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Abstract 47 

Drylands cover ~41% of the Earth’s land surface and contribute more than one third of the global net 48 

primary productivity. Several studies have demonstrated that drylands play a crucial role in global carbon 49 

cycle interannual variability. However, drylands are vulnerable to the impacts of climate change. To 50 

predict changes in dryland productivity under climate change we depend on dynamic global vegetation 51 

models (DGVMs). Compared to more mesic ecosystems, DGVM carbon cycle dynamics have not been 52 

widely evaluated against data. Existing studies are mostly focused at site scale; rarely have these models 53 

been assessed or benchmarked against dryland carbon flux products at regional to global scales. Global 54 

gross primary productivity (GPP) products have poor performance  in dryland regions. Only recently 55 

upscaled in situ flux products have been developed specifically for drylands. Here, we evaluated GPP 56 

inter-annual variability (IAV) simulated by 15 DGVMs from the TRENDY v11 model intercomparison 57 

project against theDryFlux GPP, which is newly developed upscaled GPP product that considers dryland-58 

specific ecohydrological responses. Comparing model simulated GPP IAV to DryFlux, we identified two 59 

groups of models: a one group of models with generally lower GPP IAV than DryFlux (e.g., lower 60 

standard deviation in annual GPP than DryFlux and slope values of the linear regression between each 61 

model and the DryFlux product that are less than 1.0) and a second group of models with generally higher 62 

GPP IAV than DryFlux. We examined if including a representation of dynamic vegetation (i.e., changes 63 

in the spatial distribution of plant functional type (PFT) fractional cover) or fire in the models can explain 64 

the inter-model spread and model performance in comparison to DryFlux. Models that do not include a 65 

representation of fire and/or dynamic changes in plant functional type distribution over time generally 66 

have lower annual GPP variability compared to DryFlux (1st group of models), except for the eastern and 67 

southeastern region of the study area with high rainfall variability. We also found that models with 68 

dynamic vegetation exhibit high variability in grass fractional cover (that was higher than two 69 

independent reference fractional cover datasets), which was strongly correlated with high GPP IAV. Only 70 

some models that included fire simulated burnt area annual variability that correlated well with GPP IAV. 71 
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Other models that included fire simulated low burnt area variability and therefore we did not find any 72 

strong relation between burnt area and GPP IAV. Finally, we examined the relationship between the 73 

dominant PFT and GPP IAV. We did not find a strong correlation between the spatial mean of the slope 74 

of the linear regression between each model and DryFlux annual GPP and their spatial mean woody, 75 

grass, or C3 grass fractional cover (although many models with generally low GPP IAV had higher 76 

woody plant cover). However, we did find a high correlation between the slope of the linear regression 77 

between each model and DryFlux annual GPP and spatial mean C4 grass cover. Therefore, our findings 78 

suggest that DGVMs inability to accurately represent the spatial distribution of herbaceous (specifically 79 

C4 grass) cover as well as  processes controlling dynamically changing vegetation distributions over time 80 

(including fire) contribute to poor model performance in capturing annual variability in dryland 81 

productivity.  Our findings can provide a roadmap for DGVM teams  seeking to improve vegetation 82 

representation in sparsely vegetated dynamic dryland ecosystems.  83 

1. Introduction 84 

Dryland ecosystems are commonly defined as regions where water demand in the form of potential 85 

evapotranspiration (PET) is much higher than precipitation (P) (Wang et al., 2022) and encompass 86 

grasslands, shrublands, scrublands and savannas. They cover ~41% of the Earth’s terrestrial surface and 87 

are home to over a third of the world’s population  (Bastos et al., 2022; Wang et al., 2022) . Dryland 88 

regions are hotspots of land-atmospheric coupling (Koster et al., 2004) and are thought to play a dominant 89 

role in global carbon cycle variability (Ahlström et al., 2015; Poulter et al., 2014; Zhang et al., 2018). 90 

Dryland ecosystem functioning is expected to be extremely sensitive to future changes in water 91 

availability (Bastos et al., 2022; Scholes, 2020; Wang et al., 2022). Given the complexity of dryland 92 

ecosystem dynamics and their feedbacks to major components of the earth system, it is essential that 93 

dynamic global vegetation models (DGVMs), many of which form the land component of earth system 94 
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models used for climate change projections, can accurately simulate carbon and water fluxes in dryland 95 

regions. 96 

 97 

DGVMs are process-based models that simulate physical and biogeochemical processes to model 98 

exchange of water, energy, carbon (C), and nitrogen (N) fluxes across the land-atmosphere boundary. All 99 

DGVMs  simulate vegetation dynamics such as leaf phenology and changes in  vertical structure or 100 

rooting depth; however, only some explicitly simulate spatial distribution of  plant functional types 101 

(PFTs) and dynamic changes in PFT spatial distribution (fractional cover) over time (henceforth referred 102 

to as “dynamic vegetation”). When the spatial distribution of a models’ PFTs is not explicitly simulated it 103 

needs to be prescribed. While many of these models serve as the land component of their respective 104 

ESMs, these models can also be driven offline with meteorological data (either from in situ weather 105 

stations or from gridded climate reanalyses (Bonan, 2019). The TRENDY (“Trends and drivers of the 106 

regional scale terrestrial sources and sinks of carbon dioxide”) model intercomparison project began in 107 

2009 with the goal of comparing a suite of DGVM estimates for global atmosphere-land CO2 flux (Sitch 108 

et al., 2015).  The TRENDY model ensemble simulations provide important estimates of the natural land 109 

carbon sink (cumulative net biome production) in addition to the impact of land use changes on land 110 

carbon cycling for the annual Global Carbon Budget (Friedlingstein et al., 2024); however, outputs from 111 

TRENDY have been used in a host of other studies exploring land surface and dynamic vegetation 112 

process responses to global change drivers beyond the original TRENDY remit (Pan et al., 2020; Yuan et 113 

al., 2019; Zhu et al., 2016).  114 

Compared to mesic ecosystems, DGVMs have rarely been evaluated or benchmarked against dryland 115 

carbon and water flux data at either site or global scale(MacBean et al., 2021; Renwick et al., 2019; 116 

Whitley et al., 2016). However, several recent studies have documented large uncertainties in DGVM 117 

simulations of dryland carbon fluxes and stocks(Fawcett et al., 2022; MacBean et al., 2021; Metz et al., 118 

2023; Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016) – although the mean across 119 
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models tends to replicate benchmark data well (Fawcett et al., 2022). Most of the DGVM evaluations in 120 

the aforementioned studies have been conducted at site scale using in situ carbon and water fluxes; only a 121 

few are focused on regional(Metz et al., 2023, 2025; Teckentrup et al., 2021) or global scale (Fawcett et 122 

al., 2022). These spatially continuous large-scale studies used gridded upscaled flux tower data or satellite 123 

derived GPP, aboveground biomass, fire emissions and burnt area products to evaluate multiple 124 

components of dryland C cycling. Interestingly, there are mismatches between the findings for how well 125 

models can capture C fluxes at site versus global scale. Studies evaluating a suite of DGVMs from the 126 

TRENDY model intercomparison project across Australian and southwestern US dryland sites found that 127 

most models underestimate both the mean gross primary productivity and net ecosystem exchange (NEE) 128 

and their interannual variability (IAV)(MacBean et al., 2021; Metz et al., 2023; Wang et al., 2022; 129 

Whitley et al., 2016), which the studies suggest may be due to inadequate representations of vegetation 130 

dynamics such as tree-rooting depths and leaf phenology, which are essential for capturing plant 131 

responses to rainfall variability(Renwick et al., 2019; Whitley et al., 2016, 2017). Global scale flux site 132 

data analysis also revealed a similar story that DGVMs underestimate GPP IAV across dryland savanna, 133 

grass and shrubland sites(Lin et al., 2023). However, studies comparing TRENDY models with regional 134 

to global gridded datasets found a large spread across the models with some models overestimating and 135 

some underestimating mean gross and net carbon fluxes and their IAV(Fawcett et al., 2022; Teckentrup et 136 

al., 2021). Furthermore, model performance varied regionally, such as a general overestimation of 137 

modeled GPP in the Sahel but an underestimation in South Africa and South America(Fawcett et al., 138 

2022). These contrasting findings from site scale studies highlight the need for more regional to global 139 

studies that can examine processes and patterns that become important across broader spatial scales.    140 

 141 

Many processes have been postulated to cause poor model performance in capturing dryland C fluxes, but 142 

the exact causes are not yet known (Fawcett et al., 2022; MacBean et al., 2021; Paschalis et al., 2020; 143 

Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016). DGVMs are at various stages of 144 

development, with only some including key dryland processes such as fire, grazing, or dynamic 145 
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vegetation (Sitch et al., 2024). Productivity in drylands is affected by rainfall changes, with herbaceous 146 

vegetation responding quickly to rainfall variations, while woody vegetation has slower, longer-term 147 

response (Verbruggen et al., 2021, 2024). These responses vary depending on the dryland aridity and the 148 

type of vegetation cover; thus, it is important to have correct representations of dryland vegetation type 149 

and fractional cover (fCover) (either prescribed or simulated). Inadequate representation of prescribed 150 

PFTs, PFT fCover and its variability over time in DGVMs have been shown to cause large spread in 151 

model estimates of dryland productivity, especially in sparsely vegetated, mixed shrub-grass ecosystems 152 

(Hartley et al., 2017; Wilcox et al., 2023). This uncertainty arises from challenges in separating grass 153 

versus woody PFT fractions via classification of remotely sensed imagery (Hartley et al., 2017; Pervin et 154 

al., 2022). Different climate dependencies of dryland PFTs, such as differentiating between C3 and C4 155 

grasses based on temperature thresholds, also cause discrepancies across models (Still et al., 2019; 156 

Wilcox et al., 2023). In addition, most PFTs are not well adapted for dryland ecosystems. Herbaceous 157 

