

1 **Importance of plant functional type, dynamic vegetation, and fire interactions**
2 **for process-based modeling of gross carbon uptake across the drylands of**
3 **western North America**

4 Rubaya Pervin^{1*}, Scott M. Robeson¹, Mallory Barnes², Stephen Sitch³, Anthony P. Walker⁴, Ben Poulter⁵,
5 Fabienne Maignan⁶, Qing Sun^{7,8,9}, Thomas Colligan^{5,10}, Sönke Zaehle¹¹, Kashif Mahmud¹², Peter
6 Anthoni¹³, Almut Arneth¹³, Vivek K. Arora¹⁴, Vladislav Bastrikov¹⁵, Liam Bogucki¹⁶, Bertrand
7 Decharme¹⁷, Christine Delire¹⁷, Stefanie Falk^{18,19}, Akihiko Ito²⁰, Etsushi Kato²¹, Daniel Kennedy²², Jürgen
8 Knauer^{23,24}, Michael O'Sullivan³, Wenping Yuan²⁵ and Natasha MacBean^{26,27}

9 ¹Department of Geography, Indiana University, Bloomington IN, USA.

10 ²O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington IN, USA.

11 ³Faculty of Environment, Science and Economy, University of Exeter, UK.

12 ⁴Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory,
13 Oak Ridge TN, USA

14 ⁵NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD, USA.

15 ⁶Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université
16 Paris-Saclay, Gif-sur-Yvette, France.

17 ⁷Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.

18 ⁸Wyss Academy for Nature, University of Bern, Bern, Switzerland.

19 ⁹Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.

20 ¹⁰Earth System Science Interdisciplinary Center, University of Maryland, College Park MD, USA.

21 ¹¹Max Planck Institute for Biogeochemistry, Jena, Germany.

22 ¹²Kimbell School of Geosciences, Midwestern State University, Wichita Falls TX, USA.

23 ¹³KIT, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany.

24 ¹⁴Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada,
25 Victoria BC, Canada.

26 ¹⁵Science Partners, Paris, France.

27 ¹⁶Department of Biology, Western University, London ON, Canada

28 ¹⁷Centre National de Recherches Météorologiques, Toulouse, France.

29 ¹⁸Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing,
30 Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

31 ¹⁹Department of Geography, Ludwig-Maximilians University Munich, Munich, Germany.

32 ²⁰Graduate School of Life and Agricultural Sciences, University of Tokyo, Tokyo, Japan.

33 ²¹Institute of Applied Energy, Minato, Tokyo 105-0003, Japan.

34 ²²National Center for Atmospheric Research, Boulder CO, USA.

35 ²³School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007,
36 Australia.

37 ²⁴Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.

38 ²⁵Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and
39 Environmental Sciences, Peking University, Beijing 100091, China.

40 ²⁶Department of Geography and Environment, Western University, London ON, Canada.

41 ²⁷Department of Biology, Western University, London ON, Canada.

42

43 *Corresponding author email: rpervin@ju.edu.

44

45

46

47 Abstract

48 Drylands cover ~41% of the Earth's land surface and contribute more than one third of the global net
49 primary productivity. Several studies have demonstrated that drylands play a crucial role in global carbon
50 cycle interannual variability. However, drylands are vulnerable to the impacts of climate change. To
51 predict changes in dryland productivity under climate change we depend on dynamic global vegetation
52 models (DGVMs). Compared to more mesic ecosystems, DGVM carbon cycle dynamics have not been
53 widely evaluated against data. Existing studies are mostly focused at site scale; rarely have these models
54 been assessed or benchmarked against dryland carbon flux products at regional to global scales. Global
55 gross primary productivity (GPP) products have poor performance in dryland regions. Only recently
56 upscaled in situ flux products have been developed specifically for drylands. Here, we evaluated GPP
57 inter-annual variability (IAV) simulated by 15 DGVMs from the TRENDY v11 model intercomparison
58 project against the DryFlux GPP, which is newly developed upscaled GPP product that considers dryland-
59 specific ecohydrological responses. Comparing model simulated GPP IAV to DryFlux, we identified two
60 groups of models: a one group of models with generally lower GPP IAV than DryFlux (e.g., lower
61 standard deviation in annual GPP than DryFlux and slope values of the linear regression between each
62 model and the DryFlux product that are less than 1.0) and a second group of models with generally higher
63 GPP IAV than DryFlux. We examined if including a representation of dynamic vegetation (i.e., changes
64 in the spatial distribution of plant functional type (PFT) fractional cover) or fire in the models can explain
65 the inter-model spread and model performance in comparison to DryFlux. Models that do not include a
66 representation of fire and/or dynamic changes in plant functional type distribution over time generally
67 have lower annual GPP variability compared to DryFlux (1st group of models), except for the eastern and
68 southeastern region of the study area with high rainfall variability. We also found that models with
69 dynamic vegetation exhibit high variability in grass fractional cover (that was higher than two
70 independent reference fractional cover datasets), which was strongly correlated with high GPP IAV. Only
71 some models that included fire simulated burnt area annual variability that correlated well with GPP IAV.

72 Other models that included fire simulated low burnt area variability and therefore we did not find any
73 strong relation between burnt area and GPP IAV. Finally, we examined the relationship between the
74 dominant PFT and GPP IAV. We did not find a strong correlation between the spatial mean of the slope
75 of the linear regression between each model and DryFlux annual GPP and their spatial mean woody,
76 grass, or C3 grass fractional cover (although many models with generally low GPP IAV had higher
77 woody plant cover). However, we did find a high correlation between the slope of the linear regression
78 between each model and DryFlux annual GPP and spatial mean C4 grass cover. Therefore, our findings
79 suggest that DGVMs inability to accurately represent the spatial distribution of herbaceous (specifically
80 C4 grass) cover as well as processes controlling dynamically changing vegetation distributions over time
81 (including fire) contribute to poor model performance in capturing annual variability in dryland
82 productivity. Our findings can provide a roadmap for DGVM teams seeking to improve vegetation
83 representation in sparsely vegetated dynamic dryland ecosystems.

84 **1. Introduction**

85 Dryland ecosystems are commonly defined as regions where water demand in the form of potential
86 evapotranspiration (PET) is much higher than precipitation (P) (Wang et al., 2022) and encompass
87 grasslands, shrublands, scrublands and savannas. They cover ~41% of the Earth's terrestrial surface and
88 are home to over a third of the world's population (Bastos et al., 2022; Wang et al., 2022). Dryland
89 regions are hotspots of land-atmospheric coupling (Koster et al., 2004) and are thought to play a dominant
90 role in global carbon cycle variability (Ahlström et al., 2015; Poulter et al., 2014; Zhang et al., 2018).
91 Dryland ecosystem functioning is expected to be extremely sensitive to future changes in water
92 availability (Bastos et al., 2022; Scholes, 2020; Wang et al., 2022). Given the complexity of dryland
93 ecosystem dynamics and their feedbacks to major components of the earth system, it is essential that
94 dynamic global vegetation models (DGVMs), many of which form the land component of earth system

95 models used for climate change projections, can accurately simulate carbon and water fluxes in dryland
96 regions.

97

98 DGVMs are process-based models that simulate physical and biogeochemical processes to model
99 exchange of water, energy, carbon (C), and nitrogen (N) fluxes across the land-atmosphere boundary. All
100 DGVMs simulate vegetation dynamics such as leaf phenology and changes in vertical structure or
101 rooting depth; however, only some explicitly simulate spatial distribution of plant functional types
102 (PFTs) and dynamic changes in PFT spatial distribution (fractional cover) over time (henceforth referred
103 to as “dynamic vegetation”). When the spatial distribution of a models’ PFTs is not explicitly simulated it
104 needs to be prescribed. While many of these models serve as the land component of their respective
105 ESMs, these models can also be driven offline with meteorological data (either from *in situ* weather
106 stations or from gridded climate reanalyses (Bonan, 2019). The TRENDY (“Trends and drivers of the
107 regional scale terrestrial sources and sinks of carbon dioxide”) model intercomparison project began in
108 2009 with the goal of comparing a suite of DGVM estimates for global atmosphere-land CO₂ flux (Sitch
109 et al., 2015). The TRENDY model ensemble simulations provide important estimates of the natural land
110 carbon sink (cumulative net biome production) in addition to the impact of land use changes on land
111 carbon cycling for the annual Global Carbon Budget (Friedlingstein et al., 2024); however, outputs from
112 TRENDY have been used in a host of other studies exploring land surface and dynamic vegetation
113 process responses to global change drivers beyond the original TRENDY remit (Pan et al., 2020; Yuan et
114 al., 2019; Zhu et al., 2016).

115 Compared to mesic ecosystems, DGVMs have rarely been evaluated or benchmarked against dryland
116 carbon and water flux data at either site or global scale (MacBean et al., 2021; Renwick et al., 2019;
117 Whitley et al., 2016). However, several recent studies have documented large uncertainties in DGVM
118 simulations of dryland carbon fluxes and stocks (Fawcett et al., 2022; MacBean et al., 2021; Metz et al.,
119 2023; Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016) – although the mean across

120 models tends to replicate benchmark data well (Fawcett et al., 2022). Most of the DGVM evaluations in
121 the aforementioned studies have been conducted at site scale using *in situ* carbon and water fluxes; only a
122 few are focused on regional(Metz et al., 2023, 2025; Teckentrup et al., 2021) or global scale (Fawcett et
123 al., 2022). These spatially continuous large-scale studies used gridded upscaled flux tower data or satellite
124 derived GPP, aboveground biomass, fire emissions and burnt area products to evaluate multiple
125 components of dryland C cycling. Interestingly, there are mismatches between the findings for how well
126 models can capture C fluxes at site versus global scale. Studies evaluating a suite of DGVMs from the
127 TRENDY model intercomparison project across Australian and southwestern US dryland sites found that
128 most models underestimate both the mean gross primary productivity and net ecosystem exchange (NEE)
129 and their interannual variability (IAV)(MacBean et al., 2021; Metz et al., 2023; Wang et al., 2022;
130 Whitley et al., 2016), which the studies suggest may be due to inadequate representations of vegetation
131 dynamics such as tree-rooting depths and leaf phenology, which are essential for capturing plant
132 responses to rainfall variability(Renwick et al., 2019; Whitley et al., 2016, 2017). Global scale flux site
133 data analysis also revealed a similar story that DGVMs underestimate GPP IAV across dryland savanna,
134 grass and shrubland sites(Lin et al., 2023). However, studies comparing TRENDY models with regional
135 to global gridded datasets found a large spread across the models with some models overestimating and
136 some underestimating mean gross and net carbon fluxes and their IAV(Fawcett et al., 2022; Teckentrup et
137 al., 2021). Furthermore, model performance varied regionally, such as a general overestimation of
138 modeled GPP in the Sahel but an underestimation in South Africa and South America(Fawcett et al.,
139 2022). These contrasting findings from site scale studies highlight the need for more regional to global
140 studies that can examine processes and patterns that become important across broader spatial scales.
141
142 Many processes have been postulated to cause poor model performance in capturing dryland C fluxes, but
143 the exact causes are not yet known (Fawcett et al., 2022; MacBean et al., 2021; Paschalis et al., 2020;
144 Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016). DGVMs are at various stages of
145 development, with only some including key dryland processes such as fire, grazing, or dynamic

146 vegetation (Sitch et al., 2024). Productivity in drylands is affected by rainfall changes, with herbaceous
147 vegetation responding quickly to rainfall variations, while woody vegetation has slower, longer-term
148 response (Verbruggen et al., 2021, 2024). These responses vary depending on the dryland aridity and the
149 type of vegetation cover; thus, it is important to have correct representations of dryland vegetation type
150 and fractional cover (fCover) (either prescribed or simulated). Inadequate representation of prescribed
151 PFTs, PFT fCover and its variability over time in DGVMs have been shown to cause large spread in
152 model estimates of dryland productivity, especially in sparsely vegetated, mixed shrub-grass ecosystems
153 (Hartley et al., 2017; Wilcox et al., 2023). This uncertainty arises from challenges in separating grass
154 versus woody PFT fractions via classification of remotely sensed imagery (Hartley et al., 2017; Pervin et
155 al., 2022). Different climate dependencies of dryland PFTs, such as differentiating between C3 and C4
156 grasses based on temperature thresholds, also cause discrepancies across models (Still et al., 2019;
157 Wilcox et al., 2023). In addition, most PFTs are not well adapted for dryland ecosystems. Herbaceous
158 PFTs, and especially C4 grasses, are often oversimplified in models, leading to underestimation of
159 productivity, especially in ecosystems where annual grasses and variations in fire regimes play a major
160 role in ecosystem dynamics (Wilcox et al., 2023).

161

162 Models that do include dynamic vegetation have a variety of different methods for simulating changes
163 over time, from relatively simple bioclimatic envelopes to more complex representations based on
164 competition for resources, forest gap dynamics and cohorts of different ages and sizes (Harper et al.,
165 2018; Prentice et al., 1992; Sitch et al., 2003; Smith et al., 2001). The treatment of fires in models also
166 adds to uncertainties in representing dryland vegetation dynamics and productivity in DGVMs
167 (Teckentrup et al., 2021). Fire models vary from relatively simple representations of fuel availability and
168 moisture availability such as the GlobFIRM model (Thonicke et al., 2001) to more complex
169 representations that also account for different sources of ignition and the effect of wind on rates of fire
170 spread (Li et al., 2012; Mangeon et al., 2016; Melton and Arora, 2016). Fires in dryland regions can
171 significantly alter vegetation structure (Bastos et al., 2022; Wilcox et al., 2018), yet models often fail to

172 capture the impact of fire on dryland vegetation, particularly in areas with low fuel availability where fire
173 is less frequent (Baudena et al., 2015; Fawcett et al., 2022; Teckentrup et al., 2021; Verbruggen et al.,
174 2021; Wilcox et al., 2023). Thus, even when these key dryland processes are included in models it
175 remains unclear to what extent they are correctly represented. Failure to accurately model these
176 biogeographic processes and their interplay with climate variability likely affects DGVMs' ability to
177 predict GPP IAV. More in depth model-data comparison studies that focus on the spread across models
178 are needed to help discern which model processes need further evaluation or improvement. These studies
179 can also inform targeted data collection and analysis efforts to support more specific process-based model
180 evaluations and model developments. Regional model-data comparisons fill a unique niche in that they
181 can focus more on larger-scale biogeographical causes of model-data mismatch compared to site based
182 evaluations. Regional scale studies can also focus more on specific dryland regions and utilize localized
183 knowledge compared to global studies (e.g., Australia in Teckentrup et al., 2022).

184

185 In this study, we address these research needs by evaluating the ability of 15 DGVMs from TRENDY v11
186 (Sitch et al., 2024) to capture spatiotemporal patterns of dryland GPP in western North America. We
187 focus specifically on how well models capture GPP IAV as most previous regional dryland model
188 evaluation studies have focused more on mean model biases or trends in productivity (Fawcett et al.,
189 2022; Teckentrup et al., 2021). DGVMs are also being used in studies investigating the ongoing debate
190 around which biome – tropical forests or dryland ecosystems – plays a dominant role in global C cycle
191 IAV (Ahlström et al., 2015); therefore, it is critical that we assess whether these models can indeed
192 capture variability in dryland C fluxes. To evaluate TRENDY model GPP we use the newly developed
193 ["DryFlux" v1.0 GPP product](#) (Barnes et al., 2021). DryFlux is an upscaled flux product developed
194 specifically for dryland ecosystems using flux tower GPP from sites across western North America
195 (Barnes et al., 2021). The random forest model used for flux tower data upscaling includes metrics
196 designed to characterize ecohydrological controls on dryland carbon dynamics (see Section 2.3.1).
197 DryFlux GPP better captures dryland spatiotemporal GPP patterns across western North America

198 compared to the MODIS GPP and FLUXCOM products that have been used in past regional dryland
199 model evaluation studies (Barnes et al., 2021).

200

201 The two main objectives of this study are to: 1) identify if TRENDY v11 models have higher or lower
202 variability in annual GPP compared to the DryFlux product across dryland regions of western North
203 America; and 2) examine potential causes of inter-model spread and in differences in model performances
204 with respect to DryFlux, with a specific focus on the role of processes related to biogeography such as
205 vegetation type, fractional cover, dynamic vegetation, and fire. We test 3 main hypotheses.

