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47 Abstract

48  Drylands cover ~41% of the Earth’s land surface and contribute more than one third of the global net

49  primary productivity. Several studies have demonstrated that drylands play a crucial role in global carbon
50 cycle interannual variability. However, drylands are vulnerable to the impacts of climate change. To

51  predict changes in dryland productivity under climate change we depend on dynamic global vegetation
52  models (DGVMs). Compared to more mesic ecosystems, DGVM carbon cycle dynamics have not been
53  widely evaluated against data. Existing studies are mostly focused at site scale; rarely have these models
54 been assessed or benchmarked against dryland carbon flux products at regional to global scales. Global
55  gross primary productivity (GPP) products have poor performance in dryland regions. Only recently

56  upscaled in situ flux products have been developed specifically for drylands. Here, we evaluated GPP

57  inter-annual variability (IAV) simulated by 15 DGVMs from the TRENDY v11 model intercomparison
58  project against theDryFlux GPP, which is newly developed upscaled GPP product that considers dryland-
59  specific ecohydrological responses. Comparing model simulated GPP IAV to DryFlux, we identified two
60  groups of models: a one group of models with generally lower GPP IAV than DryFlux (e.g., lower

61 standard deviation in annual GPP than DryFlux and slope values of the linear regression between each

62  model and the DryFlux product that are less than 1.0) and a second group of models with generally higher
63  GPPIAV than DryFlux. We examined if including a representation of dynamic vegetation (i.e., changes
64  in the spatial distribution of plant functional type (PFT) fractional cover) or fire in the models can explain
65  the inter-model spread and model performance in comparison to DryFlux. Models that do not include a
66  representation of fire and/or dynamic changes in plant functional type distribution over time generally

67  have lower annual GPP variability compared to DryFlux (1st group of models), except for the eastern and
68  southeastern region of the study area with high rainfall variability. We also found that models with

69  dynamic vegetation exhibit high variability in grass fractional cover (that was higher than two

70  independent reference fractional cover datasets), which was strongly correlated with high GPP IAV. Only

71 some models that included fire simulated burnt area annual variability that correlated well with GPP IAV.
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72 Other models that included fire simulated low burnt area variability and therefore we did not find any
73  strong relation between burnt area and GPP IAV. Finally, we examined the relationship between the

74  dominant PFT and GPP IAV. We did not find a strong correlation between the spatial mean of the slope
75  of'the linear regression between each model and DryFlux annual GPP and their spatial mean woody,

76  grass, or C3 grass fractional cover (although many models with generally low GPP IAV had higher

77  woody plant cover). However, we did find a high correlation between the slope of the linear regression
78  between each model and DryFlux annual GPP and spatial mean C4 grass cover. Therefore, our findings
79  suggest that DGVMs inability to accurately represent the spatial distribution of herbaceous (specifically
80 (4 grass) cover as well as processes controlling dynamically changing vegetation distributions over time
81 (including fire) contribute to poor model performance in capturing annual variability in dryland

82  productivity. Our findings can provide a roadmap for DGVM teams seeking to improve vegetation

83  representation in sparsely vegetated dynamic dryland ecosystems.

84 1. Introduction

85  Dryland ecosystems are commonly defined as regions where water demand in the form of potential

86  evapotranspiration (PET) is much higher than precipitation (P) (Wang et al., 2022) and encompass

87  grasslands, shrublands, scrublands and savannas. They cover ~41% of the Earth’s terrestrial surface and
88  are home to over a third of the world’s population (Bastos et al., 2022; Wang et al., 2022) . Dryland

89  regions are hotspots of land-atmospheric coupling (Koster et al., 2004) and are thought to play a dominant
90  role in global carbon cycle variability (Ahlstrom et al., 2015; Poulter et al., 2014; Zhang et al., 2018).

91  Dryland ecosystem functioning is expected to be extremely sensitive to future changes in water

92  availability (Bastos et al., 2022; Scholes, 2020; Wang et al., 2022). Given the complexity of dryland

93  ecosystem dynamics and their feedbacks to major components of the earth system, it is essential that

94  dynamic global vegetation models (DGVMs), many of which form the land component of earth system
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95  models used for climate change projections, can accurately simulate carbon and water fluxes in dryland

96  regions.

97

98 DGVMs are process-based models that simulate physical and biogeochemical processes to model

99  exchange of water, energy, carbon (C), and nitrogen (N) fluxes across the land-atmosphere boundary. All
100  DGVMs simulate vegetation dynamics such as leaf phenology and changes in vertical structure or
101 rooting depth; however, only some explicitly simulate spatial distribution of plant functional types
102  (PFTs) and dynamic changes in PFT spatial distribution (fractional cover) over time (henceforth referred
103  to as “dynamic vegetation”). When the spatial distribution of a models’ PFTs is not explicitly simulated it
104  needs to be prescribed. While many of these models serve as the land component of their respective
105  ESMs, these models can also be driven offline with meteorological data (either from in situ weather
106  stations or from gridded climate reanalyses (Bonan, 2019). The TRENDY (“Trends and drivers of the
107  regional scale terrestrial sources and sinks of carbon dioxide””) model intercomparison project began in
108 2009 with the goal of comparing a suite of DGVM estimates for global atmosphere-land CO, flux (Sitch
109  etal, 2015). The TRENDY model ensemble simulations provide important estimates of the natural land
110 carbon sink (cumulative net biome production) in addition to the impact of land use changes on land
111 carbon cycling for the annual Global Carbon Budget (Friedlingstein et al., 2024); however, outputs from
112  TRENDY have been used in a host of other studies exploring land surface and dynamic vegetation
113 process responses to global change drivers beyond the original TRENDY remit (Pan et al., 2020; Yuan et

114  al,2019; Zhu et al., 2016).

115  Compared to mesic ecosystems, DGVMs have rarely been evaluated or benchmarked against dryland
116 carbon and water flux data at either site or global scale(MacBean et al., 2021; Renwick et al., 2019;
117  Whitley et al., 2016). However, several recent studies have documented large uncertainties in DGVM
118 simulations of dryland carbon fluxes and stocks(Fawcett et al., 2022; MacBean et al., 2021; Metz et al.,

119  2023; Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016) — although the mean across
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120  models tends to replicate benchmark data well (Fawcett et al., 2022). Most of the DGVM evaluations in
121  the aforementioned studies have been conducted at site scale using in situ carbon and water fluxes; only a
122  few are focused on regional(Metz et al., 2023, 2025; Teckentrup et al., 2021) or global scale (Fawcett et
123  al, 2022). These spatially continuous large-scale studies used gridded upscaled flux tower data or satellite
124  derived GPP, aboveground biomass, fire emissions and burnt area products to evaluate multiple

125  components of dryland C cycling. Interestingly, there are mismatches between the findings for how well
126 models can capture C fluxes at site versus global scale. Studies evaluating a suite of DGVMs from the
127  TRENDY model intercomparison project across Australian and southwestern US dryland sites found that
128  most models underestimate both the mean gross primary productivity and net ecosystem exchange (NEE)
129  and their interannual variability (IAV)(MacBean et al., 2021; Metz et al., 2023; Wang et al., 2022;

130  Whitley et al., 2016), which the studies suggest may be due to inadequate representations of vegetation
131 dynamics such as tree-rooting depths and leaf phenology, which are essential for capturing plant

132  responses to rainfall variability(Renwick et al., 2019; Whitley et al., 2016, 2017). Global scale flux site
133  data analysis also revealed a similar story that DGVMs underestimate GPP IAV across dryland savanna,
134  grass and shrubland sites(Lin et al., 2023). However, studies comparing TRENDY models with regional
135  to global gridded datasets found a large spread across the models with some models overestimating and
136  some underestimating mean gross and net carbon fluxes and their IAV(Fawcett et al., 2022; Teckentrup et
137  al., 2021). Furthermore, model performance varied regionally, such as a general overestimation of

138  modeled GPP in the Sahel but an underestimation in South Africa and South America(Fawcett et al.,

139  2022). These contrasting findings from site scale studies highlight the need for more regional to global
140  studies that can examine processes and patterns that become important across broader spatial scales.

141

142  Many processes have been postulated to cause poor model performance in capturing dryland C fluxes, but
143  the exact causes are not yet known (Fawecett et al., 2022; MacBean et al., 2021; Paschalis et al., 2020;

144  Teckentrup et al., 2021; Traore et al., 2014; Whitley et al., 2016). DGVMs are at various stages of

145  development, with only some including key dryland processes such as fire, grazing, or dynamic
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146  vegetation (Sitch et al., 2024). Productivity in drylands is affected by rainfall changes, with herbaceous
147  vegetation responding quickly to rainfall variations, while woody vegetation has slower, longer-term
148  response (Verbruggen et al., 2021, 2024). These responses vary depending on the dryland aridity and the
149  type of vegetation cover; thus, it is important to have correct representations of dryland vegetation type
150  and fractional cover (fCover) (either prescribed or simulated). Inadequate representation of prescribed
151 PFTs, PFT fCover and its variability over time in DGVMs have been shown to cause large spread in
152  model estimates of dryland productivity, especially in sparsely vegetated, mixed shrub-grass ecosystems
153  (Hartley et al., 2017; Wilcox et al., 2023). This uncertainty arises from challenges in separating grass
154  versus woody PFT fractions via classification of remotely sensed imagery (Hartley et al., 2017; Pervin et
155  al,, 2022). Different climate dependencies of dryland PFTs, such as differentiating between C3 and C4
166  grasses based on temperature thresholds, also cause discrepancies across models (Still et al., 2019;

157  Wilcox et al., 2023). In addition, most PFTs are not well adapted for dryland ecosystems. Herbaceous
1568  PFTs, and especially C4 grasses, are often oversimplified in models, leading to underestimation of

159  productivity, especially in ecosystems where annual grasses and variations in fire regimes play a major
160  role in ecosystem dynamics (Wilcox et al., 2023).

