Reply to referee 2

0.1 General Comments:

In this paper, a probabilistic method using a denoising diffusion surrogate model is applied to
study the wildfire spread prediction, which has the advantage of quantifying the uncertainty.
The study focuses on synthetic wildfire data generated by a probabilistic cellular automata-
based simulator. The study is systematic, and the presentation of the results is detailed. I have
a few minor suggestions, especially several clarification questions.

We thank the Reviewer for the positive comments and the appreciation of our work. We have
carefully addressed all the comments with additional numerical experiments, and we revised
the manuscript accordingly. A point-to-point response is listed here below.

0.2 Specific Comments:

1. The authors highlighted that “this study seeks to address the limitations of traditional
deterministic wildfire forecasting methods.” What about the existing stochastic or prob-
abilistic models?

We agree with the Reviewer that stochastic models are widely used in wildfire modelling
to capture extreme fire behaviour. In fact, the training and test data used in this work
is generated via a physics-based stochastic cellular-automata fire simulator Alexandridis
et al. (2008). Our goal here is not to compare conventional stochastic fire predictors
with deep learning—based ones but rather to investigate whether a generative machine
learning model can effectively simulate wildfire propagation dynamics by learning from
and reproducing the stochastic behaviour of a physics-based CA model.

Accordingly, we thoroughly compare the outputs of the proposed diffusion-based wildfire
predictor against the original CA model and show that, with the diffusion approach,
we can numerically represent the probability density function of the CA outputs. By
contrast, conventional deterministic models typically predict only the mean of possible
scenarios and therefore lose the ability to capture extreme fire events. Following the
Reviewer’s suggestion, we have highlighted this aspect in the introduction of the revised
manuscript (page 4) " Evaluation uses data from a probabilistic cellular-automata emulator
incorporating canopy cover, canopy density, and slope. We analyse the stochastic outputs
to assess whether the diffusion model captures the physics model’s uncertainties."

2. The authors may add more explicit statements to highlight the novelty of this work. Is
this just an application or are there existing improvements in the techniques?

This study is, to our knowledge, the first to apply diffusion-based generative Al to wild-
fire spread prediction (Xu et al., 2025). More importantly, our model is trained on data
from a stochastic wildfire simulator, allowing us to test whether the diffusion model’s
ensemble reproduces the stochasticity of the original physics model. We designed a dedi-
cated validation procedure to compare ensembles from both models, as detailed in Section
2.2.2 and shown in Figures 3 and 7. We believe that developing a surrogate model using
diffusion-based generative methods to capture uncertainties in stochastic physics simu-
lators is novel in computational science. Following the Reviewer’s suggestion, we have
added a paragraph in the introduction of the revised manuscript (page 1) to highlight it
"To the authors’ knowledge, no existing work has used diffusion-based generative models



to predict fire spread in the literature. Furthermore, we believe that employing such sur-
rogates to capture uncertainties in stochastic physics simulators is novel in computational
science."

. The interpretability of probabilistic forecasting needs more discussion. These forecasts
indeed provide UQ. But is such a UQ reliable and accurate?

We have thoroughly compared the estimated probability distribution of our generative
model with that of the physics-based model to ensure the diffusion model provides ac-
curate uncertainty quantification of possible fire-spread scenarios. Following the Re-
viewer’s suggestion, we have highlighted the comparison between the ensemble diffusion
model’s UQ and the numerical UQ of the original physics-based CA model in the revised
manuscript (page 22) "In particular, the strong FID and KL results indicate that the dif-
fusion model’s estimated probability distribution is reliable, as it closely matches that of
the original physics-based CA model.".

. The physical mechanism is quite complicated, and therefore several variables are involved
in the models. How sensitive is the diffusion emulator with respect to the perturbation
of each parameter/input?

In fact, to generate different scenarios for the dataset, we randomised the initial param-
eters following our previous work (Cheng et al., 2022). Consequently, both the training
and test datasets contain fire scenarios generated with different initial parameters. We
have added a description in section 2.1 (page 7) of the revised manuscript to clarify this.
"The operational parameters py, a, c¢1, and co influence the fire forecast, where a is the
slope effect coefficient and ¢y, co are the wind effect coefficients. The detailed formulations
of the slope and wind effects are described in Cheng et al. (2022)... Training data is gen-
erated via Latin Hypercube Sampling (LHS) within the range of an ensemble of perturbed
parameter sets:"

pr € [0.00, 0.35], a € [0.00, 0.14], ¢; € [0.00, 0.12], ¢z € [0.00, 0.40] (1)

where the parameter ranges are based on the previous study by Cheng et al. (2022).

Following the Reviewer’s question, we have also added an analysis in page 23 of the
manuscript "It is also worth mentioning that the CA model parameters py, a, ¢, and ¢y
are randomly perturbed when generating the training and test datasets. The numerical
results presented in Table 3 further demonstrate the robustness of the proposed diffusion
model against variations in fire modelling parameters."

. The role of some of the details of the emulator’s components needs to be discussed. For
example, what if the attention mechanism is removed?

We thank the Reviewer for pointing out this question regarding the architectural compo-
nents of our model. Following the Reviewer’s suggestion, we have conducted an ablation
study examining the role of attention mechanisms and other architectural details, which
we present in the Appendix D: Ablation study on model architecture of our paper and
illustrate in Figure D1 (page 32) of the revised manuscript, summarised here below.



