https://doi.org/10.5194/egusphere-2025-2843
Preprint. Discussion started: 28 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

1 Baseflow in karst regions is significantly higher than the

global average and exhibits spatial variability

N

Author :Ze Yuan *°, Qiuwen Zhou ***, Yuan Li ***, Yuluan Zhao *°, Shen
gtian Yang ¢4

Affiliation:

a. School of Geography and Environmental Science, Guizhou Normal Un
iversity, 550001 Guiyang, China

© 0o N o o b~ W

b. Karst Ecosystem Field Scientific Observation and Research Station of
10 Guizhou Normal University & Guanling Autonomous County, 561300 G
11 uanling, China

12 c. Institute of Ecological Civilization, Guizhou Normal University, 55000
13 1 Guiyang, China

14 d. College of Water Sciences, Beijing Normal University, 100875 Beijing,
15  China

16  Corresponding author: Qiuwen Zhou *, Yuan Li*

17 Email: zqw@gznu.edu.cn, Yuan Li: liyuan7pro@163.com

18



https://doi.org/10.5194/egusphere-2025-2843
Preprint. Discussion started: 28 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

19

20 Abstract: The distinct hydrogeological configurations of karst terrains engender
21  fundamentally divergent baseflow regimes compared with non-karst systems. However,
22  there is still some uncertainty in the understanding of baseflow in global karst regions
23 due to the variability of methods and differences in natural conditions in different
24 regions. In this study, runoff data from 1375 karst basins around the world were
25  summarized, and graphical and digital filtering methods were used to estimate baseflow
26  in global karst regions and to analyze their spatial differences and trends. The results
27  show that the baseflow index of global karst areas is about 78 * 6.9%, which is
28  significantly higher than the global average baseflow index (60%). The baseflow index
29  of karst regions in different climatic zones also differed significantly, in which the
30 average baseflow index of arid karst regions (82%) was significantly higher than the
31 average baseflow index of subtropical karst regions (77%). Even within the same
32  climate zone, the base flow index of different regions may also have significant
33  differences, and the difference of some regions is even >10%. Vegetation factors
34  reflected in primary productivity have the highest influence on baseflow in karst regions
35  (15%), while climatic factors (relative humidity, air temperature, etc.) have a lower
36  influence on BFIs in karst regions (less than 5%). From the time series trend, the global
37  karst baseflow index shows an increasing trend, about 1.5% from 1960 to 2015. These
38  results help us to further understand karst hydrological processes and the response
39  mechanism of karst hydrology under climate change.
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44 1. Introduction

45 Baseflow plays a central role as a slow recharge component of groundwater to
46  runoff as a hydrological stabiliser (Mukherjee et al., 2018; Chen et al.,2019). The
47  proportion and dynamic characteristics of baseflow in runoff not only regulate the
48  ecological balance threshold of rivers, but also profoundly affect the resilience of
49  watersheds in response to climate fluctuations (Saedi et al ., 2022; Hare et al., 2021,
50  Yang et al., 2023). Therefore, accurate quantification of the characteristics of baseflow
51  can help to understand the runoff evolution pattern and its response mechanism to
52  regional environmental changes (Mei et al., 2024; Kuehne et al., 2023).

53 Recent studies on baseflow estimation have revealed its spatial variability
54  characteristics. Among them, Xie et al (2023), based on a coupled analysis of baseflow
55  separation and climate models for 15,000 catchments worldwide, pointed out that the
56  average contribution of baseflow to river runoff was about 60%. However, there are
57  significant regional differences under this macroscopic pattern, e.g., baseflow index
58  (BFI) calculations by Beck et al (2013) for 3,394 watersheds globally show that BFT is
59  generally higher in tropical and temperate-cold regions than in arid and semi-arid zones
60 (e.g., North and South Africa, Central Asia, and Australia). Regional scale studies
61  further refine the spatial differentiation pattern, such as the United States, where the
62  BFIis higher in the east than in the west, India, where the BFI is higher in the east than
63 in the west, and the Yellow River basin, where it is higher in the upstream and
64  downstream and lower in the middle reaches, whereas the BFI of the Wei River basin
65 in the Loess Plateau shows a gradual decrease from the upstream to the downstream
66  (Mei et al ., 2024 ; Sharma and Mujumdar ., 2024 ; Lyu et al ., 2023 ; Zhang et al .,
67  2019).

