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Abstract. Assessing ecosystem functioning is crucial for managing and conserving ecosystems and their services. Numerous 32 

ways to evaluate ecosystem functioning have been developed, using species traits, such as Plant Functional Types (PFTs), flux 33 

measurements with the Eddy Covariance (EC) technique, and remote sensing techniques. We propose that the spatial 34 

heterogeneity in ecosystem functioning at a regional scale can be assessed and monitored using satellite-derived Ecosystem 35 

Functional Types (EFTs): groups of ecosystems or patches of the land surface that share similar dynamics of matter and energy 36 

exchanges. We hypothesize that, as observed for PFTs, different EFTs should have distinct patterns and magnitudes of Net 37 

Ecosystem Exchange (NEE) of carbon dioxide measured using the EC technique. We derived EFTs from  2001-2014 time-38 

series of satellite images of the Enhanced Vegetation Index (EVI) and compared them with NEE measurements (derived from 39 
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in situ field observations using the EC technique) across 50 European sites. Our results show that distinct EFTs classes display 40 

significantly different dynamics and magnitudes of NEE and that EFTs perform marginally better than PFTs in explaining 41 

NEE regional patterns. Land-cover maps based on PFTs are difficult to update on an annual basis and are not sensitive to 42 

changes in ecosystem performance (e.g., droughts or pests) that do involve short-term changes in PFT composition. In contrast, 43 

satellite-derived EFTs are sensitive to short-term changes in ecosystem performance. Satellite-derived EFTs are an ecosystem 44 

functional classification built from satellite observations that allow the identification of homogeneous land patches based on 45 

ecosystem functions, e.g., ecosystem net productivity measured on the ground as NEE. Satellite-derived EFTs can be 46 

recalculated annually, providing a straightforward way to assess and monitor interannual changes in ecosystem functioning 47 

and functional diversity. 48 

1 Introduction 49 

Ecosystem functioning and functional diversity are critical issues in current ecological research (Jax, 2010; Violle et al. 2014, 50 

2017; Tilman et al. 2014; Pettorelli et al. 2018; Villarreal et al. 2018; Malaterre et al. 2019; Díaz et al. 2020). Quantifying, 51 

monitoring, and understanding ecosystem functioning help provide insights into the management and conservation of 52 

ecosystems and their services (Cabello et al. 2012; Pettorelli et al. 2018; Nicholson et al. 2021). Variables capable of describing 53 

ecosystem functioning at regional to global scales are needed to define essential biodiversity variables to monitor biodiversity 54 

status (Pereira et al. 2013; Jetz et al. 2019), to advance in the definition of critical but still unassessed planetary boundary 55 

(Steffen et al. 2015; Richardson et al. 2023), and to quantify their associated ecosystem services (Costanza et al. 1997; 56 

Balvanera et al. 2017).  57 

There are multiple ways to evaluate ecosystem functioning, from concepts such as species traits or Plant Functional Types 58 

(PFTs) to direct observation techniques such as eddy covariance (EC) and remote sensing. Traditionally, studies on ecosystem 59 

functioning were approached by grouping species into PFTs based on structural (e.g., biotypes), phylogenetic (e.g., 60 

coniferous), or functional species traits (e.g., metabolic pathway) that were linked to biological processes (Lavorel et al. 2002, 61 

2007). For instance, the PFT approach has been widely used in land-cover mapping and dynamic vegetation models to simplify 62 

the continuum of species traits into a reduced number of discrete categories suitable for regional-to-global synthesis and 63 

modeling studies (Wullschleger et al. 2014). However, this simplification can lead to information loss (Funk et al. 2017) and 64 

may not be capable of predicting the overall ecosystem functioning (Virtanen, 2017; Thomas et al. 2019). Another more recent 65 

way to evaluate ecosystem functioning is by using EC (Reichstein et al. 2014; Migliavacca et al. 2021). EC uses high-frequency 66 

wind and scalar mixing ratio data for calculating the Net Ecosystem CO2 Exchange (NEE) between the land surface and the 67 

atmosphere at the field scale (Baldocchi et al. 2001, 2020). This approach is widely used and regional (e.g., AmeriFlux, 68 

AsiaFlux, ICOS, NEON), and a global network of EC measurements has been formed (e.g., FLUXNET) (Franz et al. 2018; 69 

