index in tropical
337 karst showed an increasing trend, and since 1990 the base flow index remained at about
338 80% and then stabilized. The BFI in arid karst region is the highest, with a mean value
339 of about 85%. In general, the BFI in arid karst region shows a decreasing trend, and the
340 annual mean BFI fluctuates greatly, with poor stability. The BFI of subtropical karst
341 region is more stable, always maintained at about 78%. The characteristics of BFI in
342 temperate karst regions are similar to those of tropical karst, showing a slow increase
343 and remaining stable at around 80%.



344

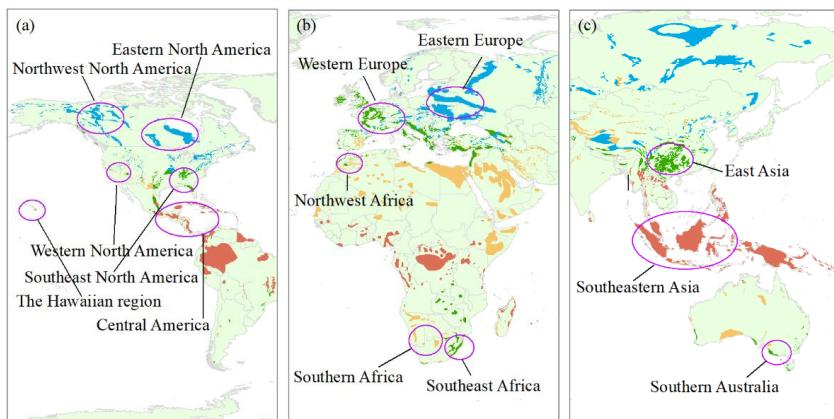
345 Figure 7. Annual BFIs for each region of global karst versus global annual BFIs. x-axis
346 indicates the year, y-axis indicates the BFI, and the red straight line is the overall mean
347 of the BFI. The orange curve at the bottom indicates the global BFI, and the dark blue
348 line indicates the BFI for global karst regions.

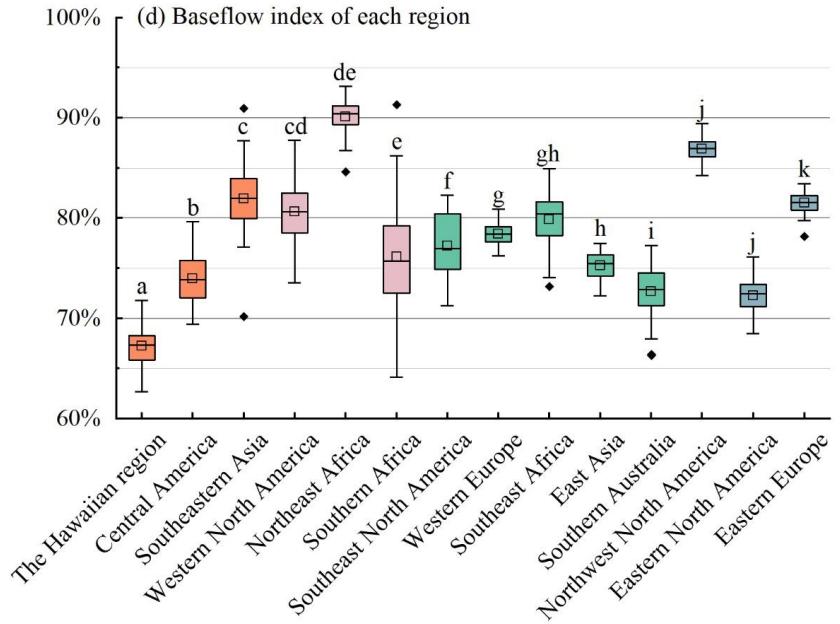
349 The average of BFIs obtained by the four methods (FIM, Boughton, Eckhardt,
350 EWMA) was used as the BFI for the global karst region and linearly regressed against
351 the year (Figure 8). The results show an increasing trend in the BFI in the global karst
352 region, with an increase of about 1.5% from 1960 to 2015. One of the obvious increase
353 periods is from 1980 to 2000. Since 2000, the BFI in the global karst region has
354 stabilised, fluctuating in the range of $78.5\% \pm 0.5\%$.



355
356 Figure 8. Annual mean BFIs over time for global karst regions. x-axis indicates year, y-axis
357 indicates BFIs, and red bars indicate 95% confidence interval.

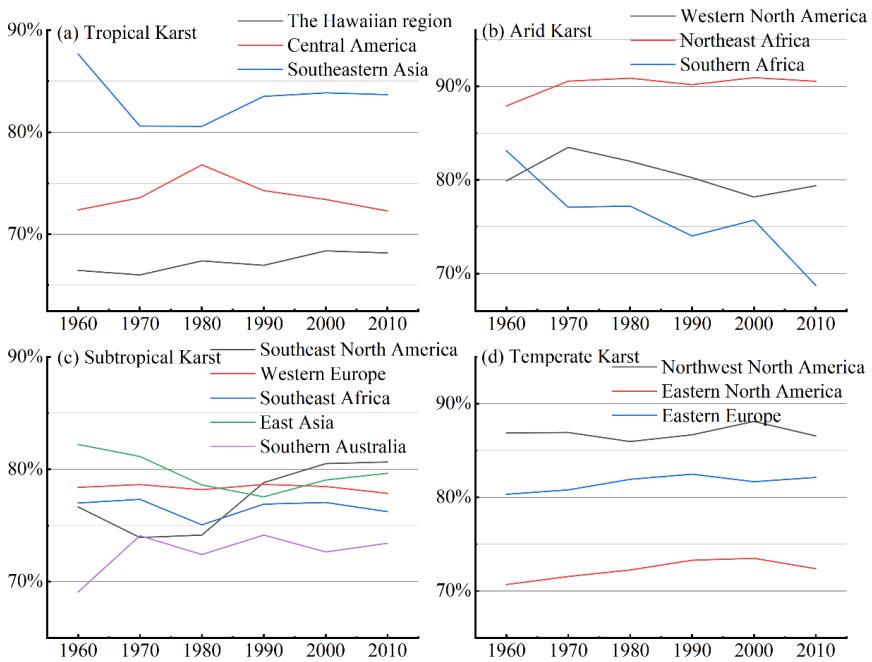
358 Figure 9 shows that, despite being in the same climatic zone, different regions can
359 exhibit differences in BFIs. For example, in the northern part of South America and the
360 Southeast Asian region, which are both tropical karst, the BFI is significantly higher in
361 the Southeast Asian region (81%) than in the northern part of South America (73%).
362 There is also a significant difference in BFIs between the eastern part of the United
363 States and the northern part of Africa, which are both arid karst climate zones. From
364 figure 9 and figure 10 we find that BFI stability is lower and BFI values are higher in
365 arid karst regions. The degree of variation of BFI in tropical karst regions is lower than
366 that in arid karst regions. And subtropical and temperate karst regions have the lowest
367 trend of base flow index change and their stability is higher.