68 The current study characterises global baseflow features, but the unique
69  hydrological structure of karst landscapes (e.g., pipes and fissures) makes the baseflow
70  features obtained from the above study significantly less applicable in karst regions
71 (Jiang et al., 2024 ; Ford & Williams, 2007). The current study found significant
72  regional differences in BFI characteristics in karst regions around the world. In
73 particular, the high permeability of karst media in tropical karst regions (e.g., Sumatra,
74 Java) contributes to the rapid conversion of precipitation to groundwater, as analysed
75 in three sub-basins of the Brantas Hulu watershed, where the BFI exceeds 80%
76  (Pratama and Adji., 2020), and the study of three basins in Jonggrangan area also
77 showed BFI of more than 87 per cent (Khomsiati et al., 2021). Seasonal differences in
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78  BFI are highlighted in subtropical karst regions (Mediterranean Sea, Southern China),
79  such as central Italian basins with baseflow contributions spanning 30-76%, rising to
80  88-90% in dry months (Longobardi and Loon., 2017), and southeastern France has
81  significant differences in baseflow contributions (27%-61%) in years of abundant and
82  dry water (Guisiano et al., 2024). Temperate karst regions such as the Sierra Nevada
83  Kkarst region in North America generally have BFI higher than 65% (Tobin and
84  Schwartz., 2019). The BFI in the karst region of southwest China is 57% (Mo et al.,
85  2025), a stable BFI of =55% in temperate karst in central Ireland (Foran et al., 2021),
86 and a BFI of 36+ 10% in the karst mountains of eastern China (Lyu et al., 2022).
87 In summary, studies of baseflow in karst regions have revealed their obvious
88  spatial heterogeneity. A large number of studies have characterised the baseflow
89  characteristics of karst under different climatic zones, and also outlined the regional
90  baseflow characteristics of karst under different climatic zones (Tagne and Dowling.,
91  2018). However, existing studies still have obvious limitations, starting with an over-
92  focus on localised features in small regions, such as watershed studies in southern China
93  and the Mediterranean (Guisiano et al., 2024; Mo and Ruan., 2021), which makes the
94  results of the study not necessarily representative of the global karst region. The second
95 is the variability of research methods, such as hydrographic methods (graphical
96  methods, digital filtering methods), isotope tracer methods, etc. (He et al., 2019; Yang
97 etal ., 2021 ; Arnold et al.,2013). The difference in focus of the different methods also
98 reduces the commonality of the findings. These two reasons have led to a lack of
99  characterisation of overall features and reasonable quantification of regional differences,
100  despite the exploration of baseflow characteristics of karst basins in different regions
101 ofthe world (Wuetal., 2017; Mei et al., 2024). Therefore, the complete characterisation
102  of baseflow in the global karst region using reasonable methods and the accurate
103 quantification of the overall characteristics and regional differences of baseflow in the
104  global karst region are still urgently needed.
105 The aim of this study is to explore the baseflow characteristics and their internal
106  differences in the global karst region and to discuss the influence of different factors on
107  baseflow in karst regions. Global public runoff data were selected for the study, and
108  daily-scale runoff data from 1375 watersheds within the karst region were selected.
109  Twelve baseflow separation methods, including four graphical methods and eight
110  digital filtering methods, were used to separate the baseflow from the runoff data and

111 calculate BFIs. The reliability of the results was assessed using the Kling-Gupta
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112 Efficiency (KGE) (Gupta et al., 2009) and Nash-Sutcliffe Efficiency (NSE) (Nash and
113 Sutcliffe., 1970) coefficients, and finally, the XGBoost model was used to analyse the

114  influencing factors of the 12 indices on baseflow.

115 2. Materials and methods

116 2.1 Data sources

117 2.1.1 Runoff data

118 We have selected regions with a concentrated distribution of karst landscapes
119  worldwide. And combined with global watershed data (Lehner and Grill, 2013),
120  Koppen climate zoning, and urban distribution, select runoff observation stations with
121 less human activity and watershed areas less than 2500 km?2. Thus daily runoff data for
122 1412 watersheds with different time spans have been selected. The runoff data mainly
123 comes from the Global Runoff Data Center (https://www.bafg.de/GRDC), The
124  European Water Archive (https://ne-friend.bafg.de/servlet/), National River Flow
125  Archive, UK (https:/nrfaapps.ceh.ac.uk/nrfa/nrfa-api.html), Brazilian National Water
126 Authority (https://zenodo.org ), The National Hydrological Data Archive of Canada
127 (https://wateroffice.ec.gc.ca/), The Chinese Ministry of Water Resources
128  (http://www.cjh.com.cn/), The National Hydrological Information System of the United
129  States (https://waterdata.usgs.gov/nwis).

130 Due to quality differences in data from different hydrological observation stations,
131  itis necessary to clean the data from these 1412 stations. Exclude sites with severe data
132 gaps and supplement data from sites with a small amount of missing data. We use cubic
133 spline interpolation and linear interpolation to supplement data with missing amounts
134 less than 30 days. Finally, daily runoff data of 1375 watersheds in different time ranges
135  of karst regions worldwide were obtained. This includes 221 watersheds in tropical
136  karst zones, 91 watersheds in arid karst zones, 490 watersheds in subtropical karst zones,

137  and 568 watersheds in temperate karst zones (Figure 1).
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138
139  Figure 1. The distribution of karst landscapes and hydrological stations in various
140  climate zones around the world. The bar chart represents the number of hydrological
141  stations selected in each year, with the vertical axis indicating the number of selected
142 hydrological stations and the horizontal axis indicating the year. We selected years with
143 over 500 hydrological stations that meet the requirements within the same year for
144  subsequent analysis.

