Reply to referee 1

General Comments:

This study proposes a probabilistic surrogate model for wildfire spread prediction using a de-
noising diffusion probabilistic model. The authors have revised the manuscript based on the
previous review comments. In particular, the addition of the ablation study is a valuable
improvement that enhances the overall contribution of the paper. In my previous review, I
provided five main comments regarding (1) novelty, (2) scientific discussion to enhance the
paper’s academic value, (3) justification, (4) ablation study, and (5) insights specific to wildfire
prediction. Among these, point (4) has been addressed through the addition of an ablation
study in the Appendix. Also, I appreciate the authors’ effort to better explain the distinction
between diffusion-based sampling algorithms and neural network architectures, as well as their
clarification that DDIM, not DDPM, was used in their study. While these clarifications are
helpful, T still find that several of my core concerns regarding scientific novelty, comparative
justification, and domain-specific insights remain only partially addressed.

We thank the Reviewer for the constructive follow-up. In this revision we have (i) expanded
the Introduction (page 3 of the manuscript) to articulate the methodological novelty of the
diffusion surrogate relative to GAN-, VAE- and flow-based surrogates and to explain why
diffusion is well suited to probabilistic wildfire spread prediction; (ii) clarified the scientific and
domain-specific insights by discussing how the diffusion ensemble captures stochastic behaviour
and uncertainty structures (pages 3—4 of the manuscript); (iii) strengthened the justification
for using the calibrated and validated CA simulator, detailing its grounding in real geophysical
inputs and prior validation (pages 6-8 of the manuscript); (iv) retained and highlighted the new
ablation study in the Appendix D of the manuscript. In addition, we added discussion on the
computational efficiency comparison between the CA model and the diffusion surrogate and a
clearer explanation of the probabilistic metrics employed, in particular the Hit Rate. We hope
these changes address the Reviewer’s remaining concerns on novelty, comparative justification,
and domain-specific insight.

Specific Comments:

1. On novelty and scientific contribution:

I appreciate the authors’ clarification that this may be the first GMD submission applying
diffusion-based generative Al to wildfire spread. However, in my opinion, novelty in journal
publications should not be judged solely by first application, but rather by the new methodolog-
ical or domain-specific in- sights it provides. While the study’s focus on capturing stochasticity
from a physics-based simulator is interesting, this concept aligns closely with a broader body
of surrogate model- ing literature using GANs, VAEs, and normalizing flows. To strengthen
the contribution, I would encourage the authors to discuss how their diffusion-based surrogate
differs, in principle and in outcome, from these earlier probabilistic surrogate approaches.

We appreciate the Reviewer for this insightful remark on novelty and scientific contribution.
In the revised manuscript, we have therefore expanded the discussion in the Introduction (page
3) to more clearly position our work within the broader literature on probabilistic surrogate
modelling with GANs, VAEs and normalising flows, and to explain how our diffusion-based
surrogate differs in principle and outcome. In particular, we now summarise known limitations



of these earlier approaches for high-dimensional, uncertainty-aware emulation. In summary, as
shown in our previous work (Cheng et al., 2023), VAEs can generate realistic fire scenarios at a
given time step; however, their bottleneck architecture limits their ability to produce conditional
predictions of fire spread. We highlight the advantages of diffusion models as likelihood-based,
stably trained generative models with strong sample quality and mode coverage, and point to
recent geoscientific applications where diffusion models have been successfully used as proba-
bilistic surrogates and ensemble generators.

We also clarify that the novelty of our contribution is not limited to being one of the first
applications of diffusion models in GMD. First, to the best of our knowledge, this study is the
first to apply a diffusion model as a predictive surrogate for wildfire spread. Second, and more
importantly from a methodological perspective, our study uses diffusion modelling to learn a
stochastic dynamical system where the full conditional distribution of the reference simulator
is known. This enables a direct comparison between the uncertainty produced by the diffusion
surrogate and that of the underlying stochastic model, providing a quantitative assessment of
whether the generative model recovers the true stochastic behaviour. We regard this controlled,
distribution-level evaluation as an important contribution of the work in particular within the
field of geoscientific surrogate modelling.

