Response to the associate editor

Dear Editor and Reviewers, We appreciate your careful review and valuable comments on
our manuscript, entitled “A Probabilistic Approach to Wildfire Spread Prediction Using a
Denoising Diffusion Surrogate Model” (egusphere-2025-2836). We have thoroughly considered
all the points and revised our manuscript accordingly. We believe the quality of the revised
manuscript is improved significantly, and both goals and results are now presented in a more
accurate and clearer way.

In this cover letter, we provide a detailed, point-by-point response to the reviewers’ com-
ments, outlining the revisions we have made. For ease of reference, we have numbered the
comments. To make the modifications easily identifiable, we have highlighted the changes in
Blue in the revised manuscript.

Thank you for your time and consideration. We appreciate the opportunity to improve our
work based on your valuable feedback.

Response to referees

Reply to referee 1

We thank the Reviewer for the comments and suggestions on our manuscript.

We have responded to most of the Reviewer’s comments in our online reply dated 9 August
2025 (at the end of this letter, for reference). Following the Reviewer’s suggestion, we conducted
comprehensive numerical experiments using three different neural network architectures, namely
a UNet with attention mechanism, a standard UNet, and a convolutional autoencoder with
ResBlocks. Each network was trained both deterministically and using diffusion-based training.
The numerical results are provided in Appendix D (p. 32) of the revised manuscript and are
summarised below.
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Figure 1: Ablation study comparing model performance across different training dataset sizes
and architectures.

Our ablation study evaluates three distinct neural network architectures across varying
training dataset sizes {50, 100, 200, 500, and 900 samples}, comparing stochastic diffusion mod-
els against deterministic approaches, as shown in Figure 1. The architectures under scrutiny
include: (1) a UNet architecture with attention mechanisms (unet_atten) as employed in our
main study; (2) a UNet basic architecture (unet_ basic), representing a simplified variant with-
out attention blocks; and (3) a residual AutoEncoder architecture (rescae), which maintains a
similar network structure to the UNet but removes skip connections to assess their contribution
to model performance. All models were trained using identical hyperparameter configurations,
including a learning rate of le—5 (selected from candidates le—3,1le—4, le—5 as the optimal
choice), 200 training epochs, and the AdamW optimiser with weight decay of le—4. All models
are evaluated on the ensemble test dataset of the Chimney fire event.

The results in Figure 2 demonstrate that the UNet Architecture with attention mechanisms
generally outperforms the UNet basic architecture without attention blocks, though the im-
provement varies across metrics and dataset sizes. For instance, at training dataset size 500,
the attention-enhanced UNet achieves superior performance in MSE (5.60x 1072 vs 6.00x 1072),
SSIM (8.92 x 107! vs 8.73 x 107!), and FID (4.23 x 10! vs 6.16 x 10') whilst showing com-
parable performance in other metrics such as PSNR. However, at smaller dataset sizes like



100, the performance differences become less pronounced, with some metrics showing marginal
improvements whilst others exhibit comparable or slightly inferior performance. In contrast,
the comparison between UNet architectures and the residual AutoEncoder architecture reveals
more substantial performance differences. The UNet structures consistently demonstrate sig-
nificant improvements across multiple metrics, highlighting the importance of skip connections
in preserving fine-grained information throughout the encoding-decoding process.

The related source code, scripts, data, and experimental results have been uploaded to
Zenodo (https://zenodo.org/records/15699653) (Yu et al., 2025). The experimental results
can be found in the out directory.

Following our previous response, it is important to clarify that the primary focus of this
study is not to establish the superiority of various model architectures, but rather to investigate
the advantages of diffusion-trained stochastic models over deterministic models in simulating
wildfire uncertainty. This finding is further supported by our new numerical experiments: across
all three neural network architectures, diffusion-based ensemble predictions (bar chart with
slashes) substantially outperform their deterministic counterparts (bar chart without slashes)
as shown in Figure 1.