145  2.1.2 Selection of potential influencing factors of base flow

146 In order to analyse the influencing factors of baseflow, we further selected daily-
147  scale runoff data from 744 hydrological stations during 2011-2012 out of the 1375
148  hydrological stations mentioned earlier to calculate baseflow. The purpose of further
149  selecting the hydrological stations is to ensure the continuity of the data while at the
150  same time ensuring that the stations can cover the major karst regions of the world. We
151  selected a total of 12 potential influences. Climatic factors included temperature and
152  rainfall, and geological factors included depth to bedrock, water storage in epikarst,
153  slope, elevation, and soil evaporation. Other factors included runoff, population density,
154  gross primary productivity (GPP), relative humidity, and surface radiation, for a total
155  of 12 factors (Table 1).

156  Table 1. Detailed information on the 12 influencing factors

Temporal Spatial

Name . Data sources
scale resolution
Monthly The same as the runoff data in Section
Runoff volume -
everage 2.1.1
Epikarst water Monthly GES(Goddard Earth Sciences)DISC(Li et
30 arc-second
storage volume everage al .,2019)
0.25kmx0.25  ISRIC — World Soil Information (Hengl
Bedrock depth -
km etal .,2017)
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. Monthly
Air temperature 30 arc-second
everage
L Monthly Climatic Research Unit gridded Time
Precipitation 30 arc-second . .
everage Series(arris et al .,2020)
Relative Monthly
L 0.1°x0.1°
humidity everage
Elevation - 30 arc-second . . B
Worldclim(Fick and Hijmans .,2017)
Slope stepness - 30 arc-second
Available soil multi-year HWSD(Harmonized World Soil
. 1kmx1km .
moisture average Database)(Wieder et al .,2014)
. . LandScan Global 30 Arcsecond Annual
Population multi-year . .
. 30 arc-second Global Gridded Population Datasets
density average .
(Bright et al., 2013)
Gross primary multi-year . .
. 0.25°%x0.25° TU Data Repository(Wild et al.,2022)
production average
Land-surface Monthly 10k Data Center of the Qinghai-Tibet
m
radiation everage Plateau(Tang .,2019)

157
158 2.2 Methods

159  2.2.1 Baseflow separation methods

160 Commonly used methods for baseflow separation include isotope tracer methods,
161  hydrological modelling methods and hydrographic methods (including graphical
162  methods and digital filtering methods). However, the isotope tracer method relies on
163  high-precision isotope data and is difficult to be extended in data-poor areas, while the
164  hydrological modelling method is limited by the empirical nature of the parameters as
165  well as the regional nature. Therefore, considering the characteristics of the study area
166  (wide range and insufficient observational data), we chose the hydrographic method,
167  which requires less data and is relatively simple.

168 The computational tool used for baseflow separation in this study is from the
169  Python library baseflow (https://pypi.org/project/baseflow) developed by the team of
170  Xiaomang Liu at the Chinese Academy of Sciences, which contains four graphical
171  methods and eight digital filtering methods that allow simultaneous implementation of
172 multiple methods for baseflow separation (Xie et al. 2024). In addition to this the
173 baseflow library evaluates each method when separating the baseflow and obtains an
174  optimal method. In this study, the baseflow library was used to separate baseflow from
175  global runoff data and calculate its multi-year average BFI (Figure 6).

176 Graphical methods are techniques for isolating baseflow by analysing runoff

177 hydro-graph. The four graphical methods used in this study are Fixed Interval Method

7



https://doi.org/10.5194/egusphere-2025-2843
Preprint. Discussion started: 28 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

178 (FIM), Local Minimum Method (LMM), Sliding Window Method (SW) and UK
179  Institute of Hydrology (UKIH).

180 Digital filtering is a baseflow segmentation method that uses digital signal
181  processing techniques to separate baseflow from runoff by designing specific filters.
182  These methods usually involve one or two parameters, such as the recession coefficient.
183  The recession constant is automatically estimated in the baseflow library using the
184  Brutsaert method, and the second parameter is calibrated using the multi-objective
185  optimisation method proposed by Arnold (Brutsaert., 2008; Rammal et al., 2018). The
186  methods used in this work include the Boughton Method (Boughton), Chapman-
187 Maxwell Filter Method (CM), Chapman Filter Method (Chapman), Exponential
188  Weighted Moving Average (EWMA), Eckhardt Filter Method (Eckhardt), Furey Digital
189  Filter Method (Furey), Lyne-Hollick Digital Filter Method (LH), and Willems Digital
190  Filter Method (Willems).