161

162  Models that do include dynamic vegetation have a variety of different methods for simulating changes
163  over time, from relatively simple bioclimatic envelopes to more complex representations based on

164  competition for resources, forest gap dynamics and cohorts of different ages and sizes (Harper et al.,
165  2018; Prentice et al., 1992; Sitch et al., 2003; Smith et al., 2001). The treatment of fires in models also
166  adds to uncertainties in representing dryland vegetation dynamics and productivity in DGVMs

167  (Teckentrup et al., 2021). Fire models vary from relatively simple representations of fuel availability and
168  moisture availability such as the GlobFIRM model (Thonicke et al., 2001) to more complex

169  representations that also account for different sources of ignition and the effect of wind on rates of fire
170  spread (Li et al., 2012; Mangeon et al., 2016; Melton and Arora, 2016). Fires in dryland regions can

171 significantly alter vegetation structure (Bastos et al., 2022; Wilcox et al., 2018), yet models often fail to



https://doi.org/10.5194/egusphere-2025-2841
Preprint. Discussion started: 31 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

172 capture the impact of fire on dryland vegetation, particularly in areas with low fuel availability where fire
173 is less frequent (Baudena et al., 2015; Fawcett et al., 2022; Teckentrup et al., 2021; Verbruggen et al.,
174 2021; Wilcox et al., 2023). Thus, even when these key dryland processes are included in models it

175  remains unclear to what extent they are correctly represented. Failure to accurately model these

176  biogeographic processes and their interplay with climate variability likely affects DGVMs’ ability to

177  predict GPP IAV. More in depth model-data comparison studies that focus on the spread across models
178  are needed to help discern which model processes need further evaluation or improvement. These studies
179  can also inform targeted data collection and analysis efforts to support more specific process-based model
180  evaluations and model developments. Regional model-data comparisons fill a unique niche in that they
181 can focus more on larger-scale biogeographical causes of model-data mismatch compared to site based
182  evaluations. Regional scale studies can also focus more on specific dryland regions and utilize localized
183  knowledge compared to global studies (e.g., Australia in Teckentrup et al., 2022).

184

185  In this study, we address these research needs by evaluating the ability of 15 DGVMs from TRENDY v11
186  (Sitch et al., 2024) to capture spatiotemporal patterns of dryland GPP in western North America. We

187  focus specifically on how well models capture GPP IAV as most previous regional dryland model

188  evaluation studies have focused more on mean model biases or trends in productivity (Fawcett et al.,

189  2022; Teckentrup et al., 2021). DGVMs are also being used in studies investigating the ongoing debate
190  around which biome — tropical forests or dryland ecosystems — plays a dominant role in global C cycle
191 IAV (Ahlstrom et al., 2015); therefore, it is critical that we assess whether these models can indeed

192 capture variability in dryland C fluxes. To evaluate TRENDY model GPP we use the newly developed
193  ‘DryFlux’ v1.0 GPP product (Barnes et al., 2021). DryFlux is an upscaled flux product developed

194  specifically for dryland ecosystems using flux tower GPP from sites across western North America

195  (Barnes et al., 2021). The random forest model used for flux tower data upscaling includes metrics

196  designed to characterize ecohydrological controls on dryland carbon dynamics (see Section 2.3.1).

197  DryFlux GPP better captures dryland spatiotemporal GPP patterns across western North America
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198  compared to the MODIS GPP and FLUXCOM products that have been used in past regional dryland
199  model evaluation studies (Barnes et al., 2021).

200

201 The two main objectives of this study are to: 1) identify if TRENDY v11 models have higher or lower
202  variability in annual GPP compared to the DryFlux product across dryland regions of western North
203  America; and 2) examine potential causes of inter-model spread and in differences in model performances
204  with respect to DryFlux, with a specific focus on the role of processes related to biogeography such as
205  vegetation type, fractional cover, dynamic vegetation, and fire. We test 3 main hypotheses.

206

207  First, we hypothesized that DGVMs with dynamic vegetation enabled will have a higher GPP variability
208  compared to those with prescribed static vegetation. This is due to the higher grass disturbance rates

209  (Harper et al., 2018) and the ability of most dynamic vegetation enabled DGVMs to establish new grass
210  growth or to spread into bare soil patches following disturbance (Harper et al., 2018; Sitch et al., 2003).
211 Therefore, we predicted that dynamic vegetation-enabled DGVMs will better capture DryFlux GPP IAV,
212 while DGVMs with prescribed static vegetation fCover will underestimate DryFlux GPP TIAV.

213

214 Second, given dryland grasses, especially those with the C4 photosynthetic pathway, respond strongly to
215 rainfall pulses (Verbruggen et al., 2021, 2024), we hypothesize that models with high grass fCover

216  (whether prescribed or simulated) will show greater GPP variability compared to models with low grass
217  fCover or a higher bare soil or shrub fCover. We predicted that models with a more accurate

218  representation of grass fCover will better match DryFlux GPP IAV compared to those that either over- or
219  underestimate grass cover.

220

221  Finally, we hypothesized that the impact of fire on simulated GPP IAV in fire-enabled DGVMs depends
222  on vegetation composition, specifically, the dominance of grasses versus bare soil or woody plant cover.

223  Because grasses typically have a much lower resistance to burning or a higher combustion completeness
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224 in models (Sitch et al., 2003), we expect fire to contribute more strongly to GPP IAV in grass-dominated
225  systems than in shrub- or tree- dominated ones. All DGVMs with dynamic vegetation also have their fire
226  module enabled, which we expect will contribute to both increased mean grass cover and greater

227  variability in grass fCover, ultimately resulting in higher GPP IAV. Fire enabled DGVMs without

228  dynamic vegetation should also predict higher GPP IAV than DGVMs with neither dynamic vegetation
229  nor representation of fire, especially if their prescribed PFT map has high vegetation fractional cover.
230

231 To assess model performance in capturing GPP IAV, we examined the standard deviation in annual GPP
232  for both the models and DryFlux and the slope values of the linear regression between each model and
233  DryFlux annual GPP. Based on these values we identified models with low GPP IAV and high GPP IAV
234  compared to DryFlux and investigated whether dynamic vegetation and/or fire could explain differences
235  between the two groups. For dynamic vegetation enabled models, we did a pairwise gridcell comparison
236  to explore how the temporal variability in PFT fractional cover was related to GPP IAV metrics (standard
237  deviation and slope). To further disentangle the role that dynamic vegetation and fire are playing in

238  modeled GPP IAV, we examined differences across models in terms of their spatial patterns in standard
239  deviation in annual fractional cover for major plant functional types (and the same for burnt area for fire
240  enabled models). We also explored whether the spatial distribution of dominant PFTs can be linked to
241 spatial patterns in GPP variability. The findings of this study will help clarify which vegetation and

242  disturbance related biogeographical processes most strongly influence interannual variability in dryland
243  GPP across current DGVMs. By identifying where and why models diverge from the observation-driven
244  DryFlux product, we provide a roadmap for dryland process-specific developments that the DGVM

245  community can make to better estimate dryland carbon-vegetation interactions under a changing climate.
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246 2. Methods

247 2.1 Study Area: North American Drylands

248  Our study area is focused on western North American drylands (longitude and latitude bounds: 93° W to
249  125° W and 15°N to 53°N — Fig. 1). We delineated the dryland region across western North America
250  using the aridity index (AI), which is defined as the ratio of precipitation to potential evapotranspiration.
251  Unlike other studies that typically define drylands as regions with an aridity index between 0 and 0.65
252  (e.g., Wang et al., 2022), here we limit the range of our study area to aridity index values between 0.05
253  and 0.5, encompassing both arid (AT 0.05 to 0.2) and semi-arid (0.2 to 0.5) regions, to match the extent
254  where DryFlux v1.0 is tested and can be used as a reference product. We excluded the semi-arid cropland
255  belt in the north and eastern part of the study area (see Section 2.4) to focus on natural vegetation

256  ecosystem productivity in North American drylands. The region exhibits large spatial gradients in key
257  climatic variables. Mean annual precipitation (MAP) ranges broadly from 40 to 1200 mm, while mean
258  annual temperature (MAT) varies from -4°C to +26°C (Anderson-Teixeira et al., 2011; Biederman et al.,
259  2017). The western part near the Pacific Ocean experiences a Mediterranean climate with the majority of
260  annual precipitation falling in winter (November—April). In contrast, the central, eastern, and southeastern
261  portions are heavily influenced by the North American Monsoon, which brings most precipitation during
262  the summer (July—October. Lower elevation areas (<1610 m) are mainly dominated by C3 shrubs and C4
263  summer grasses (but with C3 winter grasses) are mostly affected by summer monsoon rainfall, with

264  relatively small amounts of winter and spring rains. Higher elevation forested areas (>1930 m) are

265  dominated by evergreen shrubs and trees, though there is a transition in vegetation type from grasslands
266  and mixed shrub-grasslands to forests as elevation increases. The higher elevation areas have cooler mean

267  annual temperatures (<10°C) and a more distinct bi-model growing season, receiving moisture from both

10
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268  winter precipitation/spring snowmelt and summer monsoon rainfall (Anderson-Teixeira et al., 2011;

269  Biederman et al., 2017).
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272  Figure 1: Drylands (excluding modeled cropland PFTs) in western North America. Arid regions (aridity index 0.05 -
273 0.2) are shown in dark brown, semi-arid regions (aridity index 0.2 - 0.5) in light brown, and all other regions in light
274 grey).