PFTs, and especially C4 grasses, are often oversimplified in models, leading to underestimation of 158 

productivity, especially in ecosystems where annual grasses and variations in fire regimes play a major 159 

role in ecosystem dynamics (Wilcox et al., 2023).   160 

 161 

Models that do include dynamic vegetation have a variety of different methods for simulating changes 162 

over time, from relatively simple bioclimatic envelopes to more complex representations based on 163 

competition for resources, forest gap dynamics and cohorts of different ages and sizes (Harper et al., 164 

2018; Prentice et al., 1992; Sitch et al., 2003; Smith et al., 2001). The treatment of fires in models also 165 

adds to uncertainties in representing dryland vegetation dynamics and productivity in DGVMs 166 

(Teckentrup et al., 2021). Fire models vary from relatively simple representations of fuel availability and 167 

moisture availability such as the GlobFIRM model (Thonicke et al., 2001) to more complex 168 

representations that also account for different sources of ignition and the effect of wind on rates of fire 169 

spread (Li et al., 2012; Mangeon et al., 2016; Melton and Arora, 2016). Fires in dryland regions can 170 

significantly alter vegetation structure (Bastos et al., 2022; Wilcox et al., 2018), yet models often fail to 171 
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capture the impact of fire on dryland vegetation, particularly in areas with low fuel availability where fire 172 

is less frequent (Baudena et al., 2015; Fawcett et al., 2022; Teckentrup et al., 2021; Verbruggen et al., 173 

2021; Wilcox et al., 2023). Thus, even when these key dryland processes are included in models it 174 

remains unclear to what extent they are correctly represented. Failure to accurately model these 175 

biogeographic processes and their interplay with climate variability likely affects DGVMs’ ability to 176 

predict GPP IAV. More in depth model-data comparison studies that focus on the spread across models 177 

are needed to help discern which model processes need further evaluation or improvement. These studies 178 

can also inform targeted data collection and analysis efforts to support more specific process-based model 179 

evaluations and model developments. Regional model-data comparisons fill a unique niche in that they 180 

can focus more on larger-scale biogeographical causes of model-data mismatch compared to site based 181 

evaluations. Regional scale studies can also focus more on specific dryland regions and utilize localized 182 

knowledge compared to global studies (e.g., Australia in Teckentrup et al., 2022).  183 

 184 

In this study, we address these research needs by evaluating the ability of 15 DGVMs from TRENDY v11 185 

(Sitch et al., 2024) to capture spatiotemporal patterns of dryland GPP in western North America. We 186 

focus specifically on how well models capture GPP IAV as most previous regional dryland model 187 

evaluation studies have focused more on mean model biases or trends in productivity (Fawcett et al., 188 

2022; Teckentrup et al., 2021). DGVMs are also being used in studies investigating the ongoing debate 189 

around which biome – tropical forests or dryland ecosystems – plays a dominant role in global C cycle 190 

IAV (Ahlström et al., 2015); therefore, it is critical that we assess whether these models can indeed 191 

capture variability in dryland C fluxes. To evaluate TRENDY model GPP we use the newly developed 192 

‘DryFlux’ v1.0 GPP product (Barnes et al., 2021). DryFlux is an upscaled flux product developed 193 

specifically for dryland ecosystems using flux tower GPP from sites across western North America 194 

(Barnes et al., 2021). The random forest model used for flux tower data upscaling includes metrics 195 

designed to characterize ecohydrological controls on dryland carbon dynamics (see Section 2.3.1). 196 

DryFlux GPP better captures dryland spatiotemporal GPP patterns across western North America 197 
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compared to the MODIS GPP and FLUXCOM products that have been used in past regional dryland 198 

model evaluation studies (Barnes et al., 2021).  199 

 200 

The two main objectives of this study are to: 1) identify if TRENDY v11 models have higher or lower 201 

variability in annual  GPP compared to the DryFlux product across dryland regions of western North 202 

America; and 2) examine potential causes of inter-model spread and in differences in model performances 203 

with respect to DryFlux, with a specific focus on the role of processes related to biogeography such as 204 

vegetation type, fractional cover, dynamic vegetation, and fire. We test 3 main hypotheses.   205 

 206 

First, we hypothesized that DGVMs with dynamic vegetation enabled will have a higher GPP variability 207 

compared to those with prescribed static vegetation. This is due to the higher grass disturbance rates 208 

(Harper et al., 2018) and the ability of most dynamic vegetation enabled DGVMs to establish new grass 209 

growth or to spread into bare soil patches following disturbance (Harper et al., 2018; Sitch et al., 2003). 210 

Therefore, we predicted that dynamic vegetation-enabled DGVMs will better capture DryFlux GPP IAV, 211 

while DGVMs with prescribed static vegetation fCover will underestimate DryFlux GPP IAV.  212 

 213 

Second, given dryland grasses, especially those with the C4 photosynthetic pathway, respond strongly to 214 

rainfall pulses (Verbruggen et al., 2021, 2024), we hypothesize that models with high grass fCover 215 

(whether prescribed or simulated) will show greater GPP  variability compared to models with low grass 216 

fCover or a higher bare soil or shrub fCover. We predicted that models with a more accurate 217 

representation of grass fCover will better match DryFlux GPP IAV compared to those that either over- or 218 

underestimate grass cover.  219 

 220 

Finally, we hypothesized that the impact of fire on simulated GPP IAV in fire-enabled DGVMs depends 221 

on vegetation composition, specifically, the dominance of grasses versus bare soil or woody plant cover. 222 

Because grasses typically have a much lower resistance to burning or a higher combustion completeness 223 
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in models (Sitch et al., 2003), we expect fire to contribute more strongly to GPP IAV in grass-dominated 224 

systems than in shrub- or tree- dominated ones.  All DGVMs with dynamic vegetation also have their fire 225 

module enabled, which we expect will contribute to both increased mean grass cover and greater 226 

variability in grass fCover, ultimately resulting in higher GPP IAV. Fire enabled DGVMs without 227 

dynamic vegetation should also predict higher GPP IAV than DGVMs with neither dynamic vegetation 228 

nor representation of fire, especially if their prescribed PFT map has high vegetation fractional cover.  229 

 230 

To assess model performance in capturing GPP IAV, we examined the standard deviation in annual GPP 231 

for both the models and DryFlux  and the slope values of the linear regression between each model and 232 

DryFlux annual GPP. Based on these values we identified models with low GPP IAV and high GPP IAV 233 

compared to DryFlux and investigated whether dynamic vegetation and/or fire could explain differences 234 

between the two groups. For dynamic vegetation enabled models, we did a pairwise gridcell comparison 235 

to explore how the temporal variability in PFT fractional cover was related to GPP IAV metrics (standard 236 

deviation and slope). To further disentangle the role that dynamic vegetation and fire are playing in 237 

modeled GPP IAV, we examined differences across models in terms of their spatial patterns in standard 238 

deviation in annual fractional cover for major plant functional types (and the same for burnt area for fire 239 

enabled models). We also explored whether the spatial distribution of dominant PFTs can be linked to 240 

spatial patterns in GPP variability. The findings of this study will help clarify which vegetation and 241 

disturbance related biogeographical processes most strongly influence interannual variability in dryland 242 

GPP across current DGVMs. By identifying where and why models diverge from the observation-driven 243 

DryFlux product, we provide a roadmap for dryland process-specific developments that the DGVM 244 

community can make to better estimate dryland carbon-vegetation interactions under a changing climate.  245 
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2. Methods 246 

2.1 Study Area: North American Drylands 247 

Our study area is focused on western North American drylands (longitude and latitude bounds: 93° W to 248 

125° W and 15°N to 53°N – Fig. 1). We delineated the dryland region across western North America 249 

using the aridity index (AI), which is defined as the ratio of precipitation to potential evapotranspiration. 250 

Unlike other studies that typically define drylands as regions with an aridity index between 0 and 0.65 251 

(e.g., Wang et al., 2022), here we limit the range of our study area to aridity index values between 0.05 252 

and 0.5, encompassing both arid (AI 0.05 to 0.2) and semi-arid (0.2 to 0.5) regions, to match the extent 253 

where DryFlux v1.0 is tested and can be used as a reference product. We excluded the semi-arid cropland 254 

belt in the north and eastern part of the study area (see Section 2.4) to focus on natural vegetation  255 

ecosystem productivity in North American drylands. The region exhibits large spatial gradients in key 256 

climatic variables. Mean annual precipitation (MAP) ranges broadly from 40 to 1200 mm, while mean 257 

annual temperature (MAT) varies from -4°C to +26°C (Anderson-Teixeira et al., 2011; Biederman et al., 258 

2017). The western part near the Pacific Ocean experiences a Mediterranean climate with the majority of 259 

annual precipitation falling in winter (November–April). In contrast, the central, eastern, and southeastern 260 

portions are heavily influenced by the North American Monsoon, which brings most precipitation during 261 

the summer (July–October. Lower elevation areas (≤1610 m) are mainly dominated by C3 shrubs and C4 262 

summer grasses (but with C3 winter grasses) are mostly affected by summer monsoon rainfall, with 263 

relatively small amounts of winter and spring rains. Higher elevation forested areas (≥1930 m) are 264 

dominated by evergreen shrubs and trees, though there is a transition in vegetation type from grasslands 265 

and mixed shrub-grasslands to forests as elevation increases. The higher elevation areas have cooler mean 266 

annual temperatures (<10°C) and a more distinct bi-model growing season, receiving moisture from both 267 
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winter precipitation/spring snowmelt and summer monsoon rainfall (Anderson-Teixeira et al., 2011; 268 

Biederman et al., 2017).  269 

   270 

 271 

Figure 1: Drylands (excluding modeled cropland PFTs) in western North America. Arid regions (aridity index 0.05 - 272 

0.2) are shown in dark brown, semi-arid regions (aridity index 0.2 - 0.5) in light brown, and all other regions  in light 273 

grey). 274 

 275 
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2.2 Models  276 

2.2.1 TRENDY v11 GPP 277 

We used the annual GPP (kgCm-2yr-1) simulated by 15 of the 18 DGVMs that contributed to the 278 