191 2.2.2 Evaluation metrics for baseflow separation methods

192 In order to validate the accuracy of different baseflow separation methods in
193  karstic regions, we chose two metrics, KGE and NSE coefficients, to measure the
194  effectiveness of different methods in separating baseflows. The methodology used by
195  Xie et al (2020) for measuring and assessing the effectiveness of baseflow separation
196  methods in the US region was used, which centred on screening for strict baseflow
197  points.

198 2.2.3 Attributional analysis methods

199 Due to the significant differences in magnitude of the potential influences selected
200  at the global scale (a few hydrological stations are at extremely high elevations, whose
201  actual differences are compressed after normalisation, making it difficult to adequately
202  characterise the effect of elevation on baseflow), traditional linear models or distance
203  metric-based algorithms are susceptible to magnitude interference. Therefore, we chose
204  the magnitude-insensitive XGBoost model, which naturally circumvents the feature
205  scale difference problem through the splitting rule of the tree structure (Niazkar et
206  al.,2024; Zhang et al., 2022). In addition, the model's built-in regularisation mechanism
207  and subsampling strategy can effectively suppress overfitting and guarantee the model's
208  generalisation ability in complex geographic data. The model also supports parallel
209  computing with automatic processing of missing values, which significantly improves

210  the computational efficiency of large-scale spatial datasets (Chen and Guestrin.,2016).

211 3. Results
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212 3.1 Validation of the applicability of baseflow separation methods

213 We counted the best separation methods filtered in the Baseflow library for
214  baseflow separation for each hydrological station data. From the results in Fig. 2, 28%
215  of the hydrological stations are suitable for baseflow separation using the graphical
216  method, 71% of the stations are suitable for baseflow separation using the digital filter
217 method, and 1% of the stations have no obvious suitable separation method. Among
218  them, the EWMA method is the most effective for baseflow separation in karst area,
219  with 24% of hydrological stations suitable for baseflow separation, followed by the
220  Eckhardt method, with 21% of hydrological stations suitable for baseflow separation.
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221

222 Figure 2. Percentage of best separation methods in the karst region and number of best
223  separation methods in each climatic zone. Graphical methods are shown within the
224 white background, digital filtering methods are shown within the light blue background,
225  and different coloured bars correspond to different climatic zones.The X-axis shows the
226 12 baseflow separation methods, the Y-axis (left) shows the number of hydrological
227  stations, and the Y-axis (right) shows the number of hydrological stations covered by
228  each of the optimal baseflow separation methods as a proportion of the number of all
229  hydrological stations, which corresponds to the black curve.

230 Figure 3(a) shows the KGE coefficient distributions of different methods, from the
231  results, some digital filtering methods (orange) have concentrated KGE coefficient
232  distributions and the values are close to 1. For example, the five methods, Boughton,

233 Eckhardt, EWMA, Furey, and Willems, which indicate that the applicability of these

9
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234 five base-flow separation methods is high and effective in the karst region. The KGE
235  coefficients of the graphical method (green) are also well distributed, with most of the
236  KGE coefficient distribution ranges greater than 0.5 and the average KGE coefficients
237  of each method are greater than 0.75. It indicates that the graphical method also has
238  high applicability in the karst region. On the other hand, the three digital filtering
239  methods of Chapman, CM and LH have discrete distributions from the distribution of
240  KGE coefficients, although their average values are all greater than 0.5. It indicates that
241  theresults obtained by these three methods are more fluctuating when dealing with data
242  from different hydrological stations, and it also shows that these three methods are less
243  stable when performing baseflow separation.
244 The distribution pattern of the NSE coefficients of the different methods in Fig.
245  3(b) is similar to that of Fig. 3(a). The NSE coefficients of the five methods, Boughton,
246  Eckhardt, EWMA, Furey, and Willems, have a concentrated distribution and high mean
247  values, which further suggests that these five methods are effective in separating the
248  baseflow in karst regions. The distribution of NSE coefficients of the four graphical
249  methods (in green) is generally stable although the range of NSE coefficients increases
250  compared to the KGE coefficients, and their mean values are all greater than 0.5. The
251  distribution of NSE coefficients of the three digital filtering methods of Chapman, CM,
252  and LH is still more discrete (-0.5 to 1), which further indicates that the applicability of
253  these methods in karstic regions is low.

1.00 1.00 - &

0.50¢ H 0.50r _7_

0.00 0.00

—0.50 —0.50
Lo (a)Kling-Gupta Efficiency(KGE) oo (b)Nash-Sutcliffe Efficiency(NSE)
SUTRIGERY SRRy

254 S Y T <o

10



https://doi.org/10.5194/egusphere-2025-2843
Preprint. Discussion started: 28 July 2025
(© Author(s) 2025. CC BY 4.0 License.