206

207 First, we hypothesized that DGVMs with dynamic vegetation enabled will have a higher GPP variability
208 compared to those with prescribed static vegetation. This is due to the higher grass disturbance rates
209 (Harper et al., 2018) and the ability of most dynamic vegetation enabled DGVMs to establish new grass
210 growth or to spread into bare soil patches following disturbance (Harper et al., 2018; Sitch et al., 2003).

211 Therefore, we predicted that dynamic vegetation-enabled DGVMs will better capture DryFlux GPP IAV,
212 while DGVMs with prescribed static vegetation fCover will underestimate DryFlux GPP IAV.

213

214 Second, given dryland grasses, especially those with the C4 photosynthetic pathway, respond strongly to
215 rainfall pulses (Verbruggen et al., 2021, 2024), we hypothesize that models with high grass fCover
216 (whether prescribed or simulated) will show greater GPP variability compared to models with low grass
217 fCover or a higher bare soil or shrub fCover. We predicted that models with a more accurate
218 representation of grass fCover will better match DryFlux GPP IAV compared to those that either over- or
219 underestimate grass cover.

220

221 Finally, we hypothesized that the impact of fire on simulated GPP IAV in fire-enabled DGVMs depends
222 on vegetation composition, specifically, the dominance of grasses versus bare soil or woody plant cover.
223 Because grasses typically have a much lower resistance to burning or a higher combustion completeness

224 in models (Sitch et al., 2003), we expect fire to contribute more strongly to GPP IAV in grass-dominated
225 systems than in shrub- or tree- dominated ones. All DGVMs with dynamic vegetation also have their fire
226 module enabled, which we expect will contribute to both increased mean grass cover and greater
227 variability in grass fCover, ultimately resulting in higher GPP IAV. Fire enabled DGVMs without
228 dynamic vegetation should also predict higher GPP IAV than DGVMs with neither dynamic vegetation
229 nor representation of fire, especially if their prescribed PFT map has high vegetation fractional cover.

230

231 To assess model performance in capturing GPP IAV, we examined the standard deviation in annual GPP
232 for both the models and DryFlux and the slope values of the linear regression between each model and
233 DryFlux annual GPP. Based on these values we identified models with low GPP IAV and high GPP IAV
234 compared to DryFlux and investigated whether dynamic vegetation and/or fire could explain differences
235 between the two groups. For dynamic vegetation enabled models, we did a pairwise gridcell comparison
236 to explore how the temporal variability in PFT fractional cover was related to GPP IAV metrics (standard
237 deviation and slope). To further disentangle the role that dynamic vegetation and fire are playing in
238 modeled GPP IAV, we examined differences across models in terms of their spatial patterns in standard
239 deviation in annual fractional cover for major plant functional types (and the same for burnt area for fire
240 enabled models). We also explored whether the spatial distribution of dominant PFTs can be linked to
241 spatial patterns in GPP variability. The findings of this study will help clarify which vegetation and
242 disturbance related biogeographical processes most strongly influence interannual variability in dryland
243 GPP across current DGVMs. By identifying where and why models diverge from the observation-driven
244 DryFlux product, we provide a roadmap for dryland process-specific developments that the DGVM
245 community can make to better estimate dryland carbon-vegetation interactions under a changing climate.

246 2. Methods

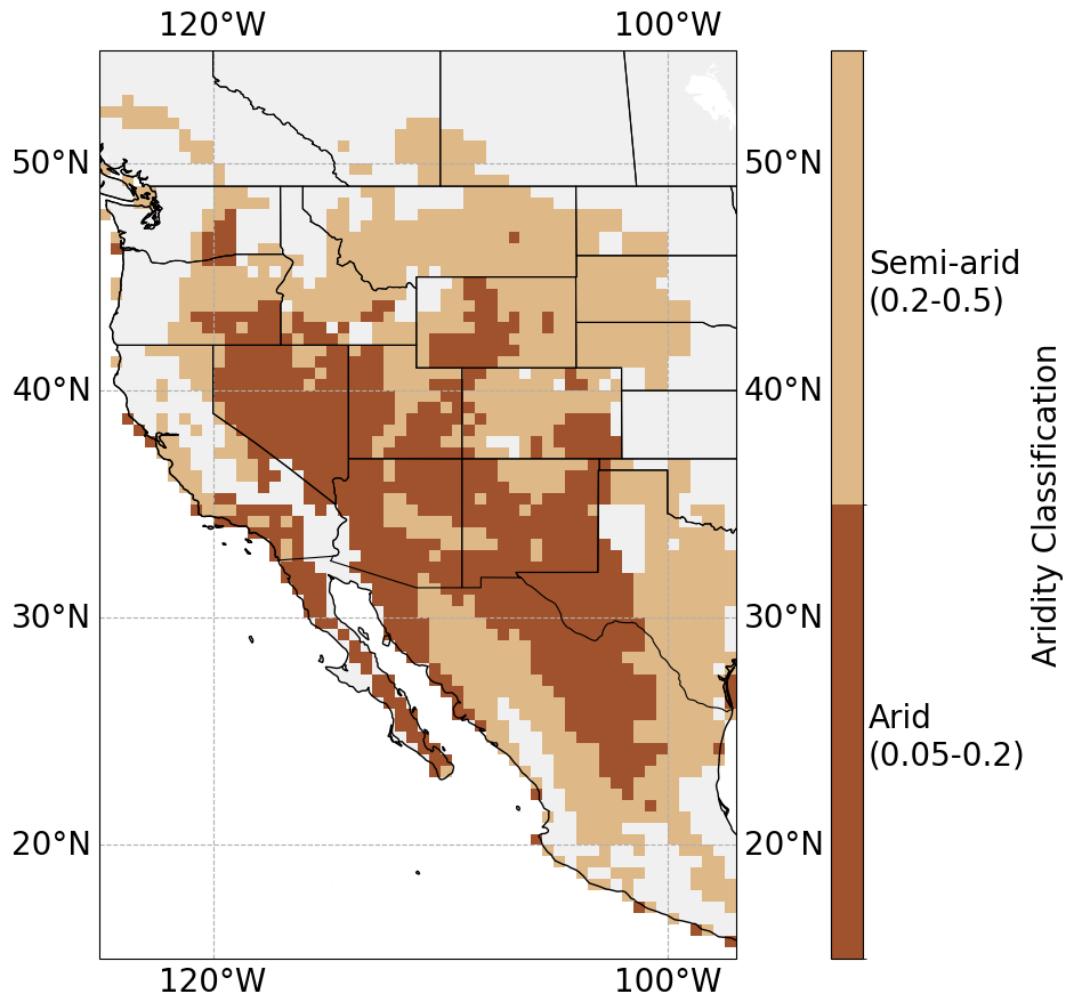
247 2.1 Study Area: North American Drylands

248 Our study area is focused on western North American drylands (longitude and latitude bounds: 93° W to
249 125° W and 15°N to 53°N – Fig. 1). We delineated the dryland region across western North America
250 using the aridity index (AI), which is defined as the ratio of precipitation to potential evapotranspiration.
251 Unlike other studies that typically define drylands as regions with an aridity index between 0 and 0.65
252 (e.g., Wang et al., 2022), here we limit the range of our study area to aridity index values between 0.05
253 and 0.5, encompassing both arid (AI 0.05 to 0.2) and semi-arid (0.2 to 0.5) regions, to match the extent
254 where DryFlux v1.0 is tested and can be used as a reference product. We excluded the semi-arid cropland
255 belt in the north and eastern part of the study area (see Section 2.4) to focus on natural vegetation
256 ecosystem productivity in North American drylands. The region exhibits large spatial gradients in key
257 climatic variables. Mean annual precipitation (MAP) ranges broadly from 40 to 1200 mm, while mean
258 annual temperature (MAT) varies from -4°C to +26°C (Anderson-Teixeira et al., 2011; Biederman et al.,
259 2017). The western part near the Pacific Ocean experiences a Mediterranean climate with the majority of
260 annual precipitation falling in winter (November–April). In contrast, the central, eastern, and southeastern
261 portions are heavily influenced by the North American Monsoon, which brings most precipitation during
262 the summer (July–October). Lower elevation areas (≤ 1610 m) are mainly dominated by C3 shrubs and C4
263 summer grasses (but with C3 winter grasses) are mostly affected by summer monsoon rainfall, with
264 relatively small amounts of winter and spring rains. Higher elevation forested areas (≥ 1930 m) are
265 dominated by evergreen shrubs and trees, though there is a transition in vegetation type from grasslands
266 and mixed shrub-grasslands to forests as elevation increases. The higher elevation areas have cooler mean
267 annual temperatures ($< 10^{\circ}\text{C}$) and a more distinct bi-modal growing season, receiving moisture from both

268 winter precipitation/spring snowmelt and summer monsoon rainfall (Anderson-Teixeira et al., 2011;

269 Biederman et al., 2017).

270



271

272 Figure 1: Drylands (excluding modeled cropland PFTs) in western North America. Arid regions (aridity index 0.05 -
273 0.2) are shown in dark brown, semi-arid regions (aridity index 0.2 - 0.5) in light brown, and all other regions in light
274 grey).

275

276 2.2 Models

277 2.2.1 TRENDY v11 GPP

278 We used the annual GPP ($\text{kgCm}^{-2}\text{yr}^{-1}$) simulated by 15 of the 18 DGVMs that contributed to the
279 TRENDY v11 models ensemble (Friedlingstein et al., 2022; Sitch et al., 2024). Three of the TRENDY
280 v11 models were excluded because there were no PFT maps available for the analysis (see Section 2.2.2).
281 Model simulation results were available from the preindustrial period (1700 for some models and 1860
282 for others) to 2021, but we elected to use 2001 to 2016 only to match the temporal availability of the
283 DryFlux data. We used TRENDY S3 simulations specifically due to their inclusion of time-varying
284 atmospheric CO₂ concentration, climate (using the CRUJRA reanalysis), nitrogen fertilization, and land-
285 use change as forcings. This is in contrast to what the S1 (only time-varying atmospheric CO₂
286 concentration) and S2 simulations (only time-varying atmospheric CO₂ concentration and climate)
287 included. Additionally, all of these models followed a common experimental protocol, as is further
288 outlined in Sitch et al. (2024). The model outputs were regridded to a common 0.5x0.5° resolution grid.
289 Table 1 lists the models included in this study in addition to whether they included two key biogeographic
290 processes that are important controls on GPP IAV: dynamic vegetation and fire.

291

292

293

294

295

296

297

298

299

300 Table 1: Information on biogeography processes (dynamic vegetation and fire) included in all TRENDY
301 v11 models used in this study that are relevant to vegetation distribution (fractional cover) and its
302 variability and which in turn affect GPP variability.

Model	Dynamic Vegetation	Fire module
CABLE POP	No	No
CLASSIC	No	Yes (Melton et al., 2020)
CLM5	No	Yes (Li et al., 2012)
IBIS	No	No
ISBA CTRIP	No	Yes (Thonicke et al., 2001)
JSBACH	No	Yes (Thonicke et al., 2010)
JULES	Yes (Burton et al., 2019; Harper et al., 2018)	Yes (Mangeon et al., 2016) (Burton et al., 2019)
LPJ-GUESS	Yes (Smith et al., 2014) (Smith et al., 2001)	Yes (Thonicke et al., 2001)
LPJwsl	Yes (Sitch et al., 2003)	Yes (Thonicke et al., 2001)
LPX-Bern	Yes (Prentice et al., 1992; Sitch et al., 2003; Wolf et al., 2008)	Yes (Thonicke et al., 2001)
ORCHIDEE	No	No
OCN	No	No
SDGVM	No	Yes (Simple empirical function of litter moisture and/or amount and a fire return interval map).
VISIT	No	Yes (Thonicke et al., 2001)
YIBs	No	No

303 2.2.2 PFT maps

304 Each of the TRENDY models have their own PFT fCover maps (either prescribed or predicted) based on
305 the PFT types represented in their model (Supplementary Table S1). The common land use change
306 forcing is imposed on the models' own PFT maps (or dynamic PFT simulations) (Sitch et al., 2024). Each
307 model has a different number of PFTs and spatial resolution. Some models have shrubs as separate PFT
308 such as CABLE-POP, CLM5, IBIS, ISBA-CTRIP, JSBACH3.2, VISIT, YIBs but some have combine
309 shrubs with woody tree vegetation such as CLASSIC, LPJ-GUESS, LPJwsl, LPX-Bern, OCN,
310 ORCHIDEE, SDVGM. All models have separate C3 and C4 PFTs, except VISIT and OCN (although in
311 OCN these were defined as tropical/temperate grasses). Some models do not have a separate bare soil
312 such as LPJwsl, LPX-Bern (except for an 'Urban Bare' class), VISIT, and YIBs. To compare the models'
313 vegetation cover fractions to each other and to independent datasets (see Section 2.3.2) we grouped each
314 models' PFTs into 4 main groups: total vegetation, woody vegetation, non-woody vascular vegetation,
315 and bare ground/soil (Table S2). If a model had a mix of grasses and trees like "open shrubland" or a
316 savanna vegetation class it was added within the category of woody vegetation (JULES, JSBACH,
317 CLM5, VISIT, YIBs). For certain analyses we split the non-woody vegetation group further to compare
318 grasses/herbs versus crops and C3 versus C4 types. PFT types that fell outside of these groups (such as
319 'Peat graminoid' for LPX-Bern) were ignored in this study. All PFT maps were available at annual time
320 scale except for ISBA-CTRIP and LPX-Bern which provided monthly PFT fractional coverages.
321 However, ISBA-CTRIP does not model spatial distribution of vegetation dynamically and therefore we
322 expect to have no monthly variability in fractional coverage of its PFTs. Although LPX-Bern models
323 spatial distribution of vegetation dynamically, from visually inspecting its monthly data using Panoply we
324 did not identify any monthly changes in the PFT distributions (only annual changes were identified).
325 Therefore, we choose the month of July data for both ISBA CTRIP and LPX-Bern PFT distributions in
326 place of annual values. For models that do not have a bare ground or soil PFT, we calculated barren
327 fCover using 1 minus the total fCover of all other vegetation. We note that no model contains a biological

328 soil crust (biocrust) PFT (Table S2) despite the fact that biocrusts are common in dryland regions (REF).
329 The PFT maps were provided by the modelers and mean fCover maps for each of the major groups are
330 provided in Fig. S1. We used nearest neighbor resampling to re-grid all the PFT maps to 0.5° spatial
331 resolution to match the GPP data resolution.

332 2.3 Data products

333 2.3.1 Dryflux GPP v1.0

334 We used the DryFlux v1.0 GPP product (Barnes et al., 2021) to compare and evaluate TRENDY model
335 GPP. DryFlux v1.0 is a dryland specific ecohydrologically informed upscaled flux tower GPP product
336 specifically developed for western North American drylands using remote sensing and gridded
337 meteorological inputs. DryFlux upscaling used a machine learning (random forest) model to identify
338 relationships between predictor variables (such as vegetation greenness, precipitation, temperature,
339 elevation) and flux tower GPP for randomly selected 19 sites out of the 24 sites selected across the US
340 Southwest and Northwestern Mexico. In addition to these common predictor variables, DryFlux used
341 previous months precipitation and the Standardized Precipitation Evapotranspiration Index, SPEI, at
342 different timescales (e.g., a lag of 1, 3, 6, 12 months) to account for antecedents effects that are
343 characteristic of dryland ecosystems (Barnes et al., 2016; Cranko Page et al., 2022; Liu et al., 2019).
344 DryFlux was able to capture the pulse behavior and two growing reasons for the dryland regions. The
345 random forest model was applied to generate an upscaled, gridded global dryland GPP product for 16
346 years from Feb, 2000 to 2016 with a spatial resolution of 0.5°x0.5°. DryFlux v1.0 data were downloaded
347 from <https://github.com/marthageb/DryFlux>.