2. Experimental Setting, Discussion and Insight:

General Comment: The authors highlight that the diffusion model ensemble can reproduce the
stochasticity of the physics simulator. This is indeed a valuable result, but the paper could
further benefit from a more explicit discussion of what this implies scientifically, for example,
whether the generative model reveals any new understanding about wildfire spread variability,
sensitivity to environmental conditions, or uncertainty structures. Such insights would elevate
the manuscript beyond a technical demonstration toward a contribution of broader geoscientific
relevance.

1. As I understand it, the manuscript uses a cellular automaton (CA) model to generate the
training data. Although the study utilizes the Chimney Fire (2016) and Ferguson Fire
(2018) cases, it appears that only topographic and vegetation data are used, and that no
actual wildfire observation data are incorporated. In addition, please clarify whether the
CA model used for training the diffusion model was validated against any real wildfire
observation data prior to its use.

We thank the reviewer for highlighting the role of real wildfire observations in the context
of training data. In the revised manuscript (pages 6 to 8), we clarify that the diffusion
model is intentionally trained and validated on data generated by a calibrated and val-
idated cellular automaton (CA) wildfire simulator, rather than on direct perimeter or
burn-scar observations. The goal of this study is to develop a proof-of-concept genera-
tive surrogate for a stochastic wildfire-spread model, where the CA simulator defines the
target conditional distribution that the diffusion model aims to learn.

To address the concern regarding validation, we emphasise in the revised CA section
that the specific CA formulation used here is directly based on previously published work
(Alexandridis et al., 2008; Cheng et al., 2022), in which the model parameters were sys-
tematically calibrated and its behaviour validated against observed wildfire-spread pat-
terns. Additional literature demonstrates that CA-based wildfire simulators are capable
of reproducing key aspects of real fire propagation across diverse environments when ap-
propriately parameterised. For example, Freire and DaCamara (2019) validated their CA
model using the 2012 Algarve wildfire in southern Portugal, and Trucchia et al. (2020)



demonstrated the operational PROPAGATOR system across several Mediterranean fire
events in Italy and Spain.

Although the present study does not incorporate continuous time-resolved wildfire ob-
servations for training, we clarify that the CA simulations are driven by real geophysical
inputs from the Chimney Fire (2016) and Ferguson Fire (2018), including canopy cover,
canopy density, topographic slope and local wind, ensuring that the generated ensembles
remain anchored in realistic environmental forcing. The revised manuscript (page 4) ex-
plicitly explains this design choice and the scientific motivation behind using a controlled,
validated stochastic simulator for initial surrogate development.

. I understand that CA models are widely used in the wildfire modeling community due
to their simplicity and computational efficiency. However, compared to physics-based
models such as WRF-Fire, I guess their ability to reproduce real wildfire behavior would
be generally limited. Therefore, I would appreciate clarification on whether the CA
model used in this study has been calibrated or validated to ensure a reasonable level
of physical realism. In addition, please include a brief discussion on what challenges
might be encountered if a similar diffusion-based surrogate modeling framework were to
be developed using a physics-based model such as WRF-Fire—for example, in terms of
data availability and computational cost.

We thank the reviewer for this important comment. In addition to the clarifications
already added to the manuscript (pages 6-8), we have now further strengthened the
discussion by conducting a new computational-efficiency comparison between the cali-
brated CA model used in this study and inference using our diffusion surrogate (DDIM
sampling). This experiment quantifies the practical cost of producing large stochastic
wildfire ensembles, which would be required if a physics-based model such as WRF-Fire
were used instead.

As highlighted in the revised manuscript, the CA simulator employed here is directly based
on a validated CA framework (Alexandridis et al., 2008). That previous study presented
parameter calibration against observed wildfire spread, demonstrating that the model
holds the capability of reproducing key aspects of real-world behaviour when driven by
realistic environmental forcing. Additional literature further supports the capacity of CA-
based models to emulate essential wildfire-spread dynamics across diverse landscapes. For
example, Freire and DaCamara (2019) applied a CA framework to the large 2012 Algarve
wildfire in Portugal-—covering approximately 25,000 ha—and showed that the simulator
successfully reproduced the temporal evolution and spatial extent of the burned area,
thereby confirming its practical utility for fire-behaviour analysis. Similarly, Trucchia
et al. (2020) created the operational PROPAGATOR CA wildfire simulator and demon-
strated its ability to simulate several Mediterranean fire events in Italy and Spain in a
short amount of time. These studies indicate how efficiency and physical interpretability
of CA-based semi-physical approaches can be in real-world forecasting situations.