369

370 Figure 9. Distribution of BFIs in karst basins in different regions within the same
371 climatic zone. In figure (d), orange represents tropical karst regions, magenta represents
372 arid karst regions, green bars represent subtropical karst regions, and brownish-purple
373 represents temperate karst regions.

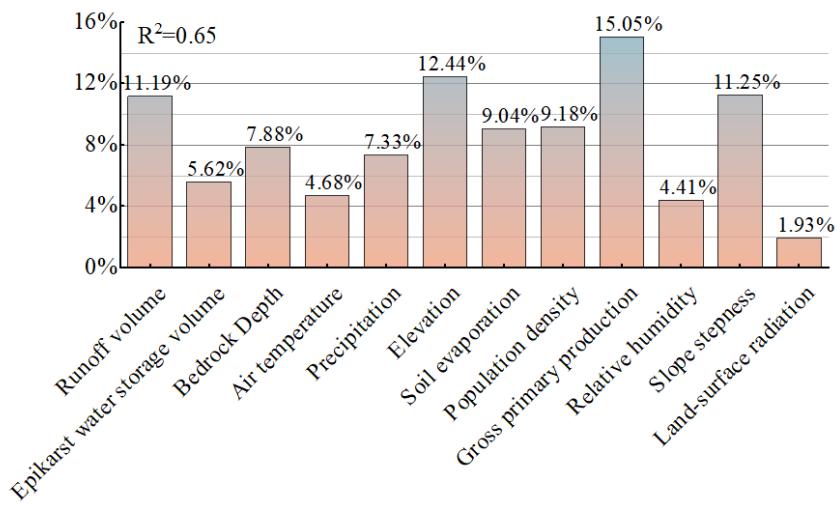


374

375 Figure 10. Characteristics of BFIs with respect to year for different regions within the
376 same climatic zone. Where Y-axis indicates BFI and X-axis indicates year.

377 3.4 Factors influencing baseflow indices in karst regions

378 Using the XGBoost model, we conducted an attribution analysis of the 12 factors
379 that may affect the BFI (Figure 11), and finally concluded that Gross Primary
380 Productivity (GPP) has the greatest influence on baseflow, reaching 15.0%. Elevation
381 was the next most influential factor with 12.4%, in addition to this, slope and runoff
382 volume (Flow) also had a large influence (>10%) on base flow index. In contrast,
383 climatic factors such as relative humidity (RH), Land-surface radiation (SR) and air
384 temperature (Temp) had a low influence on base flow index, each characterized by less
385 than 5%.



386
387 Figure 11. Influence of different factors on baseflow, where the X-axis indicates
388 different factors, the Y-axis indicates the contribution of the influencing factor to the
389 baseflow, and the number above the bar indicates the contribution of the current factor.

390 4. Discussion

391 4.1 Mechanisms of formation of baseflow characteristics in karst 392 regions

393 The results of the study show that the BFI in karst regions is significantly higher
394 than the global average (Figure 7). We attribute this difference to the unique geological
395 structure and hydrological cycle characteristics of karst regions. Extensively developed
396 fissures, vertical seepage zones, and subsurface dissolution piping systems in karst

397 regions constitute complex hydrological channels, which significantly alter surface
398 water-groundwater exchange patterns (Ford & Williams, 2007; Li et al., 2024).
399 Compared with the homogeneous water storage medium dominated by fissures and
400 pores in non-karst areas, the network of dissolution channels in karst regions
401 significantly shortens the infiltration path of precipitation, and its infiltration rate can
402 reach several to tens of times of that in non-karst areas(Fu et al .,2016). For example,
403 the monitoring of karst slopes in Huanjiang, Guangxi, shows that the wet front transport
404 rate is as high as 1373 mm/h, compared with 17-610 mm/h in non-karst regions, which
405 indicates that the rate of water infiltration in karst regions is much higher than that in
406 non-karst regions (Medici et al., 2019; Zhang et al., 2024). This part of precipitation
407 recharge into the subsurface, under the action of gravity and pressure, squeezes the ‘old
408 water’ out of the underground aquifer, which indirectly enhances the baseflow ratio
409 (Reimann et al., 2011; Bailly-Comte et al., 2010; Evans. 1983; Ronayne. 2013). Studies
410 have shown that this mechanism can result in significantly higher baseflow
411 contributions in karst regions, even above 80% in specific environments (Zhang et al.,
412 2022), whereas only less than 50% of precipitation can be converted to baseflow in non-
413 karst regions due to the blocking effect of loose sedimentary layers (Cusano et al., 2024).