275

11
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276 2.2 Models

277 2.2.1 TRENDY v11 GPP

278  We used the annual GPP (kgCmyr’") simulated by 15 of the 18 DGVMs that contributed to the

279  TRENDY vl1 models ensemble (Friedlingstein et al., 2022; Sitch et al., 2024). Three of the TRENDY
280  vl11 models were excluded because there were no PFT maps available for the analysis (see Section 2.2.2).
281  Model simulation results were available from the preindustrial period (1700 for some models and 1860
282  for others) to 2021, but we elected to use 2001 to 2016 only to match the temporal availability of the
283  DryFlux data. We used TRENDY S3 simulations specifically due to their inclusion of time-varying

284  atmospheric CO; concentration, climate (using the CRUJRA reanalysis), nitrogen fertilization, and land-
285  use change as forcings. This is in contrast to what the S1 (only time-varying atmospheric CO;

286  concentration) and S2 simulations (only time-varying atmospheric CO, concentration and climate)

287  included. Additionally, all of these models followed a common experimental protocol, as is further
288  outlined in Sitch et al. (2024). The model outputs were regridded to a common 0.5x0.5° resolution grid.
289  Table 1 lists the models included in this study in addition to whether they included two key biogeographic
290  processes that are important controls on GPP IAV: dynamic vegetation and fire.

291

292

293

294

295

296

297

298

299
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300  Table 1: Information on biogeography processes (dynamic vegetation and fire) included in all TRENDY
301  v11 models used in this study that are relevant to vegetation distribution (fractional cover) and its

302  variability and which in turn affect GPP variability.

Model Dynamic Vegetation Fire module
CABLE POP No No
CLASSIC No Yes (Melton et al., 2020)
CLM5 No Yes (Liet al., 2012)
IBIS No No
ISBA CTRIP No Yes (Thonicke et al., 2001)
JSBACH No Yes (Thonicke et al., 2010)
JULES Yes (Burton et al., 2019; Harper | Yes (Mangeon et al., 2016)
etal., 2018) (Burton et al., 2019)
LPJ-GUESS Yes Yes (Thonicke et al., 2001)
(Smith et al., 2014) (Smith et
al., 2001)

LPJwsl Yes (Sitch et al., 2003) Yes (Thonicke et al., 2001)
LPX-Bern Yes (Prentice et al., 1992; Sitch | Yes (Thonicke et al., 2001)
et al., 2003; Wolf et al., 2008)

ORCHIDEE No No

OCN No No

SDGVM No Yes (Simple empirical function of litter
moisture and/or amount and a fire
return interval map).

VISIT No Yes (Thonicke et al., 2001)

YIBs No No

13
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303  2.2.2 PFT maps

304  Each of the TRENDY models have their own PFT fCover maps (either prescribed or predicted) based on
305  the PFT types represented in their model (Supplementary Table S1). The common land use change

306  forcing is imposed on the models' own PFT maps (or dynamic PFT simulations) (Sitch et al., 2024). Each
307  model has a different number of PFTs and spatial resolution. Some models have shrubs as separate PFT
308 such as CABLE-POP, CLMS35, IBIS, ISBA-CTRIP, JSBACH3.2, VISIT, YIBs but some have combine
309  shrubs with woody tree vegetation such as CLASSIC, LPJ-GUESS, LPJwsl, LPX-Bern, OCN,

310  ORCHIDEE, SDVGM. All models have separate C3 and C4 PFTs, except VISIT and OCN (although in
311 OCN these were defined as tropical/temperate grasses). Some models do not have a separate bare soil
312 such as LPJwsl, LPX-Bern (except for an ‘Urban Bare’ class), VISIT, and YIBs. To compare the models’
313  vegetation cover fractions to each other and to independent datasets (see Section 2.3.2) we grouped each
314  models’ PFTs into 4 main groups: total vegetation, woody vegetation, non-woody vascular vegetation,
315  and bare ground/soil (Table S2). If a model had a mix of grasses and trees like "open shrubland" or a
316  savanna vegetation class it was added within the category of woody vegetation (JULES, JSBACH,

317  CLMS5, VISIT, YIBs). For certain analyses we split the non-woody vegetation group further to compare
318  grasses/herbs versus crops and C3 versus C4 types. PFT types that fell outside of these groups (such as
319  'Peat graminoid" for LPX-Bern) were ignored in this study. All PFT maps were available at annual time
320  scale except for ISBA-CTRIP and LPX-Bern which provided monthly PFT fractional coverages.

321 However, ISBA-CTRIP does not model spatial distribution of vegetation dynamically and therefore we
322 expect to have no monthly variability in fractional coverage of its PFTs. Although LPX-Bern models
323  spatial distribution of vegetation dynamically, from visually inspecting its monthly data using Panoply we
324  did not identify any monthly changes in the PFT distributions (only annual changes were identified).

325  Therefore, we choose the month of July data for both ISBA CTRIP and LPX-Bern PFT distributions in
326  place of annual values. For models that do not have a bare ground or soil PFT, we calculated barren

327  fCover using 1 minus the total fCover of all other vegetation. We note that no model contains a biological
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328  soil crust (biocrust) PFT (Table S2) despite the fact that biocrusts are common in dryland regions (REF).
329  The PFT maps were provided by the modelers and mean fCover maps for each of the major groups are
330  provided in Fig. S1. We used nearest neighbor resampling to re-grid all the PFT maps to 0.5° spatial

331 resolution to match the GPP data resolution.

332 2.3 Data products

333 2.3.1 Dryflux GPP v1.0

334  We used the DryFlux v1.0 GPP product (Barnes et al., 2021) to compare and evaluate TRENDY model
335  GPP. DryFlux v1.0 is a dryland specific ecohydrologically informed upscaled flux tower GPP product
336  specifically developed for western North American drylands using remote sensing and gridded

337  meteorological inputs. DryFlux upscaling used a machine learning (random forest) model to identify
338  relationships between predictor variables (such as vegetation greenness, precipitation, temperature,
339  elevation) and flux tower GPP for randomly selected 19 sites out of the 24 sites selected across the US
340  Southwest and Northwestern Mexico. In addition to these common predictor variables, DryFlux used
341  previous months precipitation and the Standardized Precipitation Evapotranspiration Index, SPEI, at
342  different timescales (e.g., a lag of 1, 3, 6, 12 months) to account for antecedents effects that are

343  characteristic of dryland ecosystems (Barnes et al., 2016; Cranko Page et al., 2022; Liu et al., 2019).
344  DryFlux was able to capture the pulse behavior and two growing reasons for the dryland regions. The
345  random forest model was applied to generate an upscaled, gridded global dryland GPP product for 16
346  years from Feb, 2000 to 2016 with a spatial resolution of 0.5°x0.5°. DryFlux v1.0 data were downloaded

347 from https://github.com/marthageb/DryFlux.
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348 2.3.2 Reference Fractional Cover Data

349  2.3.2.1 Rangeland Analysis Platform (RAP) fCover Data

350  The rangeland analysis platform (RAP) provides fCover estimates of annual and perennial forbs and

351  grasses, shrubs, trees, and bare ground—from 1986 to present at 30-meter spatial resolution for the

352  western US (Allred et al., 2021). Crops were not included in this product. The percentage estimates of
353 these six cover types are model predictions from a temporal convolutional network using vegetation field
354  plots, the Landsat reflectance data and vegetation indices- normalized difference vegetation index (NDVI)
355  and normalized burn ratio two (NBR2) which is sensitive to water content changes within vegetation.

356  Model mean absolute error (MAE) was calculated for fCover against vegetation field data. Overall model
357  mean absolute error was about 6%. Mean absolute error was highest for perennial forbs and grasses which
358  isabout 10% and lowest for tree cover which is about 3% (Allred et al., 2021). To better match the model
359  PFTs we added the annual and perennial grasses and forbs layers together to create a herbaceous layer

360  and shrubs and trees to create a woody vegetation layer. RAP fCover data was downloaded from

361 http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/. The data were aggregated to 0.5°x0.5°

362  resolution to match TRENDY model PFTs and DryFlux and model GPP.

363  2.3.2.2 MODIS Vegetation Continuous Field Data

364  MODIS Vegetation Continuous Field (VCF) product (MOD44B) contains three layers of global land
365  cover fractions: percent tree cover (tree height > 5m), percent non-tree cover, and percent non-vegetated
366  or bare ground cover plus water. Trees are defined as greater than 5m; therefore, most of the shrubs that
367  are present in this area will be grouped with the non-tree cover class. Crops are also included as part of
368  the non-tree cover layer. These fCover layers were estimated from a fully-automated machine learning
369  algorithm using the MODIS Terra Global 250-meter resolution surface reflectances (bands 1 to 7) and
370  brightness temperature (band 32) (DiMiceli et al., 2021). The root mean square error value against field

371 based fCover data ranges from 9 to 23% (DiMiceli et al., 2021). The MODIS VCF product is available at
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372 250-meter pixel spatial resolution and yearly temporal resolution in the Sinusoidal coordinate system. The
373  MODIS VCF product was downloaded using Google Earth Engine. Within Google Earth Engine we
374  reprojected and resampled the data to the WGS84 Geographic Coordinate System (EPSG:4326) at

375  0.5°x0.5° to match the RAP product, TRENDY model PFTs, and model and DryFlux GPP.