To clarify the computational implications raised by the reviewer, we performed an addi-
tional benchmark comparing the wall-clock inference time (using an NVIDIA RTX 6000
GPU and 96 CPU cores from an Intel(R) Xeon(R) Gold 6442Y processor) of the semi-
physical CA model and the diffusion surrogate using DDIM sampling, tested under several
batch sizes.



Method Batch Size Total Samples Total Time (s) Avg. Sample Time (ms) Throughput (samples/s)

Diffusion 1 400 103.17 257.91 3.88
Diffusion 10 400 34.56 86.40 11.57
Diffusion 20 400 34.72 86.79 11.52
Diffusion 50 400 38.53 96.33 10.38
Diffusion 100 400 39.75 99.38 10.06
CA Model N/A 50 177.81 3556.20 0.28

Table 1: Comparison of computational efficiency between the diffusion surrogate
(DDIM inference) and the CA simulator. Throughput is measured as samples per
second.
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Figure 1: Runtime comparison.

The comparison—also summarised visually in Figure 1-—shows that:

o The CA model requires 3.56 seconds per simulation, while

o The diffusion surrogate requires 0.086-0.26 seconds per simulation, depending on
batch size.

Thus, diffusion is 14-40x faster per sample and up to 50x higher throughput.

It is also important to emphasise that fully coupled physics-based wildfire simulators—such
as WRF-Fire (Mandel et al., 2011), FIRETEC (Linn and Cunningham, 2005) models—are
significantly more computationally demanding than the CA framework considered here.
Such models typically require hours to days of wall-clock time on HPC systems for a
single simulation because they explicitly resolve fire—atmosphere interactions, turbulent
flows, radiative transfer and detailed fuel processes. Generating the tens of thousands
of realisations required to train a generative model would therefore be computationally
difficult with these physics-based systems.

Against this backdrop, machine learning surrogates such as diffusion models offer a clear
practical advantage: after training, they can generate large ensembles at a fraction of the
computational cost required by physics-based simulators. The speed-up observed relative
to the CA model therefore represents a conservative lower bound, and the efficiency
benefit of diffusion-based emulators would be even greater when replacing substantially
more expensive physical models.

. If the CA-based wildfire simulations themselves have limited physical realism, it is unclear
how much scientific value an AI model that merely surrogates such simulations can offer.
In meteorology, although each phenomenon occurs only once, probabilistic forecasting
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has advanced through approaches such as optimizing models with the Continuous Ranked
Probability Score (CRPS) and evaluating forecast distributions against single realizations.
Would it be possible to adopt a similar approach for probabilistic wildfire prediction,
using real fire observations rather than CA-generated data? I understand that, unlike
in meteorology, it may be difficult to directly apply such approaches due to the lack
of consistent and continuous wildfire observations. However, please consider adding a
discussion on whether more physically realistic surrogates could be developed in the future
by leveraging physics-based models or real observation data.

We thank the reviewer for raising this important point. We emphasise that the CA-
based wildfire simulations used in this study are not arbitrary or purely heuristic: they
are generated by a calibrated and previously validated semi-physical model (Alexandridis
et al., 2008; Cheng et al., 2022), driven by real geophysical inputs from the Chimney and
Ferguson Fire cases. Our previous research and supporting literature indicate that such
cellular automata formulations can accurately replicate essential spatiotemporal features
of wildfire propagation when appropriately parameterized. Consequently, they offer a
sufficiently realistic and scientifically significant testbed for the proof-of-concept aim of
this study.

Regarding the reviewer’s suggestion on adopting CRPS evaluation, we note that such
methods require only a single realised trajectory, which makes them attractive for meteo-
rological forecasting. In principle, a diffusion surrogate can also be trained and evaluated
against real wildfire observations, and extending our framework in that direction will be
an important step for future work. In this study, however, we intentionally rely on CA-
generated data because the simulator provides access to the entire stochastic distribution
of fire-spread outcomes. This enables a form of validation that is not possible with obser-
vational data, as it allows us to compare the ensemble produced by the diffusion model
with the true reference distribution rather than with a single realised perimeter. The abil-
ity to perform this distribution-level verification is therefore a contribution of our work
and a key reason for choosing a controlled CA-based setting for the initial development
of the surrogate.