Our previous response (copied here for reference)

We thank the reviewer for the detailed comments and suggestions on our manuscript. However,
we believe that some key aspects of our work may have been overlooked.

1. The reviewer has repeatedly suggested that a benchmark comparing “DDPM vs. Con-
vLSTM (or other NNs)” is necessary for the manuscript. We would like to first clarify that
sampling algorithms (e.g., DDPM or DDIM) and neural network architectures (e.g., ConvL-
STM or U-Net) are fundamentally two different things. Sampling algorithms define how noise
is added during the forward diffusion process and removed during the reverse (denoising) pro-
cess (e.g., markovian in the case of DDPM and deterministic non-markovian in the case of
DDIM, see Austin et al. (2021); Song et al. (2022), whereas different neural network architec-
tures (such as U-Net or Transformer) could be chosen to train this denoising procedure. We
believe the reviewer may be confused about this fundamental concept. We can not compare a
sampling/denoising method against a neural network structure.

The main objective of our experiments here is to compare a diffusion-based generative train-
ing algorithm with the deterministic training method (based on MSE) for wildfire prediction,
rather than to evaluate different neural network architectures. Therefore, we compared the
performance of a conditional diffusion model based on U-Net to that of the same U-Net trained
using a deterministic approach. In addition, using a different neural network architecture might
improve the accuracy of deterministic training, but it would not provide probabilistic predic-
tions or capture the uncertainty of fire propagation. And also, the new network architecture
will likely improve the diffusion model’s performance as well. This does not qualitatively affect
our comparison of diffusion and deterministic training.

We thank the reviewer for this question and will clarify the differences between neural
network architectures and diffusion sampling algorithms for non-expert readers in ML.

2. Regarding the novelty of our work, although we agree that diffusion models have recently
been applied in geoscience, to the authors’ knowledge, this is the first study to apply diffusion-
based generative Al to wildfire spread prediction (see a recent review paper by Xu et al. (2025)).
In fact, to our knowledge, only one previous GMD publication (Elena Tomasi et al., April 2025)
has applied a latent diffusion model to a downscaling task. Therefore, we believe that our paper
is the first to use a conditional diffusion model for dynamical-system prediction in GMD.

More importantly, our diffusion model is trained using data generated from a stochastic
simulator of wildfire. Therefore, we examine if the ensemble generated by the diffusion model
could represent the stochasticity of the original physics model, which brings a unique contri-
bution and insight to the community. We have also designed a specific validation procedure


https://zenodo.org/records/15699653

to compare the two ensembles generated by the stochastic physics model and the diffusion Al
model, as described in Section 2.2.2 and illustrated in Figures 3 and 7 of our manuscript.

We believe that developing a surrogate model using diffusion-based generative method to
capture uncertainties in stochastic physics simulators is novel within geoscience, if not in the
broader computational physics field.

Following the reviewer’s suggestion, we will perform additional hyperparameter tuning in
the revised manuscript to improve our diffusion model’s performance. However, as noted,
our primary objective is to demonstrate a generative diffusion model’s ability to capture the
stochasticity of the physics-based model, which our current results already successfully achieve.

3. The reviewer repeatedly refers to DDPM as our denoising approach and points out its
computational inefficiency. However, in our manuscript we employ the DDIM algorithm, as
clearly stated in the first sentence of Section 3.1.4, in Equation 9 on page 14, and in Algorithm
2 on page 15. We also explain our choice of DDIM over DDPM, indeed specifically for its
superior computational efficiency, in Section 3.1 on page 15. Thus, we believe the reviewer may
have overlooked some important statements in our methodology section.

Reply to referee 2

0.1 General Comments:

In this paper, a probabilistic method using a denoising diffusion surrogate model is applied to
study the wildfire spread prediction, which has the advantage of quantifying the uncertainty.
The study focuses on synthetic wildfire data generated by a probabilistic cellular automata-
based simulator. The study is systematic, and the presentation of the results is detailed. I have
a few minor suggestions, especially several clarification questions.