376 2.4 Model and Data Preprocessing

377  Following spatial resampling as described in each subsection of Section 2.3, we performed further model
378  and data preprocessing steps to bring them into the same spatial extent and temporal scale. One of our
379  main objectives is assessing model data IAV. Therefore, the monthly DryFlux data were summed to

380  annual GPP to compare to the annual GPP from models participating in the TRENDY intercomparison.
381  All GPP data were converted to the same unit of kgCm™y™. For the regional total we calculated the

382  weighted sum in PgCyr'. We used aridity index values of between 0.05 to 0.5 (Section 2.1) to create a
383  dryland mask for the GPP and PFT datasets. The aridity index data is based on the method of Zomer et
384  al., 2022 and was downloaded from Global Aridity Index and Potential Evapotranspiration (ET0) Climate
385  Database v3 (Trabucco and Zomer, 2022). We note that this is not the same climate data as was used to
386  drive the TRENDY model simulations (Section 2.2). The aridity index data were spatially aggregated to
387  0.5x0.5° resolution to match the model and data products used in this study. We used the annual average
388  aridity index for the 1970-2000 period to delineate our study area. We masked out croplands in the study
389  area as the main focus of this research is mixed woody non-woody ecosystems that experience natural
390 climate variability (and are not irrigated) and because DryFlux did not include any crop flux tower sites in
391 its upscaling model. We created a crop mask common to all models by masking grid cells for all models
392  that contained crop PFT fCover (Fig. S1g) greater than 0.5 (50%) for any model within the 2001 to 2016
393  period. That means that we masked out the grid cells that are crop dominated for any model. We masked

394  all grid cells that were not common to both the TRENDY model ensemble and DryFlux.
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395 2.5 Data analysis and evaluation metrics

396  For a first comparison of whether TRENDY models tend to have higher or lower interannual GPP

397  wvariability (GPP IAV) compared to DryFlux, we plotted time series of both spatially weighted sum of
398  annual GPP and the annual GPP anomalies (i.e., mean normalized annual GPP over the 2001 to 2016
399  period for the 15 TRENDY v11 model ensembles and the DryFlux product. We computed Pearson’s

400  correlation (R) values between modeled and DryFlux total annual GPP over the study area. We plotted
401  maps of the spatial patterns in how well each of the TRENDY models captures DryFlux GPP IAV by
402  calculating for each grid cell both standard deviation (over the 2001 to 2016 period) of the annual GPP
403  time series for all 15 models and DryFlux as well as the slope of the linear least-squares regression

404  between modeled and DryFlux annual GPP (using the scipy.stats linregress module in Python). To

405 facilitate comparison across models, and between the models and DryFlux, we examined the distribution
406  of GPP standard deviation and slope values across the study region using area-weighted kernel density
407  estimate (KDE) ridgeline plots that summarize probability density of all grid cells.

408

409  To investigate our hypotheses related to the role of dynamic vegetation and fire in spatial patterns of

410  modeled annual GPP variability, we first grouped the KDE ridgeline plots by models that used dynamic
411 vegetation and fire (Table 1) to identify if either of these key processes alone or in combination can

412  explain the patterns in model whether models have higher or lower GPP IAV compared to DryFlux. To
413  further explore the reasons behind the differences between models, and between model and DryFlux GPP,
414  we calculated and mapped the standard deviation in annual PFT fCover for each grid cell over the 2001 to
415 2016 period for each of the 4 main PFT groups: total vegetation, woody vegetation, non-woody vascular
416  vegetation, and bare ground/soil, with a further split of non-woody category into grasses and crops, and
417  then C3 and C4 grasses. We compared the first three categories to determine which major PFT categories
418  (woody versus non-woody) were contributing the most to total PFT annual variability. We then examined

419  whether the spatial patterns in the standard deviation in PFT annual fCover match the spatial patterns in
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420  model annual GPP standard deviation and the slope of the linear regression between model and DryFlux
421 annual GPP. For dynamic vegetation enabled models we then performed a gridcell pairwise comparison
422  to determine the nature of the relationship between modeled total vegetation annual fractional cover

423  variability and annual GPP variability. We calculated how much of the variance in annual GPP can be
424  explained by variance in PFT annual fCover by computing least-squares linear regressions (Python

425  module scipy.stats.linregress). For the grid cell pairwise comparison, we calculated the coefficient of
426  wvariation (CV) which is standard deviation of values over the 2001 to 2016 time period divided by the
427  mean over the same period, because the CV is a more appropriate statistic to compare the variability at
428  locations with different means. We performed the same set of analyses for the variability in modeled
429  burnt area (standard deviation in annual percentage burnt area over the 2001 to 2016 period) to

430  understand fire effects on spatial patterns in both modeled PFT fCover and GPP variability. Finally, we
431 examined how accurately the dynamic vegetation enabled models represent the vegetation variability
432  within the study region by benchmarking the annual PFT fCover standard deviation maps against

433  independent reference fCover datasets from existing remote sensing data (see section 2.3.2).

434

435  Besides overall vegetation annual fCover variability due to dynamic vegetation and fire, we also assessed
436  whether higher fCover of one of the major PFT groups can be linked to modeled GPP IAV (specifically,
437  the slope of the linear regression between model and DryFlux annual GPP). For this purpose, for each
438  model we took the spatial mean (+ 1 s.d.) fCover of woody, grass, C3 grass, and C4 grass across all grid
439  cells with fCover above a certain threshold (0.1 and 0.5) to assess if a model with higher fCover of a
440  specific PFT tends to over- or underestimate DryFlux annual GPP by comparing with the spatial mean (+
441 1 s.d.) of the slope of the linear regression We performed this analysis for grid cells with mean fCover
442  above both 0.1 and 0.5 considering that 10% is a typical uncertainty in satellite fCover products while
443  greater than 50% mean fCover represents the grid cells dominated by that cover type. Then we plotted the
444  mean fCover against the slope values to determine if models with higher mean fCover in a specific PFT

445  group can be linked to models’ performance in capturing DryFlux GPP IAV. Finally, we compared the
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446  model mean PFT fCover with our independent reference datasets (MODIS VCF for woody and
447  nonwoody groups and RAP for woody and grass vegetation types) to assess if the relationships between

448  model vegetation fractional cover and GPP variability are undermined by inaccurate modeled fCover

449 distributions.

450 3. Results

451 3.1 Comparison of model and DryFlux annual GPP variability

452  Figure 2 shows the time series (2001-2016) of annual GPP summed over the entire study area. Although
453  the TRENDY ensemble mean total GPP (thick grey curve in Fig. 2) is lower than the DryFlux GPP (thick
454  black curve in Fig. 2) the sign of the annual anomalies in TRENDY ensemble mean GPP match those of
455  DryFlux well (Figs. 2a and b; R: = 0.96). However, individual TRENDY models simulate both higher and
456  lower annual total GPP (Fig. 2a) and GPP IAV (Fig. 2b) compared to tDryFlux(Fig. 2a). Most models
457  underestimate both DryFlux mean GPP and IAV (brown curves in Figs. 2a and b), while a selected few
458  models (OCN, SDGVM and the LPJ family of models) tend to overestimate both the mean DryFlux GPP
459  magnitude and the IAV (blue curves in Figs. 2a and b).

460
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462 Figure 2: Time series of (a) total annual GPP (PgCyr") over the study area; and (b)annual GPP anomalies (i.e.,
463 annual values minus the mean to focus on GPP IAV) between 2001 to 2016 from TRENDY v11 models (blue and
464 brown curves) compared to DryFlux v1.0 (thick black curve). The mean of the TRENDY models is shown in the
465 thick grey curve. Note that models with the blue curves are those that tend to have higher annual GPP variability (as
466 seen in the anomalies) than DryFlux.

467  The spatial distribution of standard deviation in annual GPP (Fig. 3a) and slope of the linear regression
468  between model and DryFlux annual GPP across the study area are shown in Figs. 3a and 3c. These are
469  two metrics that represent GPP IAV. As seen in the total annual GPP time series (Fig. 2), most models
470  generally have a lower standard deviation in annual GPP (top two rows of Fig. 3a) compared to DryFlux
471 across much of the study area except the east and southeastern region (see below) and slope values less
472  than 1 (top two rows of Fig. 3¢), while several models (LPJ-GUESS, LPJwsl, LPX-Bern, OCN, and

473  SDGVM) generally have higher standard deviation in annual GPP and slope values greater than 1 (bottom
474  row of Figs. 3a and ¢ — although SDGVM and LPX-Bern have lower annual GPP variability compared to
475 s DryFlux in the north-eastern and western regions, respectively).

476

477  The spatial pattern of high standard deviation of annual GPP in the east and southeastern part of the study

478  area in the DryFlux product is captured well by most models, although the magnitude is higher than
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479  DryFlux for many models (Fig. 3a). In terms of magnitude there is variability among models too e.g. the
480  slope values are often quite a bit higher (up to 3) or lower (down to 0) across most models for this SE
481  region (Fig. 3¢). This region corresponds to an area with high annual rainfall variability (data not shown).
482  High values of standard deviation in annual GPP in this region do not necessarily correspond to high

483  mean annual GPP values (Fig. S2). IBIS has a high mean GPP in the southeast region but has very low
484  standard deviation in annual GPP and CLASSIC, CLMS5, JULES, ORCHIDEE do not have as high a

485  mean annual GPP as IBIS in that region but those models do have higher magnitude of annual GPP

486  standard deviation (cf. Fig. 3a and Fig. S3).