In summary, a central contribution of our manuscript is precisely this: we design and
evaluate a diffusion surrogate in a controlled, physically grounded environment where the
target stochastic dynamics are known. This controlled validation strategy allows us to
rigorously assess whether the generative model can reproduce the underlying conditional
distribution—an assessment that would be impossible using sparse and inconsistently
sampled real wildfire observations. We have now explicitly highlighted this rationale and
contribution in the revised manuscript (page 4).

At the same time, we agree that future surrogates should move toward more physically
comprehensive and observation-informed datasets. Accordingly, we have strengthened the
Future Work (page 28) section to outline next steps.

3. Comparison with other Al-based approaches:

I acknowledge the authors’ point that DDPM/DDIM is a sampling algorithm rather than a
neural architecture, and that ConvLSTM represents a distinct modeling approach. However,
my original comment was not intended to suggest a direct algorithmic comparison between
DDPM and ConvLSTM, but rather to emphasize the need for a comparative baseline that
reflects widely used probabilistic or spatiotemporal modeling strategies in wildfire research.
Comparing a diffusion-based model only with its deterministic counterpart (UNet with MSE
loss) would not provide a sufficient justification for adopting the diffusion framework. The
Introduction provides a solid overview of existing Al-based wildfire prediction models, including



UNet, CNN-LSTM, and Transformer architectures (e.g., Shah and Pantoja, 2023; Chen et al.,
2024b; Khennou and Akhloufi, 2023). Given this context, it would be helpful for the authors
to clarify why the UNet architecture was chosen as the baseline in this study and to discuss its
suitability in relation to the previously reviewed Al-based wildfire prediction models.

We appreciate the Reviewer’s comment and note that we have already addressed the archi-
tectural question in our earlier response and Appendix D in the revised manuscript. Here we
briefly reiterate the main points for clarity.

In this study, we adopt a UNet-type encoder—decoder as the backbone architecture for
both the deterministic and diffusion-based models. As discussed in our previous response,
UNet remains one of the most widely used and empirically validated architectures for spatial
prediction tasks in wildfire modelling and remote sensing. Our earlier work (Zhou et al., 2025)
demonstrated that UNet provides strong predictive skill, stable optimisation behaviour, and
favourable interpretability compared with alternative architectures such as Swin-Transformer
models. Its multi-scale feature extraction and skip-connection structure make it a robust and
sufficiently expressive foundation for diffusion-based generative modelling.

We would also like to emphasise that UNet and its attention-enhanced variants constitute
the standard and most widely adopted backbones for diffusion models. The seminal DDPM
paper (Ho et al., 2020), the improved classifier-free and attention-enhanced diffusion models
of Dhariwal and Nichol (2021), and recent large-scale latent diffusion frameworks (Rombach
et al., 2022) all employ UNet architectures. Their consistent success across domains justifies
our choice of UNet as the baseline architecture for a fair and interpretable comparison between
deterministic and diffusion-based training paradigms.
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Figure 2: Ablation study comparing model performance across different training dataset sizes
and architectures.

As summarised in the earlier response letter, we also conducted an ablation study (Figure
2) comparing three architectures: an attention-enhanced UNet, a basic UNet, and a residual
autoencoder (ResCAE). All models were trained under identical settings. While attention
mechanisms yield modest improvements, our results show that the diffusion-based formulation
consistently outperforms deterministic counterparts across all architectures. Moreover, the
ResCAE backbone exhibits unstable convergence when used within the diffusion framework,
reinforcing UNet as the most reliable and practically effective choice for our study.

To avoid redundancy, we refer the Reviewer to the detailed explanation and experimental
evidence already included in the revised manuscript (page 32) and previous response. Here we
simply emphasise that the purpose of this work is not to benchmark neural architectures, but
to demonstrate the methodological benefits of adopting a diffusion-based probabilistic frame-
work. Architectural differences are secondary to this shift, and UNet provides a strong, well-
established baseline for a fair and interpretable comparison.



Reply to referee 2

General Comments:

This manuscript introduces a probabilistic wildfire spread surrogate model based on conditional
denoising diffusion and compares it against a deterministic surrogate with an identical archi-
tecture, trained on synthetic data generated by a probabilistic CA fire spread simulator. The
topic is timely, the motivation is well-grounded, and the methodological implementation ap-
pears sound. The comparative experimental design is clean, as the two models share the same
backbone and differ solely in training paradigm, enabling a fair attribution of the performance
gain to the diffusion-based stochastic formulation rather than architectural complexity. The
manuscript is in general clearly written and the results are convincing.