348 2.3.2 Reference Fractional Cover Data

349 2.3.2.1 Rangeland Analysis Platform (RAP) fCover Data

350 The rangeland analysis platform (RAP) provides fCover estimates of annual and perennial forbs and
351 grasses, shrubs, trees, and bare ground—from 1986 to present at 30-meter spatial resolution for the
352 western US (Allred et al., 2021). Crops were not included in this product. The percentage estimates of
353 these six cover types are model predictions from a temporal convolutional network using vegetation field
354 plots, the Landsat reflectance data and vegetation indices- normalized difference vegetation index (NDVI)
355 and normalized burn ratio two (NBR2) which is sensitive to water content changes within vegetation.
356 Model mean absolute error (MAE) was calculated for fCover against vegetation field data. Overall model
357 mean absolute error was about 6%. Mean absolute error was highest for perennial forbs and grasses which
358 is about 10% and lowest for tree cover which is about 3% (Allred et al., 2021). To better match the model
359 PFTs we added the annual and perennial grasses and forbs layers together to create a herbaceous layer
360 and shrubs and trees to create a woody vegetation layer. RAP fCover data was downloaded from
361 <http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/>. The data were aggregated to 0.5°x0.5°
362 resolution to match TRENDY model PFTs and DryFlux and model GPP.

363 2.3.2.2 MODIS Vegetation Continuous Field Data

364 MODIS Vegetation Continuous Field (VCF) product (MOD44B) contains three layers of global land
365 cover fractions: percent tree cover (tree height > 5m), percent non-tree cover, and percent non-vegetated
366 or bare ground cover plus water. Trees are defined as greater than 5m; therefore, most of the shrubs that
367 are present in this area will be grouped with the non-tree cover class. Crops are also included as part of
368 the non-tree cover layer. These fCover layers were estimated from a fully-automated machine learning
369 algorithm using the MODIS Terra Global 250-meter resolution surface reflectances (bands 1 to 7) and
370 brightness temperature (band 32) (DiMiceli et al., 2021). The root mean square error value against field
371 based fCover data ranges from 9 to 23% (DiMiceli et al., 2021). The MODIS VCF product is available at

372 250-meter pixel spatial resolution and yearly temporal resolution in the Sinusoidal coordinate system. The
373 MODIS VCF product was downloaded using Google Earth Engine. Within Google Earth Engine we
374 reprojected and resampled the data to the WGS84 Geographic Coordinate System (EPSG:4326) at
375 $0.5^\circ \times 0.5^\circ$ to match the RAP product, TRENDY model PFTs, and model and DryFlux GPP.

376 2.4 Model and Data Preprocessing

377 Following spatial resampling as described in each subsection of Section 2.3, we performed further model
378 and data preprocessing steps to bring them into the same spatial extent and temporal scale. One of our
379 main objectives is assessing model data IAV. Therefore, the monthly DryFlux data were summed to
380 annual GPP to compare to the annual GPP from models participating in the TRENDY intercomparison.
381 All GPP data were converted to the same unit of $\text{kgCm}^{-2}\text{y}^{-1}$. For the regional total we calculated the
382 weighted sum in PgCyr^{-1} . We used aridity index values of between 0.05 to 0.5 (Section 2.1) to create a
383 dryland mask for the GPP and PFT datasets. The aridity index data is based on the method of Zomer et
384 al., 2022 and was downloaded from Global Aridity Index and Potential Evapotranspiration (ET0) Climate
385 Database v3 (Trabucco and Zomer, 2022). We note that this is not the same climate data as was used to
386 drive the TRENDY model simulations (Section 2.2). The aridity index data were spatially aggregated to
387 $0.5^\circ \times 0.5^\circ$ resolution to match the model and data products used in this study. We used the annual average
388 aridity index for the 1970–2000 period to delineate our study area. We masked out croplands in the study
389 area as the main focus of this research is mixed woody non-woody ecosystems that experience natural
390 climate variability (and are not irrigated) and because DryFlux did not include any crop flux tower sites in
391 its upscaling model. We created a crop mask common to all models by masking grid cells for all models
392 that contained crop PFT fCover (Fig. S1g) greater than 0.5 (50%) for any model within the 2001 to 2016
393 period. That means that we masked out the grid cells that are crop dominated for any model. We masked
394 all grid cells that were not common to both the TRENDY model ensemble and DryFlux.

395 2.5 Data analysis and evaluation metrics

396 For a first comparison of whether TRENDY models tend to have higher or lower interannual GPP
397 variability (GPP IAV) compared to DryFlux, we plotted time series of both spatially weighted sum of
398 annual GPP and the annual GPP anomalies (i.e., mean normalized annual GPP over the 2001 to 2016
399 period for the 15 TRENDY v11 model ensembles and the DryFlux product. We computed Pearson's
400 correlation (R) values between modeled and DryFlux total annual GPP over the study area. We plotted
401 maps of the spatial patterns in how well each of the TRENDY models captures DryFlux GPP IAV by
402 calculating for each grid cell both standard deviation (over the 2001 to 2016 period) of the annual GPP
403 time series for all 15 models and DryFlux as well as the slope of the linear least-squares regression
404 between modeled and DryFlux annual GPP (using the `scipy.stats.linregress` module in Python). To
405 facilitate comparison across models, and between the models and DryFlux, we examined the distribution
406 of GPP standard deviation and slope values across the study region using area-weighted kernel density
407 estimate (KDE) ridgeline plots that summarize probability density of all grid cells.

408

409 To investigate our hypotheses related to the role of dynamic vegetation and fire in spatial patterns of
410 modeled annual GPP variability, we first grouped the KDE ridgeline plots by models that used dynamic
411 vegetation and fire (Table 1) to identify if either of these key processes alone or in combination can
412 explain the patterns in model whether models have higher or lower GPP IAV compared to DryFlux. To
413 further explore the reasons behind the differences between models, and between model and DryFlux GPP,
414 we calculated and mapped the standard deviation in annual PFT fCover for each grid cell over the 2001 to
415 2016 period for each of the 4 main PFT groups: total vegetation, woody vegetation, non-woody vascular
416 vegetation, and bare ground/soil, with a further split of non-woody category into grasses and crops, and
417 then C3 and C4 grasses. We compared the first three categories to determine which major PFT categories
418 (woody versus non-woody) were contributing the most to total PFT annual variability. We then examined
419 whether the spatial patterns in the standard deviation in PFT annual fCover match the spatial patterns in

420 model annual GPP standard deviation and the slope of the linear regression between model and DryFlux
421 annual GPP. For dynamic vegetation enabled models we then performed a gridcell pairwise comparison
422 to determine the nature of the relationship between modeled total vegetation annual fractional cover
423 variability and annual GPP variability. We calculated how much of the variance in annual GPP can be
424 explained by variance in PFT annual fCover by computing least-squares linear regressions (Python
425 module `scipy.stats.linregress`). For the grid cell pairwise comparison, we calculated the coefficient of
426 variation (CV) which is standard deviation of values over the 2001 to 2016 time period divided by the
427 mean over the same period, because the CV is a more appropriate statistic to compare the variability at
428 locations with different means. We performed the same set of analyses for the variability in modeled
429 burnt area (standard deviation in annual percentage burnt area over the 2001 to 2016 period) to
430 understand fire effects on spatial patterns in both modeled PFT fCover and GPP variability. Finally, we
431 examined how accurately the dynamic vegetation enabled models represent the vegetation variability
432 within the study region by benchmarking the annual PFT fCover standard deviation maps against
433 independent reference fCover datasets from existing remote sensing data (see section 2.3.2).

434

435 Besides overall vegetation annual fCover variability due to dynamic vegetation and fire, we also assessed
436 whether higher fCover of one of the major PFT groups can be linked to modeled GPP IAV (specifically,
437 the slope of the linear regression between model and DryFlux annual GPP). For this purpose, for each
438 model we took the spatial mean (± 1 s.d.) fCover of woody, grass, C3 grass, and C4 grass across all grid
439 cells with fCover above a certain threshold (0.1 and 0.5) to assess if a model with higher fCover of a
440 specific PFT tends to over- or underestimate DryFlux annual GPP by comparing with the spatial mean (\pm
441 1 s.d.) of the slope of the linear regression. We performed this analysis for grid cells with mean fCover
442 above both 0.1 and 0.5 considering that 10% is a typical uncertainty in satellite fCover products while
443 greater than 50% mean fCover represents the grid cells dominated by that cover type. Then we plotted the
444 mean fCover against the slope values to determine if models with higher mean fCover in a specific PFT
445 group can be linked to models' performance in capturing DryFlux GPP IAV. Finally, we compared the

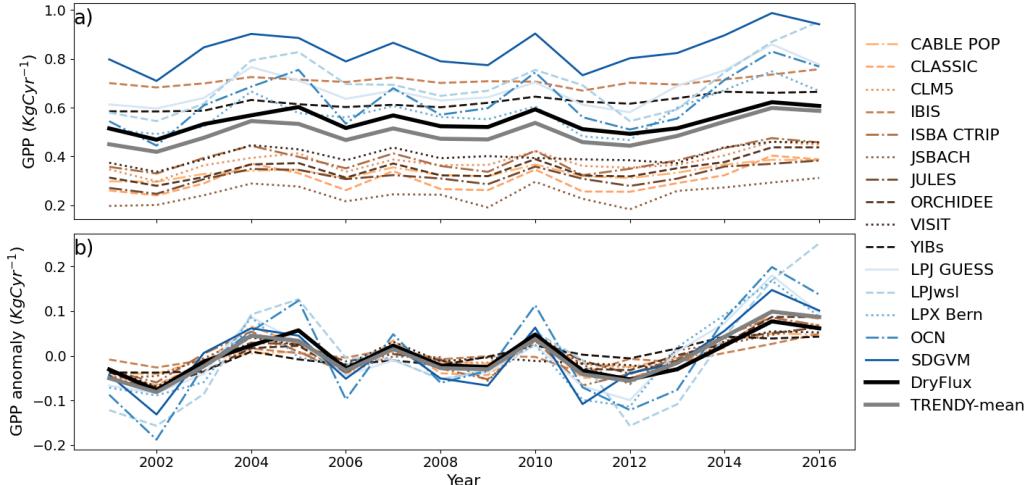
446 model mean PFT fCover with our independent reference datasets (MODIS VCF for woody and
447 nonwoody groups and RAP for woody and grass vegetation types) to assess if the relationships between
448 model vegetation fractional cover and GPP variability are undermined by inaccurate modeled fCover
449 distributions.

450 **3. Results**

451 **3.1 Comparison of model and DryFlux annual GPP variability**

452 Figure 2 shows the time series (2001-2016) of annual GPP summed over the entire study area. Although
453 the TRENDY ensemble mean total GPP (thick grey curve in Fig. 2) is lower than the DryFlux GPP (thick
454 black curve in Fig. 2) the sign of the annual anomalies in TRENDY ensemble mean GPP match those of
455 DryFlux well (Figs. 2a and b; $R = 0.96$). However, individual TRENDY models simulate both higher and
456 lower annual total GPP (Fig. 2a) and GPP IAV (Fig. 2b) compared to tDryFlux(Fig. 2a). Most models
457 underestimate both DryFlux mean GPP and IAV (brown curves in Figs. 2a and b), while a selected few
458 models (OCN, SDGVM and the LPJ family of models) tend to overestimate both the mean DryFlux GPP
459 magnitude and the IAV (blue curves in Figs. 2a and b).

460



461

462 Figure 2: Time series of (a) total annual GPP (PgCyr^{-1}) over the study area; and (b) annual GPP anomalies (i.e.,
463 annual values minus the mean to focus on GPP IAV) between 2001 to 2016 from TRENDY v11 models (blue and
464 brown curves) compared to DryFlux v1.0 (thick black curve). The mean of the TRENDY models is shown in the
465 thick grey curve. Note that models with the blue curves are those that tend to have higher annual GPP variability (as
466 seen in the anomalies) than DryFlux.

467 The spatial distribution of standard deviation in annual GPP (Fig. 3a) and slope of the linear regression
468 between model and DryFlux annual GPP across the study area are shown in Figs. 3a and 3c. These are
469 two metrics that represent GPP IAV. As seen in the total annual GPP time series (Fig. 2), most models
470 generally have a lower standard deviation in annual GPP (top two rows of Fig. 3a) compared to DryFlux
471 across much of the study area except the east and southeastern region (see below) and slope values less
472 than 1 (top two rows of Fig. 3c), while several models (LPJ-GUESS, LPJwsl, LPX-Bern, OCN, and
473 SDGVM) generally have higher standard deviation in annual GPP and slope values greater than 1 (bottom
474 row of Figs. 3a and c – although SDGVM and LPX-Bern have lower annual GPP variability compared to
475 s DryFlux in the north-eastern and western regions, respectively).

476

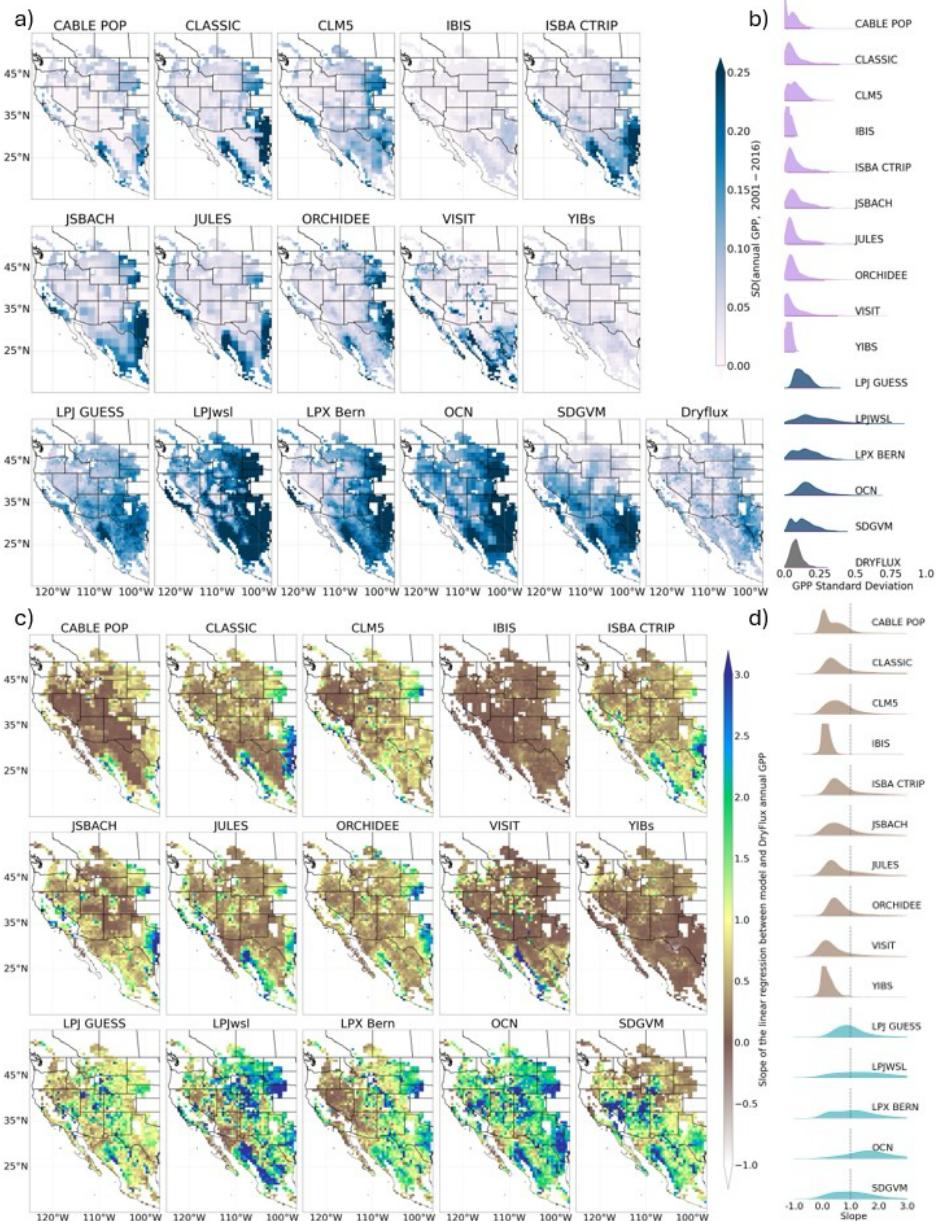
477 The spatial pattern of high standard deviation of annual GPP in the east and southeastern part of the study
478 area in the DryFlux product is captured well by most models, although the magnitude is higher than

479 DryFlux for many models (Fig. 3a). In terms of magnitude there is variability among models too e.g. the
480 slope values are often quite a bit higher (up to 3) or lower (down to 0) across most models for this SE
481 region (Fig. 3c). This region corresponds to an area with high annual rainfall variability (data not shown).
482 High values of standard deviation in annual GPP in this region do not necessarily correspond to high
483 mean annual GPP values (Fig. S2). IBIS has a high mean GPP in the southeast region but has very low
484 standard deviation in annual GPP and CLASSIC, CLM5, JULES, ORCHIDEE do not have as high a
485 mean annual GPP as IBIS in that region but those models do have higher magnitude of annual GPP
486 standard deviation (cf. Fig. 3a and Fig. S3).