414 Significant differences in surface cover conditions further reinforce baseflow
415 differences. In some karst areas, bedrock is exposed to more than 60%, and thin layers
416 of residual soil (<30 cm) cover only 20% of the surface, a geologic feature that results
417 in reduced surface interception and elevated subsurface recharge (Anker et al., 2023;Li
418 et al .,2024 ;Wang et al .,2024). The karst fissure system is directly exposed to the
419 atmospheric interface, avoiding water loss through evaporation from the soil layer, and
420 the lack of continuous surface cover allows for direct infiltration of large amounts of
421 precipitation (Yang et al., 2025; Li et al., 2023). On the contrary, in non-karst areas, the
422 soil-vegetation system formed by thicker weathered crust constitutes a natural
423 evapotranspiration interface, and the average annual evapotranspiration can reach 40%
424 of the precipitation, and surface runoff accounts for 30% of the precipitation, which
425 significantly weakened the intensity of groundwater recharge (Jiang et al., 2020; Wang
426 et al., 2020; Wetzel et al.,1996). This double hydrological barrier effect ultimately leads
427 to systematic differences between BFIs in karst regions and non-karst regions.

428 4.2 Reasons for differences in baseflow in karst regions in different
429 climatic zones

430 The results show that BFIs in karst regions in different climatic zones exhibit
431 significant differences (Figure 9 and Figure 10). The underlying driving force lies in
432 the heterogeneity of the geologic structure and its coupling effect with long-term
433 climatic erosion(Liu et al .,2023). Among them, the control of the spatial structure of
434 the water storage medium by the geologic context is the decisive factor for the
435 differences in BFIs(Luo et al ., 2023). For example, in Southeast Asian karst regions
436 (e.g., Halong Bay, Vietnam), the development of high-purity, thick-bedded limestone,
437 and the formation of a pipeline network with vertical dominance under the background
438 of tectonic uplift, the short groundwater runoff paths and efficient recharge mechanisms
439 directly enhance the baseflow (Durninger et al., 2012). In contrast, siliceous interbedding
440 in dolomite formations in northern South America (e.g., Caatinga, Brazil) significantly
441 increases the resistance to dissolution and reduces the connectivity of the dissolution
442 network, a primary geologic feature that fundamentally constrains the baseflow
443 (Teixeira et al., 2023). The intensity of tectonic activity and the stage of geomorphic
444 evolution further strengthen regional differences. For example, strong Cenozoic uplift
445 in Southeast Asia formed steep young landforms that promoted vertical permeability
446 dominance. In contrast, Paleozoic stable landmasses in northern Africa (e.g., the
447 Saharan Atlas Mountains) are dominated by horizontal cave systems, a geologic feature
448 that also makes the baseflow in this region significantly different from other regions
449 (Klimchouk, 2007; Jiang et al., 2020). Surface cover characteristics are equally critical
450 as secondary geologic elements. For example, thicker soil layers in temperate zones
451 (e.g., Slovenia) increase surface runoff diversion through delayed infiltration, whereas
452 large areas of exposed bedrock in equatorial zones infiltrate directly through solution
453 gaps, creating a multiplicative effect on the BFI (Li et al., 2023).

454 Climate elements reshape geological structures over large time scales through
455 geological erosion processes, thereby indirectly influencing baseflow patterns. While
456 short-term hydrological dynamics are affected by climate parameters such as
457 precipitation intensity and seasonal distribution (Mo et al., 2021 ; Cheng et al .,2023),
458 the profound control of climate on the baseflow index is evident in its long-term
459 modification of karst systems. For example, the strong coupling of heavy precipitation
460 and high temperatures in equatorial regions significantly accelerates the dissolution of
461 carbonate rocks, forming a dense network of highly permeable dissolution fissures.
462 Conversely, the persistent moisture associated with temperate maritime climates
463 enhances the dissolution of carbonate rocks (with an average annual dissolution rate

464 approximately 40% higher than that of non-karst areas at the same latitude), leading to
465 the formation of cave clusters characterized by labyrinthine structures and interwoven
466 underground river systems. This climate-driven differentiation in dissolution alters the
467 capacity of groundwater storage spaces, ultimately reflecting in the characteristic values
468 of regional baseflow indices (Ford and Williams, 2007; Goldscheider, 2015; Tapiador
469 et al., 2012).

470 4.3 Reasons for changes in baseflow indices over time

471 The results of the experiment revealed an increasing trend in the BFI in the karst
472 region (Figure 8). Although the degree of increase is low (about 1.5% from 1960 to
473 2015), we still feel that this degree of increase in BFI is a cause for concern given that
474 the average BFI in the karst region is already at a high level. The reason for the
475 increasing trend in BFI in the karst region is presumably caused by the large loss of
476 groundwater. Extensive monitoring has shown that groundwater levels globally show a
477 rapid declining trend, and this systematic attenuation has triggered multiple crises such
478 as basin hydrological process anomalies and regional climate feedback imbalances
479 (Jasechko et al., 2024, de Graaf et al. 2019; Liu et al., 2015). It is the rapid decline of
480 the water table that leads to a constant unsaturated state of groundwater storage.
481 Therefore, when recharged by precipitation, large amounts of precipitation
482 preferentially fill the void in the water table, making the generation of surface runoff
483 require longer recharge cycles.

484 In addition to this, the geological and hydrological characteristics of the karst
485 region further amplify this effect of reduced surface runoff and increased Baseflow
486 (Zhu et al., 2025). On the one hand, there is the rapid water-conducting effect of the
487 karst fissure network, where the extensive development of dissolution pipes and
488 fissures in the karst bedrock accelerates vertical infiltration of precipitation into deep
489 groundwater, leading to difficulties in retaining soil moisture and a significant increase
490 in the runoff generation threshold (Hartmann et al., 2014). On the other hand, there is
491 the dissipative effect of the surface-subsurface dichotomy, where the thickness of the
492 unsaturated zone of the karst aquifer increases in the context of persistent groundwater
493 overdraft (D'Ettorre et al., 2024), further weakening the immediate contribution of
494 precipitation events to runoff.

495 4.4 Applicability and limitations of this study

496 With regard to data sources, the original data sources are diverse and complex.

497 Although we have made a lot of efforts to eliminate a large number of original
498 documents with distorted data and to screen out some unreasonable data in the
499 calculation, it is always difficult to fully balance the deficiencies in the original data.