255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277

Figure 3. KGE coefficients (a) versus NSE coefficients (b) for 12 baseflow separation
methods. The X-axis indicates each separation method and the Y-axis indicates the
value of the coefficients. The green color in the graph indicates the graphical method
and the orange color indicates the digital filtering method. The black lines within the
boxplot indicate the mean values, with upper and lower limits of 1.5 times Interquartile
Range(IQR), and exceeding the range is considered as an outlier, which is labeled in
the form of dots at the top and bottom of the boxplot.

From the distribution characteristics of KGE and NSE coefficients in different
climatic zones (Figure 4), the KGE coefficients of multiple separation methods in
tropical karst have discrete distributions, with CM and Chapman ranging from -1.5 to
1. The NSE coefficients are similar to those of the KGE, but with a relatively centralised
distribution. The distribution of coefficients of graphical methods in the arid karst
region are all discrete, and the digital filtering method is still the CM and Chapman
methods presenting a low concentration. The distribution of KGE coefficients in
subtropical and temperate karst is relatively stable and concentrated, and the overall
distribution of KGE coefficients of Chapman and CM are also discrete, while the KGE
coefficients of FIM and SW are close to 1, which indicates that these methods are more
effective in separating the baseflow in subtropical and temperate karst regions.

According to Figures 2 and 3, considering the high KGE and NSE coefficients and
the number of most suitable hydrological stations, we selected four more suitable
methods for baseflow separation in karst regions, which are one graphical method (FIM)
and three digital filtering methods (Boughton, Eckhardt, EWMA).
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281  Figure 4. KGE coefficients (left column) versus NSE coefficients (right column) for
282  karst regions in different climatic zones (labeled at the bottom right of each component
283  Figures). The X-axis indicates each separation method and the Y-axis indicates the
284  value of the coefficients. The green color in the graph indicates the graphical method
285  and the orange color indicates the digital filtering method. The black lines within the
286  boxplot indicate the mean values, with upper and lower limits of 1.5 times IQR, and
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exceeding the range is considered as an outlier, which is labeled in the form of dots at
the top and bottom of the boxplot.

3.2 Differences in baseflow indices obtained by different methods
over time

From Figure 5a, it can be found that the four graphical methods have different
effects on baseflow separation in karst regions. Among them, the BFIs derived by FIM
and SW are similar, with an average value of about 86%. Moreover, the BFI shows an
increasing trend of low amplitude with the year, with low fluctuation degree and high
stability. The mean value of BFI derived from LMM is about 83%, and the trend of
change with years shows a decreasing and then increasing trend, while the result of
UKIH method is low, with a mean value of about 77%, and its BFI also shows a slow
increasing trend with years.

The results in Figure 5b can be found that although there are differences in the base
flow indices obtained by different digital filtering methods, most of the methods obtain
similar base flow indices and have similar trends with respect to year. In contrast, the
results of the two methods Chapman and CM differ significantly from those of the other
six methods. The mean value of the BFI obtained by the two methods is about 58%,

and there is a small decrease followed by a slow increase in the trend.

(a) Graphical method ——FIM 0% (b) Digital filtering Boughton
70
90% ——LMM —— Chapman
—sW —M
. ~——UKIH 75% ARV, ——Eckhardt
o AR R YWY ——EWMA
85% - VAV VAT Furey
— Willems
$05, 63%
55%
1960 1980 2000 2020 1960 1980 2000 2020

Figure 5. Global BFIs for karst regions calculated by the 12 baseflow separation
methods, with the x-axis indicating the year and the y-axis the BFI.

In order to analyze the reasons for the differences between these two methods (CM
and Chapman) and other methods in separating baseflows, we selected one hydrological
station in each climatic zone and generated baseflow curves obtained by the different

methods in different climatic zones (Figure 6). Since the CM method is an improvement
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312  of Chapman by adding a maximum baseflow limit to the Chapman method, and its
313  internal mechanism is consistent, Chapman was used as a proxy. In addition, the
314  Eckhardt method with high KGE and NSE coefficients is chosen as a comparison. From
315  Figure 6, we find that when runoff increases, the Eckhardt method can respond quickly
316  and baseflow increases rapidly, while the Chapman method responds to the increase in
317  runoff to a lesser extent and by a lower amount than Eckhardt. Overall, Chapman
318  responds more slowly to the recharge of precipitation than the other methods, and this
319  feature also makes the Chapman method less discriminating for baseflow compared to

320  the other methods.
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322

323  Figure 6. baseflow curves for different climatic zones (Eckhardt and Chapman methods
324  were chosen as representatives), where the X-axis represents time and the Y-axis
325  represents runoff. The black curve (Value) represents the runoff volume. Names of
326  hydrological stations are in parentheses.

327 3.3 Global base flow characteristics

328 In order to more clearly characterize the BFI in karst basins, we calculated the BFI
329  in non-karst basins globally using the same method. Figure 7 shows that BFIs in karst
330 basins are significantly higher than in non-karst basins. The BFI of karst basins is 78 £
331  6.9%, while the BFI of non-karst basins is about 60%. This indicates that baseflow in
332  Kkarst basins is significantly underestimated if only global average conditions are
333  considered and baseflow in karst basins is not calculated separately.