487

488 The Kernel density estimation (KDE) ridgeline plots, which are the probability density functions of
489 temporal standard deviation of annual GPP across space, corroborate the spatial patterns: the majority of
490 models (in the top two rows of Fig. 3a and light purple KDE plots in Fig. 3b) tend to be skewed with
491 peaks towards lower values and longer tails towards higher values of standard deviation in annual GPP
492 compared to DryFlux that looks more like normal distribution although with longer tails towards higher
493 values. For the same models the majority of grid cells have slope values less than 1 (brown KDE plots in
494 Fig. 3d). In contrast, the KDE plots for the LPJ models, OCN and SDGVM generally have a much wider
495 distribution of annual GPP standard deviation and slope values (dark and light blue KDE plots in Figs. 3b
496 and d). While the mode(s) of the standard deviation KDE plots generally match the mode of the DryFlux
497 KDE plot for these models, a greater number of grid cells have higher standard deviation in annual GPP
498 compared to DryFlux (Fig. 3b). The mode of the slope KDE plots is ~1.0 for LPJ-GUESS, LPX-Bern and
499 SDGVM, while LPJwsl and OCN have distributions that are skewed more towards higher slope values
500 (>1.0 with modes ~2.0). Among all the models, LPJ-GUESS is the model that best captures the variability
501 of the DryFlux GPP as evidenced by comparing the spatial pattern of annual GPP standard deviation (Fig.
502 3a), the standard deviation KDE plot that best matches DryFlux (Fig. 3b), the majority of slope values
503 close to 1 (Fig. 3c) and the most constrained slope KDE plot with a mode of ~1 (Fig. 3d). LPJwsl, LPX-

504 Bern, SDGVM and OCN all have a much higher annual GPP standard deviation and high slope values
505 (often exceeding 2) in the eastern or southeastern region of the study area (Figs. 3a and c).



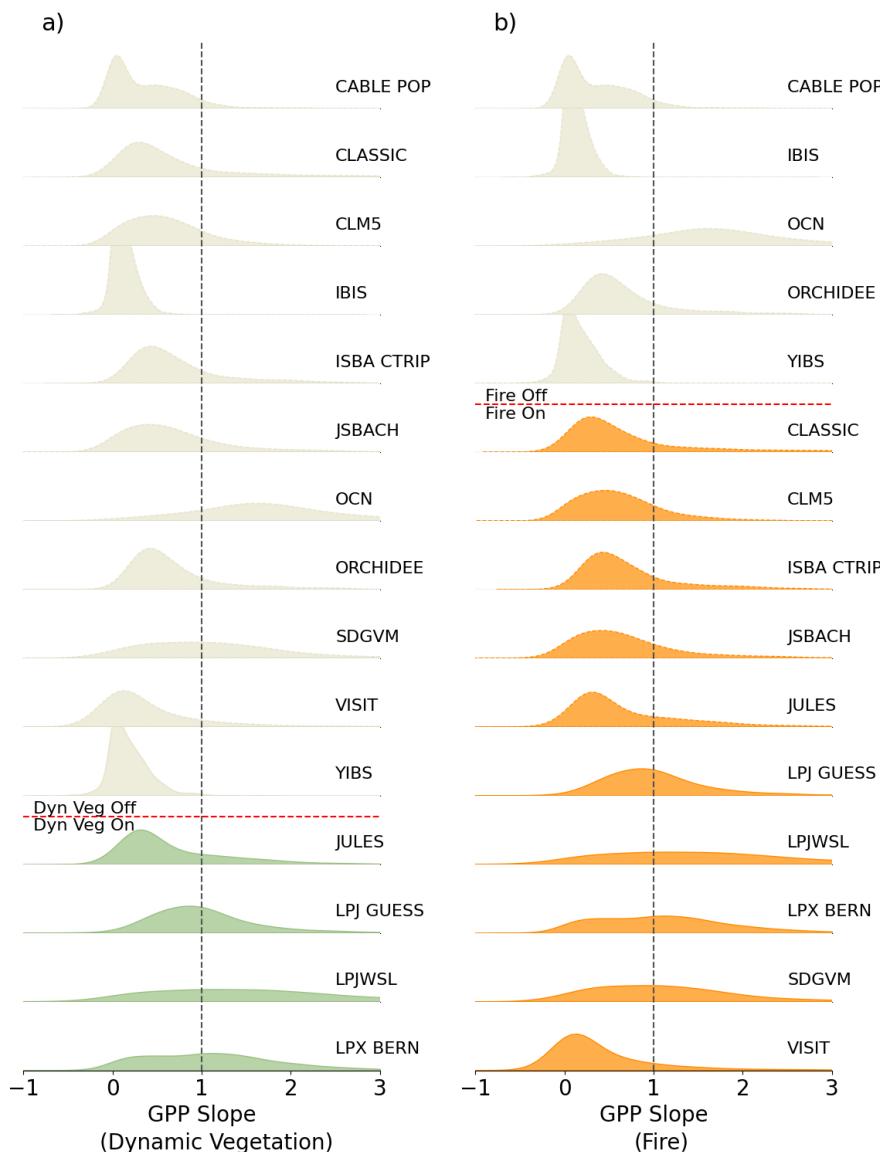
506
507 Figure 3: Spatial distribution across the western North American study area for: a) standard deviation of annual GPP
508 (2001-2016) for all TRENDY v11 models used in this study and the DryFlux data; b) a ridgeline plot of the Kernel

509 Density Estimates (KDE) representing the area weighted spatial distribution of GPP standard deviation for each of
510 the TRENDY models and DryFlux; c) and d) same as a) and b) but for the slope of the linear regression between
511 model and DryFlux annual GPP. The vertical dashed line in the slope ridgeline KDE plots shows a slope value of
512 1.0. The top two rows of (a) and (c) and the light purple and brown KDE plots in (b) and (d) correspond to models
513 that tend towards lower standard deviation values than DryFlux or which have slope values of the linear regression
514 between each model and DryFlux that are much less than 1. The bottom row of maps in (a) and (c) and the dark and
515 light blue KDE plots in (b) and (d) correspond to models that tend to have higher standard deviations and a wider
516 range of slope values.

517 3.2 Categorising models based on dynamic vegetation and fire

518 Regrouping the KDE ridgeline plots into dynamic vegetation enabled and fire enabled models, Figs. 4a
519 and b, respectively) provides a first visual evaluation of the impact of each of these processes on model
520 performance. Grouping the models according to whether fire was included did not help to reveal the cause
521 of the differences between the two model groups. Models that did not use dynamic vegetation are mostly
522 underestimating GPP variability compared to DryFlux with the exception of OCN and SDVGM. Of the 4
523 models that included dynamic vegetation and fire, one model generally had low GPP IAV compared to
524 DryFlux (JULES – Figs. 2 and 3), while the 3 LPJ models tended to have higher GPP IAV compared to
525 DryFlux (Figs. 2 and 3). Thus, our hypotheses related to the inclusion of dynamic vegetation and fire may
526 be partially correct, but the full picture is more complex. Neither of these processes alone, or in
527 combination (the 4 dynamic vegetation enabled models also included fire), is able to explain why models
528 are underestimating or overestimating the DryFlux GPP IAV (Fig. 4). However, with the exception of
529 JULES, including dynamic vegetation and fire may explain why the LPJ models have higher GPP IAV
530 compared to models without either of these processes, as we hypothesised. In contrast, fire alone (in
531 models without dynamic vegetation – Fig. 4b) is not causing models to have higher GPP IAV (possibly
532 with the exception of SDGVM), contrary to what we predicted. In the following sections we examined
533 differences across models in terms of their spatial patterns in temporal variability in fractional cover of

534 the major plant functional types and the burnt area for fire enabled models. We also explored whether the
535 spatial distribution of dominant plant functional types PFTs can be linked to spatial patterns in GPP
536 variability.



537

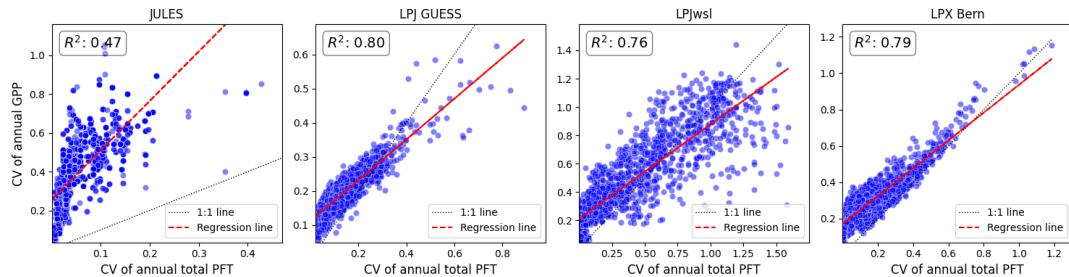
538 Figure 4: Ridgeline KDE plots summarizing the distribution of slope values of the linear regression between model
539 and DryFlux annual GPP across the entire study area grouped by: a) dynamic vegetation enabled models (green

540 KDE plots); and b) fire enabled models (orange KDE plots) versus models that do not contain those processes (beige
541 KDE plots) for the models. Note that all models that simulate spatial distribution of fractional vegetation cover
542 dynamically also include fire in their simulations.

543 3.3 Spatial patterns in PFT fractional cover and burnt area annual 544 variability

545 As expected based on the results in Section 2.2, models with dynamic vegetation (JULES and the
546 LPJ family of models) have higher standard deviation in PFT annual fCover compared to other models,
547 while all models that included fire but no dynamic vegetation (e.g., CLASSIC, CLM5.0, JSBACH, ISBA-
548 CTRIP, and VISIT) showed no changes in vegetation fCover of vegetation, with the exception of ISBA-
549 CTRIP – Fig. S3a to S3g). For all dynamic vegetation enabled models, which also included fire, we found
550 that temporal variability of annual vegetation fCover – expressed as the coefficient of variation (CV, i.e.,
551 standard deviation in annual total PFTcover d divided by the mean) – highly correlated with the temporal
552 variability (CV) of annual GPP (Fig. 5). Among these models, LPJ-GUESS, which captures better the
553 spatial patterns in GPP IAV compared to other models (Fig. 3), has the highest R^2 value between annual
554 total PFT fCover and annual GPP CV, with LPX-Bern a close second. With increasing annual total PFT
555 fCover CV LPJwsl showed an increased spread in GPP IAV. JULES appears to have more of a nonlinear
556 increasing concave down relationship between annual total PFT fCover and annual GPP CV, which
557 implies increases in annual GPP variability (expressed CV) may be limited above an annual total PFT
558 fCover CV of around 0.05.
559

560

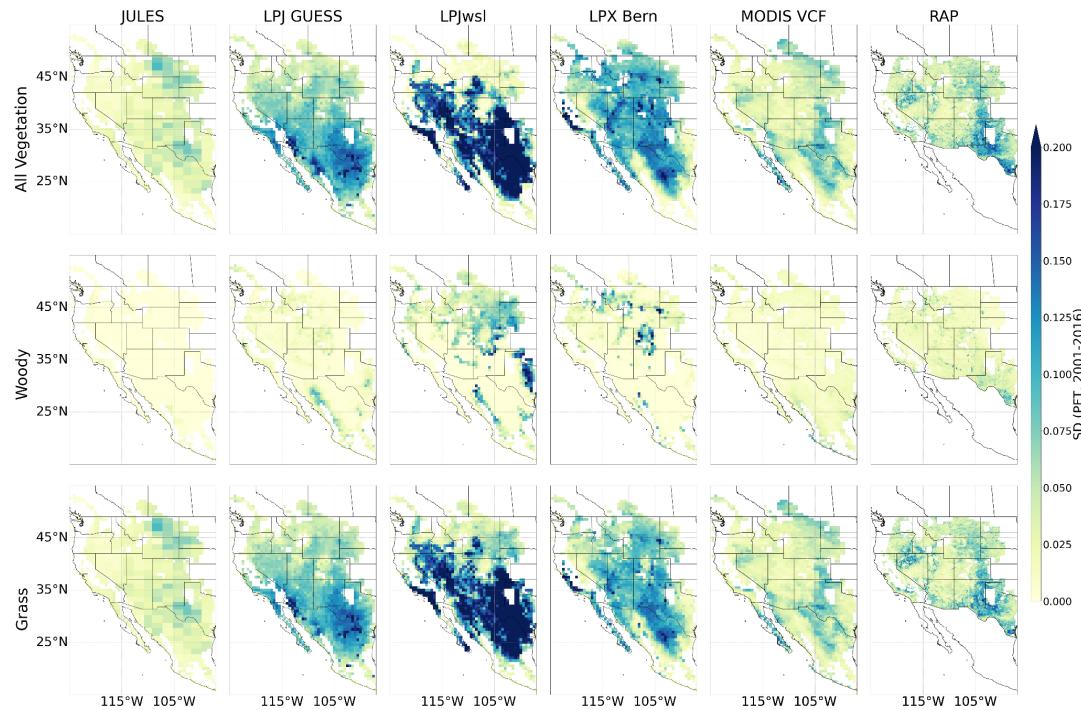


561 Figure 5: Scatterplots for the four dynamic vegetation enabled TRENDY models (i.e., those that simulate changes in
562 spatial distribution of PFTs over time) showing the pairwise grid cell comparisons of the coefficient of variation
563 (CV; standard deviation divided by the mean) of the total PFT annual cover versus the annual GPP calculated over
564 the 2001 to 2016 time series for each grid cell. CV is used here instead of the standard deviation to directly compare
565 temporal variability of two different quantities.

566

567 The standard deviation in annual total PFT fCover in the dynamic vegetation enabled models is mostly
568 from the herbaceous PFTs (cf. 1st 4 columns showing the models in top and bottom rows of Fig. 6),
569 which matches the two independent reference vegetation fCover datasets – MODIS VCF and RAP (last
570 two columns in Fig. 6). In JULES, the spatial patterns of standard deviation in annual PFT fCover match
571 both the MODIS VCF and RAP products (cf. Fig. 6 left column with the rightmost two columns).
572 However, these spatial patterns do not correspond to the spatial patterns seen in JULES standard deviation
573 of annual GPP (Figs. 3a and c). All variants of the LPJ model have higher standard deviation in annual
574 vegetation fCover compared to MODIS VCF and RAP and the spatial patterns also do not match well
575 (Fig. 6). The models appear to be overestimating standard deviation in annual PFT fCover more in the
576 arid central and southwestern part of the study area. These regions typically have sparse dwarf shrubs and
577 higher bare soil cover compared to models (see RAP in Figs. S1a and b). LPJwsl also has a higher
578 standard deviation in annual woody plant fCover in a north central and eastern region of the study area
579 (and high mean woody plant fCover – Fig. S1b) that is not consistent with the two independent data
580 products (Fig. 6). All variants of the LPJ model also predict higher mean and standard deviation in annual
581 grass cover compared to the RAP product (Fig. 6 and S1d). The higher standard deviation in annual PFT

582 fCover in LPJ models when compared to the independent datasets could help explain why those models
583 also overestimate standard deviation in annual GPP (with slope values much greater than 1). However,
584 the spatial patterns in standard deviation in annual PFT fCover (Fig. 6) do not match completely the
585 spatial patterns in standard deviation in LPJ annual GPP (Fig. 3a), with the exception of LPJ-GUESS.
586