500 On the boundaries of applicability of the method itself. For example, the
501 parameterization framework of digital filtering methods (e.g., Eckhardt and Chapman
502 algorithms) based on the assumption of linear recession is at variance with the nonlinear
503 characteristics of karst hydrological processes. Together with the rapid recession
504 processes dominated by karst pipe flow (rates up to 2-3 times that of porous media
505 basins) leads to a general underestimation of the recession coefficient (Kang et al 2022;
506 Rattayová & Hlavčová., 2023), which leads to differences in baseflow separation
507 between methods with different principles. For example, the Chapman and CM
508 methods used in this study, from the results of the two methods, the separation of
509 baseflow is significantly lower than the other methods, which is due to the lower degree
510 of response of the Chapman and CM methods to precipitation recharge, which is also
511 reflected in Helfer's study (Helfer et al., 2024). In addition, empirical parameters such
512 as maximum baseflow (BFI_max) are mostly derived from rate-determined results for
513 temperate homogeneous aquifers, and their physical mechanisms have not been fully
514 adapted for applicability in karst regions (Zhou et al., 2017).

515 Despite the above limitations, this study ensures the spatial representativeness and
516 methodological reliability of the study conclusions by integrating a global-scale multi-
517 source dataset of karst region (covering more than 85% of the typical karst
518 geomorphological units) and adopting standardized validation indexes (KGE, NSE).
519 The results show that the karst baseflow separation results can effectively characterize
520 the regional hydrological features and provide data support for water resource
521 management and eco-hydrological model construction in karst region. Future research
522 can integrate geophysical exploration and isotope tracer technology to develop a
523 dynamic parameterization scheme adapted to non-homogeneous media.

524 5. Conclusion

525 This study systematically analyzes the spatial distribution characteristics and trends
526 of BFIs in global karst regions. The results show that the BFI (78%) in karst regions is
527 generally significantly higher than the global BFI. This phenomenon confirms the
528 differential regulation of the runoff partitioning mechanism by the unique surface-
529 groundwater dichotomy in karst regions. Meanwhile, the study systematically evaluates
530 the applicable boundary of the hydrographic method in karst region and proves the

531 applicability of the hydrographic method in karst region. It is noteworthy that the BFI
532 in the karst region shows a phased upward trend against the background of the general
533 decay of global groundwater reserves. This may be related to the buffering effect of
534 karst aquifers on extreme climatic events and human activity-induced changes in the
535 subsurface bedding. In future research, we can integrate high-precision geological
536 tectonic data and multi-source remote sensing information to construct a coupled
537 climate-hydrology-geology model to quantitatively analyze the response characteristics
538 of hydrological fluxes of karst systems under the background of climate change, and
539 further improve the spatial and temporal resolution dimensions of karst water cycle
540 theory.

541

542 Declaration of the Competing Interest

543 The authors declare that they have no known competing financial interests or
544 personal relationships that could have appeared to influence the work reported in this
545 paper

546 Acknowledgments

547 This study was supported by the National Natural Science Foundation of China
548 (42461004, U1812401, U1612441); Science and Technology Plan Project of Guizhou
549 Province (Qiankehejichu-ZK[2025] Zhongdian 045; Qiankehejichu-ZK[2025]
550 Mianshang 268)

551

552 References:

553 Mukherjee, A., Bhanja, S.N. & Wada, Y. Groundwater depletion causing reduction of baseflow
554 triggering Ganges river summer drying. *Sci Rep* **8**, 12049 (2018). <https://doi.org/10.1038/s41598-018-30246-7>

555 Chen, H., Chen, Y., Li, W., & Li, Z. (2019). Quantifying the contributions of snow/glacier meltwater
556 to river runoff in the Tianshan Mountains, Central Asia. *Global and Planetary Change*, **174**, 47-57.
557 <https://doi.org/10.1016/j.gloplacha.2019.01.002>

558 Saedi, J., Sharifi, M.R., Saremi, A. *et al.* Assessing the impact of climate change and human activity
559 on streamflow in a semiarid basin using precipitation and baseflow analysis. *Sci Rep* **12**, 9228
560 (2022). <https://doi.org/10.1038/s41598-022-13143-y>

561 Hare, D.K., Helton, A.M., Johnson, Z.C. *et al.* Continental-scale analysis of shallow and deep
562 groundwater contributions to streams. *Nat Commun* **12**, 1450 (2021).
563 <https://doi.org/10.1038/s41467-021-21651-0>

564 Yang, C., Condon, L.E. & Maxwell, R.M. Unravelling groundwater–stream connections over the
565 continental United States. *Nat Water* **3**, 70–79 (2025). <https://doi.org/10.1038/s44221-024-00366-8>

566 Zhang, J., Song, J., Cheng, L., Zheng, H., Wang, Y., Huai, B., Sun, W., Qi, S., Zhao, P., Wang, Y., &
567 Li, Q. (2019). Baseflow estimation for catchments in the Loess Plateau, China. *Journal of
568 Environmental Management*, **233**, 264–270. <https://doi.org/10.1016/j.jenvman.2018.12.040>

569 Mei, Y., Wang, D., Zhu, J., Tang, G., Cai, C., Shen, X., *et al.* (2024). Optimal baseflow separation
570 through chemical mass balance: Comparing the usages of two tracers, two concentration estimation
571 methods, and four baseflow filters. *Water Resources Research*, **60**,
572 [e2023WR036386](https://doi.org/10.1029/2023WR036386). <https://doi.org/10.1029/2023WR036386>

573 Kuehne, L. M., Dickens, C., Tickner, D., Messager, M. L., Olden, J. D., O'Brien, G., Lehner, B., &
574 Eriyagama, N. (2023). The future of global river health monitoring. *PLOS Water*, **2**(9), 1–27. Article
575 [e0000101](https://doi.org/10.1371/journal.pwat.0000101). <https://doi.org/10.1371/journal.pwat.0000101>

576 Xie, J., Liu, X., Jasechko, S. *et al.* Majority of global river flow sustained by groundwater. *Nat.
577 Geosci.* **17**, 770–777 (2024). <https://doi.org/10.1038/s41561-024-01483-5>

578 Beck, H. E., A. I. J. M. van Dijk, D. G. Miralles, R. A. M. de Jeu, L. A. Bruijnzeel, T. R. McVicar,
579 and J. Schellekens (2013), Global patterns in base flow index and recession based on streamflow
580 observations from 3394 catchments, *Water Resour. Res.*, **49**, 7843–7863,
581 doi:10.1002/2013WR013918.