We thank the reviewer for the positive overall assessment of our work and for the detailed
feedback. In revising the manuscript, we have substantially clarified the study’s scientific con-
tribution and strengthened the justification for our methodological choices. We now explicitly
motivate the use of a calibrated and previously validated CA model as a controlled testbed
(pages 6-8), explain how this setting enables rigorous comparison between the diffusion surro-
gate and the reference stochastic dynamics (page 4), and outline how future work will extend
the framework to more physically comprehensive and observation-informed datasets (page 28).
In addition, we clarify that our evaluation compares the probability density functions pro-
duced by the CA simulator and the diffusion model, both yielding continuous values. Because
the Brier Score (Redelmeier et al., 1991) is designed for binary observed outcomes, it is not
well suited to this setting; the Hit Rate (HR) therefore serves as a more appropriate measure
for assessing whether the diffusion model reproduces the variability encoded in the reference
stochastic simulator. Furthermore, we have added a quantitative runtime comparison in this
letter to make the computational advantages of the diffusion surrogate explicit. We hope that
these revisions adequately address the reviewer’s concerns and further strengthen the clarity
and scientific value of the manuscript.

Specific Comments:

1. First, the abstract is currently too verbose and narrative in style; it should be condensed,
and — more importantly — it should report not only relative gains (e.g. percentage
reduction in MSE or FID) but also the corresponding absolute levels of accuracy, such
that the reader can judge the practical quality of predictions rather than merely their
improvement over a baseline.

We thank the Reviewer for this helpful observation. In the revised manuscript, we have
condensed the abstract to focus on the core methodological contribution. While the
Reviewer suggested providing absolute accuracy levels in the abstract, we note that the
dataset used in this study is not a standardised benchmark such as ImageNet(Deng et al.,
2009) or WeatherBench(Rasp et al., 2020). For this reason, isolated absolute accuracy
values may have limited scientific interpretability for readers who are unfamiliar with the
experimental setup. To ensure clarity and avoid potential misinterpretation, we therefore
report the absolute accuracy values in the Introduction as suggested by the reviewer.

Following this approach, the resubmitted manuscript now states in the final paragraph
of the Introduction that, the diffusion-based surrogate achieves an MSE of 0.0067 versus
0.0218 and an FID of 49.0 versus 165.9 relative to the deterministic baseline. We also
provide the relative improvements to assist interpretation. These additions allow readers



to form an informed view of the practical accuracy of the method once sufficient context
has been provided. We further clarify in the abstract that both models share an identical
network architecture, which ensures the transparency of the comparative setting. We
hope that these revisions adequately address the Reviewer’s concern.

. Second, the manuscript implicitly treats CA ensemble outputs as the reference truth for
training and validation. This design choice is understandable for proof-of-concept sur-
rogate development, but it is not explicitly justified. The authors should clearly state
whether the goal is (i) to build a surrogate for the CA model itself, in which case CA
defines the target distribution by construction, or (ii) to approximate physical wildfire
evolution ultimately driven by real events, in which case the absence of any experiment
with real observational data (e.g. perimeter burn scar maps) requires justification. Ar-
ticulating this will help avoid the impression that the model only learns the statistics of
a simulator rather than reality.

We thank the reviewer for the helpful comment. We clarify that the primary objective of
this study is to demonstrate that diffusion models are capable of learning and reproducing
the stochastic dynamics of wildfire spread. To rigorously test this capability, the surrogate
must be evaluated against a reference model that exhibits meaningful physical behaviour
and realistic variability.

For this proof-of-concept stage, we therefore rely on a calibrated and previously vali-
dated CA wildfire simulator (Alexandridis et al., 2008; Cheng et al., 2022). Although
less complex than fully coupled physics-based models, the CA framework provides a com-
putationally efficient and physically grounded way to capture key aspects of real wild-
fire behaviour—such as anisotropic spread, wind-driven acceleration, and topography-
dependent propagation—while producing stochastic ensembles necessary for evaluating
generative models. In this sense, the CA model offers a suitable proxy for the complexity
of real fires while allowing controlled, repeatable experimentation. We have now explic-
itly stated in the manuscript that designing and validating the diffusion surrogate within
this controlled CA-based setting is itself an important contribution (has been mentioned
in page 4 of the revised manuscript), as it provides a clear and verifiable benchmark for
assessing whether the diffusion model can recover a known stochastic target distribution.