487

488  The Kernel density estimation (KDE) ridgeline plots, which are the probability density functions of

489  temporal standard deviation of annual GPP across space, corroborate the spatial patterns: the majority of
490  models (in the top two rows of Fig. 3a and light purple KDE plots in Fig. 3b) tend to be skewed with

491  peaks towards lower values and longer tails towards higher values of standard deviation in annual GPP
492  compared to DryFlux that looks more like normal distribution although with longer tails towards higher
493  values. For the same models the majority of grid cells have slope values less than 1 (brown KDE plots in
494  Fig. 3d). In contrast, the KDE plots for the LPJ models, OCN and SDGVM generally have a much wider
495  distribution of annual GPP standard deviation and slope values (dark and light blue KDE plots in Figs. 3b
496  and d). While the mode(s) of the standard deviation KDE plots generally match the mode of the DryFlux
497  KDE plot for these models, a greater number of grid cells have higher standard deviation in annual GPP
498  compared to DryFlux (Fig. 3b). The mode of the slope KDE plots is ~1.0 for LPJ-GUESS, LPX-Bern and
499  SDGVM, while LPJwsl and OCN have distributions that are skewed more towards higher slope values
500 (>1.0 with modes ~2.0). Among all the models, LPJ-GUESS is the model that best captures the variability
501 of the DryFlux GPP as evidenced by comparing the spatial pattern of annual GPP standard deviation (Fig.
502  3a), the standard deviation KDE plot that best matches DryFlux (Fig. 3b), the majority of slope values

503  close to 1 (Fig. 3¢) and the most constrained slope KDE plot with a mode of ~1 (Fig. 3d). LPJwsl, LPX-
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504  Bern, SDGVM and OCN all have a much higher annual GPP standard deviation and high slope values

505  (often exceeding 2) in the eastern or southeastern region of the study area (Figs. 3a and c).
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507 Figure 3: Spatial distribution across the western North American study area for: a) standard deviation of annual GPP

508 (2001-2016) for all TRENDY v11 models used in this study and the DryFlux data; b) a ridgeline plot of the Kernel
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509 Density Estimates (KDE) representing the area weighted spatial distribution of GPP standard deviation for each of
510 the TRENDY models and DryFlux; c) and d) same as a) and b) but for the slope of the linear regression between
511 model and DryFlux annual GPP. The vertical dashed line in the slope ridgeline KDE plots shows a slope value of
512 1.0. The top two rows of (a) and (c) and the light purple and brown KDE plots in (b) and (d) correspond to models
513 that tend towards lower standard deviation values than DryFlux or which have slope values of the linear regression
514 between each model and DryFlux that are much less than 1. The bottom row of maps in (a) and (c) and the dark and
515 light blue KDE plots in (b) and (d) correspond to models that tend to have higher standard deviations and a wider

516 range of slope values.

517 3.2 Categorising models based on dynamic vegetation and fire

518  Regrouping the KDE ridgeline plots into dynamic vegetation enabled and fire enabled models, Figs. 4a
519  and b, respectively) provides a first visual evaluation of the impact of each of these processes on model
520  performance. Grouping the models according to whether fire was included did not help to reveal the cause
521 of the differences between the two model groups. Models that did not use dynamic vegetation are mostly
522  underestimating GPP variability compared to DryFlux with the exception of OCN and SDVGM. Of the 4
523  models that included dynamic vegetation and fire, one model generally had low GPP IAV compared to
524  DryFlux (JULES — Figs. 2 and 3), while the 3 LPJ models tended to have higher GPP IAV compared to
525  DryFlux (Figs. 2 and 3). Thus, our hypotheses related to the inclusion of dynamic vegetation and fire may
526  be partially correct, but the full picture is more complex. Neither of these processes alone, or in

527  combination (the 4 dynamic vegetation enabled models also included fire), is able to explain why models
528  are underestimating or overestimating the DryFlux GPP TAV (Fig. 4). However, with the exception of
529  JULES, including dynamic vegetation and fire may explain why the LPJ models have higher GPP AV
530 compared to models without either of these processes, as we hypothesised. In contrast, fire alone (in

531  models without dynamic vegetation — Fig. 4b) is not causing models to have higher GPP IAV (possibly
532  with the exception of SDGVM), contrary to what we predicted. In the following sections we examined

533  differences across models in terms of their spatial patterns in temporal variability in fractional cover of
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534  the major plant functional types and the burnt area for fire enabled models. We also explored whether the
535  spatial distribution of dominant plant functional types PFTs can be linked to spatial patterns in GPP
536  variability.
a) b)
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538 Figure 4: Ridgeline KDE plots summarizing the distribution of slope values of the linear regression between model
539 and DryFlux annual GPP across the entire study area grouped by: a) dynamic vegetation enabled models (green
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540 KDE plots); and b) fire enabled models (orange KDE plots) versus models that do not contain those processes (beige
541 KDE plots) for the models. Note that all models that simulate spatial distribution of fractional vegetation cover

542 dynamically also include fire in their simulations.

543 3.3 Spatial patterns in PFT fractional cover and burnt area annual
544  variability

545 As expected based on the results in Section 2.2, models with dynamic vegetation (JULES and the
546  LPJ family of models) have higher standard deviation in PFT annual fCover compared to other models,
547  while all models that included fire but no dynamic vegetation (e.g., CLASSIC, CLM5.0, JSBACH, ISBA-
548  CTRIP, and VISIT) showed no changes in vegetation fCover of vegetation, with the exception of ISBA-
549  CTRIP - Fig. S3a to S3g). For all dynamic vegetation enabled models, which also included fire, we found
550 that temporal variability of annual vegetation fCover — expressed as the coefficient of variation (CV, i.e.,
551 standard deviation in annual total PFTcover d divided by the mean) — highly correlated with the temporal
552  wvariability (CV) of annual GPP (Fig. 5). Among these models, LPJ-GUESS, which captures better the
553  spatial patterns in GPP IAV compared to other models (Fig. 3), has the highest R’ value between annual
554  total PFT fCover and annual GPP CV, with LPX-Bern a close second. With increasing annual total PFT
555  fCover CV LPJwsl showed an increased spread in GPP IAV. JULES appears to have more of a nonlinear
556  increasing concave down relationship between annual total PFT fCover and annual GPP CV, which

557  implies increases in annual GPP variability (expressed CV) may be limited above an annual total PFT
558  fCover CV of around 0.05.

559
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561 Figure 5: Scatterplots for the four dynamic vegetation enabled TRENDY models (i.e., those that simulate changes in
562 spatial distribution of PFTs over time) showing the pairwise grid cell comparisons of the coefficient of variation
563 (CV; standard deviation divided by the mean) of the total PFT annual cover versus the annual GPP calculated over
564 the 2001 to 2016 time series for each grid cell. CV is used here instead of the standard deviation to directly compare
565 temporal variability of two different quantities.

566

567  The standard deviation in annual total PFT fCover in the dynamic vegetation enabled models is mostly
568  from the herbaceous PFTs (cf. 1st 4 columns showing the models in top and bottom rows of Fig. 6),

569  which matches the two independent reference vegetation fCover datasets — MODIS VCF and RAP (last
570  two columns in Fig. 6). In JULES, the spatial patterns of standard deviation in annual PFT fCover match
571  both the MODIS VCF and RAP products (cf. Fig. 6 left column with the rightmost two columns).

572  However, these spatial patterns do not correspond to the spatial patterns seen in JULES standard deviation
573  of annual GPP (Figs. 3a and c). All variants of the LPJ model have higher standard deviation in annual
574  vegetation fCover compared to MODIS VCF and RAP and the spatial patterns also do not match well
575  (Fig. 6). The models appear to be overestimating standard deviation in annual PFT fCover more in the
576  arid central and southwestern part of the study area. These regions typically have sparse dwarf shrubs and
577  higher bare soil cover compared to models (see RAP in Figs. Sla and b). LPJwsl also has a higher

578  standard deviation in annual woody plant fCover in a north central and eastern region of the study area
579  (and high mean woody plant fCover — Fig. S1b) that is not consistent with the two independent data

580  products (Fig. 6). All variants of the LPJ model also predict higher mean and standard deviation in annual

581 grass cover compared to the RAP product (Fig. 6 and S1d). The higher standard deviation in annual PFT
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582  fCover in LPJ models when compared to the independent datasets could help explain why those models
583  also overestimate standard deviation in annual GPP (with slope values much greater than 1). However,
584  the spatial patterns in standard deviation in annual PFT fCover (Fig. 6) do not match completely the

585  spatial patterns in standard deviation in LPJ annual GPP (Fig. 3a), with the exception of LPJ-GUESS.
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588
589 Figure 6: Standard deviation in annual fCover from 2001 to 2016 of all vegetation (all PFTs — top row), woody

590 vegetation (second row), and grasses (bottom row) for dynamic vegetation enabled models compared to independent
591 reference data from MODIS VCF and RAP.

592

593  Only four of the fire-enabled models simulate a standard deviation of annual percentage burnt area greater
594  than 10% for a number of grid cells (CLASSIC, SDGVM, VISIT and LPJwsl); all other models simulate

595  almost no variability in percentage burn area variability (Fig. 7). Note that the spatial patterns in the
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596  standard deviation of annual burnt area correspond well with the mean values, with almost all models
597  except SDGVM simulating mean burnt area less than 20% for the majority of grid cells (data not shown).
598 In all fire-enabled models, the spatial patterns in the standard deviation of annual burnt area did not

599  correspond well to spatial patterns in the standard deviation in annual PFT fCover (cf. Fig. 7 with Fig. 6),
600  with the possible exception of the southwestern region of high standard deviation in annual burnt area for
601  LPJwsl. Therefore, while fire may be playing a role in annual variability of PFT fCover and GPP for
602  LPJwsl (Fig. 8), it cannot be the only cause of the much higher standard deviation in annual GPP (and
603  high slope values) compared to DryFlux. The remaining three models (CLASSIC, SDGVM and VISIT)
604  do not model the spatial distribution of vegetation cover dynamically; therefore, despite simulating

605  noticeable variations in annual burnt area this did not affect their year to year changes in PFT cover (Fig.
606  S3). However, these three models did have spatial patterns in standard deviation of annual burnt area that
607  corresponded reasonably well with spatial patterns in standard deviation in annual GPP (cf. Figs. 7 and
608  3a). This was especially the case for SDGVM, which has the simplest representation of fire (Figs. 7 and
609  3a). These results suggest that for these three models, fire may be a driver of GPP variability (Fig. 8), as
610  we predicted (albeit that CLASSIC and VISIT still underestimate DryFlux annual GPP variability

611  overall). The remaining fire-enabled models (ISBA-CTRIP, JSBACH, JULES, and LPJ-GUESS) have
612  very low standard deviation in annual burnt area (Fig. 7). (Note LPX-Bern did not output burnt area;

613  however, they use the same fire module,GlobFIRM, as the other LPJ models.) Thus, for these models, fire
614  does not correlate well to standard deviation in annual GPP (Fig. 8), contrary to what we predicted.