583 Lyu, S., Guo, C., Zhai, Y., Huang, M., Zhang, G., Zhang, Y., Cheng, L., Liu, Q., Zhou, Y., Woods,
584 R., Zhang, J., & 11 others. (2023). Characterising baseflow signature variability in the Yellow River
585 Basin. *Journal of Environmental Management*, 345, 118565.
586 <https://doi.org/10.1016/j.jenvman.2023.118565>

587 Zhang, J., Song, J., Cheng, L., Zheng, H., Wang, Y., Huai, B., ... & Li, Q. (2019). Baseflow
588 estimation for catchments in the Loess Plateau, China. *Journal of environmental management*, 233,
589 264-270.

590 Zhang, J., Song, J., Cheng, L., Zheng, H., Wang, Y., Huai, B., ... & Li, Q. (2019). Baseflow
591 estimation for catchments in the Loess Plateau, China. *Journal of Environmental Management*, 233,
592 264-270. <https://doi.org/10.1016/j.jenvman.2018.12.040>

593 Jing, J., Li, R., Xiao, L., Shu, D., & Yang, P. (2024). Interpreting and modelling the daily extreme
594 sediment events in karst mountain watersheds. *Science of The Total Environment*, 926, 171956.
595 <https://doi.org/10.1016/j.scitotenv.2024.171956>

596 Ford, D., & Williams, P. (2007). *Karst Hydrogeology and Geomorphology*. John Wiley & Sons Ltd.
597 <https://doi.org/10.1002/9781118684986>

598 Rosmalinda Permatasari, Arwin Sabar, Dantje Kardana Natakusumah, & Hazairin Samaulah. (2019).
599 EFFECTS OF WATERSHED TOPOGRAPHY AND LAND USE ON BASEFLOW
600 HYDROLOGY IN UPSTREAM KOMERING SOUTH SUMATERA, INDONESIA. *GEOMATE*
601 Journal, 17(59), 28–33. Retrieved from <https://geomatejournal.com/geomate/article/view/251>

602 Khomsianti, N. L., Suryoputro, N., Yulistyorini, A., Idfi, G., & Alias, N. E. B. (2021). The effect of
603 forest area change in tropical islands towards baseflow and streamflow. *IOP Conference Series: Earth and Environmental Science*, 847, 012032. <https://doi.org/10.1088/1755-1315/847/1/012032>

605 Longobardi A, Van Loon AF. Assessing baseflow index vulnerability to variation in dry spell length
606 for a range of catchment and climate properties. *Hydrological Processes*. 2018; 32: 2496–
607 2509. <https://doi.org/10.1002/hyp.13147>

608 Guisiano, P. A., Santoni, S., Huneau, F., Mattei, A., & Garel, E. (2024). Using natural tracers and
609 calibrated analytical filter to highlight baseflow contribution to mountainous Mediterranean rivers
610 in a context of climate change. *Journal of Hydrology*, 641, 131842.
611 <https://doi.org/10.1016/j.jhydrol.2024.131842>

612 Mo, C., Ruan, Y., Xiao, X., Lan, H., & Jin, J. (2021). Impact of climate change and human activities
613 on the baseflow in a typical karst basin, Southwest China. *Ecological Indicators*, 126, 107628.
614 <https://doi.org/10.1016/j.ecolind.2021.107628>

615 Luo, Y., Zhou, Q., Peng, D., Yan, W., & Zhao, M. (2023). Key influence of hydrogeological,
616 geochemical, and geological structure factors on runoff characteristics in karst catchments. *Journal
617 of Hydrology*, 623, 129852. <https://doi.org/10.1016/j.jhydrol.2023.129852>

618 Li, Y., Zhou, Q., & Zhao, Y. Hydrologic response in a typical karst desertification catchment.
619 *Carbonates Evaporites* 39, 16 (2024). <https://doi.org/10.1007/s13146-024-00929-6>

620 Li, Y., Li, K., Zhou, Q., Zhao, Y., Cai, L., & Yang, Z. (2024). Spatiotemporal dynamics and similarity
621 in soil moisture in shallow soils on karst slopes. *Journal of Hydrology*, 639, 131655.
622 <https://doi.org/10.1016/j.jhydrol.2024.131655>

623 Zhu De-gen, Ning Jing, Yang Hui, Pu Jun-bing, Cao Jian-hua, Zhou Meng-xia, Prelovšek Mitja,
624 Ravbar Nataša. 2025. Research hotspot and trend of plant water use in karst: Based on a bibliometric
625 analysis from 1984 to 2022. *China Geology*, 8(1), 214–229. doi: 10.31035/cg2023134.

626 Cheng, S., Yu, X., Li, Z., Xu, X., Gao, H., & Ye, Z. (2023). The effect of climate and vegetation

627 variation on monthly sediment load in a karst watershed. *Journal of Cleaner Production, 382*,
628 135290. <https://doi.org/10.1016/j.jclepro.2022.135290>

629

630 Tobin BW, Schwartz BF. Quantifying the role of karstic groundwater in a snowmelt-dominated
631 hydrologic system. *Hydrological Processes*. 2020; 34: 3439–
632 3447. <https://doi.org/10.1002/hyp.13833>

633 Tobin BW, Schwartz BF. Quantifying the role of karstic groundwater in a snowmelt-dominated
634 hydrologic system. *Hydrological Processes*. 2020; 34: 3439–
635 3447. <https://doi.org/10.1002/hyp.13833>

636 Mo, C., Jiang, C., Long, S., & Cen, W. (2025). Comprehensive evaluation and attribution analysis
637 of baseflow variation in a typical karst basin, Southwest China. *Journal of Hydrology: Regional
638 Studies*, 57, 102185. <https://doi.org/10.1016/j.ejrh.2025.102185>