587

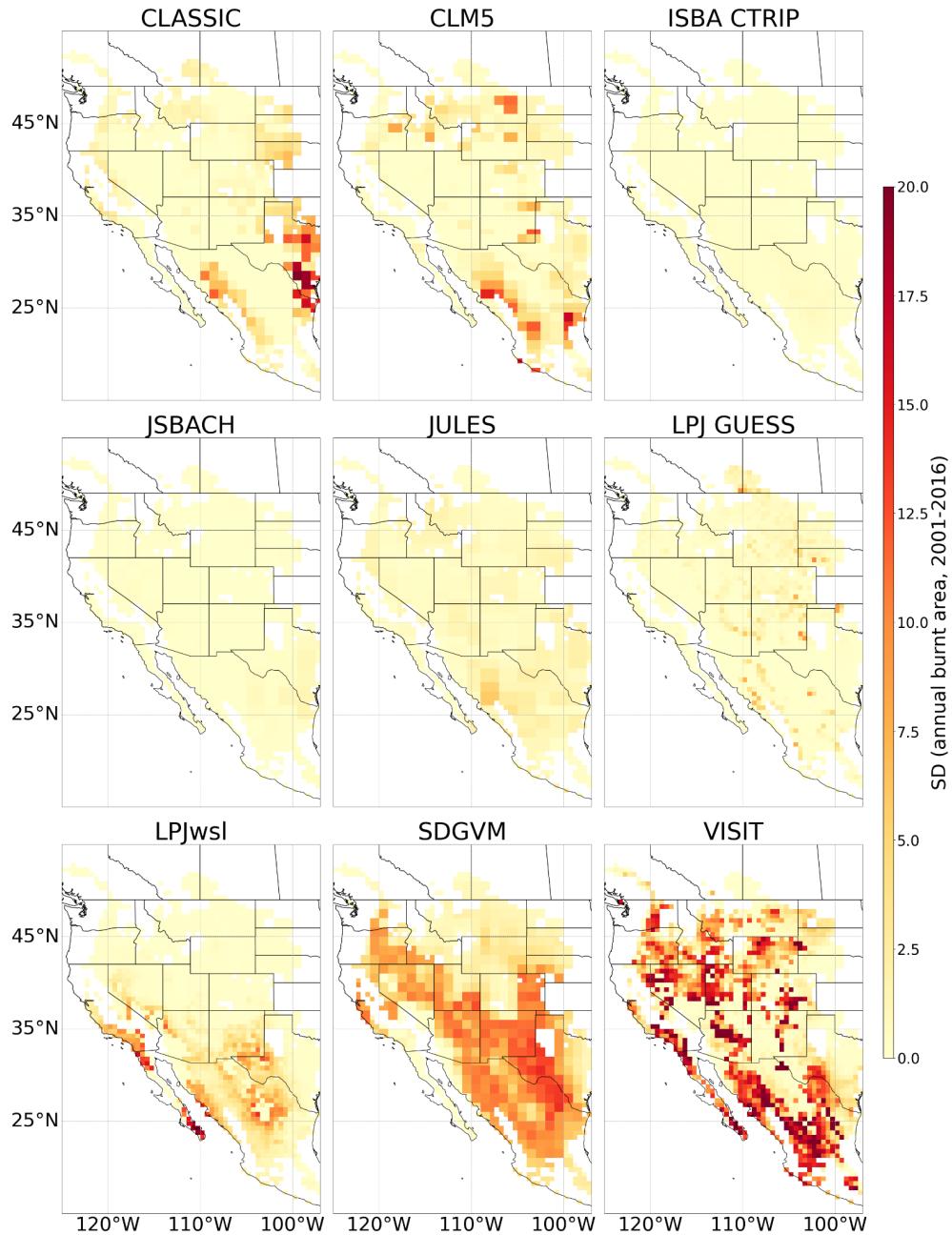
588

589 Figure 6: Standard deviation in annual fCover from 2001 to 2016 of all vegetation (all PFTs – top row), woody
590 vegetation (second row), and grasses (bottom row) for dynamic vegetation enabled models compared to independent
591 reference data from MODIS VCF and RAP.

592

593 Only four of the fire-enabled models simulate a standard deviation of annual percentage burnt area greater
594 than 10% for a number of grid cells (CLASSIC, SDGVM, VISIT and LPJwsl); all other models simulate
595 almost no variability in percentage burn area variability (Fig. 7). Note that the spatial patterns in the

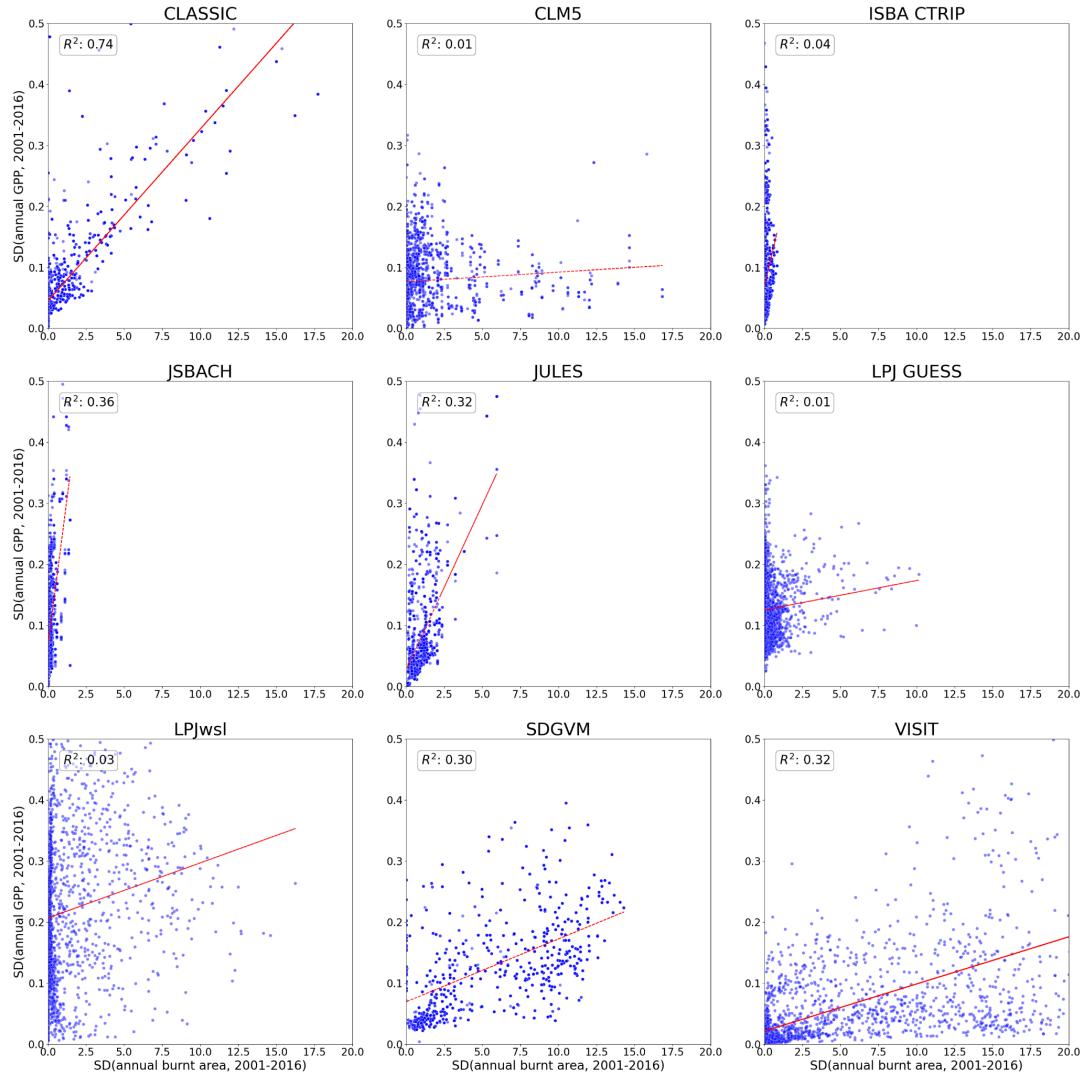
596 standard deviation of annual burnt area correspond well with the mean values, with almost all models
597 except SDGVM simulating mean burnt area less than 20% for the majority of grid cells (data not shown).
598 In all fire-enabled models, the spatial patterns in the standard deviation of annual burnt area did not
599 correspond well to spatial patterns in the standard deviation in annual PFT fCover (cf. Fig. 7 with Fig. 6),
600 with the possible exception of the southwestern region of high standard deviation in annual burnt area for
601 LPJwsl. Therefore, while fire may be playing a role in annual variability of PFT fCover and GPP for
602 LPJwsl (Fig. 8), it cannot be the only cause of the much higher standard deviation in annual GPP (and
603 high slope values) compared to DryFlux. The remaining three models (CLASSIC, SDGVM and VISIT)
604 do not model the spatial distribution of vegetation cover dynamically; therefore, despite simulating
605 noticeable variations in annual burnt area this did not affect their year to year changes in PFT cover (Fig.
606 S3). However, these three models did have spatial patterns in standard deviation of annual burnt area that
607 corresponded reasonably well with spatial patterns in standard deviation in annual GPP (cf. Figs. 7 and
608 3a). This was especially the case for SDGVM, which has the simplest representation of fire (Figs. 7 and
609 3a). These results suggest that for these three models, fire may be a driver of GPP variability (Fig. 8), as
610 we predicted (albeit that CLASSIC and VISIT still underestimate DryFlux annual GPP variability
611 overall). The remaining fire-enabled models (ISBA-CTRIP, JSBACH, JULES, and LPJ-GUESS) have
612 very low standard deviation in annual burnt area (Fig. 7). (Note LPX-Bern did not output burnt area;
613 however, they use the same fire module, GlobFIRM, as the other LPJ models.) Thus, for these models, fire
614 does not correlate well to standard deviation in annual GPP (Fig. 8), contrary to what we predicted.
615 Furthermore, the burnt area results dispute our hypothesis that fire enabled models with dynamic
616 vegetation would result in higher grass fCover; instead; another process or model input must be driving
617 high standard deviation in grass fCover in the dynamic vegetation enabled models.



618

619 Figure 7: Spatial distribution across the western North American study area of the standard deviation in
620 annual burnt area (%) for each grid cell for the 2001 to 2016 period for fire enabled TRENDY models.

621



622

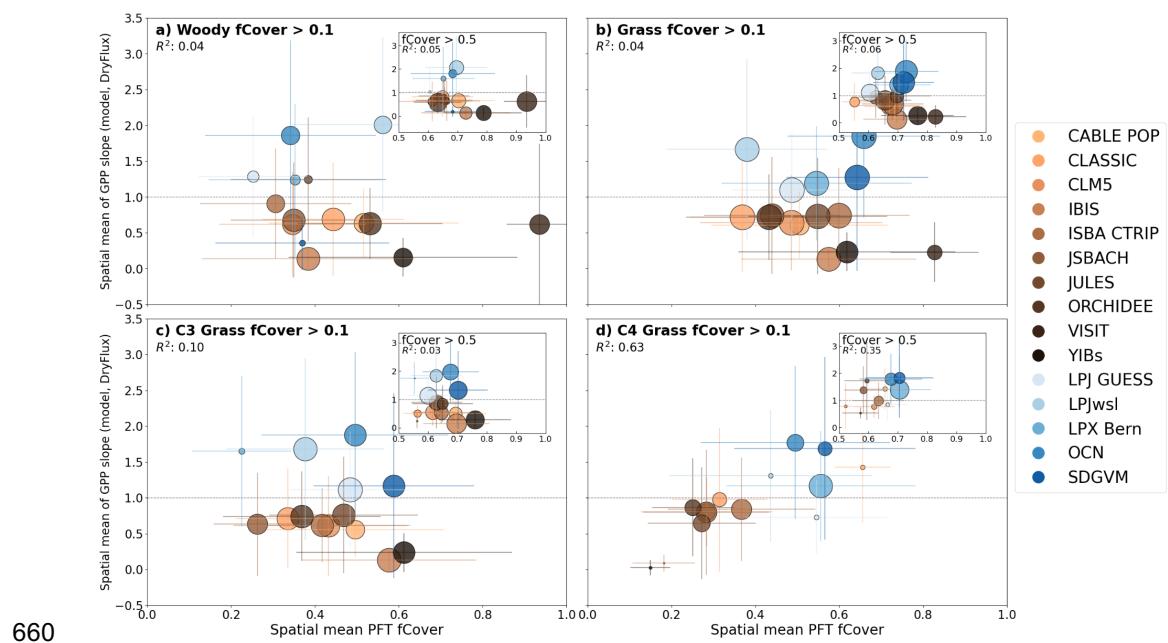
623 Figure 8: Scatterplots showing for all the fire enabled TRENDY models the pairwise grid cell comparisons of the
624 standard deviation of the total annual burnt area versus the annual GPP calculated over the 2001 to 2016 time series
625 for each grid cell.

626 3.4 Relationship between dominant vegetation type and annual GPP

627 variability

628 In addition to the contribution of dynamically modelled vegetation cover and fire to high annual GPP
629 variability, we hypothesized that model performance in capturing annual GPP variability compared to the
630 reference DryFlux product may be related to the dominant vegetation type. Compatible with our
631 hypothesis that models with high mean grass fCover across the study site will have higher standard
632 deviation in annual GPP compared to models with more shrub or bare ground cover, we found no clear
633 linear relationship between the mean fCover of woody plants for selected grid cells across the study area
634 and the mean slope of the linear regression between each model and DryFlux annual GPP (Fig. 9a). This
635 was the case both when grid cells with a woody fCover greater than 0.1 were selected (Fig. 9a) and grid
636 cells with a woody fCover greater than 0.5 (Fig. 9a inset). Models with both high and low woody
637 fractions underestimate model-DryFlux annual GPP slope values (spatial mean less than 1.0), although it
638 is possible that there is a decreasing concave up relationship in which models with generally low woody
639 fCover have higher GPP variability (slope values greater than 1 – Fig. 9a). Contrary to our hypotheses,
640 the spatial mean grass (C3 plus C4) and C3 grass fCover for different models show no linear relationship
641 with the spatial mean slope of the linear regression between model and DryFlux annual GPP when grid
642 cells with a fCover of greater than 0.1 or 0.5 were selected (R^2 values ≤ 0.06 ; Figs. 9b and c and insets).
643 However, there is a much stronger positive linear relationship between spatial mean C4 grass fCover and
644 the spatial mean slope of the linear regression between model and DryFlux annual GPP (R^2 0.63 for grid
645 cells with greater than 10% C4 grass fCover and 0.35 for grid cells with greater than 50% C4 grass
646 fCover; Fig. 9d and inset). Models with low C4 grass fCover tend to have low annual GPP model-
647 DryFlux slope values (slopes less than 1; brown points in Fig. 9d) and models with high C4 grass fCover
648 (especially LPX-Bern, OCN and SDGVM) have higher slope values (slopes greater than 1; blue points in
649 Fig. 9d). It is also worth noting that most of the models with higher C4 grass fCover also had a low

650 woody plant cover (low spatial mean and small number of grid cells – Fig. 9a and inset). For these three
651 models (LPX-Bern, OCN and SDGVM), the regions of high mean C4 grass fCover (Fig. S1f) correspond
652 well with regions of high standard deviation in annual GPP s (Fig. 3a) and model-DryFlux slope values
653 much greater than 1 (Fig. 3c). In contrast, regions of high mean C3 fCover do not correspond to regions
654 of high standard deviation in annual GPP for any model (including all the models that tend to
655 overestimate GPP IAV (bottom row of Figs. 3a and c). Therefore, in general our hypothesis that models
656 with higher grass cover would have higher GPP variability was incorrect. However, for some models
657 including LPX-Bern, OCN, and SDGVM, their high C4 grass fCover (and/or a too high response of C4
658 grasses to climate variability in these models) may be a piece of the puzzle in explaining why they are
659 overestimating DryFlux GPP IAV.



661 Figure 9: Scatter plots showing the spatial mean (mean across the study area for selected grid cells) fractional cover
662 (fCover) for a) woody, b) grass, c) C3 grass and d) C4 grass cover greater than 0.1 (or 0.5 in the inset plots) versus
663 the spatial mean of GPP slope of the linear regression between model and DryFlux annual GPP for the grid cells
664 with fCover greater than 0.1 (or 0.5). For each scatter plot the point size is proportional to the number of grid cells,
665 the horizontal error bar represents 1 s.d. spread from the mean fCover and the vertical error bar represents 1 s.d.

666 spread from the spatial mean GPP slope across selected grid points. R^2 values in each plot represent the proportion
667 of variance in the spatial mean PFT fCover across models explained by the spatial mean in slope between the
668 annual model and DryFlux GPP .