Training Dataset Size vs Model Performance

MSE vs Dataset Size PSNR vs Dataset Size SSIM vs Dataset Size
0.200 3 o - 10 - oo
- 3 ) - gz 1% : 3 AT
4 3 ) 25 3 v 7 % - °. 3 &2 2ad
& R 9 3 bR EIK] m o2 o as 855 328 aca
~ - ] e 23 NN Nq o $93 852 @2 © g
0175 - o 38 N - " nsg ] 5 M
g a2 o g @y L ede)
i 3 " PR -
3.4 B g H &5 H B 0.8
201 §e4c o 8 N B o :
0.150 £} 2 < o & 3
RE < [ -~ - i
AR ~ - Il
- - % | ¥
! f ’ % Iy
! I ’ ] |
0.125 I I Y v sl
‘ 1 : | ool 3
w ot | I ’ v s aE
2 g 1 } ; v 5 | B
0.100 o I I J v o I}
I | ! 7] | !
| |} |/ | |}
I I ¥ ‘ , 5
: : : ‘AN :
2 I N7 y ] . | 5
0073 1 i B B ; v | i 3
| 178 | 173 J 7] | ! S
2 I Y / | > Y
| I | y ‘ { ‘ !
‘N | : : v | ‘ 1
0.050 g 2 1 : 7 |t 1 1
| J | Y
5 ’ I I ’ v 02 J ! J
y I ! ) 7] |y J !
’ I | y v ’ y J
0.025 7 ; ‘ % |t ; }
/ i I ’ A 73 ! |
2 N | \ g e $ : y
y | | ) 7] | 13 J !
; I I ! 7 | ’ !
0.000 o v e R 2 22 0.0 v o - = ve
50 100 200 500 900 50 100 200 500 900 50 100 200 500 900
Training Dataset Size Training Dataset Size Training Dataset Size
FID vs Dataset Size KL vs Dataset Size HR vs Dataset Size
“ g H " . gz
400 < 8 8 - 3. 33 3
8 ] ° g 4 s < e 5 SR
" Ll LJ - o w @ ©w 0 ® @6
o . g n o6 @ N -] °
2000 - ; @ 3 2 ®
350 2 - 3 $ =] o K] k1
g b4 s >8 o~ & N
K 2 H 3 0.8 2 B N :
- 3 3 - Y
n 2 - ~
300 2 &
1
8
3
1500 =
250 0.6
a 8 S S o N S o i «
o % s ] g 39 b4 b £
8 2 3 2 a8 a
200 “ 2 i | -1 3
’ Ao -
i y N 1000
N J i 0.4
o 4
150{ Sfs ~ J
o | 3+ y 4
S s J
et | H 3 A
- { sB° M B
{ o o ¥
| < 3 J
| o
\ N ! 500 02
4 Ry J .
| y
: |
|/
A y
4 |
4 Y
4
i /
A ,
= = 0 0.0

900 o 100 200 0
Training Dataset Size

10 200
Training Dataset Size

10 200 500
Training Dataset Size

B unet_atten_diffusion mmm unet_atten_det mmw unet_basic_diffusion @ unet_basic_det ww rescae_diffusion  ##% rescae_det

Figure 1: Ablation study comparing model performance across different training dataset sizes
and architectures.

Our ablation study evaluates three distinct neural network architectures across varying
training dataset sizes {50, 100, 200, 500, and 900 samples}, comparing stochastic diffu-
sion models against deterministic approaches, as shown in Figure D1. The architectures
examined include: (1) a UNet architecture with attention mechanisms (unet_atten) as
employed in our main study; (2) a UNet basic architecture (unet_ basic), representing
a simplified variant without attention blocks; and (3) a residual AutoEncoder architec-
ture (rescae), which maintains a similar network structure to the UNet but removes skip
connections to assess their contribution to model performance. All models were trained
using identical hyperparameter configurations, including a learning rate of le—5 (selected
from candidates le—3, le—4,le—5 as the optimal choice), 200 training epochs, and the
AdamW optimiser with weight decay of le—4. All models are evaluated on the ensemble
test dataset of the Chimney fire event.

The related source code, scripts, data, and experimental results have been uploaded to
Zenodo (https://zenodo.org/records/15699653) (Yu et al., 2025). The experimental
results can be found in the out directory.

Turning to the specific question about attention mechanisms, our experimental results
demonstrate that the attention-enhanced UNet generally outperforms the UNet basic ar-
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https://zenodo.org/records/15699653

chitecture without attention blocks, though the benefits vary across metrics and dataset
sizes, as shown in Figure 1. It is worth noting that at smaller dataset sizes (e.g., 100
samples), the performance differences between architectures with and without attention
become less pronounced. This observation may partially be attributed to the specific char-
acteristics of our experimental data, including its moderate spatial resolution (64 x 64),
which might not fully utilise the representational capabilities of attention mechanisms.
We suggest that in scenarios involving more complex spatial patterns or higher-resolution
data, the benefits of attention mechanisms could potentially be more pronounced.

Our ablation study demonstrates that whilst architectural improvements (such as atten-
tion mechanisms) provide meaningful enhancements, the more substantial performance
gains arise from the fundamental shift from deterministic to stochastic modelling ap-
proaches. The consistent superiority of diffusion models across all architectural variants
reinforces our central ideas that stochastic models are inherently better suited for captur-
ing the uncertainty and variability characteristic of wildfire behaviour.

6. Some details about the background should be added. For example, subsampling frames
at 20-hour intervals is used for training. Why is such a specific number chosen? There
are a lot of mathematical details, but some of the physics or reasoning are missing.

We thank the Reviewer for pointing this out. The 20-hour interval was chosen to ensure
sufficiently large time steps for observing meaningful differences across fire-spread stages.
This time interval is consistent with recent research works (Kondylatos et al., 2022; Huot
et al., 2022). Following the Reviewer’s suggestion, we have added a paragraph in the
revised manuscript (page 9) to explain the reason of this choice "To enlarge the prediction
window and maintain substantial differences between successive fire states, frames are
subsampled from each simulation at intervals of 10 time steps (20 hours), yielding siz
frames per wildfire event.”
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