639 Foran Quinn, D., Murphy, C., Wilby, R. L., Matthews, T., Broderick, C., Golian, S., ... Harrigan, S.
640 (2021). Benchmarking seasonal forecasting skill using river flow persistence in Irish
641 catchments. *Hydrological Sciences Journal*, 66(4), 672–688.
642 <https://doi.org/10.1080/02626667.2021.1874612>

643 Lyu, S., Zhai, Y., Zhang, Y., Cheng, L., Paul, P. K., Song, J., Wang, Y., Huang, M., Fang, H., &
644 Zhang, J. (2022). Baseflow signature behaviour of mountainous catchments around the North China
645 Plain. *Journal of Hydrology*, 606, 127450. <https://doi.org/10.1016/j.jhydrol.2022.127450>

646 Tagne, G. V. and Dowling, C., "Inferring groundwater flow and recharge from time series analysis
647 of storm responses in a karst aquifer of southeastern Kentucky (USA)" (2018). KIP Articles.
648 2659.https://digitalcommons.usf.edu/kip_articles/2659

649 Guisiano, P. A., Santoni, S., Huneau, F., Mattei, A., & Garel, E. (2024). Using natural tracers and
650 calibrated analytical filter to highlight baseflow contribution to mountainous Mediterranean rivers
651 in a context of climate change. *Journal of Hydrology*, 641, 131842.
652 <https://doi.org/10.1016/j.jhydrol.2024.131842>

653 He, Z., Unger-Shayesteh, K., Vorogushyn, S., Weise, S. M., Kalashnikova, O., Gafurov, A.,
654 Duethmann, D., Barandun, M., & Merz, B. (2019). Constraining hydrological model parameters
655 using water isotopic compositions in a glacierized basin, Central Asia. *Journal of Hydrology*, 571,
656 332–348. <https://doi.org/10.1016/j.jhydrol.2019.01.048>

657 Yang, Y., Weng, B., Yan, D., Gong, X., Dai, Y., Niu, Y., & Dong, G. (2021). Tracing potential water
658 sources of the Nagqu River using stable isotopes. *Journal of Hydrology: Regional Studies*, 34,
659 100807. <https://doi.org/10.1016/j.ejrh.2021.100807>

660 Arnold, Jeffrey G. et al. "SWAT: Model Use, Calibration, and Validation." *Transactions of the
661 ASABE* 55 (2012): 1491–1508.

662 Wu, L., Wang, S., Bai, X., Luo, W., Tian, Y., Zeng, C., Luo, G., & He, S. (2017). Quantitative
663 assessment of the impacts of climate change and human activities on runoff change in a typical karst
664 watershed, SW China. *Science of The Total Environment*, 601–602, 1449–1465.
665 <https://doi.org/10.1016/j.scitotenv.2017.05.288>

666 Lehner, B., Grill G. (2013). Global river hydrography and network routing: baseline data and new
667 approaches to study the world's large river systems. *Hydrological Processes*, 27(15): 2171–
668 2186. <https://doi.org/10.1002/hyp.9740>

669 Li, Bailing, Rodell, Matthew, Sheffield, Justin, Wood, Eric, Sutanudjaja, Edwin. 2019. Long-term,
670 non-anthropogenic groundwater storage changes simulated by three global-scale hydrological

671 models. *Scientific Reports*. Vol. 9, No. 1, pp. 10746. DOI: 10.1038/s41598-019-47219-
672 z ISSN: 2045-2322

673 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić,
674 A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R.,
675 MacMillan, R. A., Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B.
676 (2017). SoilGrids250m: Global gridded soil information based on machine learning. *PLoS One*, 12(2),
677 e0169748. <https://doi.org/10.1371/journal.pone.0169748>

678 arris, I., Osborn, T.J., Jones, P. *et al.* Version 4 of the CRU TS monthly high-resolution gridded
679 multivariate climate dataset. *Sci Data* 7, 109 (2020).

680 Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for
681 global land areas. *International Journal of Climatology* 37 (12): 4302-4315.

682 Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. 2014. Regridded Harmonized World Soil
683 Database v1.2. ORNL DAAC, Oak Ridge, Tennessee, USA.
684 <https://doi.org/10.3334/ORNLDAC/1247>

685 Bright, E., Rose, A., & Urban, M. (2013). *LandScan Global 2012* [Data set]. Oak Ridge National
686 Laboratory. <https://doi.org/10.48690/1524215>

687 Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and
688 Dorigo, W.: VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset
689 from microwave remote sensing, *Earth Syst. Sci. Data*, 14, 1063–1085, <https://doi.org/10.5194/essd-14-1063-2022>, 2022.

690 Tang, W. (2019). Dataset of high-resolution (3 hour, 10 km) global surface solar radiation (1983–
691 2018). National Tibetan Plateau / Third Pole Environment Data
692 Center. <https://doi.org/10.11888/Meteoro.tpdc.270112>.

693 Brutsaert, W. (2008). Long-term groundwater storage trends estimated from streamflow records:
694 Climatic perspective, *Water Resour. Res.*, 44, W02409, doi:10.1029/2007WR006518.

695 Rammal, M., Archambeau, P., Erpicum, S., Orban, P., Brouyère, S., Pirotton, M.,
696 & Dewals, B. (2018). Technical note: An operational implementation of recursive digital filter for
697 base flow separation. *Water Resources Research*, 54, 8528–
698 8540. <https://doi.org/10.1029/2018WR023351>

699 Xie, J., Liu, X., Wang, K., Yang, T., Liang, K., & Liu, C. (2020). Evaluation of typical methods for
700 baseflow separation in the contiguous United States. *Journal of Hydrology*, 583, 124628.
701 <https://doi.org/10.1016/j.jhydrol.2020.124628>

702 Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A
703 discussion of principles. *Journal of Hydrology*, 10(3), 282–290. [https://doi.org/10.1016/0022-1694\(70\)90255-6](https://doi.org/10.1016/0022-1694(70)90255-6)

704 Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean
705 squared error and NSE performance criteria: Implications for improving hydrological modelling.
706 *Journal of Hydrology*, 377(1–2), 80–91. <https://doi.org/10.1016/j.jhydrol.2009.08.003>

707 Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., & Righetti, M. (2024).
708 Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–
709 May 2023). *Environmental Modelling & Software*, 174, 105971.