TRENDY v11 models ensemble (Friedlingstein et al., 2022; Sitch et al., 2024). Three of the TRENDY 279 

v11 models were excluded because there were no PFT maps available for the analysis (see Section 2.2.2). 280 

Model simulation results were available from the preindustrial period (1700 for some models and 1860 281 

for others) to 2021, but we  elected to use 2001 to 2016 only  to match the temporal availability of the 282 

DryFlux data. We used TRENDY S3 simulations specifically due to their inclusion of time-varying 283 

atmospheric CO2 concentration, climate (using the CRUJRA reanalysis), nitrogen fertilization, and land-284 

use change as forcings. This is in contrast to what the S1 (only time-varying atmospheric CO2 285 

concentration) and S2 simulations (only time-varying atmospheric CO2 concentration and climate) 286 

included. Additionally, all of these  models followed a common experimental protocol, as is further 287 

outlined in Sitch et al. (2024). The model outputs were regridded to a common 0.5x0.5° resolution grid. 288 

Table 1 lists the models included in this study in addition to whether they included two key biogeographic 289 

processes that are important controls on GPP IAV: dynamic vegetation and fire.  290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 
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Table 1: Information on biogeography processes (dynamic vegetation and fire) included in all TRENDY 300 

v11 models used in this study that are relevant to vegetation distribution (fractional cover) and its 301 

variability and which in turn affect GPP variability. 302 

Model Dynamic Vegetation Fire module 

CABLE POP No No  

CLASSIC  No Yes  (Melton et al., 2020) 

CLM5 No Yes (Li et al., 2012) 

IBIS  No No  

ISBA CTRIP No Yes (Thonicke et al., 2001)  

JSBACH No Yes (Thonicke et al., 2010) 

JULES Yes (Burton et al., 2019; Harper 
et al., 2018) 

Yes (Mangeon et al., 2016) 
(Burton et al., 2019) 

LPJ-GUESS Yes  
(Smith et al., 2014) (Smith et 
al., 2001) 

Yes (Thonicke et al., 2001) 

LPJwsl Yes  (Sitch et al., 2003) Yes (Thonicke et al., 2001) 

LPX-Bern Yes  (Prentice et al., 1992; Sitch 
et al., 2003; Wolf et al., 2008) 

Yes (Thonicke et al., 2001) 

ORCHIDEE No No 

OCN No No 

SDGVM  No Yes (Simple empirical function of litter 
moisture and/or amount and a fire 
return interval map). 

VISIT No Yes (Thonicke et al., 2001) 

YIBs No No 
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2.2.2 PFT maps 303 

Each of the TRENDY models have their own PFT fCover maps (either prescribed or predicted) based on 304 

the PFT types represented in their model (Supplementary Table S1). The common land use change 305 

forcing is imposed on the models' own PFT maps (or dynamic PFT simulations) (Sitch et al., 2024). Each 306 

model has a different number of PFTs and spatial resolution. Some models have shrubs as separate PFT 307 

such as CABLE-POP, CLM5, IBIS, ISBA-CTRIP, JSBACH3.2, VISIT, YIBs but some have combine 308 

shrubs with woody tree vegetation such as  CLASSIC, LPJ-GUESS, LPJwsl, LPX-Bern, OCN, 309 

ORCHIDEE, SDVGM. All models have separate C3 and C4 PFTs, except VISIT and OCN (although in 310 

OCN these were defined as tropical/temperate grasses). Some models do not have a separate bare soil 311 

such as LPJwsl, LPX-Bern (except for an ‘Urban Bare’ class), VISIT, and YIBs. To compare the models’ 312 

vegetation cover fractions to each other and to independent datasets (see Section 2.3.2) we grouped each 313 

models’ PFTs into 4 main groups: total vegetation, woody vegetation, non-woody vascular vegetation, 314 

and bare ground/soil (Table S2). If a model had a mix of grasses and trees like "open shrubland" or a 315 

savanna vegetation class it was added within the category of woody vegetation (JULES, JSBACH, 316 

CLM5, VISIT, YIBs). For certain analyses we split the non-woody vegetation group further to compare 317 

grasses/herbs versus crops and C3 versus C4 types. PFT types that fell outside of these groups (such as 318 

'Peat graminoid'' for LPX-Bern) were ignored in this study. All PFT maps were available at annual time 319 

scale except for ISBA-CTRIP and LPX-Bern which provided monthly PFT fractional coverages. 320 

However, ISBA-CTRIP does not model spatial distribution of vegetation dynamically and therefore we 321 

expect to have no monthly variability in fractional coverage of its PFTs. Although LPX-Bern models 322 

spatial distribution of vegetation dynamically, from visually inspecting its monthly data using Panoply we 323 

did not identify any monthly changes in the PFT distributions (only annual changes were identified). 324 

Therefore, we choose the month of July data for both ISBA CTRIP and LPX-Bern PFT distributions in 325 

place of annual values. For models that do not have a bare ground or soil PFT, we calculated barren 326 

fCover using 1 minus the total fCover of all other vegetation. We note that no model contains a biological 327 
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soil crust (biocrust) PFT (Table S2) despite the fact that biocrusts are common in dryland regions (REF). 328 

The PFT maps were provided by the modelers and mean fCover maps for each of the major groups are 329 

provided in Fig. S1. We used nearest neighbor resampling to re-grid all the PFT maps to 0.5° spatial 330 

resolution to match the GPP data resolution.  331 

2.3 Data products  332 

2.3.1 Dryflux GPP v1.0 333 

We used the DryFlux v1.0 GPP product (Barnes et al., 2021) to compare and evaluate TRENDY model 334 

GPP. DryFlux v1.0 is a dryland specific ecohydrologically informed upscaled flux tower GPP product 335 

specifically developed for western North American drylands using remote sensing and gridded 336 

meteorological inputs. DryFlux upscaling used a machine learning (random forest) model to identify 337 

relationships between predictor variables (such as vegetation greenness, precipitation, temperature, 338 

elevation) and flux tower GPP for randomly selected 19 sites out of the 24 sites selected across the US 339 

Southwest and Northwestern Mexico. In addition to these common predictor variables, DryFlux used 340 

previous months precipitation and the Standardized Precipitation Evapotranspiration Index, SPEI, at 341 

different timescales (e.g., a lag of 1, 3, 6, 12 months) to account for antecedents effects that are 342 

characteristic of dryland ecosystems (Barnes et al., 2016; Cranko Page et al., 2022; Liu et al., 2019). 343 

DryFlux was able to capture the pulse behavior and two growing reasons for the dryland regions. The 344 

random forest model was applied to generate an upscaled, gridded global dryland GPP product for 16 345 

years from Feb, 2000 to 2016 with a spatial resolution of 0.5°x0.5°. DryFlux v1.0 data were downloaded 346 

from https://github.com/marthageb/DryFlux.  347 

https://doi.org/10.5194/egusphere-2025-2841
Preprint. Discussion started: 31 July 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

2.3.2 Reference Fractional Cover Data  348 

2.3.2.1 Rangeland Analysis Platform (RAP) fCover Data 349 

The rangeland analysis platform (RAP) provides  fCover estimates of annual and perennial forbs and 350 

grasses, shrubs, trees, and bare ground—from 1986 to present at 30-meter spatial resolution for the 351 

western US (Allred et al., 2021). Crops were not included in this product. The percentage estimates of 352 

these six cover types are model predictions from a temporal convolutional network using vegetation field 353 

plots, the Landsat reflectance data and vegetation indices- normalized difference vegetation index (NDVI) 354 

and normalized burn ratio two (NBR2) which is sensitive to water content changes within vegetation. 355 

Model mean absolute error (MAE) was calculated for fCover against vegetation field data. Overall model 356 

mean absolute error was about 6%. Mean absolute error was highest for perennial forbs and grasses which 357 

is about 10% and lowest for tree cover which is about 3% (Allred et al., 2021). To better match the model 358 

PFTs we added the annual and perennial grasses and forbs layers together to create a herbaceous layer 359 

and shrubs and trees to create a woody vegetation layer. RAP fCover data was downloaded from 360 

http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/. The data were aggregated to 0.5°x0.5° 361 

resolution to match TRENDY model PFTs and DryFlux and model GPP.   362 

2.3.2.2 MODIS Vegetation Continuous Field Data 363 

MODIS Vegetation Continuous Field (VCF) product (MOD44B) contains three layers of global land 364 

cover fractions: percent tree cover (tree height > 5m), percent non-tree cover, and percent non-vegetated 365 

or bare ground cover plus water. Trees are defined as greater than 5m; therefore, most of the shrubs that 366 

are present in this area will be grouped with the non-tree cover class. Crops are also included as part of 367 

the non-tree cover layer. These fCover layers were estimated from a fully-automated machine learning 368 

algorithm using the MODIS Terra Global 250-meter resolution surface reflectances (bands 1 to 7) and 369 

brightness temperature (band 32) (DiMiceli et al., 2021).  The root mean square error value against field 370 

based fCover data ranges from 9 to 23% (DiMiceli et al., 2021). The MODIS VCF  product is available at 371 
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250-meter pixel spatial resolution and yearly temporal resolution in the Sinusoidal coordinate system. The 372 

MODIS VCF product was downloaded using Google Earth Engine. Within Google Earth Engine we 373 

reprojected and resampled the data to the WGS84 Geographic Coordinate System (EPSG:4326) at 374 

0.5°x0.5° to match the RAP product, TRENDY model PFTs, and model and DryFlux GPP. 375 

2.4 Model and Data Preprocessing 376 

Following spatial resampling as described in each subsection of Section 2.3, we performed further model 377 

and data preprocessing steps to bring them into the same spatial extent and temporal scale. One of our 378 

main objectives is assessing model data IAV. Therefore, the monthly DryFlux data were summed to 379 

annual GPP to compare to the annual GPP from models participating in the TRENDY intercomparison. 380 

All GPP data were converted to the same unit of kgCm-2y-1. For the regional total we calculated the 381 

weighted sum in PgCyr-1. We used aridity index values of between 0.05 to 0.5 (Section 2.1) to create a 382 

dryland mask for the GPP and PFT datasets. The aridity index data is based on the method of Zomer et 383 

al., 2022 and was downloaded from Global Aridity Index and Potential Evapotranspiration (ET0) Climate 384 