We thank the Reviewer for the positive comments and the appreciation of our work. We have
carefully addressed all the comments with additional numerical experiments, and we revised
the manuscript accordingly. A point-to-point response is listed here below.

0.2 Specific Comments:

1. The authors highlighted that “this study seeks to address the limitations of traditional
deterministic wildfire forecasting methods.” What about the existing stochastic or prob-
abilistic models?

We agree with the Reviewer that stochastic models are widely used in wildfire modelling
to capture extreme fire behaviour. In fact, the training and test data used in this work
is generated via a physics-based stochastic cellular-automata fire simulator Alexandridis
et al. (2008). Our goal here is not to compare conventional stochastic fire predictors
with deep learning—based ones but rather to investigate whether a generative machine
learning model can effectively simulate wildfire propagation dynamics by learning from
and reproducing the stochastic behaviour of a physics-based CA model.

Accordingly, we thoroughly compare the outputs of the proposed diffusion-based wildfire
predictor against the original CA model and show that, with the diffusion approach,
we can numerically represent the probability density function of the CA outputs. By
contrast, conventional deterministic models typically predict only the mean of possible
scenarios and therefore lose the ability to capture extreme fire events. Following the
Reviewer’s suggestion, we have highlighted this aspect in the introduction of the revised
manuscript (page 4) " Evaluation uses data from a probabilistic cellular-automata emulator
incorporating canopy cover, canopy density, and slope. We analyse the stochastic outputs
to assess whether the diffusion model captures the physics model’s uncertainties."



2. The authors may add more explicit statements to highlight the novelty of this work. Is
this just an application or are there existing improvements in the techniques?

This study is, to our knowledge, the first to apply diffusion-based generative Al to wild-
fire spread prediction (Xu et al., 2025). More importantly, our model is trained on data
from a stochastic wildfire simulator, allowing us to test whether the diffusion model’s
ensemble reproduces the stochasticity of the original physics model. We designed a dedi-
cated validation procedure to compare ensembles from both models, as detailed in Section
2.2.2 and shown in Figures 3 and 7. We believe that developing a surrogate model using
diffusion-based generative methods to capture uncertainties in stochastic physics simu-
lators is novel in computational science. Following the Reviewer’s suggestion, we have
added a paragraph in the introduction of the revised manuscript (page 1) to highlight it
"To the authors’ knowledge, no existing work has used diffusion-based generative models
to predict fire spread in the literature. Furthermore, we believe that employing such sur-
rogates to capture uncertainties in stochastic physics simulators is novel in computational
science."

3. The interpretability of probabilistic forecasting needs more discussion. These forecasts
indeed provide UQ. But is such a UQ reliable and accurate?

We have thoroughly compared the estimated probability distribution of our generative
model with that of the physics-based model to ensure the diffusion model provides ac-
curate uncertainty quantification of possible fire-spread scenarios. Following the Re-
viewer’s suggestion, we have highlighted the comparison between the ensemble diffusion
model’s UQ and the numerical UQ of the original physics-based CA model in the revised
manuscript (page 22) "In particular, the strong FID and KL results indicate that the dif-
fusion model’s estimated probability distribution is reliable, as it closely matches that of
the original physics-based CA model.".

4. The physical mechanism is quite complicated, and therefore several variables are involved
in the models. How sensitive is the diffusion emulator with respect to the perturbation
of each parameter/input?

In fact, to generate different scenarios for the dataset, we randomised the initial param-
eters following our previous work (Cheng et al., 2022). Consequently, both the training
and test datasets contain fire scenarios generated with different initial parameters. We
have added a description in section 2.1 (page 7) of the revised manuscript to clarify this.
"The operational parameters py, a, ¢, and co influence the fire forecast, where a is the
slope effect coefficient and ¢y, co are the wind effect coefficients. The detailed formulations
of the slope and wind effects are described in Cheng et al. (2022)... Training data is gen-
erated via Latin Hypercube Sampling (LHS) within the range of an ensemble of perturbed
parameter sets:"

pn € [0.00, 0.35], a € [0.00, 0.14], ¢; € [0.00, 0.12], ¢z € [0.00, 0.40] (1)

where the parameter ranges are based on the previous study by Cheng et al. (2022).