710 Zhang, J., Ma, X., Zhang, J., Sun, D., Zhou, X., Mi, C., & Wen, H. (2023). Insights into geospatial
711 heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. *Journal of
712 Environmental Management*, 332, 117357. <https://doi.org/10.1016/j.jenvman.2023.117357>

715 Chen, Tianqi & Guestrin, Carlos. (2016). XGBoost: A Scalable Tree Boosting System. 785-794.
716 10.1145/2939672.2939785.

717 Medici, G., West, L. J., & Banwart, S. A. (2019). Groundwater flow velocities in a fractured
718 carbonate aquifer-type: Implications for contaminant transport. *Journal of Contaminant Hydrology*,
719 222, 1-16. <https://doi.org/10.1016/j.jconhyd.2019.02.001>

720 Zhang, J., Wang, S., Fu, Z., Wang, K., & Chen, H. (2024). Characterizing rapid infiltration processes
721 on complex hillslopes: Insights from soil moisture response to rainfall events. *Journal of Hydrology*,
722 644, 132110. <https://doi.org/10.1016/j.jhydrol.2024.132110>

723 Reimann, T., T. Geyer, W. B. Shoemaker, R. Liedl, and M. Sauter (2011), Effects of dynamically
724 variable saturation and matrix-conduit coupling of flow in karst aquifers, *Water Resour. Res.*, 47,
725 W11503, doi:10.1029/2011WR010446.

726 Reimann, T., T. Geyer, W. B. Shoemaker, R. Liedl, and M. Sauter (2011), Effects of dynamically
727 variable saturation and matrix-conduit coupling of flow in karst aquifers, *Water Resour. Res.*, 47,
728 W11503, doi:10.1029/2011WR010446.

729 Baily-Comte, V., Martin, J. B., Jourde, H., Screamton, E. J., Pistre, S., & Langston, A. (2010). Water
730 exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics
731 of two karst aquifers with sinking streams. *Journal of Hydrology*, 386(1-4), 55-66.
732 <https://doi.org/10.1016/j.jhydrol.2010.03.005>

733 Evans, G. V. (1983). Tracer techniques in hydrology. *The International Journal of Applied Radiation
734 and Isotopes*, 34(1), 451-475. [https://doi.org/10.1016/0020-708X\(83\)90144-8](https://doi.org/10.1016/0020-708X(83)90144-8)

735 Ronayne, M. J. (2013). Influence of conduit network geometry on solute transport in karst aquifers
736 with a permeable matrix. *Advances in Water Resources*, 56, 27-34.
737 <https://doi.org/10.1016/j.advwatres.2013.03.002>

738 Zhang, J., Wang, S., Fu, Z., Chen, H., & Wang, K. (2022). Soil thickness controls the rainfall-runoff
739 relationship at the karst hillslope critical zone in southwest China. *Journal of Hydrology*, 609,
740 127779. <https://doi.org/10.1016/j.jhydrol.2022.127779>

741 Cusano, D., Allocca, V., Coda, S., Di Clemente, E., Fabbrocino, S., Lepore, D., Panza, R., Petrone,
742 P., & De Vita, P. (2024). Effects of ash-fall pyroclastic soil mantle on groundwater recharge of
743 Terminio Mt. peri-volcanic karst aquifer. *Journal of Hydrology: Regional Studies*, 53, 101844.
744 <https://doi.org/10.1016/j.ejrh.2024.101844>

745 Anker Y, Gimburg A, Zilberbrand M, Livshitz Y, Mirlas V. Groundwater Recharge Assessment for
746 Small karstic Catchment Basins with Different Extents of Anthropogenic
747 Development. *Environments*. 2023; 10(9):158. <https://doi.org/10.3390/environments10090158>

748 LI Zhenhua, LI Songtao, DU Feng, *et al.* Research on the development law of karst caves on
749 water conducting fractures under the influence of mining in Southwest karst Mining Areas[J]. *Coal
750 Science and Technology*, 2023, 51 (7): 106–117. DOI: 10.13199/j.cnki.cst.2023-0409

751 Jiang, Z., Liu, H., Wang, H. *et al.* Bedrock geochemistry influences vegetation growth by regulating
752 the regolith water holding capacity. *Nat Commun* 11, 2392 (2020). [https://doi.org/10.1038/s41467-020-16156-1](https://doi.org/10.1038/s41467-
753 020-16156-1)

754 Wang, F., Chen, H., Lian, J., Fu, Z., & Nie, Y. (2020). Hydrological response of karst stream to
755 precipitation variation recognized through the quantitative separation of runoff components. *Science
756 of The Total Environment*, 748, 142483. <https://doi.org/10.1016/j.scitotenv.2020.142483>

757 Wetzel, P. J., Liang, X., Iraennejad, P., Boone, A., Noilhan, J., Shao, Y., Skelly, C., Xue, Y., & Yang,
758 Z. L. (1996). Modeling vadose zone liquid water fluxes: Infiltration, runoff, drainage,

759 interflow. *Global and Planetary Change*, 13(1–4), 57–71. [https://doi.org/10.1016/0921-8181\(95\)00037-2](https://doi.org/10.1016/0921-8181(95)00037-2)

760 Duringer, P., Bacon, A.-M., Sayavongkhamdy, T., & Nguyen, T. K. T. (2012). karst development, 761 breccias history, and mammalian assemblages in Southeast Asia: A brief review. *Comptes Rendus 762 Palevol*, 11(2–3), 133–157. <https://doi.org/10.1016/j.crpv.2011.07.003>

764 Jiang, Z., Liu, H., Wang, H. *et al.* Bedrock geochemistry influences vegetation growth by regulating 765 the regolith water holding capacity. *Nat Commun* 11, 2392 (2020). <https://doi.org/10.1038/s41467-020-16156-1>