Database v3 (Trabucco and Zomer, 2022). We note that this is not the same climate data as was used to 385 

drive the TRENDY model simulations (Section 2.2). The aridity index data were spatially aggregated to 386 

0.5x0.5° resolution to match the model and data products used in this study. We used the annual average 387 

aridity index for the 1970–2000 period to delineate our study area. We masked out croplands in the study 388 

area as the main focus of this research is mixed woody non-woody ecosystems that experience natural 389 

climate variability (and are not irrigated) and because DryFlux did not include any crop flux tower sites in 390 

its upscaling model. We created a crop mask common to all models by masking grid cells for all models 391 

that contained crop PFT fCover (Fig. S1g) greater than 0.5 (50%) for any model within the 2001 to 2016 392 

period. That means that we masked out the grid cells that are crop dominated for any model. We masked 393 

all grid cells that were not common to both the TRENDY model ensemble and DryFlux.  394 
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2.5 Data analysis and evaluation metrics 395 

For a first comparison of whether TRENDY models tend to have higher or lower interannual GPP 396 

variability (GPP IAV) compared to DryFlux, we plotted time series of both spatially weighted sum of 397 

annual GPP and the annual GPP anomalies (i.e.,  mean normalized annual GPP over the 2001 to 2016 398 

period for the 15 TRENDY v11 model ensembles and the DryFlux product. We computed Pearson’s 399 

correlation (R) values between modeled and DryFlux total annual GPP over the study area. We plotted 400 

maps of the spatial patterns in how well each of the TRENDY models captures DryFlux GPP IAV by 401 

calculating for each grid cell both standard deviation (over the 2001 to 2016 period) of the annual GPP 402 

time series for all 15 models and DryFlux as well as the slope of the linear least-squares regression 403 

between modeled and DryFlux annual GPP (using  the scipy.stats linregress module in Python). To 404 

facilitate comparison across models, and between the models and DryFlux, we examined the distribution 405 

of GPP standard deviation and slope values across the study region using area-weighted kernel density 406 

estimate (KDE) ridgeline plots that summarize probability density of all grid cells. 407 

 408 

To investigate our hypotheses related to the role of dynamic vegetation and fire in spatial patterns of 409 

modeled annual GPP variability, we first grouped the KDE ridgeline plots by models that used dynamic 410 

vegetation and fire (Table 1) to identify if either of these key processes alone or in combination can 411 

explain the patterns in model whether models have higher or lower GPP IAV compared to DryFlux. To 412 

further explore the reasons behind the differences between models, and between model and DryFlux GPP, 413 

we calculated and mapped the standard deviation in annual PFT fCover for each grid cell over the 2001 to 414 

2016 period for each of the 4 main PFT groups: total vegetation, woody vegetation, non-woody vascular 415 

vegetation, and bare ground/soil, with a further split of non-woody category into grasses and crops, and 416 

then C3 and C4 grasses. We compared the first three categories to determine which major PFT categories 417 

(woody versus non-woody) were contributing the most to total PFT annual variability. We then examined 418 

whether the spatial patterns in the standard deviation in PFT annual fCover match the spatial patterns in 419 
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model annual GPP standard deviation and the slope of the linear regression between model and DryFlux 420 

annual GPP. For dynamic vegetation enabled models we then performed a gridcell pairwise comparison 421 

to determine the nature of the relationship between modeled total vegetation annual fractional cover 422 

variability and annual GPP variability. We calculated how much of the variance in annual GPP can be 423 

explained by variance in PFT annual fCover by computing least-squares linear regressions (Python 424 

module scipy.stats.linregress). For the grid cell pairwise comparison, we calculated the coefficient of 425 

variation (CV) which is standard deviation of values over the 2001 to 2016 time period divided by the 426 

mean over the same period, because the CV is a more appropriate statistic to compare the variability at 427 

locations with different means. We performed the same set of analyses for the variability in modeled 428 

burnt area (standard deviation in annual percentage burnt area over the 2001 to 2016 period) to 429 

understand fire effects on spatial patterns in both modeled PFT fCover and GPP variability. Finally, we 430 

examined how accurately the dynamic vegetation enabled models represent the vegetation variability 431 

within the study region by benchmarking the annual PFT fCover standard deviation maps against 432 

independent reference fCover datasets from existing remote sensing data (see section 2.3.2).   433 

 434 

Besides overall vegetation annual fCover variability due to dynamic vegetation and fire, we also assessed 435 

whether higher fCover of one of the major PFT groups can be linked to modeled GPP IAV (specifically, 436 

the slope of the linear regression between model and DryFlux annual GPP). For this purpose, for each 437 

model we took the spatial mean (± 1 s.d.) fCover of woody, grass, C3 grass, and C4 grass across all grid 438 

cells with fCover above a certain threshold (0.1 and 0.5) to assess if a model with higher fCover of a 439 

specific PFT tends to over- or underestimate DryFlux annual GPP by comparing with the spatial mean (± 440 

1 s.d.) of the slope of the linear regression We performed this analysis for grid cells with mean fCover 441 

above both 0.1 and 0.5 considering that 10% is a typical  uncertainty in satellite fCover products while 442 

greater than 50% mean fCover represents the grid cells dominated by that cover type. Then we plotted the 443 

mean fCover against the slope values to determine if models with higher mean fCover  in a specific PFT 444 

group can be linked to models’ performance in capturing DryFlux GPP IAV. Finally, we compared the 445 
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model mean PFT fCover with our independent reference datasets (MODIS VCF for woody and 446 

nonwoody groups and RAP for woody and grass vegetation types) to assess if the relationships between 447 

model vegetation fractional cover and GPP variability are undermined by inaccurate modeled fCover 448 

distributions.  449 

3. Results  450 

3.1 Comparison of model and DryFlux annual GPP variability 451 

Figure 2 shows the time series (2001-2016) of annual GPP summed over the entire study area. Although 452 

the TRENDY ensemble mean total GPP (thick grey curve in Fig. 2) is lower than the DryFlux GPP (thick 453 

black curve in Fig. 2) the sign of the annual anomalies in TRENDY ensemble mean GPP match those of 454 

DryFlux well (Figs. 2a and b; R: = 0.96). However, individual TRENDY models simulate both higher and 455 

lower annual total GPP (Fig. 2a) and GPP IAV (Fig. 2b) compared to tDryFlux(Fig. 2a). Most models 456 

underestimate both DryFlux mean GPP and IAV (brown curves in Figs. 2a and b), while a selected few 457 

models (OCN, SDGVM and the LPJ family of models) tend to overestimate both the mean DryFlux GPP 458 

magnitude and the IAV (blue curves in Figs. 2a and b).   459 

 460 
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 461 

Figure 2: Time series of (a) total annual GPP (PgCyr-1) over the study area; and (b)annual GPP anomalies (i.e., 462 

annual values minus the mean to focus on GPP IAV) between 2001 to 2016 from TRENDY v11 models (blue and 463 

brown curves) compared to DryFlux v1.0 (thick black curve). The mean of the TRENDY models is shown in the 464 

thick grey curve. Note that models with the blue curves are those that tend to have higher annual GPP variability (as 465 

seen in the anomalies) than DryFlux. 466 

The spatial distribution of standard deviation in annual GPP (Fig. 3a) and slope of the linear regression 467 

between model and DryFlux annual GPP across the study area are shown in Figs. 3a and 3c. These are 468 

two metrics that represent GPP IAV. As seen in the total annual GPP time series (Fig. 2), most models 469 

generally have a lower standard deviation in annual GPP (top two rows of Fig. 3a) compared to DryFlux 470 

across much of the study area except the east and southeastern region (see below) and slope values less 471 

than 1 (top two rows of Fig. 3c), while several models (LPJ-GUESS, LPJwsl, LPX-Bern, OCN, and 472 

SDGVM) generally have higher standard deviation in annual GPP and slope values greater than 1 (bottom 473 

row of Figs. 3a and c – although SDGVM and LPX-Bern have lower annual GPP variability compared to 474 

s DryFlux in the north-eastern and western regions, respectively).  475 

 476 

The spatial pattern of high standard deviation of annual GPP in the east and southeastern part of the study 477 

area in the DryFlux product is captured well by most models, although the magnitude is higher than 478 
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DryFlux for many models (Fig. 3a). In terms of magnitude there is variability among models too e.g. the 479 

slope values are often quite a bit higher (up to 3) or lower (down to 0) across most models for this SE 480 

region (Fig. 3c). This region corresponds to an area with high annual rainfall variability (data not shown). 481 

High values of standard deviation in annual GPP in this region do not necessarily correspond to high 482 

mean annual GPP values (Fig. S2). IBIS has a high mean GPP in the southeast region but has very low 483 

standard deviation in annual GPP and CLASSIC, CLM5, JULES, ORCHIDEE do not have as high a 484 

mean annual GPP as IBIS in that region but those models do have higher magnitude of annual GPP 485 

standard deviation (cf. Fig. 3a and Fig. S3).  486 

 487 

The Kernel density estimation (KDE) ridgeline plots, which are the probability density functions of 488 

temporal standard deviation of annual GPP across space, corroborate the spatial patterns: the majority of 489 

models (in the top two rows of Fig. 3a and light purple KDE plots in Fig. 3b) tend to be skewed with 490 

peaks towards lower values and longer tails towards higher values of standard deviation in annual GPP 491 

compared to DryFlux that looks more like normal distribution although with longer tails towards higher 492 

values. For the same models the majority of grid cells have slope values less than 1 (brown KDE plots in 493 

Fig. 3d). In contrast, the KDE plots for the LPJ models, OCN and SDGVM generally have a much wider 494 

distribution of annual GPP standard deviation and slope values (dark and light blue KDE plots in Figs. 3b 495 

and d).  While the mode(s) of the standard deviation KDE plots generally match the mode of the DryFlux 496 