. Third, the stated advantage over CA-based ensemble simulation should be made explicit.
If the improvement is primarily computational (i.e. the diffusion surrogate approximates
CA but with orders-of-magnitude lower cost per ensemble realisation), this should be
quantified. If, instead, the diffusion surrogate contributes additional information beyond
CA (e.g. sharper spatial morphology, regularisation of small-scale artefacts, or stability
when uncertainty is high), this claim should be discussed and supported; otherwise the
benefit over simply running CA multiple times may appear unclear.

We thank the reviewer for this important comment. We now explicitly state that the
primary advantage of the diffusion surrogate over repeated CA ensemble simulations
is computational efficiency, and we have added a new quantitative benchmark to the
revised manuscript (Table 1 and Figure 1). These results show that the calibrated CA
model requires approximately 3.56 seconds per simulation, whereas DDIM sampling with
the diffusion surrogate requires only 0.086-0.26 seconds per simulation, depending on
batch size. This corresponds to a 14-40x reduction in per-sample runtime and up to a
50x increase in throughput, demonstrating that the diffusion model can produce large
stochastic ensembles orders of magnitude more efficiently than the CA simulator.

Beyond computational savings, we have clarified in the text (pages 6 to 8) that the
diffusion surrogate does not aim to exceed the CA simulator in physical realism; rather,
the goal of this proof-of-concept study is to show that diffusion models can faithfully
reproduce complex stochastic fire-spread dynamics generated by a validated semi-physical



simulator. This controlled evaluation—now explicitly described as one of the contributions
of the manuscript.

To avoid overstating claims, we do not assert that the diffusion surrogate provides ad-
ditional physical information beyond the CA model at this stage. Instead, the revised
manuscript clearly positions the surrogate as a computationally efficient and distribution-
preserving emulator of a validated stochastic simulator. As noted in the expanded Future
Work section, future efforts will focus on incorporating richer environmental forcings and
assessing performance against real world data, which will allow us to explore potential
benefits beyond emulation of CA dynamics.

. Finally, since the core methodological claim is probabilistic, the evaluation would be
strengthened by including at least one standard uncertainty-aware verification measure
such as Brier score, reliability diagrams, or sharpness—reliability diagnostics. This would
complement the present set of similarity metrics and substantiate the claim that the
method not only generates ensembles but also produces statistically meaningful proba-
bility forecasts.

Thank you for this constructive suggestion. We would like to clarify that the manuscript
already incorporates a probabilistic evaluation through the Hit Rate (HR), which may not
have been fully apparent in the original submission. To make this explicit, we have revised
Appendix B (page 30) to contrast the HR with standard uncertainty-aware verification
measures such as the Brier Score.

The Brier Score assesses probabilistic accuracy for binary events and is defined as

1 N

BS= 3 (i~ o) M

i=1

where f; is the forecast probability and o; € {0, 1} is the observed binary outcome(Redelmeier
et al., 1991). Because this metric requires observed events to be dichotomous, it is not
directly applicable in our setting, where we would like to compare the probability distri-
bution of the CA-generated targets and the diffusion-model outputs rather than binary
occurrences.

For this reason, we introduce the Hit Rate (HR) as a tailored uncertainty-aware measure
for continuous stochastic fields, defined in the manuscript as

Dvatia i L (|T5 — 23] <€)

HR — , 2
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where € is the threshold that defines the acceptable difference between X; and x;; 1(+) is
the indicator function, which equals 1 when the condition inside it is true and 0 otherwise;
and Nyaiq is the number of valid target elements where x; > 0.

This metric quantifies the proportion of ensemble predictions that fall within an acceptable
tolerance of the stochastic reference distribution. The HR therefore evaluates whether the
diffusion model reproduces the intrinsic variability encoded in the CA simulator, fulfilling
a role analogous to the Brier Score but appropriate for continuous fire-spread dynamics.

To clarify this discrepancy, we have expanded the explanation in Appendix B to explicitly
justify the design of HR for probabilistic evaluation and to highlight its relevance in this
continuous, simulator-based context.
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