767 Teixeira, G. M., de Paula, R. S., Velasquez, L. N. M., Andrade, I. B., & Neto, W. M. 768 P. (2023). Evaluation of recharge estimation methods applied to fissure and karst aquifers of the 769 Lagoa Santa karst Environmental Protection Area, Brazil. *Hydrological Processes*, 37(8), 770 e14971. <https://doi.org/10.1002/hyp.14971>

771 Klimchouk, Alexander Borisovich, "Hypogene speleogenesis: Hydrogeological and Morphogenetic 772 Perspective NCKRI - Special Paper 1" (2007). *KIP Monographs*. 773 13.https://digitalcommons.usf.edu/kip_monographs/13

774 Jiang, G., Chen, Z., Siripornpibul, C. *et al.* The karst water environment in Southeast Asia: 775 characteristics, challenges, and approaches. *Hydrogeol J* 29, 123–135 (2021). 776 <https://doi.org/10.1007/s10040-020-02267-y>

777 Li, Y., Wang, S., Peng, T., Zhao, G., & Dai, B. (2023). Hydrological characteristics and available 778 water storage of typical karst soil in SW China under different soil–rock structures. *Geoderma*, 438, 779 116633. <https://doi.org/10.1016/j.geoderma.2023.116633>

780 Goldscheider, Nico. (2015). Overview of Methods Applied in karst Hydrogeology. 10.1007/978-3- 781 319-12850-4_4.

782 Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A. T., ... 783 Huffman, G. J. (2012). Global precipitation measurement: Methods, datasets and 784 applications. *Atmospheric Research*, 104–105, 70–97. 785 <https://doi.org/10.1016/j.atmosres.2011.10.021>

786 Wang, S., Yan, Y., Zhao, Y., Fu, Z., & Chen, H. (2024). Co-evolution among soil thickness, epikarst 787 weathering degree, and runoff characteristics on a subtropical karst hillslope. **Journal of Hydrology*, 788 628*, 130499. <https://doi.org/10.1016/j.jhydrol.2023.130499>

789 Fu, Z., Chen, H., Xu, Q., Jia, J., Wang, S., and Wang, K. (2016) Role of epikarst in near-surface 790 hydrological processes in a soil mantled subtropical dolomite karst slope: implications of field 791 rainfall simulation experiments. *Hydrol. Process.*, 30: 795–811. doi: 10.1002/hyp.10650.

792 Liu, X., Fu, Z., Zhang, W., Xiao, S., Chen, H., & Wang, K. (2023). Soluble carbon loss through 793 multiple runoff components in the shallow subsurface of a karst hillslope: Impact of critical zone 794 structure and land use. **CATENA*, 222*, 106868. <https://doi.org/10.1016/j.catena.2022.106868>

795 Jasechko, S., Seybold, H., Perrone, D. *et al.* Rapid groundwater decline and some cases of recovery 796 in aquifers globally. *Nature* 625, 715–721 (2024). <https://doi.org/10.1038/s41586-023-06879-8>

797 de Graaf, I.E.M., Gleeson, T., (Rens) van Beek, L.P.H. *et al.* Environmental flow limits to global 798 groundwater pumping. *Nature* 574, 90–94 (2019). <https://doi.org/10.1038/s41586-019-1594-4>

799 Liu, B., Chen, C., Lian, Y., Chen, J., & Chen, X. (2015). Long-term change of wet and dry climatic 800 conditions in the southwest karst area of China. *Global and Planetary Change*, 127, 1–11. 801 <https://doi.org/10.1016/j.gloplacha.2015.01.009>

802 Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M. (2014). karst water resources

803 in a changing world: Review of hydrological modeling approaches. *Reviews of Geophysics*, 52(3),
804 218-242. <https://doi.org/10.1002/2013RG000443>
805 D’Ettorre, U. S., Liso, I. S., & Parise, M. (2024). Desertification in karst areas: A review. *Earth-
806 Science Reviews*, 253, 104786. <https://doi.org/10.1016/j.earscirev.2024.104786>
807 Kang T, Lee S, Lee N, Jin Y. Baseflow Separation Using the Digital Filter Method: Review and
808 Sensitivity Analysis. *Water*. 2022; 14(3):485. <https://doi.org/10.3390/w14030485>
809 Rattayová, V., & Hlavčová, K. (2023). Base flow separation method in conditions of the karst
810 catchment. *Pollack Periodica*, 18(2), 72-77.
811 Helfer, F., Bernardi, F. K., Barros, C. A. P. de, Piccilli, D. G. A., Minella, J. P. G., Tassi, R., &
812 Schlesner, A. A. (2024). Calibrated Eckhardt’s filter versus alternative baseflow separation methods:
813 A silica-based approach in a Brazilian catchment. *Journal of Hydrology*, 644, 132073.
814 <https://doi.org/10.1016/j.jhydrol.2024.132073>
815 Zhou, X., Shen, C., Ni, G., & Hu, H. (2017). Digital filter-based baseflow separation method
816 combined with recession curves. *Journal of Tsinghua University*, 57(03), 318-330.
817 <https://doi.org/10.16511/j.cnki.qhdxxb.2017.26.016>
818 Lebakula V , Sims K , Reith A ,et al.LandScan Global 30 Arcsecond Annual Global Gridded
819 Population Datasets from 2000 to 2022. *Scientific Data*, 2025, 12(1).DOI:10.1038/s41597-025-
820 04817-z.
821
822
823

824 **Author contributions**

825 Ze Yuan: Conceptualization, Methodology, Writing – original draft.
826 Qiuwen Zhou: Formal analysis, Investigation, Writing – review & editing.
827 Yuan Li: Data curation, Visualization, Software.
828 Yuluan Zhao: Validation, Resources, Project administration.
829 Shengtian Yang: Supervision, Funding acquisition, Writing – review & editing.
830
831
832

833 **Acknowledgments**

834 The authors thank all those who provided valuable assistance during the experimental
835 process.