615  Furthermore, the burnt area results dispute our hypothesis that fire enabled models with dynamic

616  vegetation would result in higher grass fCover; instead; another process or model input must be driving

617  high standard deviation in grass fCover in the dynamic vegetation enabled models.
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619 Figure 7: Spatial distribution across the western North American study area of the standard deviation in
620 annual burnt area (%) for each grid cell for the 2001 to 2016 period for fire enabled TRENDY models.
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Figure 8: Scatterplots showing for all the fire enabled TRENDY models the pairwise grid cell comparisons of the

standard deviation of the total annual burnt area versus the annual GPP calculated over the 2001 to 2016 time series

for each grid cell.
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626 3.4 Relationship between dominant vegetation type and annual GPP

627  variability

628  In addition to the contribution of dynamically modelled vegetation cover and fire to high annual GPP
629  variability, we hypothesized that model performance in capturing annual GPP variability compared to the
630  reference DryFlux product may be related to the dominant vegetation type. Compatible with our

631  hypothesis that models with high mean grass fCover across the study site will have higher standard

632  deviation in annual GPP compared to models with more shrub or bare ground cover, we found no clear
633  linear relationship between the mean fCover of woody plants for selected grid cells across the study area
634  and the mean slope of the linear regression between each model and DryFlux annual GPP (Fig. 9a). This
635  was the case both when grid cells with a woody fCover greater than 0.1 were selected (Fig. 9a) and grid
636  cells with a woody fCover greater than 0.5 (Fig. 9a inset). Models with both high and low woody

637  fractions underestimate model-DryFlux annual GPP slope values (spatial mean less than 1.0), although it
638 s possible that there is a decreasing concave up relationship in which models with generally low woody
639  fCover have higher GPP variability (slope values greater than 1 — Fig. 9a). Contrary to our hypotheses,
640 the spatial mean grass (C3 plus C4) and C3 grass fCover for different models show no linear relationship
641  with the spatial mean slope of the linear regression between model and DryFlux annual GPP when grid
642  cells with a fCover of greater than 0.1 or 0.5 were selected (R’ values < 0.06; Figs. 9b and ¢ and insets).
643  However, there is a much stronger positive linear relationship between spatial mean C4 grass fCover and
644  the spatial mean slope of the linear regression between model and DryFlux annual GPP (R’ 0.63 for grid
645  cells with greater than 10% C4 grass fCover and 0.35 for grid cells with greater than 50% C4 grass

646  fCover; Fig. 9d and inset). Models with low C4 grass fCover tend to have low annual GPP model-

647  DryFlux slope values (slopes less than 1; brown points in Fig. 9d) and models with high C4 grass fCover
648  (especially LPX-Bern, OCN and SDGVM) have higher slope values (slopes greater than 1; blue points in

649  Fig. 9d). It is also worth noting that most of the models with higher C4 grass fCover also had a low
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woody plant cover (low spatial mean and small number of grid cells — Fig. 9a and inset). For these three

models (LPX-Bern, OCN and SDGVM)), the regions of high mean C4 grass fCover (Fig. S1f) correspond

well with regions of high standard deviation in annual GPP s (Fig. 3a) and model-DryFlux slope values

much greater than 1 (Fig. 3¢). In contrast, regions of high mean C3 fCover do not correspond to regions

of high standard deviation in annual GPP for any model (including all the models that tend to

overestimate GPP IAV (bottom row of Figs. 3a and ¢). Therefore, in general our hypothesis that models

with higher grass cover would have higher GPP variability was incorrect. However, for some models

including LPX-Bern, OCN, and SDGVM, their high C4 grass fCover (and/or a too high response of C4

grasses to climate variability in these models) may be a piece of the puzzle in explaining why they are

overestimating DryFlux GPP IAV.
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Figure 9: Scatter plots showing the spatial mean (mean across the study area for selected grid cells) fractional cover

(fCover) for a) woody, b) grass, ¢) C3 grass and d) C4 grass cover greater than 0.1 (or 0.5 in the inset plots) versus

the spatial mean of GPP slope of the linear regression between model and DryFlux annual GPP for the grid cells

with fCover greater than 0.1 (or 0.5). For each scatter plot the point size is proportional to the number of grid cells,

the horizontal error bar represents 1 s.d. spread from the mean fCover and the vertical error bar represents 1 s.d.
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666 spread from the spatial mean GPP slope across selected grid points. R’ values in each plot represent the proportion
667 of variance in the spatial mean PFT fCover across models explained by the spatial mean in slope between the
668 annual model and DryFlux GPP .

669

670  We compared each model’s mean fCover for each PFT category (Fig. S1) with the two independent

671  reference fCover datasets. For this purpose RAP data is more reliable than MODIS VCF for both grasses
672  and woody categories because RAP grass cover is a combination of grass and forbs but not crops;

673  therefore, RAP is a better dataset against which to benchmark grass fCover. MODIS VCF non-woody
674  cover contains all vegetation with height less than 5m; therefore we consider it is suboptimal for

675  evaluating either woody or non-woody cover. Of all the models that tend to have high standard deviation
676  in annual GPP and model-DryFlux slope values much greater than 1 (LPJs, OCN and SDGVM), the

677  models tend to have higher mean grass cover than RAP and the spatial patterns in mean grass cover did
678  not match patterns seen in the RAP product (Fig. S1d). RAP has lower grass cover in the more arid

679  central and southwestern region compared to the models (Fig. S1d) and higher mean woody plant cover
680  (Fig. S1b). (Note that MODIS VCF has a lower woody plant cover that matches the models well;

681  however, MODIS VCF woody cover represents trees greater than 5Sm). In contrast, many of the models
682  that have lower standard deviation in annual GPP and model-DryFlux slope values much less than 1 in
683 the central and southwestern arid regions tend to have higher mean woody plant cover (or higher bare
684  soil cover) in that part of the study area (Fig. S1b). This could suggest that to simulate higher GPP IAV
685  these models need higher grass cover and lower shrub/bare soil cover. However, LPJwsl has more woody
686  cover in the northern region than seen in the reference datasets or in other models (Fig. S1b), yet still
687  overestimates GPP AV in this region (Figs. 3a and c). These results lend support for our hypothesis that
688  increased grass cover results in higher GPP variability, with too high grass cover (especially C4) partially

689  resulting in too high GPP IAV.
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690 4. Discussion

691 4.1 Implications of uncertainties in DryFlux

692  The random forest model used to produce the DryFlux product does not include a fCover data nor does it
693  represent different plant functional types (see Section 4.2) and thus cannot be biased by discrepancies in
694  vegetation fractional cover. Instead, DryFlux used satellite derived vegetation greenness indices such as
695 NDVIand EVI as a proxy for vegetation green distribution for photosynthesis. As Smith et al. (2018)
696  showed, these indices do not always capture reductions in GPP in the hot, dry pre-monsoon season

697  because in dryland ecosystems woody plant leaves often remain green during this period; therefore

698  photosynthesis and green leaf area can often be decoupled. This could result in an overestimation of

699  DryFlux GPP during that period, and thus a slight positive bias in DryFlux annual GPP. However, as the
700  DryFlux product performed well in capturing the decline in GPP across southwestern US sites during the
701  pre-monsoon season (Barnes et al., 2021) we are not expecting such a positive bias to occur. Another
702  potential issue with DryFlux is that it may not be as reliable in crop-dominated areas because the random
703  forest model did not include crop sites.. However, this should not affect our analysis as we mask out
704  crop-dominated grid cells from our study area. Finally, a recent study showed that dryland GPP is more
705  sensitive to soil moisture than atmospheric drivers such as vapour pressure deficit or air temperature

706  (Kannenberg et al 2024). DryFlux v1.0 did not consider soil moisture in the upscaling model; however,
707  inclusion of soil moisture at different depths has been tested in a later DryFlux version (Pervin et al., in
708  prep.). As the results of this study show, inclusion of surface soil moisture improved DryFlux GPP

709  accuracy by decreasing RMSE and increasing R2 in both the daily and monthly predictions when

710  compared to in situ GPP data and by helping to capture the bi-modal annual cycle and the magnitude of

711 mean annual GPP across some western North American sites (Pervin et al., in prep). However, inter-
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712 annual variability in DryFlux predicted annual GPP is captured well by both versions. Therefore, we are

713 not expecting any drastic change in the comparisons between DryFlux and TRENDY models.

714 4.2 Model-data uncertainties in PFT distributions

715 The findings of this study suggest that models without dynamic vegetation tend to have higher shrub

716  versus grass cover, which may contribute to an underestimate in GPP IAV, while models with high

717  prescribed C4 grass cover may overestimate GPP IAV. Models that do not simulate changes in PFT

718  fractional coverage dynamically have their own model-specific methods (including dataset used) for

719  generating spatial distribution of PFTs’ fractional coverage. Therefore, mapping remotely sensed

720  vegetation or land cover data to a given model's PFTs is a largely subjective and expert judgement based
721 process, especially in sparsely vegetated dryland regions (Hartley et al., 2017). This can lead to

722 significant variation in PFT fractional coverage maps across models even when they are based on the
723  same underlying remotely sensed data set (Hartley et al., 2017).