KDE plot for these models, a greater number of grid cells have higher standard deviation in annual GPP 497 

compared to DryFlux (Fig. 3b). The mode of the slope KDE plots is ~1.0 for LPJ-GUESS, LPX-Bern and 498 

SDGVM, while LPJwsl and OCN have distributions that are skewed more towards higher slope values 499 

(>1.0 with modes ~2.0). Among all the models, LPJ-GUESS is the model that best captures the variability 500 

of the DryFlux GPP as evidenced by comparing the spatial pattern of annual GPP standard deviation (Fig. 501 

3a), the standard deviation KDE plot that best matches DryFlux (Fig. 3b), the majority of slope values 502 

close to 1 (Fig. 3c) and the most constrained slope KDE plot with a mode of ~1 (Fig. 3d). LPJwsl, LPX-503 
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Bern, SDGVM and OCN all have a much higher annual GPP standard deviation and high slope values 504 

(often exceeding 2) in the eastern or southeastern region of the study area (Figs. 3a and c). 505 

 506 

Figure 3: Spatial distribution across the western North American study area for: a) standard deviation of annual GPP 507 

(2001-2016) for all TRENDY v11 models used in this study and the DryFlux data; b) a ridgeline plot of the Kernel 508 
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Density Estimates (KDE) representing the area weighted spatial distribution of GPP standard deviation for each of 509 

the TRENDY models and DryFlux; c) and d) same as a) and b) but for the slope of the linear regression between 510 

model and DryFlux annual GPP.  The vertical dashed line in the slope ridgeline KDE plots shows a slope value of 511 

1.0. The top two rows of (a) and (c) and the light purple and brown KDE plots in (b) and (d) correspond to models 512 

that tend towards lower standard deviation values than DryFlux or which have slope values of the linear regression 513 

between each model and DryFlux that are much less than 1. The bottom row of maps in (a) and (c) and the dark and 514 

light blue KDE plots in (b) and (d) correspond to models that tend to have higher standard deviations and a wider 515 

range of slope values. 516 

3.2 Categorising models based on dynamic vegetation and fire 517 

Regrouping the KDE ridgeline plots into dynamic vegetation enabled and fire enabled models, Figs. 4a 518 

and b, respectively) provides a first visual evaluation of the impact of each of these processes on model 519 

performance. Grouping the models according to whether fire was included did not help to reveal the cause 520 

of the differences between the two model groups. Models that did not use dynamic vegetation are mostly 521 

underestimating GPP variability compared to DryFlux with the exception of OCN and SDVGM. Of the 4 522 

models that included dynamic vegetation and fire, one model generally had low  GPP IAV compared to 523 

DryFlux (JULES – Figs. 2 and 3), while the 3 LPJ models tended to have higher GPP IAV compared to 524 

DryFlux (Figs. 2 and 3). Thus, our hypotheses related to the inclusion of dynamic vegetation and fire may 525 

be partially correct, but the full picture is more complex. Neither of these processes alone, or in 526 

combination (the 4 dynamic vegetation enabled models also included fire), is able to explain why models 527 

are underestimating or overestimating the DryFlux GPP IAV (Fig. 4). However, with the exception of 528 

JULES, including dynamic vegetation and fire may explain why the LPJ models have higher GPP IAV 529 

compared to models without either of these processes, as we hypothesised. In contrast, fire alone (in 530 

models without dynamic vegetation – Fig. 4b) is not causing models to have higher GPP IAV (possibly 531 

with the exception of SDGVM), contrary to what we predicted. In the following sections we examined 532 

differences across models in terms of their spatial patterns in temporal variability in fractional cover of 533 
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the major plant functional types and the burnt area for fire enabled models. We also explored whether the 534 

spatial distribution of dominant plant functional types PFTs can be linked to spatial patterns in GPP 535 

variability.  536 

 537 

Figure 4: Ridgeline KDE plots summarizing the distribution of slope values of the linear regression between model 538 

and DryFlux annual GPP across the entire study area grouped by: a) dynamic vegetation enabled models (green 539 
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KDE plots); and b) fire enabled models (orange KDE plots) versus models that do not contain those processes (beige 540 

KDE plots) for the models. Note that all models that simulate spatial distribution of fractional vegetation cover 541 

dynamically also include fire in their simulations. 542 

3.3 Spatial patterns in PFT fractional cover and burnt area annual 543 

variability  544 

As expected based on the results in Section 2.2, models with dynamic vegetation (JULES and the 545 

LPJ family of models) have higher standard deviation in PFT annual fCover compared to other models, 546 

while all models that included fire but no dynamic vegetation (e.g., CLASSIC, CLM5.0, JSBACH, ISBA-547 

CTRIP, and VISIT) showed no changes in vegetation fCover of vegetation, with the exception of ISBA-548 

CTRIP – Fig. S3a to S3g). For all dynamic vegetation enabled models, which also included fire, we found 549 

that temporal variability of annual vegetation fCover – expressed as the coefficient of variation (CV, i.e., 550 

standard deviation in annual total PFTcover d divided by the mean) – highly correlated with the temporal 551 

variability (CV) of annual GPP (Fig. 5). Among these models, LPJ-GUESS, which captures better the 552 

spatial patterns in GPP IAV compared to other models (Fig. 3),  has the highest R2 value between annual 553 

total PFT fCover and annual GPP CV, with LPX-Bern a close second. With increasing annual total PFT 554 

fCover CV LPJwsl showed an increased spread in GPP IAV. JULES appears to have more of a nonlinear 555 

increasing concave down relationship between annual total PFT fCover and annual GPP CV, which 556 

implies increases in annual GPP variability (expressed CV) may be limited above an annual total PFT 557 

fCover CV of around 0.05.   558 

 559 
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 560 

Figure 5: Scatterplots for the four dynamic vegetation enabled TRENDY models (i.e., those that simulate changes in 561 

spatial distribution of PFTs over time) showing the pairwise grid cell comparisons of the coefficient of variation 562 

(CV; standard deviation divided by the mean) of the total PFT annual cover versus the annual GPP calculated over 563 

the 2001 to 2016 time series for each grid cell. CV is used here instead of the standard deviation to directly compare 564 

temporal variability of two different quantities. 565 

 566 

The standard deviation in annual total PFT fCover in the dynamic vegetation enabled models is mostly 567 

from the herbaceous PFTs (cf. 1st 4 columns showing the models in top and bottom rows of Fig. 6), 568 

which matches the two independent reference vegetation fCover datasets – MODIS VCF and RAP (last 569 

two columns in Fig. 6). In JULES, the spatial patterns of standard deviation in annual PFT fCover  match 570 

both the MODIS VCF and RAP products (cf. Fig. 6 left column with the rightmost two columns). 571 

However, these spatial patterns do not correspond to the spatial patterns seen in JULES standard deviation 572 

of annual GPP (Figs. 3a and c). All variants of the LPJ model have higher standard deviation in annual 573 

vegetation fCover compared to MODIS VCF and RAP and the spatial patterns also do not match well 574 

(Fig. 6). The models appear to be overestimating standard deviation in annual PFT fCover more in the 575 

arid central and southwestern part of the study area. These regions typically have sparse dwarf shrubs and 576 

higher bare soil cover compared to models (see RAP in Figs. S1a and b). LPJwsl also has a higher 577 

standard deviation in annual woody plant fCover in a north central and eastern region of the study area 578 

(and high mean woody plant fCover – Fig. S1b)  that is not consistent with the two independent data 579 

products (Fig. 6). All variants of the LPJ model also predict higher mean and standard deviation in annual 580 

grass cover compared to the RAP product (Fig. 6 and S1d). The higher standard deviation in annual PFT 581 
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fCover in LPJ models when compared to the independent datasets could help explain why those models 582 

also overestimate standard deviation in annual GPP (with slope values much greater than 1). However, 583 

the spatial patterns in standard deviation in annual PFT fCover (Fig. 6) do not match completely the 584 

spatial patterns in standard deviation in LPJ annual GPP (Fig. 3a), with the exception of LPJ-GUESS.  585 

 586 

 587 

 588 

Figure 6: Standard deviation in annual fCover from 2001 to 2016 of all vegetation (all PFTs – top row), woody 589 

vegetation (second row), and grasses (bottom row) for dynamic vegetation enabled models compared to independent 590 

reference data from MODIS VCF and RAP.  591 

 592 

Only four of the fire-enabled models simulate a standard deviation of annual percentage burnt area greater 593 

than 10% for a number of grid cells (CLASSIC, SDGVM, VISIT and LPJwsl); all other models simulate 594 

almost no variability in percentage burn area variability (Fig. 7). Note that the spatial patterns in the 595 
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standard deviation of annual burnt area correspond well with the mean values, with almost all models 596 

except SDGVM simulating mean burnt area less than 20% for the majority of grid cells (data not shown). 597 

In all fire-enabled models, the spatial patterns in the standard deviation of annual burnt area did not 598 

correspond well to spatial patterns in the standard deviation in annual PFT fCover (cf. Fig. 7 with Fig. 6), 599 

with the possible exception of the southwestern region of high standard deviation in annual burnt area for 600 

LPJwsl. Therefore, while fire may be playing a role in annual variability of PFT fCover and GPP for 601 

LPJwsl (Fig. 8), it cannot be the only cause of the much higher standard deviation in annual GPP (and 602 

high slope values) compared to DryFlux. The remaining three models (CLASSIC, SDGVM and VISIT) 603 

do not model the spatial distribution of vegetation cover dynamically; therefore, despite simulating 604 

noticeable variations in annual burnt area this did not affect their year to year changes in PFT cover (Fig. 605 

S3). However, these three models did have spatial patterns in standard deviation of annual burnt area that 606 

corresponded reasonably well with spatial patterns in standard deviation in annual GPP (cf. Figs. 7 and 607 

3a). This was especially the case for SDGVM, which has the simplest representation of fire (Figs. 7 and 608 