669

670 We compared each model's mean fCover for each PFT category (Fig. S1) with the two independent
671 reference fCover datasets. For this purpose RAP data is more reliable than MODIS VCF for both grasses
672 and woody categories because RAP grass cover is a combination of grass and forbs but not crops;
673 therefore, RAP is a better dataset against which to benchmark grass fCover. MODIS VCF non-woody
674 cover contains all vegetation with height less than 5m; therefore we consider it is suboptimal for
675 evaluating either woody or non-woody cover. Of all the models that tend to have high standard deviation
676 in annual GPP and model-DryFlux slope values much greater than 1 (LPJs, OCN and SDGVM), the
677 models tend to have higher mean grass cover than RAP and the spatial patterns in mean grass cover did
678 not match patterns seen in the RAP product (Fig. S1d). RAP has lower grass cover in the more arid
679 central and southwestern region compared to the models (Fig. S1d) and higher mean woody plant cover
680 (Fig. S1b). (Note that MODIS VCF has a lower woody plant cover that matches the models well;
681 however, MODIS VCF woody cover represents trees greater than 5m). In contrast, many of the models
682 that have lower standard deviation in annual GPP and model-DryFlux slope values much less than 1 in
683 the central and southwestern arid regions tend to have higher mean woody plant cover (or higher bare
684 soil cover) in that part of the study area (Fig. S1b). This could suggest that to simulate higher GPP IAV
685 these models need higher grass cover and lower shrub/bare soil cover. However, LPJwsl has more woody
686 cover in the northern region than seen in the reference datasets or in other models (Fig. S1b), yet still
687 overestimates GPP IAV in this region (Figs. 3a and c). These results lend support for our hypothesis that
688 increased grass cover results in higher GPP variability, with too high grass cover (especially C4) partially
689 resulting in too high GPP IAV.

690 **4. Discussion**

691 **4.1 Implications of uncertainties in DryFlux**

692 The random forest model used to produce the DryFlux product does not include a fCover data nor does it
693 represent different plant functional types (see Section 4.2) and thus cannot be biased by discrepancies in
694 vegetation fractional cover. Instead, DryFlux used satellite derived vegetation greenness indices such as
695 NDVI and EVI as a proxy for vegetation green distribution for photosynthesis. As Smith et al. (2018)
696 showed, these indices do not always capture reductions in GPP in the hot, dry pre-monsoon season
697 because in dryland ecosystems woody plant leaves often remain green during this period; therefore
698 photosynthesis and green leaf area can often be decoupled. This could result in an overestimation of
699 DryFlux GPP during that period, and thus a slight positive bias in DryFlux annual GPP. However, as the
700 DryFlux product performed well in capturing the decline in GPP across southwestern US sites during the
701 pre-monsoon season (Barnes et al., 2021) we are not expecting such a positive bias to occur. Another
702 potential issue with DryFlux is that it may not be as reliable in crop-dominated areas because the random
703 forest model did not include crop sites.. However, this should not affect our analysis as we mask out
704 crop-dominated grid cells from our study area. Finally, a recent study showed that dryland GPP is more
705 sensitive to soil moisture than atmospheric drivers such as vapour pressure deficit or air temperature
706 (Kannenberg et al 2024). DryFlux v1.0 did not consider soil moisture in the upscaling model; however,
707 inclusion of soil moisture at different depths has been tested in a later DryFlux version (Pervin et al., in
708 prep.). As the results of this study show, inclusion of surface soil moisture improved DryFlux GPP
709 accuracy by decreasing RMSE and increasing R2 in both the daily and monthly predictions when
710 compared to in situ GPP data and by helping to capture the bi-modal annual cycle and the magnitude of
711 mean annual GPP across some western North American sites (Pervin et al., in prep.). However, inter-

712 annual variability in DryFlux predicted annual GPP is captured well by both versions. Therefore, we are
713 not expecting any drastic change in the comparisons between DryFlux and TRENDY models.

714 4.2 Model-data uncertainties in PFT distributions

715 The findings of this study suggest that models without dynamic vegetation tend to have higher shrub
716 versus grass cover, which may contribute to an underestimate in GPP IAV, while models with high
717 prescribed C4 grass cover may overestimate GPP IAV. Models that do not simulate changes in PFT
718 fractional coverage dynamically have their own model-specific methods (including dataset used) for
719 generating spatial distribution of PFTs' fractional coverage. Therefore, mapping remotely sensed
720 vegetation or land cover data to a given model's PFTs is a largely subjective and expert judgement based
721 process, especially in sparsely vegetated dryland regions (Hartley et al., 2017). This can lead to
722 significant variation in PFT fractional coverage maps across models even when they are based on the
723 same underlying remotely sensed data set (Hartley et al., 2017).

724

725 Model specific decisions include methods for separating grasses into their C3 and C4 variants (Table S1).
726 Some models define C4 grasses as those in a tropical climate zone based on Köppen Geiger climate zones
727 or ECOCLIMAP (Table S1) and C3 grasses in all other climate zones. Other models use a mean
728 temperature threshold for separating C3 versus C4 grasses; however, the temperature thresholds vary
729 widely between models. For example CABLE POP, LPJwsl, and LPJ-GUESS use a temperature
730 threshold of 15.5°C for the coldest month to separate out C3 and C4 grasses. CLASSIC and SDGVM use
731 the C3/C4 distribution map from Still et al., (2003) and the ESA CCI Land Cover product (Poulter et al.,
732 2011), respectively – both of which follow the study of Collatz et al. (1998) that specified 22°C as a
733 “critical crossover” temperature for C3 versus C4 grasses (Table S1). Note that Still et al. (2003) allows
734 C4 grasses to prevail when temperatures exceed 22°C in any month, while Poulter et al. (2011) specified
735 this temperature threshold for the hottest month. Still et al. (2003) also requires a minimum amount of

736 precipitation (25mm) and assesses whether the temperature and precipitation conditions are met on a
737 seasonal basis, thus permitting mixed C3/C4 grasslands in temperate regions such as our study area. The
738 models with a temperature threshold of 15.5°C for the coldest month have no C4 grass in the study area
739 (Fig. S1f), which is not the case in reality (Section 2.1). In fact, neither a single temperature threshold
740 defined for the hottest or coldest month nor the use of climate biomes to separate out C3 versus C4
741 grasses is sufficient as both types exist in the southwestern part of our study area: C3 grasses grow in
742 winter, while C4 grasses grow in summer (Ehleringer, 1978).

743

744 Large discrepancies in dynamic vegetation enabled modeled C4 grass cover were documented by Still et
745 al. (2019) in comparison to independent proxy data across North America. Their study noted the
746 importance of representing seasonal offsets in both C3 and C4 grasses, in addition to recommending
747 improvements in modeled responses to disturbance, tree-grass competition for water resources, and
748 separation of woody and herbaceous cover in remotely sensed data. The latter is hard to achieve even
749 when LiDAR derived height data are included in the spectral unmixing algorithm (Pervin et al., 2022).
750 Wilcox et al. (2023) further noted the need to differentiate between annual and perennial grasses in
751 DGVMs. However, aside from independent proxy data, there are currently no detailed maps of C3 versus
752 C4 grass distributions for this study region that could help to benchmark models for dynamic vegetation
753 enabled models or to improve PFT input maps for models with prescribed, static PFT fCover. A new
754 approach utilizing the differences in timing of peak growth in C3 versus C4 grasses has been used to map
755 C3 and C4 grass distributions across Australia (Xie et al., 2022). Such an approach should be utilized to
756 create C3/C4 grass distribution maps for other regions such as western North America. There is now a
757 wealth of *in situ* PFT fCover estimates collected at NEON sites that could be used to validate such a
758 product (NEON fCover product: <https://data.neonscience.org/data-products/DP1.10058.001>). Luo et al.
759 (2024) have applied photosynthetic optimality theory combined with satellite remote sensing data to
760 produce global maps of C4 distributions. Dryland GPP simulations utilising the new product from Luo et
761 al. (2024) should be tested against the default model PFT maps for this study region.

762

763 Even when data are available, comparisons with independent reference fCover datasets can be
764 challenging. Vegetation fCover estimates provided in most remote sensing derived classification maps
765 and field estimates is essentially a spatio-temporal average, whereas models need the fCover for the most
766 optimal climate conditions. Models should then limit growth during periods of non optimal climate
767 conditions. One possible option would be to use the year of maximum fCover from products such as RAP
768 to prescribe PFT fCover in models without dynamic vegetation, and compare that to simulations using the
769 standard “spatio-temporal average” PFT fCover approach.

770

771 Other issues complicate comparisons of model prescribed or simulated PFT fCover. MODIS VCF is one
772 of the most widely used products for evaluating model PFT fractions (e.g., in Teckentrup et al., 2021);
773 however, as described in Section 2.3.2.2, tree cover in MODIS VCF is defined as trees with a height
774 greater than 5m. In this study region (and many dryland regions) most shrubs at low elevation are less
775 than 5m in height; therefore, we expect MODIS VCF will underestimate true woody cover in dryland
776 regions. Similarly we expect MODIS VCF non-woody cover will overestimate true herbaceous vegetation
777 as it incorporates all vegetation with height less than 5m, which will include small stature woody shrubs
778 present in drylands. Therefore, MODIS VCF is not an optimal product for benchmarking modeled
779 dryland vegetation fractional cover. RAP herbaceous cover is more reliable for providing grass fCover
780 estimates as it incorporates both annual and perennial grasses and forbs. The only drawback of the RAP
781 product is that it does not consider any crop cover types and therefore these have to be removed from a
782 PFT fCover evaluation analysis. RAP also includes both tree and shrub cover layers, which can be
783 summed to provide total woody cover. One additional method for benchmarking dryland woody cover
784 would be to use high resolution datasets of tree crown area (e.g., Brandt et al., 2020) that are becoming
785 more widely available as computational power increases.

786 4.3 Implications of inaccurate dynamic vegetation and fire

787 representation

788 As expected, the lack of dynamic vegetation and fire helps to explain why some models have low GPP
789 IAV compared to DryFlux. However, when analyzed spatially, models that do include a representation of
790 dynamic vegetation and/or fire do not always simulate higher GPP variability across most of the study
791 area, contrary to our hypotheses. Spatial patterns of burnt area variability generally did not match patterns
792 of variability in vegetation fCover for any model (with the slight exception of LPJwsl). This is to be
793 expected for models that do not simulate the spatial distribution of PFTs' fractional coverage
794 dynamically: in these models fires burn the existing biomass of model PFTs and reduce their per unit area
795 biomass density, but do not change the PFTs' fractional cover. However, no change in fCover as a result
796 of fire is not realistic in most cases, thus highlighting the need for models to include both fire and
797 dynamic changes in PFT distributions when modeling dryland ecosystems.

798

799 All the dynamic vegetation enabled DGVMs included in this study also included a representation of fire;
800 however, most of these models have low standard deviation in annual percentage burnt area (Fig. 7)
801 which does not represent reality. Fire does occur in western North American dryland ecosystems
802 (McGranahan and Wonkka, 2024; Singleton et al., 2019) though more severe fires typically occur in the
803 higher elevation more shrub to tree dominated ecosystems (Singleton et al., 2019). For models that
804 included dynamic vegetation and fire we predicted that fire would contribute to the prevalence of grass
805 dominated ecosystems (Burton et al., 2019; Verbruggen et al., 2021). However, JULES and all LPJ
806 models simulated very low standard deviation in annual percentage burnt area (Fig. 7) and high grass
807 cover; therefore, for these models it is clearly not fire that is controlling grass dominance. In the S3
808 simulations pasture covers much of these areas (likely too much based on our knowledge of the study
809 area), but even the LPJ S2 simulations without a pasture land cover class predict high grass cover (data

810 not shown). Further research is needed to ensure that processes controlling grass dominance in the LPJ
811 models, including competition between herbaceous and woody plants, are accurately represented.

812

813 The processes that result in high grass cover in the dynamic vegetation enabled DGVMs, including the
814 bioclimatic envelopes defined for each PFT and/or the competition conditions set for each model (Harper
815 et al., 2018; Sitch et al., 2003; Smith et al., 2001), could in turn produce aboveground or litter biomass
816 that is below the minimum fuel load for fire to spread (e.g., 200gCm⁻² in GlobFIRM – Thonicke et al.,
817 2001; INFERNO – Mangeon et al., 2016; and CLASSIC – (Melton and Arora, 2016)). However, most
818 models simulated litter biomass values greater than this threshold across this region (data not shown);
819 therefore it is not the lack of fuel that is causing low fire occurrence across models. Predicted moisture
820 conditions in the upper soil layers that control flammability may be too high during the hot, dry pre-
821 monsoon period when fires are most likely. Models with a simple bucket layer hydrology scheme (which
822 includes LPJwsl, SDGVM, and LPX-Bern in this study) have been shown to overestimate moisture
823 during the hot, dry period of May and June at sites across the southwestern US compared to more
824 mechanistic soil moisture schemes (MacBean et al., 2020). Even if models are simulating small fires
825 during this period, the impact on annual burnt area, which is a function of length of fire season in
826 GlobFIRM (Thonicke et al., 2001) or prescribed as in INFERNO (Mangeon et al., 2016), may be
827 minimal. A more extensive validation of fire burnt area fraction and its seasonal and inter-annual
828 variability simulated by fire-enabled DGVMs is needed. However, given the complexity of different fire
829 model schemes and the finer spatial and temporal resolutions at which fires occur compared to model grid
830 cell resolution, a more extensive validation is beyond the scope of this study.

831

832 For many of the models that simulate higher standard deviation of annual percentage burnt area
833 (CLASSIC, SDGVM and VISIT) there was a reasonable relationship with GPP variability (R^2 values >
834 0.3; Fig. 8). This finding suggests that fire may play an important role in improving simulations of GPP
835 IAV if it was better represented. Future evaluations of modeled burnt area should consider grouping

836 models according to the different fire parameterisations to try to disentangle the level of complexity
837 needed. . However, even with the higher predicted standard deviation in annual percentage burnt area
838 CLASSIC, CLM5, and VISIT, their GPP IAV was still generally underestimated compared to DryFlux.
839 The role that fire plays in GPP variability in dryland ecosystems could be tested by running factorial
840 simulations with and without the fire module enabled. This should be a priority in the near term for
841 further diagnosing the causes of dryland C flux model-data discrepancies.

842

843 Aside from fire, several other processes that control competition between woody and herbaceous species
844 may explain why dynamic vegetation enabled models in this study tended to overestimate grass cover
845 (both C3 and C4 grasses), with spatial patterns that partially corresponded to high GPP IAV compared to
846 DryFlux. Limited water availability shapes the patchy vegetation patterns often seen in drylands (Munson
847 et al., 2016). Differential water uptake by trees and grasses at different depths in the soil as in the Walter
848 hypothesis (Case and Staver, 2018; Munson et al., 2016) in theory are represented in many DGVMs;
849 however, simplistic rooting profiles implemented for more mesic ecosystems may not be representative of
850 dryland plants. More complex vegetation-water interactions are likely at play in drylands that may not be
851 well represented in DGVMs. For example, tree roots are not always deeper than grass roots (Staver et al.,
852 2017). Furthermore, water in deep soil always passes through the shallow soil providing water access to
853 grasses first. Another hypothesis likely not represented in DGVMs considers that shrubs temporarily shift
854 their physiological activity to access water in later periods (Naito et al, 2011). However, in this case
855 grasses will still use up the water first. This leaves the question if grasses are very opportunistic, how do
856 shrubs survive, especially during drought. The answer could be provided by the hypothesis of positive
857 feedback, where shrub clusters support nearby shrub establishment by increasing soil moisture through
858 interception under the canopy (Scanlon et al., 2007). A field study in Kalahari detected wet soils under
859 canopy and dry soils outside the canopy that supports this hypothesis (D'Odorico et al., 2007). However,
860 such vegetation-moisture interactions will not be resolved by DGVMs with no representation of the

861 spatial distribution of mixed tree-grass ecosystems, no understory, and with soil tiling approaches that
862 calculate soil moisture separately for different major PFT groups (such as trees and grasses).