334 As can be seen from Figure 7, there are differences in the characteristics of BFIs
335 over time in different climatic zones. The BFI in the tropical karst region generally
336 shows an increasing trend. From 1960 to about 1990, the base flow index in tropical
337  karst showed an increasing trend, and since 1990 the base flow index remained at about
338  80% and then stabilized. The BFI in arid karst region is the highest, with a mean value
339  ofabout 85%. In general, the BFI in arid karst region shows a decreasing trend, and the
340  annual mean BFI fluctuates greatly, with poor stability. The BFI of subtropical karst
341  region is more stable, always maintained at about 78%. The characteristics of BFI in
342  temperate karst regions are similar to those of tropical karst, showing a slow increase

343  and remaining stable at around 80%.
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Figure 7. Annual BFIs for each region of global karst versus global annual BFIs. x-axis
indicates the year, y-axis indicates the BFI, and the red straight line is the overall mean
of the BFI. The orange curve at the bottom indicates the global BFI, and the dark blue
line indicates the BFI for global karst regions.

The average of BFIs obtained by the four methods (FIM, Boughton, Eckhardt,
EWMA) was used as the BFI for the global karst region and linearly regressed against
the year (Figure 8). The results show an increasing trend in the BFI in the global karst
region, with an increase of about 1.5% from 1960 to 2015. One of the obvious increase
periods is from 1980 to 2000. Since 2000, the BFI in the global karst region has
stabilised, fluctuating in the range of 78.5% = 0.5%.
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356  Figure 8. Annual mean BFIs over time for global karst regions. x-axis indicates year, y-axis
357 indicates BFlIs, and red bars indicate 95% confidence interval.

358 Figure 9 shows that, despite being in the same climatic zone, different regions can
359  exhibit differences in BFIs. For example, in the northern part of South America and the
360  Southeast Asian region, which are both tropical karst, the BFI is significantly higher in
361  the Southeast Asian region (81%) than in the northern part of South America (73%).
362  There is also a significant difference in BFIs between the eastern part of the United
363  States and the northern part of Africa, which are both arid karst climate zones. From
364  figure 9 and figure 10 we find that BFI stability is lower and BFI values are higher in
365  arid karst regions. The degree of variation of BFI in tropical karst regions is lower than
366  that in arid karst regions. And subtropical and temperate karst regions have the lowest
367 trend of base flow index change and their stability is higher.
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Figure 9. Distribution of BFIs in karst basins in different regions within the same
climatic zone. In figure (d), orange represents tropical karst regions, magenta represents
arid karst regions, green bars represent subtropical karst regions, and brownish-purple

represents temperate karst regions.
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375  Figure 10. Characteristics of BFIs with respect to year for different regions within the
376  same climatic zone. Where Y-axis indicates BFI and X-axis indicates year.
377 3.4 Factors influencing baseflow indices in karst regions
378 Using the XGBoost model, we conducted an attribution analysis of the 12 factors
379  that may affect the BFI (Figure 11), and finally concluded that Gross Primary
380  Productivity (GPP) has the greatest influence on baseflow, reaching 15.0%. Elevation
381  was the next most influential factor with 12.4%, in addition to this, slope and runoff
382  volume (Flow) also had a large influence (>10%) on base flow index. In contrast,
383  climatic factors such as relative humidity (RH), Land-surface radiation (SR) and air
384  temperature (Temp) had a low influence on base flow index, each characterized by less
385  than 5%.
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387  Figure 11. Influence of different factors on baseflow, where the X-axis indicates
388  different factors, the Y-axis indicates the contribution of the influencing factor to the
389  baseflow, and the number above the bar indicates the contribution of the current factor.
390 4. Discussion
391 4.1 Mechanisms of formation of baseflow characteristics in karst
392 regions
393 The results of the study show that the BFI in karst regions is significantly higher
394  than the global average (Figure 7). We attribute this difference to the unique geological
395  structure and hydrological cycle characteristics of karst regions. Extensively developed
396 fissures, vertical seepage zones, and subsurface dissolution piping systems in karst
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397  regions constitute complex hydrological channels, which significantly alter surface
398  water-groundwater exchange patterns (Ford & Williams, 2007; Li et al., 2024).
399  Compared with the homogeneous water storage medium dominated by fissures and
400 pores in non-karst areas, the network of dissolution channels in karst regions
401  significantly shortens the infiltration path of precipitation, and its infiltration rate can
402  reach several to tens of times of that in non-karst areas(Fu et al .,2016). For example,
403  the monitoring of karst slopes in Huanjiang, Guangxi, shows that the wet front transport
404  rate is as high as 1373 mm/h, compared with 17-610 mm/h in non-karst regions, which
405  indicates that the rate of water infiltration in karst regions is much higher than that in
406  non-karst regions (Medici et al., 2019; Zhang et al., 2024). This part of precipitation
407  recharge into the subsurface, under the action of gravity and pressure, squeezes the ‘old
408  water’ out of the underground aquifer, which indirectly enhances the baseflow ratio
409  (Reimann et al., 2011; Bailly-Comte et al., 2010; Evans. 1983; Ronayne. 2013). Studies
410 have shown that this mechanism can result in significantly higher baseflow
411  contributions in karst regions, even above 80% in specific environments (Zhang et al.,
412 2022), whereas only less than 50% of precipitation can be converted to baseflow in non-
413  Kkarst regions due to the blocking effect of loose sedimentary layers (Cusano et al., 2024).
414 Significant differences in surface cover conditions further reinforce baseflow
415  differences. In some karst areas, bedrock is exposed to more than 60%, and thin layers
416  of residual soil (<30 cm) cover only 20% of the surface, a geologic feature that results
417  inreduced surface interception and elevated subsurface recharge (Anker et al., 2023;Li
418 et al .,2024 ;Wang et al .,2024). The karst fissure system is directly exposed to the
419  atmospheric interface, avoiding water loss through evaporation from the soil layer, and
420  the lack of continuous surface cover allows for direct infiltration of large amounts of
421  precipitation (Yang et al., 2025; Li et al., 2023). On the contrary, in non-karst areas, the
422  soil-vegetation system formed by thicker weathered crust constitutes a natural
423  evapotranspiration interface, and the average annual evapotranspiration can reach 40%
424  of the precipitation, and surface runoff accounts for 30% of the precipitation, which
425  significantly weakened the intensity of groundwater recharge (Jiang et al., 2020; Wang
426  etal., 2020; Wetzel et al.,1996). This double hydrological barrier effect ultimately leads