724

725  Model specific decisions include methods for separating grasses into their C3 and C4 variants (Table S1).
726  Some models define C4 grasses as those in a tropical climate zone based on Képpen Geiger climate zones
727  or ECOCLIMAP (Table S1) and C3 grasses in all other climate zones. Other models use a mean

728  temperature threshold for separating C3 versus C4 grasses; however, the temperature thresholds vary
729  widely between models. For example CABLE POP, LPJwsl, and LPJ-GUESS use a temperature

730  threshold of 15.5°C for the coldest month to separate out C3 and C4 grasses. CLASSIC and SDGVM use
731 the C3/C4 distribution map from Still et al., (2003) and the ESA CCI Land Cover product (Poulter et al.,
732 2011), respectively — both of which follow the study of Collatz et al. (1998) that specified 22°C as a

733  “critical crossover” temperature for C3 versus C4 grasses (Table S1). Note that Still et al. (2003) allows
734  C4 grasses to prevail when temperatures exceed 22°C in any month, while Poulter et al. (2011) specified

735  this temperature threshold for the hottest month. Still et al. (2003) also requires a minimum amount of
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736  precipitation (25mm) and assesses whether the temperature and precipitation conditions are met on a
737  seasonal basis, thus permitting mixed C3/C4 grasslands in temperate regions such as our study area. The
738  models with a temperature threshold of 15.5°C for the coldest month have no C4 grass in the study area
739  (Fig. S1f), which is not the case in reality (Section 2.1). In fact, neither a single temperature threshold
740  defined for the hottest or coldest month nor the use of climate biomes to separate out C3 versus C4

741 grasses is sufficient as both types exist in the southwestern part of our study area: C3 grasses grow in
742  winter, while C4 grasses grow in summer (Ehleringer, 1978).

743

744  Large discrepancies in dynamic vegetation enabled modeled C4 grass cover were documented by Still et
745  al. (2019) in comparison to independent proxy data across North America. Their study noted the

746  importance of representing seasonal offsets in both C3 and C4 grasses, in addition to recommending
747  improvements in modeled responses to disturbance, tree-grass competition for water resources, and
748  separation of woody and herbaceous cover in remotely sensed data. The latter is hard to achieve even
749  when LiDAR derived height data are included in the spectral unmixing algorithm (Pervin et al., 2022).
750  Wilcox et al. (2023) further noted the need to differentiate between annual and perennial grasses in

751  DGVMs. However, aside from independent proxy data, there are currently no detailed maps of C3 versus
752 (4 grass distributions for this study region that could help to benchmark models for dynamic vegetation
753  enabled models or to improve PFT input maps for models with prescribed, static PFT fCover. A new
754  approach utilizing the differences in timing of peak growth in C3 versus C4 grasses has been used to map
755  C3 and C4 grass distributions across Australia (Xie et al., 2022). Such an approach should be utilized to
756  create C3/C4 grass distribution maps for other regions such as western North America. There is now a
757  wealth of in situ PFT fCover estimates collected at NEON sites that could be used to validate such a

758  product (NEON fCover product: https://data.neonscience.org/data-products/DP1.10058.001). Luo et al.

759  (2024) have applied photosynthetic optimality theory combined with satellite remote sensing data to
760  produce global maps of C4 distributions. Dryland GPP simulations utilising the new product from Luo et

761 al. (2024) should be tested against the default model PFT maps for this study region.
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762

763  Even when data are available, comparisons with independent reference fCover datasets can be

764  challenging. Vegetation fCover estimates provided in most remote sensing derived classification maps
765  and field estimates is essentially a spatio-temporal average, whereas models need the fCover for the most
766  optimal climate conditions. Models should then limit growth during periods of non optimal climate

767  conditions. One possible option would be to use the year of maximum fCover from products such as RAP
768  to prescribe PFT fCover in models without dynamic vegetation, and compare that to simulations using the
769  standard “spatio-temporal average” PFT fCover approach.

770

771 Other issues complicate comparisons of model prescribed or simulated PFT fCover. MODIS VCF is one
772  of the most widely used products for evaluating model PFT fractions (e.g., in Teckentrup et al., 2021);
773  however, as described in Section 2.3.2.2, tree cover in MODIS VCF is defined as trees with a height

774  greater than Sm. In this study region (and many dryland regions) most shrubs at low elevation are less
775  than 5m in height; therefore, we expect MODIS VCF will underestimate true woody cover in dryland
776  regions. Similarly we expect MODIS VCF non-woody cover will overestimate true herbaceous vegetation
777  asitincorporates all vegetation with height less than Sm, which will include small stature woody shrubs
778  present in drylands. Therefore, MODIS VCF is not an optimal product for benchmarking modeled

779  dryland vegetation fractional cover. RAP herbaceous cover is more reliable for providing grass fCover
780  estimates as it incorporates both annual and perennial grasses and forbs. The only drawback of the RAP
781  product is that it does not consider any crop cover types and therefore these have to be removed from a
782  PFT fCover evaluation analysis. RAP also includes both tree and shrub cover layers, which can be

783  summed to provide total woody cover. One additional method for benchmarking dryland woody cover
784  would be to use high resolution datasets of tree crown area (e.g., Brandt et al., 2020) that are becoming

785  more widely available as computational power increases.
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786 4.3 Implications of inaccurate dynamic vegetation and fire

787  representation

788  As expected, the lack of dynamic vegetation and fire helps to explain why some models have low GPP
789  IAV compared to DryFlux. However, when analyzed spatially, models that do include a representation of
790  dynamic vegetation and/or fire do not always simulate higher GPP variability across most of the study
791 area, contrary to our hypotheses. Spatial patterns of burnt area variability generally did not match patterns
792  of variability in vegetation fCover for any model (with the slight exception of LPJwsl). This is to be

793  expected for models that do not simulate the spatial distribution of PFTs’ fractional coverage

794  dynamically: in these models fires burn the existing biomass of model PFTs and reduce their per unit area
795  biomass density, but do not change the PFTs’ fractional cover. However, no change in fCover as a result
796  of fire is not realistic in most cases, thus highlighting the need for models to include both fire and

797  dynamic changes in PFT distributions when modeling dryland ecosystems.

798

799  All the dynamic vegetation enabled DGVMs included in this study also included a representation of fire;
800  however, most of these models have low standard deviation in annual percentage burnt area (Fig. 7)

801  which does not represent reality. Fire does occur in western North American dryland ecosystems

802  (McGranahan and Wonkka, 2024; Singleton et al., 2019) though more severe fires typically occur in the
803  higher elevation more shrub to tree dominated ecosystems (Singleton et al., 2019). For models that

804  included dynamic vegetation and fire we predicted that fire would contribute to the prevalence of grass
805  dominated ecosystems (Burton et al., 2019; Verbruggen et al., 2021). However, JULES and all LPJ

806  models simulated very low standard deviation in annual percentage burnt area (Fig. 7) and high grass
807  cover; therefore, for these models it is clearly not fire that is controlling grass dominance. In the S3

808  simulations pasture covers much of these areas (likely too much based on our knowledge of the study

809  area), but even the LPJ S2 simulations without a pasture land cover class predict high grass cover (data
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810  not shown). Further research is needed to ensure that processes controlling grass dominance in the LPJ
811  models, including competition between herbaceous and woody plants, are accurately represented.

812

813  The processes that result in high grass cover in the dynamic vegetation enabled DGVMs, including the
814  bioclimatic envelopes defined for each PFT and/or the competition conditions set for each model (Harper
815  etal., 2018; Sitch et al., 2003; Smith et al., 2001), could in turn produce aboveground or litter biomass
816 that is below the minimum fuel load for fire to spread (e.g., 200gCm™ in GlobFIRM — Thonicke et al.,
817  2001; INFERNO — Mangeon et al., 2016; and CLASSIC — (Melton and Arora, 2016)). However, most
818  models simulated litter biomass values greater than this threshold across this region (data not shown);
819  therefore it is not the lack of fuel that is causing low fire occurrence across models. Predicted moisture
820  conditions in the upper soil layers that control flammability may be too high during the hot, dry pre-

821  monsoon period when fires are most likely. Models with a simple bucket layer hydrology scheme (which
822  includes LPJwsl, SDGVM, and LPX-Bern in this study) have been shown to overestimate moisture

823  during the hot, dry period of May and June at sites across the southwestern US compared to more

824  mechanistic soil moisture schemes (MacBean et al., 2020). Even if models are simulating small fires
825  during this period, the impact on annual burnt area, which is a function of length of fire season in

826  GlobFIRM (Thonicke et al., 2001) or prescribed as in INFERNO (Mangeon et al., 2016), may be

827  minimal. A more extensive validation of fire burnt area fraction and its seasonal and inter-annual

828  variability simulated by fire-enabled DGVMs is needed. However, given the complexity of different fire
829  model schemes and the finer spatial and temporal resolutions at which fires occur compared to model grid
830  cell resolution, a more extensive validation is beyond the scope of this study.

831

832  For many of the models that simulate higher standard deviation of annual percentage burnt area

833  (CLASSIC, SDGVM and VISIT) there was a reasonable relationship with GPP variability (R values >
834  0.3; Fig. 8). This finding suggests that fire may play an important role in improving simulations of GPP

835 IAV if it was better represented. Future evaluations of modeled burnt area should consider grouping
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836  models according to the different fire parameterisations to try to disentangle the level of complexity

837  needed. . However, even with the higher predicted standard deviation in annual percentage burnt area
838  CLASSIC, CLM35, and VISIT, their GPP IAV was still generally underestimated compared to DryFlux.
839  The role that fire plays in GPP variability in dryland ecosystems could be tested by running factorial

840  simulations with and without the fire module enabled. This should be a priority in the near term for

841  further diagnosing the causes of dryland C flux model-data discrepancies.