863 4.4 Potential impact of other processes controlling GPP IAV

864 The DGVMs investigated in this study all capture the spatial patterns of GPP IAV fairly well in the SE
865 region of the study area with high rainfall variability, with the caveat that for some models the variability
866 is too strong and possibly linked to high C4 grass fractional cover. Larger model-data discrepancies exist
867 in regions that do not have high rainfall variability and can be linked to dominance of shrub versus grass
868 cover (see Section 4.3). The higher variability in annual GPP seen for C4 dominated DGVMs is an
869 interesting finding given that many previous studies have shown models tend to underestimate C flux
870 variability (Keenan et al., 2012), especially in drylands (MacBean et al., 2021; Wang et al., 2022). C4
871 grass fractional cover and its change over time needs to be better evaluated in models (see Section 4.2);
872 however, it is possible that there is too strong a response of C4 grasses to changing water availability.
873 This could potentially be due to a range of issues in the model, including inaccurate C4 and other dryland
874 plant traits (parameters;(Mahmud et al., 2021)), unrealistic C4 grass phenology (Whitley et al., 2016; De
875 Kauwe et al., 2017), and unrealistic water stress functions (De Kauwe et al., 2015; 2017), with resultant
876 impacts on photosynthesis and the complex interactions between leaf growth and soil water availability
877 (due to partitioning of intercepted rainfall between transpiration and bare soil evaporation). High
878 variability in GPP is likely linked to processes controlling leaf growth (Lin et al., 2023). Indeed, past
879 studies have highlighted leaf area index and GPP in DGVMs can be too tightly coupled, especially in
880 grasslands and arid regions (De Pue et al., 2022; Lin et al., 2023). Adapting moisture limited phenology
881 schemes in DGVMs to better represent dryland PFTs is likely needed (Dahlin et al., 2015; MacBean et
882 al., 2015; Renwick et al., 2019).

883

884 Finally, we note that we might expect that inclusion of N cycling in models may result in higher nutrient
885 limitation that reduces annual GPP variability; however, in this study there was no apparent difference in
886 GPP IAV with or without N cycling included in the models (Fig. S4). Nonetheless, Smith et al. (2014)
887 noted that N limitation favours grasses in some regions, which could be contributing to high annual GPP
888 variability for dynamic enabled models. It is likely that nutrient cycling plays a role in dryland
889 productivity dynamics that requires further understanding and implementation. More complex
890 interactions between fire, nutrients, and selective grazing in grasslands should also be considered in future
891 dryland model developments (Wilcox et al., 2023).
892 Even in reality it is impossible to estimate exact contributions of the myriad of processes that contribute
893 to annual variability in ecosystem scale GPP. Doing so will require novel ways to probe or reinterpret
894 existing *in situ* and gridded datasets. For example, future studies could assess non biogeography related
895 process contributions to GPP IAV in DryFlux (and DGVMs) by considering time periods without fire and
896 when vegetation fractional coverages are not changing considerably.

897 4.5 Implications for other dryland regions

898 While our study has elucidated differences between DGVMs in the form of high or low standard
899 deviation of GPP in western North America, we predict that these findings may not be consistent across
900 drylands on an intra-model basis. This prediction is based upon a recent study (Bogucki et al. in prep.)
901 which utilized the same TRENDY DGVMs, but on a global scale, finding that a relatively high standard
902 deviation of NEE in one particular dryland region (such as western North America) does not necessarily
903 equate to a high standard deviation of NEE in other dryland regions. Despite the fact that Bogucki et al.
904 (in prep.) investigate a time period spanning 52 years (1970 – 2020) instead of the 16 years (2001 – 2016)
905 used in this study, and their use of NEE instead of GPP, our findings are generally similar. Both Bogucki
906 et al. (in prep.) and this study identify the same DGVMs as either high (LPJ-GUESS, LPJwsl, LPX-Bern,
907 OCN, and SDGVM) or low (top two rows of Fig. 3a) standard deviation within the bounds of western

908 North America. Additionally, all of the models which we have identified as having high standard
909 deviation in annual GPP also display high standard deviation in annual NEE across multiple dryland
910 regions such as the Caatinga, Sahel, and eastern Australia in Bogucki et. al (in prep.). However, not all of
911 the models which both Bogucki et al. (in prep.) and this study have identified as low standard deviation
912 within the bounds of western North America also have low standard deviation in other dryland regions.
913 While some of the models are consistently low standard deviation across dryland regions (CLM5, ISBA
914 CTRIP, JULES, ORCHIDEE, and YIBS), some models display low standard deviation in western North
915 America but high standard deviation in other dryland regions (CABLE POP, CLASSIC, IBIS, JSBACH,
916 and VISIT). Thus, our explanations for why some DGVMs have higher or lower standard deviations in
917 annual GPP may not be applicable to these five DGVMs dryland regions on a global scale. Further
918 studies focusing on other dryland regions such as the Caatinga, Sahel, and Eastern Australia are required
919 to better understand what may be causing this variation between models and between dryland regions
920 within each of the models.

921 5. Conclusions

922 We evaluated the ability of 15 DGVMs from the TRENDY v11 model inter-comparison compared with a
923 dryland focused upscaled flux data product (DryFlux v1.0 GPP) to capture the IAV of dryland GPP in
924 western North America. We also examined potential causes of different performances across models, with
925 a specific focus on the role of processes related to biogeography (e.g., vegetation type and fractional
926 cover, dynamic vegetation, and fire). We tested three hypotheses: that models with dynamic vegetation
927 better capture GPP variability due to their ability to simulate grass regrowth after disturbance; that models
928 with more accurate representation of grass fractional cover leads to better alignment with DryFlux GPP
929 IAV; and that fire effects on GPP IAV are stronger in grass-dominated systems, especially in models with
930 both dynamic vegetation and fire modules. While it is not possible to estimate exact contributions of
931 different processes to poor model performance in capturing annual variability in an emergent quantity

932 such as GPP, this study nevertheless explored how vegetation characteristics and disturbances influence
933 model performance in simulating dryland carbon dynamics. We identified TRENDY v11 models without
934 dynamic vegetation and fire enabled capture low GPP IAV compared to the DryFlux product across the
935 western North America dryland region. Among different PFT types, models with high C4 grass cover
936 have high correlation with GPP IAV. LPJ models have high grass fCover, and high fCover variability,
937 which is likely contributing to their higher GPP IAV. However, the fCover variability is not due to fire,
938 and the spatial patterns in fCover variability do not match spatial patterns in GPP IAV, suggesting that
939 other processes are also contributing to high GPP variability. However our findings provide a roadmap to
940 the modellers in terms of improving vegetation representation in sparse woody shrub grass dynamic
941 dryland ecosystems, specifically to focus on accurate representation of C4 grasses.

942 Data and Code Availability

943 The Aridity Index (AI) dataset was downloaded from: [https://cgciarcsi.community/2019/01/24/global-](https://cgciarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v3/)
944 [aridity-index-and-potential-evapotranspiration-climate-database-v3/](https://cgciarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v3/). The DryFlux v1.0 GPP product was
945 downloaded from <https://github.com/marthageb/DryFlux> and is freely available under a MIT License
946 Copyright (c) 2021 marthageb. MODIS VCF was downloaded through google earth engine, April 2024,
947 but also available at: <https://lpdaac.usgs.gov/> (DiMiceli et al., 2015). The RAP fCover data was downloaded
948 from <http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/>. TRENDY model data is available
949 from the Global Carbon Budget Data Browser (<https://mdosullivan.github.io/GCB/>). Scripts produced in
950 this study are deposited in the following github repository: '[https://github.com/Rubaya-Pervin/TRENDY-](https://github.com/Rubaya-Pervin/TRENDY-models-evaluation-using-DryFlux)
951 [models-evaluation-using-DryFlux](https://github.com/Rubaya-Pervin/TRENDY-models-evaluation-using-DryFlux)'. Once the manuscript has been accepted for publication after any
952 revisions have been completed, this statement will be updated at that time and a Zenodo doi will be
953 created for this repository so that a permanent record is available for this paper.

954 Author Contribution

955 All the work including all data processing, methods and code development, analyses, figure plotting, and
956 most of the writing was carried out by RP. NM primarily wrote Section 4.2, 4.3 and 4.4 and co-author LB
957 primarily wrote Section 4.5 in collaboration with RP. Co-authors SR, KM, and MB provided feedback on
958 preliminary analyses and manuscript drafts. TRENDY modelers contributed information on processes in
959 their models as well as feedback on manuscript drafts.

960 Competing interests

961 At least one of the (co-)authors is a member of the editorial board of Biogeosciences

962 References

963 Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell,
964 J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y.
965 P., Wiltshire, A., Zaehle, S., and Zeng, N.: Carbon cycle. The dominant role of semi-arid ecosystems in
966 the trend and variability of the land CO₂ sink, *Science*, 348, 895–899,
967 <https://doi.org/10.1126/science.aaa1668>, 2015.

968 Allred, B. W., Bestelmeyer, B. T., Boyd, C. S., Brown, C., Davies, K. W., Duniway, M. C., Ellsworth, L.
969 M., Erickson, T. A., Fuhlendorf, S. D., Griffiths, T. V., Jansen, V., Jones, M. O., Karl, J., Knight, A.,
970 Maestas, J. D., Maynard, J. J., McCord, S. E., Naugle, D. E., Starns, H. D., Twidwell, D., and Uden, D.
971 R.: Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty,
972 *Methods in Ecology and Evolution*, 12, 841–849, <https://doi.org/10.1111/2041-210X.13564>, 2021.

973 Anderson-Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., and Litvak, M. E.: Differential
974 responses of production and respiration to temperature and moisture drive the carbon balance across a
975 climatic gradient in New Mexico, *Glob. Chang. Biol.*, 17, 410–424, <https://doi.org/10.1111/j.1365-2486.2010.02269.x>, 2011.

977 Barnes, M. L., Susan Moran, M., Scott, R. L., Kolb, T. E., Ponce-Campos, G. E., Moore, D. J. P., Ross,
978 M. A., Mitra, B., and Dore, S.: Vegetation productivity responds to sub-annual climate conditions across
979 semiarid biomes, *Ecosphere*, 7, e01339, <https://doi.org/10.1002/ecs2.1339>, 2016.

980 Barnes, M. L., Farella, M. M., Scott, R. L., Moore, D. J. P., Ponce-Campos, G. E., Biederman, J. A.,
981 MacBean, N., Litvak, M. E., and Breshears, D. D.: Improved dryland carbon flux predictions with explicit
982 consideration of water-carbon coupling, *Communications Earth & Environment*, 2, 1–9,

983 <https://doi.org/10.1038/s43247-021-00308-2>, 2021.

984 Bastos, A., Naipal, V., Ahlström, A., MacBean, N., Smith, W. K., and Poulter, B.: Semiarid ecosystems,
985 in: *Balancing Greenhouse Gas Budgets*, Elsevier, 311–335, <https://doi.org/10.1016/b978-0-12-814952-2.00012-5>, 2022.

987 Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H.,
988 Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands:
989 bridging the knowledge gap between ecology and Dynamic Global Vegetation Models, *Biogeosciences*,
990 12, 1833–1848, <https://doi.org/10.5194/bg-12-1833-2015>, 2015.

991 Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, T. E.,
992 Krishnan, P., Krofcheck, D. J., Litvak, M. E., Maurer, G. E., Meyers, T. P., Oechel, W. C., Papuga, S. A.,
993 Ponce-Campos, G. E., Rodriguez, J. C., Smith, W. K., Vargas, R., Watts, C. J., Yepez, E. A., and
994 Goulden, M. L.: CO exchange and evapotranspiration across dryland ecosystems of southwestern North
995 America, *Glob Chang Biol*, 23, 4204–4221, <https://doi.org/10.1111/gcb.13686>, 2017.

996 Bonan, G.: *Climate change and terrestrial ecosystem modeling*, Cambridge University Press, Cambridge,
997 England, 456 pp., <https://doi.org/10.1017/9781107339217>, 2019.

998 Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., Robertson,
999 E., and Wiltshire, A.: Representation of fire, land-use change and vegetation dynamics in the Joint UK
1000 Land Environment Simulator vn4.9 (JULES), *Geosci. Model Dev.*, 12, 179–193,
1001 <https://doi.org/10.5194/gmd-12-179-2019>, 2019.

1002 Case, M. F. and Staver, A. C.: Soil texture mediates tree responses to rainfall intensity in African
1003 savannas, *New Phytol*, 219, 1363–1372, <https://doi.org/10.1111/nph.15254>, 2018.

1004 Collatz, G. J., Berry, J. A., and Clark, J. S.: Effects of climate and atmospheric CO partial pressure on the
1005 global distribution of C grasses: present, past, and future, *Oecologia*, 114, 441–454,
1006 <https://doi.org/10.1007/s004420050468>, 1998.

1007 Cranko Page, J., De Kauwe, M. G., Abramowitz, G., Cleverly, J., Hinko-Najera, N., Hovenden, M. J.,
1008 Liu, Y., Pitman, A. J., and Ogle, K.: Examining the role of environmental memory in the predictability of
1009 carbon and water fluxes across Australian ecosystems, *Biogeosciences*, 19, 1913–1932,
1010 <https://doi.org/10.5194/bg-19-1913-2022>, 2022.

1011 Dannenberg, M. P., Barnes, M. L., Smith, W. K., Johnston, M. R., Meerdink, S. K., Wang, X., Scott, R.
1012 L., and Biederman, J. A.: Upscaling dryland carbon and water fluxes with artificial neural networks of
1013 optical, thermal, and microwave satellite remote sensing, *Biogeosciences*, 20, 383–404,
1014 <https://doi.org/10.5194/bg-20-383-2023>, 2023.

1015 De Pue, J., Barrios, J. M., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., Balzarolo, M., Maignan, F., and
1016 Gellens-Meulenberghs, F.: Local-scale evaluation of the simulated interactions between energy, water and
1017 vegetation in ISBA, ORCHIDEE and a diagnostic model, *Biogeosciences*, 19, 4361–4386,
1018 <https://doi.org/10.5194/bg-19-4361-2022>, 2022.

1019 DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D.-H., Kelly, M., and Townshend, J.: MOD44B
1020 MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006,
1021 <https://doi.org/10.5067/MODIS/MOD44B.006>, 2015.

1022 DiMiceli, C., Townshend, J., Carroll, M., and Sohlberg, R.: Evolution of the representation of global

1023 vegetation by vegetation continuous fields, *Remote Sensing of Environment*, 254, 112271,
1024 <https://doi.org/10.1016/j.rse.2020.112271>, 2021.

1025 Ehleringer, J. R.: Implications of quantum yield differences on the distributions of C and C grasses,
1026 *Oecologia*, 31, 255–267, <https://doi.org/10.1007/BF00346246>, 1978.

1027 Fawcett, D., Cunliffe, A. M., Sitch, S., O'Sullivan, M., Anderson, K., Brazier, R. E., Hill, T. C., Anthoni,
1028 P., Arneth, A., Arora, V. K., Briggs, P. R., Goll, D. S., Jain, A. K., Li, X., Lombardozzi, D., Nabel, J. E.
1029 M. S., Poulter, B., Séférian, R., Tian, H., Viovy, N., Wigneron, J.-P., Wiltshire, A., and Zaehle, S.:
1030 Assessing model predictions of carbon dynamics in global drylands, *Front. Environ. Sci.*, 10,
1031 <https://doi.org/10.3389/fenvs.2022.790200>, 2022.

1032 Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré,
1033 C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R.,
1034 Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T. T. T., Chevallier, F., Chini, L. P.,
1035 Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L.,
1036 Gasser, T., Gilfillan, D., Gkrizalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I.,
1037 Houghton, R. A., Hurt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy,
1038 D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K.,
1039 Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel, J. E. M.
1040 S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E.,
1041 Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshakl, C., Séférian, R., Sutton, A. J., Sweeney, C.,
1042 Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G. R., Vuichard, N., Wada, C.,
1043 Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., and
1044 Zeng, J.: Global Carbon Budget 2021, *Earth System Science Data*, 14, 1917–2005,
1045 <https://doi.org/10.5194/essd-14-1917-2022>, 2022.

1046 Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S.,
1047 Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle
1048 configuration of JULES4.6 with new plant functional types, *Geosci. Model Dev.*, 11, 2857–2873,
1049 <https://doi.org/10.5194/gmd-11-2857-2018>, 2018.

1050 Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty in plant functional type
1051 distributions and its impact on land surface models, *Remote Sens. Environ.*, 203, 71–89,
1052 <https://doi.org/10.1016/j.rse.2017.07.037>, 2017.

1053 Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D., Gough, C. M., Grant, R.,
1054 Hollinger, D., Hufkens, K., Poulter, B., McCaughey, H., Racza, B., Ryu, Y., Schaefer, K., Tian, H.,
1055 Verbeeck, H., Zhao, M., and Richardson, A. D.: Terrestrial biosphere model performance for inter-annual
1056 variability of land-atmosphere CO₂ exchange, *Glob. Chang. Biol.*, 18, 1971–1987,
1057 <https://doi.org/10.1111/j.1365-2486.2012.02678.x>, 2012.