427  to systematic differences between BFIs in karst regions and non-karst regions.

428 4.2 Reasons for differences in baseflow in karst regions in different

429  climatic zones
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430 The results show that BFIs in karst regions in different climatic zones exhibit
431  significant differences (Figure 9 and Figure 10). The underlying driving force lies in
432  the heterogeneity of the geologic structure and its coupling effect with long-term
433  climatic erosion(Liu et al .,2023). Among them, the control of the spatial structure of
434  the water storage medium by the geologic context is the decisive factor for the
435  differences in BFIs(Luo et al ., 2023). For example, in Southeast Asian karst regions
436  (e.g., Halong Bay, Vietnam), the development of high-purity, thick-bedded limestone,
437  and the formation of a pipeline network with vertical dominance under the background
438  oftectonic uplift, the short groundwater runoff paths and efficient recharge mechanisms
439  directly enhance the baseflow (Duringer et al., 2012). In contrast, siliceous interbedding
440  in dolomite formations in northern South America (e.g., Caatinga, Brazil) significantly
441  increases the resistance to dissolution and reduces the connectivity of the dissolution
442  network, a primary geologic feature that fundamentally constrains the baseflow
443  (Teixeira et al., 2023). The intensity of tectonic activity and the stage of geomorphic
444 evolution further strengthen regional differences. For example, strong Cenozoic uplift
445  in Southeast Asia formed steep young landforms that promoted vertical permeability
446  dominance. In contrast, Paleozoic stable landmasses in northern Africa (e.g., the
447  Saharan Atlas Mountains) are dominated by horizontal cave systems, a geologic feature
448  that also makes the baseflow in this region significantly different from other regions
449  (Klimchouk, 2007; Jiang et al., 2020). Surface cover characteristics are equally critical
450  as secondary geologic elements. For example, thicker soil layers in temperate zones
451  (e.g., Slovenia) increase surface runoff diversion through delayed infiltration, whereas
452  large areas of exposed bedrock in equatorial zones infiltrate directly through solution
453  gaps, creating a multiplicative effect on the BFI (Li et al., 2023).

454 Climate elements reshape geological structures over large time scales through
455  geological erosion processes, thereby indirectly influencing baseflow patterns. While
456  short-term hydrological dynamics are affected by climate parameters such as
457  precipitation intensity and seasonal distribution (Mo et al., 2021 ; Cheng et al .,2023),
458  the profound control of climate on the baseflow index is evident in its long-term
459  modification of karst systems. For example, the strong coupling of heavy precipitation
460  and high temperatures in equatorial regions significantly accelerates the dissolution of
461  carbonate rocks, forming a dense network of highly permeable dissolution fissures.
462  Conversely, the persistent moisture associated with temperate maritime climates

463  enhances the dissolution of carbonate rocks (with an average annual dissolution rate
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464  approximately 40% higher than that of non-karst areas at the same latitude), leading to
465  the formation of cave clusters characterized by labyrinthine structures and interwoven
466  underground river systems. This climate-driven differentiation in dissolution alters the
467  capacity of groundwater storage spaces, ultimately reflecting in the characteristic values
468  of regional baseflow indices (Ford and Williams, 2007; Goldscheider, 2015; Tapiador
469  etal., 2012).