3a). These results suggest that for these three models, fire may be a driver of GPP variability (Fig. 8), as 609 

we predicted (albeit that CLASSIC and VISIT still underestimate DryFlux annual GPP variability 610 

overall). The remaining fire-enabled models (ISBA-CTRIP, JSBACH, JULES, and LPJ-GUESS) have 611 

very low standard deviation in annual burnt area (Fig. 7). (Note LPX-Bern did not output burnt area; 612 

however, they use the same fire module,GlobFIRM, as the other LPJ models.) Thus, for these models, fire 613 

does not correlate well to standard deviation in annual GPP (Fig. 8), contrary to what we predicted. 614 

Furthermore, the burnt area results dispute our hypothesis that fire enabled models with dynamic 615 

vegetation would result in higher grass fCover; instead; another process or model input must be driving 616 

high standard deviation in grass fCover in the dynamic vegetation enabled models. 617 
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 618 

Figure 7: Spatial distribution across the western North American study area of the standard deviation in 619 

annual burnt area (%) for each grid cell for the 2001 to 2016 period for fire enabled TRENDY models. 620 

 621 
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 622 

Figure 8: Scatterplots showing for all the fire enabled TRENDY models the pairwise grid cell comparisons of the 623 

standard deviation of the total annual burnt area versus the annual GPP calculated over the 2001 to 2016 time series 624 

for each grid cell.  625 
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3.4 Relationship between dominant vegetation type and annual GPP 626 

variability 627 

In addition to the contribution of dynamically modelled vegetation cover and fire to high annual GPP 628 

variability, we hypothesized that model performance in capturing annual GPP variability compared to the 629 

reference DryFlux product may be related to the dominant vegetation type. Compatible with our 630 

hypothesis that models with high mean grass fCover across the study site will have higher standard 631 

deviation in annual GPP compared to models with more shrub or bare ground cover, we found no clear 632 

linear relationship between the mean fCover of woody plants for selected grid cells across the study area 633 

and the mean slope of the linear regression between each model and DryFlux annual GPP (Fig. 9a). This 634 

was the case both when grid cells with a woody fCover greater than 0.1 were selected (Fig. 9a) and grid 635 

cells with a woody fCover greater than 0.5 (Fig. 9a inset).  Models with both high and low woody 636 

fractions underestimate model-DryFlux annual GPP slope values (spatial mean less than 1.0), although it 637 

is possible that there is a decreasing concave up relationship in which models with generally low woody 638 

fCover have higher GPP variability (slope values greater than 1 – Fig. 9a). Contrary to our hypotheses, 639 

the spatial mean grass (C3 plus C4) and C3 grass fCover for different models show no linear relationship 640 

with the spatial mean slope of the linear regression between model and DryFlux annual GPP when grid 641 

cells with a fCover of greater than 0.1 or 0.5 were selected (R2 values ≤ 0.06; Figs. 9b and c and insets). 642 

However, there is a much stronger positive linear relationship between spatial mean C4 grass fCover and 643 

the spatial mean slope of the linear regression between model and DryFlux annual GPP (R2 0.63 for grid 644 

cells with greater than 10% C4 grass fCover and 0.35 for grid cells with greater than 50% C4 grass 645 

fCover; Fig. 9d and inset). Models with low C4 grass fCover tend to have low annual GPP model-646 

DryFlux slope values (slopes less than 1; brown points in Fig. 9d) and models with high C4 grass fCover 647 

(especially LPX-Bern, OCN and SDGVM) have higher slope values (slopes greater than 1; blue points in 648 

Fig. 9d). It is also worth noting that most of the models with higher C4 grass fCover also had a low 649 
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woody plant cover (low spatial mean and small number of grid cells – Fig. 9a and inset). For these three 650 

models (LPX-Bern, OCN and SDGVM), the regions of high mean C4 grass fCover (Fig. S1f) correspond 651 

well with regions of high standard deviation in annual GPP s (Fig. 3a) and model-DryFlux slope values 652 

much greater than 1 (Fig. 3c). In contrast, regions of high mean C3 fCover do not correspond to regions 653 

of high standard deviation in annual GPP for any model (including all the models that tend to 654 

overestimate GPP IAV (bottom row of Figs. 3a and c). Therefore, in general our hypothesis that models 655 

with higher grass cover would have higher GPP variability was incorrect. However, for some models 656 

including LPX-Bern, OCN, and SDGVM, their high C4 grass fCover (and/or a too high response of C4 657 

grasses to climate variability in these models) may be a piece of the puzzle in explaining why they are 658 

overestimating DryFlux GPP IAV. 659 

 660 

Figure 9: Scatter plots showing the spatial mean (mean across the study area for selected grid cells) fractional cover 661 

(fCover) for a) woody, b) grass, c) C3 grass and d) C4 grass cover greater than 0.1 (or 0.5 in the inset plots) versus 662 

the spatial mean of GPP slope of the linear regression between model and DryFlux annual GPP for the grid cells 663 

with fCover greater than 0.1 (or 0.5). For each scatter plot the point size is proportional to the number of grid cells, 664 

the horizontal error bar represents 1 s.d. spread from the mean fCover and the vertical error bar represents 1 s.d. 665 

https://doi.org/10.5194/egusphere-2025-2841
Preprint. Discussion started: 31 July 2025
c© Author(s) 2025. CC BY 4.0 License.



34 

spread from the spatial mean GPP slope across selected grid points. R2 values in each plot represent the proportion 666 

of variance in the spatial mean PFT fCover across models explained by the spatial mean in  slope between the 667 

annual model and DryFlux GPP .  668 

 669 

We compared each model’s mean fCover for each PFT category (Fig. S1) with the two independent 670 

reference fCover datasets. For this purpose RAP data is more reliable than MODIS VCF for both grasses 671 

and woody categories because RAP grass cover is a combination of grass and forbs but not crops; 672 

therefore, RAP is a better dataset against which to benchmark grass fCover. MODIS VCF non-woody 673 

cover contains all vegetation with height less than 5m; therefore we consider it is suboptimal for 674 

evaluating either woody or non-woody cover. Of all the models that tend to have high standard deviation 675 

in annual GPP and model-DryFlux slope values much greater than 1 (LPJs, OCN and SDGVM), the 676 

models tend to have higher mean grass cover than RAP and the spatial patterns in mean grass cover did 677 

not match patterns seen in the RAP product (Fig. S1d).  RAP has lower grass cover in the more arid 678 

central and southwestern region compared to the models (Fig. S1d) and higher mean woody plant cover 679 

(Fig. S1b). (Note that MODIS VCF has a lower woody plant cover that matches the models well; 680 

however, MODIS VCF woody cover represents trees greater than 5m). In contrast, many of the models 681 

that have lower standard deviation in annual GPP and model-DryFlux slope values much less than 1 in 682 

the central and southwestern arid regions  tend to have higher mean woody plant cover (or higher bare 683 

soil cover) in that part of the study area (Fig. S1b). This could suggest that to simulate higher GPP IAV 684 

these models need higher grass cover and lower shrub/bare soil cover.  However, LPJwsl has more woody 685 

cover in the northern region than seen in the reference datasets or in other models (Fig. S1b), yet still 686 

overestimates GPP IAV in this region (Figs. 3a and c). These results lend support for our hypothesis that 687 

increased grass cover results in higher GPP variability, with too high grass cover (especially C4) partially 688 

resulting in too high GPP IAV.  689 
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4. Discussion 690 

4.1 Implications of uncertainties in DryFlux 691 

The random forest model used to produce the DryFlux product does not include a fCover data nor does it 692 

represent different plant functional types (see Section 4.2) and thus cannot be biased by discrepancies in 693 

vegetation fractional cover. Instead, DryFlux used satellite derived vegetation greenness indices such as 694 

NDVI and EVI as a proxy for vegetation green distribution for photosynthesis. As Smith et al. (2018) 695 

showed, these indices do not always capture reductions in GPP in the hot, dry pre-monsoon season 696 

because in dryland ecosystems woody plant leaves often remain green during this period; therefore 697 

photosynthesis and green leaf area can often be decoupled. This could result in an overestimation of 698 

DryFlux GPP during that period, and thus a slight positive bias in DryFlux annual GPP. However, as the 699 

DryFlux product performed well in capturing the decline in GPP across southwestern US sites during the 700 

pre-monsoon season (Barnes et al., 2021) we are not expecting such a positive bias to occur. Another 701 

potential issue with DryFlux is that it may not be as reliable in crop-dominated areas because the random 702 

forest model  did not include crop sites.. However, this should not affect our analysis as we mask out 703 

crop-dominated grid cells from our study area. Finally, a recent study showed that dryland GPP is more 704 

sensitive to soil moisture than atmospheric drivers such as vapour pressure deficit or air temperature 705 

(Kannenberg et al 2024). DryFlux v1.0 did not consider soil moisture in the upscaling model; however, 706 

inclusion of soil moisture at different depths has been tested in a later DryFlux version (Pervin et al., in 707 

prep.). As the results of this study show, inclusion of surface soil moisture improved DryFlux GPP 708 

accuracy by decreasing RMSE and increasing R2 in both the daily and monthly predictions when 709 

compared to in situ GPP data and by helping to capture the bi-modal annual cycle and the magnitude of 710 

mean annual GPP across some western North American sites (Pervin et al., in prep). However, inter-711 
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annual variability in DryFlux predicted annual GPP is captured well by both versions. Therefore, we are 712 

not expecting any drastic change in the comparisons between DryFlux and TRENDY models.  713 

4.2 Model-data uncertainties in PFT distributions 714 

The findings of this study suggest that models without dynamic vegetation tend to have higher shrub 715 

versus grass cover, which may contribute to an underestimate in GPP IAV, while models with high 716 

prescribed C4 grass cover may overestimate GPP IAV. Models that do not simulate changes in PFT 717 

fractional coverage dynamically have their own model-specific methods (including dataset used) for 718 

generating spatial distribution of PFTs’ fractional coverage. Therefore, mapping remotely sensed 719 

vegetation or land cover data to a given model's PFTs is a largely subjective and expert judgement based 720 

process, especially in sparsely vegetated dryland regions (Hartley et al., 2017). This can lead to 721 

significant variation in PFT fractional coverage maps across models even when they are based on the 722 

same underlying remotely sensed data set (Hartley et al., 2017).   723 

 724 

Model specific decisions include methods for separating grasses into their C3 and C4 variants (Table S1). 725 