842

843  Aside from fire, several other processes that control competition between woody and herbaceous species
844  may explain why dynamic vegetation enabled models in this study tended to overestimate grass cover
845  (both C3 and C4 grasses), with spatial patterns that partially corresponded to high GPP IAV compared to
846  DryFlux. Limited water availability shapes the patchy vegetation patterns often seen in drylands (Munson
847  etal., 2016). Differential water uptake by trees and grasses at different depths in the soil as in the Walter
848  hypothesis (Case and Staver, 2018; Munson et al., 2016) in theory are represented in many DGVMs;

849  however, simplistic rooting profiles implemented for more mesic ecosystems may not be representative of
850  dryland plants. More complex vegetation-water interactions are likely at play in drylands that may not be
851  well represented in DGVMs. For example, tree roots are not always deeper than grass roots (Staver et al.,
852  2017). Furthermore, water in deep soil always passes through the shallow soil providing water access to
853  grasses first. Another hypothesis likely not represented in DGVMs considers that shrubs temporarily shift
854  their physiological activity to access water in later periods (Naito et al, 2011). However, in this case

855  grasses will still use up the water first. This leaves the question if grasses are very opportunistic, how do
856  shrubs survive, especially during drought. The answer could be provided by the hypothesis of positive
857  feedback, where shrub clusters support nearby shrub establishment by increasing soil moisture through
858 interception under the canopy (Scanlon et al., 2007). A field study in Kalahari detected wet soils under
859  canopy and dry soils outside the canopy that supports this hypothesis (D'Odorico et al., 2007). However,

860  such vegetation-moisture interactions will not be resolved by DGVMs with no representation of the
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861 spatial distribution of mixed tree-grass ecosystems, no understory, and with soil tiling approaches that

862 calculate soil moisture separately for different major PFT groups (such as trees and grasses).

863 4.4 Potential impact of other processes controlling GPP [AV

864  The DGVMs investigated in this study all capture the spatial patterns of GPP IAV fairly well in the SE
865  region of the study area with high rainfall variability, with the caveat that for some models the variability
866 s too strong and possibly linked to high C4 grass fractional cover. Larger model-data discrepancies exist
867  inregions that do not have high rainfall variability and can be linked to dominance of shrub versus grass
868  cover (see Section 4.3). The higher variability in annual GPP seen for C4 dominated DGVMs is an

869 interesting finding given that many previous studies have shown models tend to underestimate C flux
870  variability (Keenan et al., 2012), especially in drylands (MacBean et al., 2021; Wang et al., 2022). C4
871 grass fractional cover and its change over time needs to be better evaluated in models (see Section 4.2);
872  however, it is possible that there is too strong a response of C4 grasses to changing water availability.
873  This could potentially be due to a range of issues in the model, including inaccurate C4 and other dryland
874  plant traits (parameters;(Mahmud et al., 2021)), unrealistic C4 grass phenology (Whitley et al., 2016; De
875  Kauwe et al., 2017), and unrealistic water stress functions (De Kauwe et al., 2015; 2017), with resultant
876  impacts on photosynthesis and the complex interactions between leaf growth and soil water availability
877  (due to partitioning of intercepted rainfall between transpiration and bare soil evaporation). High

878  variability in GPP is likely linked to processes controlling leaf growth (Lin et al., 2023). Indeed, past
879  studies have highlighted leaf area index and GPP in DGVMs can be too tightly coupled, especially in
880  grasslands and arid regions (De Pue et al., 2022; Lin et al., 2023). Adapting moisture limited phenology
881 schemes in DGVMs to better represent dryland PFTs is likely needed (Dahlin et al., 2015; MacBean et
882  al., 2015; Renwick et al., 2019).

883
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884  Finally, we note that we might expect that inclusion of N cycling in models may result in higher nutrient
885 limitation that reduces annual GPP variability; however, in this study there was no apparent difference in
886  GPPIAV with or without N cycling included in the models (Fig. S4). Nonetheless, Smith et al. (2014)
887  noted that N limitation favours grasses in some regions, which could be contributing to high annual GPP
888  variability for dynamic enabled models. It is likely that nutrient cycling plays a role in dryland

889  productivity dynamics that requires further understanding and implementation. More complex

890 interactions between fire, nutrients, and selective grazing in grasslands should also be considered in future
891  dryland model developments (Wilcox et al., 2023).

892  Even in reality it is impossible to estimate exact contributions of the myriad of processes that contribute
893  to annual variability in ecosystem scale GPP. Doing so will require novel ways to probe or reinterpret
894  existing in situ and gridded datasets. For example, future studies could assess non biogeography related
895  process contributions to GPP IAV in DryFlux (and DGVMs) by considering time periods without fire and

896  when vegetation fractional coverages are not changing considerably.

897 4.5 Implications for other dryland regions

898  While our study has elucidated differences between DGVMs in the form of high or low standard

899  deviation of GPP in western North America, we predict that these findings may not be consistent across
900  drylands on an intra-model basis. This prediction is based upon a recent study (Bogucki et al. in prep.)
901  which utilized the same TRENDY DGVMs, but on a global scale, finding that a relatively high standard
902  deviation of NEE in one particular dryland region (such as western North America) does not necessarily
903  equate to a high standard deviation of NEE in other dryland regions. Despite the fact that Bogucki et al.
904  (in prep.) investigate a time period spanning 52 years (1970 — 2020) instead of the 16 years (2001 — 2016)
905  wused in this study, and their use of NEE instead of GPP, our findings are generally similar. Both Bogucki
906  etal. (in prep.) and this study identify the same DGVMs as either high (LPJ-GUESS, LPJwsl, LPX-Bern,

907  OCN, and SDGVM) or low (top two rows of Fig. 3a) standard deviation within the bounds of western
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908  North America. Additionally, all of the models which we have identified as having high standard

909  deviation in annual GPP also display high standard deviation in annual NEE across multiple dryland
910  regions such as the Caatinga, Sahel, and eastern Australia in Bogucki et. al (in prep.). However, not all of
911 the models which both Bogucki et al. (in prep.) and this study have identified as low standard deviation
912  within the bounds of western North America also have low standard deviation in other dryland regions.
913  While some of the models are consistently low standard deviation across dryland regions (CLM5, ISBA
914  CTRIP, JULES, ORCHIDEE, and YIBS), some models display low standard deviation in western North
915  America but high standard deviation in other dryland regions (CABLE POP, CLASSIC, IBIS, JSBACH,
916  and VISIT). Thus, our explanations for why some DGVMs have higher or lower standard deviations in
917  annual GPP may not be applicable to these five DGVMs dryland regions on a global scale. Further

918  studies focusing on other dryland regions such as the Caatinga, Sahel, and Eastern Australia are required
919  to better understand what may be causing this variation between models and between dryland regions

920  within each of the models.

921 5. Conclusions

922  We evaluated the ability of 15 DGVMs from the TRENDY v11 model inter-comparison compared with a
923  dryland focused upscaled flux data product (DryFlux v1.0 GPP) to capture the IAV of dryland GPP in
924  western North America. We also examined potential causes of different performances across models, with
925  aspecific focus on the role of processes related to biogeography (e.g., vegetation type and fractional

926  cover, dynamic vegetation, and fire). We tested three hypotheses: that models with dynamic vegetation
927  better capture GPP variability due to their ability to simulate grass regrowth after disturbance; that models
928  with more accurate representation of grass fractional cover leads to better alignment with DryFlux GPP
929  TAV; and that fire effects on GPP IAV are stronger in grass-dominated systems, especially in models with
930  both dynamic vegetation and fire modules. While it is not possible to estimate exact contributions of

931 different processes to poor model performance in capturing annual variability in an emergent quantity
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932  such as GPP, this study nevertheless explored how vegetation characteristics and disturbances influence
933  model performance in simulating dryland carbon dynamics. We identified TRENDY v11 models without
934  dynamic vegetation and fire enabled capture low GPP 1AV compared to the DryFlux product across the
935  western North America dryland region. Among different PFT types, models with high C4 grass cover
936  have high correlation with GPP IAV. LPJ models have high grass fCover, and high fCover variability,
937  which is likely contributing to their higher GPP IAV. However, the fCover variability is not due to fire,
938  and the spatial patterns in fCover variability do not match spatial patterns in GPP IAV, suggesting that
939  other processes are also contributing to high GPP variability. However our findings provide a roadmap to
940  the modellers in terms of improving vegetation representation in sparse woody shrub grass dynamic

941 dryland ecosystems, specifically to focus on accurate representation of C4 grasses.

s42 Data and Code Availability

943  The Aridity Index (Al) dataset was downloaded from: https://cgiarcsi.community/2019/01/24/global-

944  aridity-index-and-potential-evapotranspiration-climate-database-v3/. The DryFlux v1.0 GPP product was

945  downloaded from https://github.com/marthageb/DryFlux and is freely available under a MIT License
946  Copyright (c) 2021 marthageb. MODIS VCF was downloaded through google earth engine, April 2024,
947  but also available at: https://Ipdaac.usgs (DiMiceli et al., 2015). The RAP fCover data was downloaded

948 from http://rangeland.ntsg.umt.edu/data/rap/rap-vegetation-cover/v3/. TRENDY model data is available

949  from the Global Carbon Budget Data Browser (https://mdosullivan.github.io/GCBY/). Scripts produced in

950 this study are deposited in the following github repository: ‘https://github.com/Rubaya-Pervin/TRENDY -

951  models-evaluation-using-DryFlux’. Once the manuscript has been accepted for publication after any
952  revisions have been completed, this statement will be updated at that time and a Zenodo doi will be

953  created for this repository so that a permanent record is available for this paper.
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