470 4.3 Reasons for changes in baseflow indices over time

471 The results of the experiment revealed an increasing trend in the BFI in the karst
472  region (Figure 8). Although the degree of increase is low (about 1.5% from 1960 to
473 2015), we still feel that this degree of increase in BFI is a cause for concern given that
474  the average BFI in the karst region is already at a high level. The reason for the
475  increasing trend in BFI in the karst region is presumably caused by the large loss of
476  groundwater. Extensive monitoring has shown that groundwater levels globally show a
477  rapid declining trend, and this systematic attenuation has triggered multiple crises such
478  as basin hydrological process anomalies and regional climate feedback imbalances
479  (Jasechko et al., 2024, de Graaf et al. 2019; Liu et al.,2015). It is the rapid decline of
480  the water table that leads to a constant unsaturated state of groundwater storage.
481  Therefore, when recharged by precipitation, large amounts of precipitation
482  preferentially fill the void in the water table, making the generation of surface runoff
483  require longer recharge cycles.

484 In addition to this, the geological and hydrological characteristics of the karst
485  region further amplify this effect of reduced surface runoff and increased Baseflow
486  (Zhu et al.,2025). On the one hand, there is the rapid water-conducting effect of the
487  Kkarst fissure network, where the extensive development of dissolution pipes and
488  fissures in the karst bedrock accelerates vertical infiltration of precipitation into deep
489  groundwater, leading to difficulties in retaining soil moisture and a significant increase
490  in the runoff generation threshold (Hartmann et al., 2014). On the other hand, there is
491  the dissipative effect of the surface-subsurface dichotomy, where the thickness of the
492  unsaturated zone of the karst aquifer increases in the context of persistent groundwater
493  overdraft (D'Ettorre et al., 2024), further weakening the immediate contribution of

494  precipitation events to runoff.
495 4.4 Applicability and limitations of this study

496 With regard to data sources, the original data sources are diverse and complex.
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497  Although we have made a lot of efforts to eliminate a large number of original
498  documents with distorted data and to screen out some unreasonable data in the
499  calculation, it is always difficult to fully balance the deficiencies in the original data.
500 On the boundaries of applicability of the method itself. For example, the
501  parameterization framework of digital filtering methods (e.g., Eckhardt and Chapman
502  algorithms) based on the assumption of linear recession is at variance with the nonlinear
503  characteristics of karst hydrological processes. Together with the rapid recession
504  processes dominated by karst pipe flow (rates up to 2-3 times that of porous media
505  basins) leads to a general underestimation of the recession coefficient (Kang et al 2022;
506  Rattayovd & Hlavcova., 2023), which leads to differences in baseflow separation
507  between methods with different principles. For example, the Chapman and CM
508 methods used in this study, from the results of the two methods, the separation of
509  baseflow is significantly lower than the other methods, which is due to the lower degree
510  of response of the Chapman and CM methods to precipitation recharge, which is also
511  reflected in Helfer's study (Helfer et al., 2024). In addition, empirical parameters such
512  as maximum baseflow (BFI_max) are mostly derived from rate-determined results for
513  temperate homogeneous aquifers, and their physical mechanisms have not been fully
514  adapted for applicability in karst regions (Zhou et al., 2017).

515 Despite the above limitations, this study ensures the spatial representativeness and
516  methodological reliability of the study conclusions by integrating a global-scale multi-
517 source dataset of karst region (covering more than 85% of the typical karst
518  geomorphological units) and adopting standardized validation indexes (KGE, NSE).
519  The results show that the karst baseflow separation results can effectively characterize
520  the regional hydrological features and provide data support for water resource
521  management and eco-hydrological model construction in karst region. Future research
522  can integrate geophysical exploration and isotope tracer technology to develop a

523  dynamic parameterization scheme adapted to non-homogeneous media.
524 5. Conclusion

525 This study systematically analyzes the spatial distribution characteristics and trends
526  of BFIs in global karst regions. The results show that the BFI (78%) in karst regions is
527  generally significantly higher than the global BFI. This phenomenon confirms the
528  differential regulation of the runoff partitioning mechanism by the unique surface-
529  groundwater dichotomy in karst regions. Meanwhile, the study systematically evaluates

530 the applicable boundary of the hydrographic method in karst region and proves the
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541

applicability of the hydrographic method in karst region. It is noteworthy that the BFI
in the karst region shows a phased upward trend against the background of the general
decay of global groundwater reserves. This may be related to the buffering effect of
karst aquifers on extreme climatic events and human activity-induced changes in the
subsurface bedding. In future research, we can integrate high-precision geological
tectonic data and multi-source remote sensing information to construct a coupled
climate-hydrology-geology model to quantitatively analyze the response characteristics
of hydrological fluxes of karst systems under the background of climate change, and
further improve the spatial and temporal resolution dimensions of karst water cycle

theory.
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