Some models define C4 grasses as those in a tropical climate zone based on Köppen Geiger climate zones 726 

or ECOCLIMAP (Table S1) and C3 grasses in all other climate zones. Other models use a mean 727 

temperature threshold for separating C3 versus C4 grasses; however, the temperature thresholds vary 728 

widely between models. For example CABLE POP, LPJwsl, and LPJ-GUESS use a temperature 729 

threshold of 15.5°C for the coldest month to separate out C3 and C4 grasses. CLASSIC and SDGVM use 730 

the C3/C4 distribution map from Still et al., (2003) and the ESA CCI Land Cover product (Poulter et al., 731 

2011), respectively – both of which follow the study of Collatz et al. (1998) that specified 22°C as a 732 

“critical crossover” temperature for C3 versus C4 grasses (Table S1). Note that Still et al. (2003) allows 733 

C4 grasses to prevail when temperatures exceed 22°C in any month, while Poulter et al. (2011) specified 734 

this temperature threshold for the hottest month. Still et al. (2003) also requires a minimum amount of 735 
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precipitation (25mm) and assesses whether the temperature and precipitation conditions are met on a 736 

seasonal basis, thus permitting mixed C3/C4 grasslands in temperate regions such as our study area. The 737 

models with a temperature threshold of 15.5°C for the coldest month have no C4 grass in the study area 738 

(Fig. S1f), which is not the case in reality (Section 2.1). In fact, neither a single temperature threshold 739 

defined for the hottest or coldest month nor the use of climate biomes to separate out C3 versus C4 740 

grasses is sufficient as both types exist in the southwestern part of our study area: C3 grasses grow in 741 

winter, while C4 grasses grow in summer (Ehleringer, 1978).  742 

 743 

Large discrepancies in dynamic vegetation enabled modeled C4 grass cover were documented by Still et 744 

al. (2019) in comparison to independent proxy data across North America. Their study noted the 745 

importance of representing seasonal offsets in both C3 and C4 grasses, in addition to recommending 746 

improvements in modeled responses to disturbance,  tree-grass competition for water resources, and 747 

separation of woody and herbaceous cover in remotely sensed data. The latter is hard to achieve even 748 

when LiDAR derived height data are included in the spectral unmixing algorithm (Pervin et al., 2022). 749 

Wilcox et al. (2023) further noted the need to differentiate between annual and perennial grasses in 750 

DGVMs. However, aside from independent proxy data, there are currently no detailed maps of C3 versus 751 

C4 grass distributions for this study region that could help to benchmark models for dynamic vegetation 752 

enabled models or to improve PFT input maps for models with prescribed, static PFT fCover. A new 753 

approach utilizing the differences in timing of peak growth in C3 versus C4 grasses has been used to map 754 

C3 and C4 grass distributions across Australia (Xie et al., 2022). Such an approach should be utilized to 755 

create C3/C4 grass distribution maps for other regions such as western North America. There is now a 756 

wealth of in situ PFT fCover estimates collected at NEON sites that could be used to validate such a 757 

product (NEON fCover product: https://data.neonscience.org/data-products/DP1.10058.001). Luo et al. 758 

(2024) have applied photosynthetic optimality theory combined with satellite remote sensing data to 759 

produce global maps of C4 distributions. Dryland GPP simulations utilising the new product from Luo et 760 

al. (2024) should be tested against the default model PFT maps for this study region.  761 
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 762 

Even when data are available, comparisons with independent reference fCover datasets can be 763 

challenging. Vegetation fCover estimates provided in most remote sensing derived classification maps 764 

and field estimates is essentially a spatio-temporal average, whereas models need the fCover for the most 765 

optimal climate conditions. Models should then limit growth during periods of non optimal climate 766 

conditions. One possible option would be to use the year of maximum fCover from products such as RAP 767 

to prescribe PFT fCover in models without dynamic vegetation, and compare that to simulations using the 768 

standard “spatio-temporal average” PFT fCover approach.  769 

 770 

Other issues complicate comparisons of model prescribed or simulated PFT fCover. MODIS VCF is one 771 

of the most widely used products for evaluating model PFT fractions (e.g., in Teckentrup et al., 2021); 772 

however, as described in Section 2.3.2.2, tree cover in MODIS VCF is defined as trees with a height 773 

greater than 5m. In this study region (and many dryland regions) most shrubs at low elevation are less 774 

than 5m in height; therefore, we expect MODIS VCF will underestimate true woody cover in dryland 775 

regions. Similarly we expect MODIS VCF non-woody cover will overestimate true herbaceous vegetation 776 

as it incorporates all vegetation with height less than 5m, which will include small stature woody shrubs 777 

present in drylands. Therefore, MODIS VCF is not an optimal product for benchmarking modeled 778 

dryland vegetation fractional cover. RAP herbaceous cover is more reliable for providing grass fCover 779 

estimates as it incorporates both annual and perennial grasses and forbs. The only drawback of the RAP 780 

product is that it does not consider any crop cover types and therefore these have to be removed from a 781 

PFT fCover evaluation analysis. RAP also includes both tree and shrub cover layers, which can be 782 

summed to provide total woody cover. One additional method for benchmarking dryland woody cover 783 

would be to use high resolution datasets of tree crown area (e.g., Brandt et al., 2020) that are becoming 784 

more widely available as computational power increases.  785 
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4.3 Implications of inaccurate dynamic vegetation and fire 786 

representation 787 

As expected, the lack of dynamic vegetation and fire helps to explain why some models have low GPP 788 

IAV compared to DryFlux. However, when analyzed spatially, models that do include a representation of 789 

dynamic vegetation and/or fire do not always simulate higher GPP variability across most of the study 790 

area, contrary to our hypotheses. Spatial patterns of burnt area variability generally did not match patterns 791 

of variability in vegetation fCover for any model (with the slight exception of LPJwsl). This is to be 792 

expected for models that do not simulate the spatial distribution of PFTs’ fractional coverage 793 

dynamically: in these models fires burn the existing biomass of model PFTs and reduce their per unit area 794 

biomass density, but do not change the PFTs’ fractional cover. However, no change in fCover as a result 795 

of fire is not realistic in most cases, thus highlighting the need for models to include both fire and 796 

dynamic changes in PFT distributions when modeling dryland ecosystems.  797 

 798 

All the dynamic vegetation enabled DGVMs included in this study also included a representation of fire; 799 

however, most of these models have low standard deviation in annual percentage burnt area (Fig. 7) 800 

which does not represent reality. Fire does occur in western North American dryland ecosystems 801 

(McGranahan and Wonkka, 2024; Singleton et al., 2019) though more severe fires typically occur in the 802 

higher elevation more shrub to tree dominated ecosystems (Singleton et al., 2019). For models that 803 

included dynamic vegetation and fire we predicted that fire would contribute to the prevalence of grass 804 

dominated ecosystems (Burton et al., 2019; Verbruggen et al., 2021). However, JULES and all LPJ 805 

models simulated very low standard deviation in annual percentage burnt area  (Fig. 7) and high grass 806 

cover; therefore, for these models it is clearly not fire that is controlling grass dominance. In the S3 807 

simulations pasture covers much of these areas (likely too much based on our knowledge of the study 808 

area), but even the LPJ S2 simulations without a pasture land cover class predict high grass cover (data 809 
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not shown). Further research is needed to ensure that processes controlling grass dominance in the LPJ 810 

models, including competition between herbaceous and woody plants, are accurately represented.  811 

 812 

The processes that result in high grass cover in the dynamic vegetation enabled DGVMs, including the 813 

bioclimatic envelopes defined for each PFT and/or the competition conditions set for each model (Harper 814 

et al., 2018; Sitch et al., 2003; Smith et al., 2001), could in turn produce aboveground or litter biomass 815 

that is below the minimum fuel load for fire to spread (e.g., 200gCm-2 in GlobFIRM – Thonicke et al., 816 

2001; INFERNO – Mangeon et al., 2016; and CLASSIC – (Melton and Arora, 2016)). However, most 817 

models simulated litter biomass values greater than this threshold across this region (data not shown); 818 

therefore it is not the lack of fuel that is causing low fire occurrence across models. Predicted moisture 819 

conditions in the upper soil layers that control flammability may be too high during the hot, dry pre-820 

monsoon period when fires are most likely. Models with a simple bucket layer hydrology scheme (which 821 

includes LPJwsl, SDGVM, and LPX-Bern in this study) have been shown to overestimate moisture 822 

during the hot, dry period of May and June at sites across the southwestern US compared to more 823 

mechanistic soil moisture schemes (MacBean et al., 2020). Even if models are simulating small fires 824 

during this period, the impact on annual burnt area, which is a function of length of fire season in 825 

GlobFIRM (Thonicke et al., 2001) or prescribed as in INFERNO (Mangeon et al., 2016), may be 826 

minimal. A more extensive validation of fire burnt area fraction and its seasonal and inter-annual 827 

variability simulated by fire-enabled DGVMs is needed. However, given the complexity of different fire 828 

model schemes and the finer spatial and temporal resolutions at which fires occur compared to model grid 829 

cell resolution, a more extensive validation is beyond the scope of this study.  830 

 831 

For many of the models that simulate higher standard deviation of annual percentage burnt area 832 

(CLASSIC, SDGVM and VISIT) there was a reasonable relationship with GPP variability (R2 values > 833 

0.3; Fig. 8). This finding suggests that fire may play an important role in improving simulations of GPP 834 

IAV if it was better represented. Future evaluations of modeled burnt area should consider grouping 835 
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models according to the different fire parameterisations to try to disentangle the level of complexity 836 

needed. . However, even with the higher predicted standard deviation in annual percentage burnt area 837 

CLASSIC, CLM5, and VISIT, their GPP IAV was still generally underestimated compared to DryFlux. 838 