Following the Reviewer’s question, we have also added an analysis in page 23 of the
manuscript "It is also worth mentioning that the CA model parameters py, a, ¢, and ¢y
are randomly perturbed when generating the training and test datasets. The numerical
results presented in Table 3 further demonstrate the robustness of the proposed diffusion
model against variations in fire modelling parameters.”

5. The role of some of the details of the emulator’s components needs to be discussed. For
example, what if the attention mechanism is removed?
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We thank the Reviewer for pointing out this question regarding the architectural compo-
nents of our model. Following the Reviewer’s suggestion, we have conducted an ablation
study examining the role of attention mechanisms and other architectural details, which
we present in the Appendix D: Ablation study on model architecture of our paper and
illustrate in Figure D1 (page 32) of the revised manuscript, summarised here below.
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Figure 2: Ablation study comparing model performance across different training dataset sizes
and architectures.

Our ablation study evaluates three distinct neural network architectures across varying
training dataset sizes {50, 100, 200, 500, and 900 samples}, comparing stochastic diffu-
sion models against deterministic approaches, as shown in Figure D1. The architectures
examined include: (1) a UNet architecture with attention mechanisms (unet atten) as
employed in our main study; (2) a UNet basic architecture (unet_ basic), representing
a simplified variant without attention blocks; and (3) a residual AutoEncoder architec-
ture (rescae), which maintains a similar network structure to the UNet but removes skip
connections to assess their contribution to model performance. All models were trained
using identical hyperparameter configurations, including a learning rate of le—5 (selected
from candidates le—3, le—4, le—5 as the optimal choice), 200 training epochs, and the
AdamW optimiser with weight decay of le—4. All models are evaluated on the ensemble



test dataset of the Chimney fire event.

The related source code, scripts, data, and experimental results have been uploaded to
Zenodo (https://zenodo.org/records/15699653) (Yu et al., 2025). The experimental
results can be found in the out directory.

Turning to the specific question about attention mechanisms, our experimental results
demonstrate that the attention-enhanced UNet generally outperforms the UNet basic ar-
chitecture without attention blocks, though the benefits vary across metrics and dataset
sizes, as shown in Figure 1. It is worth noting that at smaller dataset sizes (e.g., 100
samples), the performance differences between architectures with and without attention
become less pronounced. This observation may partially be attributed to the specific char-
acteristics of our experimental data, including its moderate spatial resolution (64 x 64),
which might not fully utilise the representational capabilities of attention mechanisms.
We suggest that in scenarios involving more complex spatial patterns or higher-resolution
data, the benefits of attention mechanisms could potentially be more pronounced.

Our ablation study demonstrates that whilst architectural improvements (such as atten-
tion mechanisms) provide meaningful enhancements, the more substantial performance
gains arise from the fundamental shift from deterministic to stochastic modelling ap-
proaches. The consistent superiority of diffusion models across all architectural variants
reinforces our central ideas that stochastic models are inherently better suited for captur-
ing the uncertainty and variability characteristic of wildfire behaviour.

6. Some details about the background should be added. For example, subsampling frames
at 20-hour intervals is used for training. Why is such a specific number chosen? There
are a lot of mathematical details, but some of the physics or reasoning are missing.

We thank the Reviewer for pointing this out. The 20-hour interval was chosen to ensure
sufficiently large time steps for observing meaningful differences across fire-spread stages.
This time interval is consistent with recent research works (Kondylatos et al., 2022; Huot
et al., 2022). Following the Reviewer’s suggestion, we have added a paragraph in the
revised manuscript (page 9) to explain the reason of this choice "To enlarge the prediction
window and maintain substantial differences between successive fire states, frames are
subsampled from each simulation at intervals of 10 time steps (20 hours), yielding six
frames per wildfire event."
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