1058 Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S.,
1059 Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D.,
1060 Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghe, D., Vasic, R., Xue, Y., Yamada, T.,
1061 and GLACE Team: Regions of strong coupling between soil moisture and precipitation, *Science*, 305,
1062 1138–1140, <https://doi.org/10.1126/science.1100217>, 2004.

1063 Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a
1064 Dynamic Global Vegetation Model, *Biogeosciences*, 9, 2761–2780, <https://doi.org/10.5194/bg-9-2761-2012>, 2012.

1066 Lin, S., Hu, Z., Wang, Y., Chen, X., He, B., Song, Z., Sun, S., Wu, C., Zheng, Y., Xia, X., Liu, L., Tang,
1067 J., Sun, Q., Joos, F., and Yuan, W.: Underestimated interannual variability of terrestrial vegetation
1068 production by terrestrial ecosystem models, *Global Biogeochem. Cycles*, 37,
1069 <https://doi.org/10.1029/2023gb007696>, 2023.

1070 Liu, Y., Schwalm, C. R., Samuels-Crow, K. E., and Ogle, K.: Ecological memory of daily carbon
1071 exchange across the globe and its importance in drylands, *Ecol Lett*, 22, 1806–1816,
1072 <https://doi.org/10.1111/ele.13363>, 2019.

1073 Luo, X., Zhou, H., Satriawan, T. W., Tian, J., Zhao, R., Keenan, T. F., Griffith, D. M., Sitch, S., Smith, N.
1074 G., and Still, C. J.: Mapping the global distribution of C vegetation using observations and optimality
1075 theory, *Nat Commun*, 15, 1219, <https://doi.org/10.1038/s41467-024-45606-3>, 2024.

1076 MacBean, N., Scott, R. L., Biederman, J. A., Peylin, P., Kolb, T., Litvak, M. E., Krishnan, P., Meyers, T.
1077 P., Arora, V. K., Bastrikov, V., Goll, D., Lombardozzi, D. L., Nabel, J. E. M. S., Pongratz, J., Sitch, S.,
1078 Walker, A. P., Zaehle, S., and Moore, D. J. P.: Dynamic global vegetation models underestimate net CO₂
1079 flux mean and inter-annual variability in dryland ecosystems, *Environ. Res. Lett.*, 16, 094023,
1080 <https://doi.org/10.1088/1748-9326/ac1a38>, 2021.

1081 Mahmud, K., Scott, R. L., Biederman, J. A., Litvak, M. E., Kolb, T., Meyers, T. P., Krishnan, P.,
1082 Bastrikov, V., and MacBean, N.: Optimizing carbon cycle parameters drastically improves terrestrial
1083 biosphere model underestimates of dryland mean net CO₂ flux and its inter-annual variability, *J.
1084 Geophys. Res. Biogeosci.*, 126, <https://doi.org/10.1029/2021jg006400>, 2021.

1085 Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G.: INFERNO: a fire and
1086 emissions scheme for the UK Met Office's Unified Model, *Geosci. Model Dev.*, 9, 2685–2700,
1087 <https://doi.org/10.5194/gmd-9-2685-2016>, 2016.

1088 McGranahan, D. A. and Wonkka, C. L.: Pyrogeography of the Western Great Plains: A 40-year history of
1089 fire in semi-arid rangelands, *Fire*, 7, 32, <https://doi.org/10.3390/fire7010032>, 2024.

1090 Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial
1091 Ecosystem Model (CTEM) v. 2.0, *Geosci. Model Dev.*, 9, 323–361, <https://doi.org/10.5194/gmd-9-323-2016>, 2016.

1093 Melton, J. R., Arora, V. K., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., and Teckentrup, L.:
1094 CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS)
1095 and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level
1096 performance, *Geosci. Model Dev.*, 13, 2825–2850, <https://doi.org/10.5194/gmd-13-2825-2020>, 2020.

1097 Metz, E.-M., Vardag, S. N., Basu, S., Jung, M., Ahrens, B., El-Madany, T., Sitch, S., Arora, V. K.,
1098 Briggs, P. R., Friedlingstein, P., Goll, D. S., Jain, A. K., Kato, E., Lombardozzi, D., Nabel, J. E. M. S.,
1099 Poulter, B., Séférian, R., Tian, H., Wiltshire, A., Yuan, W., Yue, X., Zaehle, S., Deutscher, N. M.,
1100 Griffith, D. W. T., and Butz, A.: Soil respiration-driven CO pulses dominate Australia's flux variability,
1101 *Science*, 379, 1332–1335, <https://doi.org/10.1126/science.add7833>, 2023.

1102 Metz, E.-M., Vardag, S. N., Basu, S., Jung, M., and Butz, A.: Seasonal and interannual variability in CO₂
1103 fluxes in southern Africa seen by GOSAT, *Biogeosciences*, 22, 555–584, <https://doi.org/10.5194/bg-22-555-2025>, 2025.

1105 Munson, S. M., Sankey, T. T., Xian, G., Villarreal, M. L., and Homer, C. G.: Decadal shifts in grass and
1106 woody plant cover are driven by prolonged drying and modified by topo-edaphic properties, *Ecol Appl*,

1107 26, 2478–2492, <https://doi.org/10.1002/eap.1389>, 2016.

1108 Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K.,
1109 Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running,
1110 S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote
1111 sensing, machine learning and land surface modeling, *Hydrol. Earth Syst. Sci.*, 24, 1485–1509,
1112 <https://doi.org/10.5194/hess-24-1485-2020>, 2020.

1113 Paschal, A., Faticchi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M.,
1114 Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W.,
1115 Lienert, S., Luo, Y., Meir, P., Nabel, J. E. M. S., Ogaya, R., Parolari, A. J., Peng, C., Peñuelas, J.,
1116 Pongratz, J., Rambal, S., Schmidt, I. K., Shi, H., Sternberg, M., Tian, H., Tschumi, E., Ukkola, A., Vicca,
1117 S., Viovy, N., Wang, Y.-P., Wang, Z., Williams, K., Wu, D., and Zhu, Q.: Rainfall manipulation
1118 experiments as simulated by terrestrial biosphere models: Where do we stand?, *Glob Chang Biol.*, 26,
1119 3336–3355, <https://doi.org/10.1111/gcb.15024>, 2020.

1120 Pervin, R., Robeson, S. M., and MacBean, N.: Fusion of airborne hyperspectral and LiDAR canopy-
1121 height data for estimating fractional cover of tall woody plants, herbaceous vegetation, and other soil
1122 cover types in a semi-arid savanna ecosystem, *Int. J. Remote Sens.*, 43, 3890–3926,
1123 <https://doi.org/10.1080/01431161.2022.2105176>, 2022.

1124 Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.: Plant
1125 functional type mapping for earth system models, *Geosci. Model Dev.*, 4, 993–1010,
1126 <https://doi.org/10.5194/gmd-4-993-2011>, 2011.

1127 Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G.,
1128 Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution of semi-arid
1129 ecosystems to interannual variability of the global carbon cycle, *Nature*, 509, 600–603,
1130 <https://doi.org/10.1038/nature13376>, 2014.

1131 Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: Special
1132 paper: A global biome model based on plant physiology and dominance, soil properties and climate, *J.*
1133 *Biogeogr.*, 19, 117, <https://doi.org/10.2307/2845499>, 1992.

1134 Renwick, K. M., Fellows, A., Flerchinger, G. N., Lohse, K. A., Clark, P. E., Smith, W. K., Emmett, K.,
1135 and Poulter, B.: Modeling phenological controls on carbon dynamics in dryland sagebrush ecosystems,
1136 *Agric. For. Meteorol.*, 274, 85–94, <https://doi.org/10.1016/j.agrformet.2019.04.003>, 2019.

1137 Scholes, R. J.: The future of semi-arid regions: A weak fabric unravels, *Climate*, 8, 43,
1138 <https://doi.org/10.3390/cli8030043>, 2020.

1139 Singleton, M. P., Thode, A. E., Sánchez Meador, A. J., and Iniguez, J. M.: Increasing trends in high-
1140 severity fire in the southwestern USA from 1984 to 2015, *For. Ecol. Manage.*, 433, 709–719,
1141 <https://doi.org/10.1016/j.foreco.2018.11.039>, 2019.

1142 Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht,
1143 W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography
1144 and terrestrial carbon cycling in the LPJ dynamic global vegetation model, *Glob. Chang. Biol.*, 9, 161–
1145 185, <https://doi.org/10.1046/j.1365-2486.2003.00569.x>, 2003.

1146 Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C.,
1147 Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N.,

1148 Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R.,
1149 Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and
1150 drivers of regional sources and sinks of carbon dioxide, *Biogeosciences*, 12, 653–679,
1151 <https://doi.org/10.5194/bg-12-653-2015>, 2015.

1152 Sitch, S., O'Sullivan, M., Robertson, E., Friedlingstein, P., Albergel, C., Anthoni, P., Arneth, A., Arora,
1153 V. K., Bastos, A., Bastrikov, V., Bellouin, N., Canadell, J. G., Chini, L., Ciais, P., Falk, S., Harris, I.,
1154 Hurt, G., Ito, A., Jain, A. K., Jones, M. W., Joos, F., Kato, E., Kennedy, D., Klein Goldewijk, K.,
1155 Kluzek, E., Knauer, J., Lawrence, P. J., Lombardozzi, D., Melton, J. R., Nabel, J. E. M. S., Pan, N.,
1156 Peylin, P., Pongratz, J., Poulter, B., Rosan, T. M., Sun, Q., Tian, H., Walker, A. P., Weber, U., Yuan, W.,
1157 Yue, X., and Zaehle, S.: Trends and drivers of terrestrial sources and sinks of carbon dioxide: An
1158 overview of the TRENDY project, *Global Biogeochem. Cycles*, 38,
1159 <https://doi.org/10.1029/2024gb008102>, 2024.

1160 Smith, B., Prentice, I.C. and Sykes, M.T.: Representation of vegetation dynamics in the modelling of
1161 terrestrial ecosystems: comparing two contrasting approaches within European climate space, *Glob. Ecol.*
1162 and *Biogeogr.*, 621–637, 2001.

1163 Smith, B., Wårld, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of
1164 incorporating N cycling and N limitations on primary production in an individual-based dynamic
1165 vegetation model, *Biogeosciences*, 11, 2027–2054, <https://doi.org/10.5194/bg-11-2027-2014>, 2014.

1166 Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global distribution of C₃ and C₄ vegetation:
1167 Carbon cycle implications, *Global Biogeochem. Cycles*, 17, 6–1–6–14,
1168 <https://doi.org/10.1029/2001gb001807>, 2003.

1169 Still, C. J., Cotton, J. M., and Griffith, D. M.: Assessing earth system model predictions of C₄ grass
1170 cover in North America: From the glacial era to the end of this century, *Glob. Ecol. Biogeogr.*, 28, 145–
1171 157, <https://doi.org/10.1111/geb.12830>, 2019.

1172 Teckentrup, L., De Kauwe, M. G., Pitman, A. J., Goll, D. S., Haverd, V., Jain, A. K., Joetzjer, E., Kato, E.,
1173 Lienert, S., Lombardozzi, D., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Sitch, S.,
1174 Walker, A. P., and Zaehle, S.: Assessing the representation of the Australian carbon cycle in global
1175 vegetation models, *Biogeosciences*, 18, 5639–5668, <https://doi.org/10.5194/bg-18-5639-2021>, 2021.

1176 Thonicke K, Venevsky S, Sitch S, Cramer W.: The role of fire disturbance for global vegetation
1177 dynamics: coupling fire into a Dynamic Global Vegetation Model, *Glob. Ecol. and Biogeogr.*, 10(6), 661–
1178 77, <https://doi.org/10.1046/j.1466-822X.2001.00175.x>, 2001.

1179 Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The
1180 influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results
1181 from a process-based model, *Biogeosciences*, 7, 1991–2011, <https://doi.org/10.5194/bg-7-1991-2010>,
1182 2010.

1183 Trabucco, A. and Zomer, R.: Global Aridity Index and Potential Evapotranspiration (ET0) Climate
1184 Database v3, <https://doi.org/10.6084/m9.figshare.7504448.v4>, 2022.

1185 Traore, A., Ciais, P., Vuichard, N., MacBean, N., Dardel, C., Poulter, B., Piao, S., Fisher, J., Viovy, N.,
1186 Jung, M., and Myneni, R.: 1982–2010 trends of Light Use Efficiency and inherent Water Use Efficiency
1187 in African vegetation: Sensitivity to climate and atmospheric CO₂ concentrations, *Remote Sens. (Basel)*,
1188 6, 8923–8944, <https://doi.org/10.3390/rs6098923>, 2014.

1189 Verbruggen, W., Schurgers, G., Horion, S., Ardö, J., Bernardino, P. N., Cappelaere, B., Demarty, J.,
1190 Fensholt, R., Kergoat, L., Sibret, T., Tagesson, T., and Verbeeck, H.: Contrasting responses of woody and
1191 herbaceous vegetation to altered rainfall characteristics in the Sahel, *Biogeosciences*, 18, 77–93,
1192 https://doi.org/10.5194/bg-18-77-2021, 2021.

1193 Verbruggen, W., Schurgers, G., Meunier, F., Verbeeck, H., and Horion, S.: Simulated tree-grass
1194 competition in drylands is modulated by CO₂ fertilization, *Earths Future*, 12,
1195 https://doi.org/10.1029/2023ef004096, 2024.

1196 Wang, L., Jiao, W., MacBean, N., Rulli, M. C., Manzoni, S., Vico, G., and D'Odorico, P.: Dryland
1197 productivity under a changing climate, *Nat. Clim. Chang.*, 12, 981–994, https://doi.org/10.1038/s41558-
1198 022-01499-y, 2022.

1199 Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B.,
1200 Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison
1201 study to examine limiting factors in modelling Australian tropical savannas, *Biogeosciences*, 13, 3245–
1202 3265, https://doi.org/10.5194/bg-13-3245-2016, 2016.

1203 Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L.,
1204 Moore, C., Ryu, Y., Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.:
1205 Challenges and opportunities in land surface modelling of savanna ecosystems, *Biogeosciences*, 14,
1206 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, 2017.

1207 Wilcox, B. P., Birt, A., Fuhlendorf, S. D., and Archer, S. R.: Emerging frameworks for understanding and
1208 mitigating woody plant encroachment in grassy biomes, *Curr. Opin. Environ. Sustain.*, 32, 46–52,
1209 https://doi.org/10.1016/j.cosust.2018.04.005, 2018.

1210 Wilcox, K. R., Chen, A., Avolio, M. L., Butler, E. E., Collins, S., Fisher, R., Keenan, T., Kiang, N. Y.,
1211 Knapp, A. K., Koerner, S. E., Kueppers, L., Liang, G., Lieungh, E., Loik, M., Luo, Y., Poulter, B., Reich,
1212 P., Renwick, K., Smith, M. D., Walker, A., Weng, E., and Komatsu, K. J.: Accounting for herbaceous
1213 communities in process-based models will advance our understanding of “grassy” ecosystems, *Glob
1214 Chang Biol*, 29, 6453–6477, https://doi.org/10.1111/gcb.16950, 2023.

1215 Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and ecosystem function of the
1216 Barents Region, *Clim. Change*, 87, 51–73, https://doi.org/10.1007/s10584-007-9342-4, 2008.

1217 Xie, Q., Huete, A., Hall, C. C., Medlyn, B. E., Power, S. A., Davies, J. M., Medek, D. E., and Beggs, P.
1218 J.: Satellite-observed shifts in C3/C4 abundance in Australian grasslands are associated with rainfall
1219 patterns, *Remote Sens. Environ.*, 273, 112983, https://doi.org/10.1016/j.rse.2022.112983, 2022.

1220 Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu,
1221 Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch,
1222 S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit
1223 reduces global vegetation growth, *Sci Adv*, 5, eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.

1224 Zhang, X., Wang, Y.-P., Peng, S., Rayner, P. J., Ciais, P., Silver, J. D., Piao, S., Zhu, Z., Lu, X., and
1225 Zheng, X.: Dominant regions and drivers of the variability of the global land carbon sink across
1226 timescales, *Glob Chang Biol*, 24, 3954–3968, https://doi.org/10.1111/gcb.14275, 2018.

1227 Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein,
1228 P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
1229 Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao,

1230 Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, *Nat. Clim. Chang.*, 6, 791–
1231 795, <https://doi.org/10.1038/nclimate3004>, 2016.