The role that fire plays in GPP variability in dryland ecosystems could be tested by running factorial 839 

simulations with and without the fire module enabled. This should be a priority in the near term for 840 

further diagnosing the causes of dryland C flux model-data discrepancies. 841 

 842 

Aside from fire, several other processes that control competition between woody and herbaceous species 843 

may explain why dynamic vegetation enabled models in this study tended to overestimate grass cover 844 

(both C3 and C4 grasses), with spatial patterns that partially corresponded to high GPP IAV compared to 845 

DryFlux. Limited water availability shapes the patchy vegetation patterns often seen in drylands (Munson 846 

et al., 2016). Differential water uptake by trees and grasses at different depths in the soil as in the Walter 847 

hypothesis (Case and Staver, 2018; Munson et al., 2016) in theory are represented in many DGVMs; 848 

however, simplistic rooting profiles implemented for more mesic ecosystems may not be representative of 849 

dryland plants. More complex vegetation-water interactions are likely at play in drylands that may not be 850 

well represented in DGVMs. For example, tree roots are not always deeper than grass roots (Staver et al., 851 

2017). Furthermore, water in deep soil always passes through the shallow soil providing water access to 852 

grasses first. Another hypothesis likely not represented in DGVMs considers that shrubs temporarily shift 853 

their physiological activity to access water in later periods (Naito et al, 2011). However, in this case 854 

grasses will still use up the water first. This leaves the question if grasses are very opportunistic, how do 855 

shrubs survive, especially during drought. The answer could be provided by the hypothesis of positive 856 

feedback, where shrub clusters support nearby shrub establishment by increasing soil moisture through 857 

interception under the canopy (Scanlon et al., 2007). A field study in Kalahari detected wet soils under 858 

canopy and dry soils outside the canopy that supports this hypothesis (D'Odorico et al., 2007). However, 859 

such vegetation-moisture interactions will not be resolved by DGVMs with no representation of the 860 
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spatial distribution of mixed tree-grass ecosystems, no understory, and with soil tiling approaches that 861 

calculate soil moisture separately for different major PFT groups (such as trees and grasses).  862 

4.4 Potential impact of other processes controlling GPP IAV 863 

The DGVMs investigated in this study all capture the spatial patterns of GPP IAV fairly well in the SE 864 

region of the study area with high rainfall variability, with the caveat that for some models the variability 865 

is too strong and possibly linked to high C4 grass fractional cover. Larger model-data discrepancies exist 866 

in regions that do not have high rainfall variability and can be linked to dominance of shrub versus grass 867 

cover (see Section 4.3). The higher variability in annual GPP seen for C4 dominated DGVMs is an 868 

interesting finding given that many previous studies have shown models tend to underestimate C flux 869 

variability (Keenan et al., 2012), especially in drylands (MacBean et al., 2021; Wang et al., 2022). C4 870 

grass fractional cover and its change over time needs to be better evaluated in models (see Section 4.2); 871 

however, it is possible that there is too strong a response of C4 grasses to changing water availability. 872 

This could potentially be due to a range of issues in the model, including inaccurate C4 and other dryland 873 

plant traits (parameters;(Mahmud et al., 2021)), unrealistic C4 grass phenology (Whitley et al., 2016; De 874 

Kauwe et al., 2017), and unrealistic water stress functions (De Kauwe et al., 2015; 2017), with resultant 875 

impacts on photosynthesis and the complex interactions between leaf growth and soil water availability 876 

(due to partitioning of intercepted rainfall between transpiration and bare soil evaporation). High 877 

variability in GPP is likely linked to processes controlling leaf growth (Lin et al., 2023). Indeed, past 878 

studies have highlighted leaf area index and GPP in DGVMs can be too tightly coupled, especially in 879 

grasslands and arid regions (De Pue et al., 2022; Lin et al., 2023). Adapting moisture limited phenology 880 

schemes in DGVMs to better represent dryland PFTs is likely needed (Dahlin et al., 2015; MacBean et 881 

al., 2015; Renwick et al., 2019). 882 

 883 
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Finally, we note that we might expect that inclusion of N cycling in models may result in higher nutrient 884 

limitation that reduces annual GPP variability; however, in this study there was no apparent difference in 885 

GPP IAV with or without N cycling included in the models (Fig. S4). Nonetheless, Smith et al. (2014) 886 

noted that N limitation favours grasses in some regions, which could be contributing to high annual GPP 887 

variability for dynamic enabled models. It is likely that nutrient cycling plays a role in dryland 888 

productivity dynamics that requires further understanding and implementation. More complex 889 

interactions between fire, nutrients, and selective grazing in grasslands should also be considered in future 890 

dryland model developments (Wilcox et al., 2023). 891 

Even in reality it is impossible to estimate exact contributions of the myriad of processes that contribute 892 

to annual variability in ecosystem scale GPP. Doing so will require novel ways to probe or reinterpret 893 

existing in situ and gridded datasets. For example, future studies could assess non biogeography related 894 

process contributions to GPP IAV in DryFlux (and DGVMs) by considering time periods without fire and 895 

when vegetation fractional coverages are not changing considerably.  896 

4.5 Implications for other dryland regions 897 

While our study has elucidated differences between DGVMs in the form of high or low standard 898 

deviation of GPP in western North America, we predict that these findings may not be consistent across 899 

drylands on an intra-model basis. This prediction is based upon a recent study (Bogucki et al. in prep.) 900 

which utilized the same TRENDY DGVMs, but on a global scale, finding that a relatively high standard 901 

deviation of NEE in one particular dryland region (such as western North America) does not necessarily 902 

equate to a high standard deviation of NEE in other dryland regions. Despite the fact that Bogucki et al. 903 

(in prep.) investigate a time period spanning 52 years (1970 – 2020) instead of the 16 years (2001 – 2016) 904 

used in this study, and their use of NEE instead of GPP, our findings are generally similar. Both Bogucki 905 

et al. (in prep.) and this study identify the same DGVMs as either high (LPJ-GUESS, LPJwsl, LPX-Bern, 906 

OCN, and SDGVM) or low (top two rows of Fig. 3a) standard deviation within the bounds of western 907 
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North America. Additionally, all of the models which we have identified as having high standard 908 

deviation in annual GPP also display high standard deviation in annual NEE across multiple dryland 909 

regions such as the Caatinga, Sahel, and eastern Australia in Bogucki et. al (in prep.). However, not all of 910 

the models which both Bogucki et al. (in prep.) and this study have identified as low standard deviation 911 

within the bounds of western North America also have low standard deviation in other dryland regions. 912 

While some of the models are consistently low standard deviation across dryland regions (CLM5, ISBA 913 

CTRIP, JULES, ORCHIDEE, and YIBS), some models display low standard deviation in western North 914 

America but high standard deviation in other dryland regions (CABLE POP, CLASSIC, IBIS, JSBACH, 915 

and VISIT). Thus, our explanations for why some DGVMs have higher or lower standard deviations in 916 

annual GPP may not be applicable to these five DGVMs dryland regions on a global scale. Further 917 

studies focusing on other dryland regions such as the Caatinga, Sahel, and Eastern Australia are required 918 

to better understand what may be causing this variation between models and between dryland regions 919 

within each of the models.  920 

5. Conclusions 921 

We evaluated the ability of 15 DGVMs from the TRENDY v11 model inter-comparison compared with a 922 

dryland focused upscaled flux data product (DryFlux v1.0 GPP) to capture the IAV of dryland GPP in 923 

western North America. We also examined potential causes of different performances across models, with 924 

a specific focus on the role of processes related to biogeography (e.g., vegetation type and fractional 925 

cover, dynamic vegetation, and fire). We tested three hypotheses: that models with dynamic vegetation 926 

better capture GPP variability due to their ability to simulate grass regrowth after disturbance; that models 927 

with more accurate representation of grass fractional cover leads to better alignment with DryFlux GPP 928 

IAV; and that fire effects on GPP IAV are stronger in grass-dominated systems, especially in models with 929 

both dynamic vegetation and fire modules. While it is not possible to estimate exact contributions of 930 

different processes to poor model performance in capturing annual variability in an emergent quantity 931 
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such as GPP, this study nevertheless explored how vegetation characteristics and disturbances influence 932 

model performance in simulating dryland carbon dynamics. We identified TRENDY v11 models without 933 

dynamic vegetation and fire enabled capture low GPP IAV compared to the DryFlux product across the 934 

western North America dryland region. Among different PFT types, models with high C4 grass cover 935 

have high correlation with GPP IAV. LPJ models have high grass fCover, and high fCover variability, 936 

which is likely contributing to their higher GPP IAV. However, the fCover variability is not due to fire, 937 

and the spatial patterns in fCover variability do not match spatial patterns in GPP IAV, suggesting that 938 

other processes are also contributing to high GPP variability. However our findings provide a roadmap to 939 

the modellers in terms of improving vegetation representation in sparse woody shrub grass dynamic 940 

dryland ecosystems, specifically to focus on accurate representation of C4 grasses.  941 

Data and Code Availability  942 

The Aridity Index (AI) dataset was downloaded from: https://cgiarcsi.community/2019/01/24/global-943 

aridity-index-and-potential-evapotranspiration-climate-database-v3/. The DryFlux v1.0 GPP product was 944 

downloaded from https://github.com/marthageb/DryFlux and is freely available under a MIT License 945 

Copyright (c) 2021 marthageb. MODIS VCF was downloaded through google earth engine, April 2024, 946 

but also available at: https://lpdaac.usgs (DiMiceli et al., 2015). The RAP fCover data was downloaded 947 

from http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/. TRENDY model data is available 948 

from the Global Carbon Budget Data Browser (https://mdosullivan.github.io/GCB/). Scripts produced in 949 

this study are deposited in the following github repository: ‘https://github.com/Rubaya-Pervin/TRENDY-950 

models-evaluation-using-DryFlux’. Once the manuscript has been accepted for publication after any 951 

revisions have been completed, this statement will be updated at that time and a Zenodo doi will be 952 

created for this repository so that a permanent record is available for this paper.  953 
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