Knox et al. 2019). Although FLUXNET has provided unprecedented information on the carbon, water, and energy exchange 70 

between the earth's surface and the atmosphere, these measurements still show limitations to assessing ecosystem functioning 71 
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at regional or global scales due to their small footprints (essentially considered as point-scale data (Chu et al. 2021) and a lack 72 

of spatial representativity (Villarreal et al. 2018, 2021). In parallel, advances in remote sensing are providing new opportunities 73 

to quantify ecosystem functioning and functional diversity from regional to global scales (Rocchini et al. 2018; Skidmore et 74 

al. 2021). Consequently, combining field-based measurements (e.g., EC) with remote sensing data may allow for better 75 

information integration across multiple spatial and temporal scales (Running et al. 1999; Wang et al. 2017). Indeed, multiple 76 

studies have aimed to derive global maps combining flux measurements with earth observation data, although challenges and 77 

limitations still need to be addressed (e.g., FLUXCOM; Huang et al. 2019; Jung et al. 2020; Liu et al. 2023; Pacheco-Labrador 78 

et al. 2023; Gomarasca et al. 2024; Nelson et al. 2024). 79 

Ecosystem functioning and functional diversity at the regional scale can be assessed using satellite-derived Ecosystem 80 

Functional Types (EFTs) (Paruelo et al. 2001). Conceptually, EFTs are defined as patches of the land surface that share similar 81 

dynamics of matter and energy exchanges between the biota and the physical environment (Alcaraz-Segura et al. 2006, 2013; 82 

Cazorla et al. 2020, 2021, 2023). The concept of EFT is equivalent to the concept of PFTs but applied to a higher level of 83 

biological organization. That is, just like plant species can be grouped based on shared functional traits (e.g., growth rates, 84 

nitrogen fixation) into PFTs, ecosystems can be grouped based on their common functional dynamics (e.g., productivity, 85 

seasonality, phenology) into EFTs (Paruelo et al. 2001). Remote sensing has been empirically applied to identify EFTs, mainly 86 

through spectral indices related to carbon dynamics (Paruelo et al., 2001; Alcaraz-Segura et al., 2006; Ivits et al., 2013), but 87 

also incorporating other functional attributes such as evapotranspiration, surface temperature, and albedo (e.g., Fernández et 88 

al. 2010; Pérez-Hoyos et al. 2014) or soil characteristics based on their greenhouse gas flux dynamics (Petrakis et al. 2018).  89 

Among these functional attributes, those linked to carbon dynamics, particularly primary production, represent one of the most 90 

integrative dimensions of ecosystem functioning because they reflect the main entry of energy into ecosystems and are directly 91 

related to key carbon and energy exchanges (Virginia and Wall 2001; Pereira et al. 2013; Xiao et al. 2019). Moreover, primary 92 

production provides a holistic response to environmental changes and constitutes a synthetic indicator of ecosystem health 93 

(Costanza et al. 1992; Skidmore et al. 2015). Other authors have used EFTs to: describe large-scale functional biogeographical 94 

patterns (Ivits et al. 2013; Cazorla et al. 2021), assess the representativeness of environmental observatory networks (Villarreal 95 

et al. 2018, 2019), assess the ecosystem functional diversity (Alcaraz-Segura et al. 2013; Liu et al. 2023; Amstrong et al. 2024), 96 

evaluate the effects of land-use changes on ecosystem functioning (Oki et al. 2012; Domingo-Marimon et al. 2024), improve 97 

weather forecasting (Lee et al. 2013; Müller et al. 2014) and species distribution/abundance models (Arenas-Castro et al. 2018, 98 

2019), and to identify geographic priorities for biodiversity conservation (Cazorla et al. 2020).  99 

So far, EFTs have been identified from satellite remote sensing data. However, whether such top-down-identified EFT classes 100 

are biologically meaningful in ecological processes measured on the ground, such as biogeochemical fluxes, remains untested. 101 

That is, whether satellite-derived EFT classes differ in their exchanges of energy and matter between ecosystems and the 102 

atmosphere. Therefore, linking satellite-derived EFTs identified at large scales to biogeochemical fluxes measured at the site 103 

level could help strengthen the ecological significance of the EFT patterns for ecosystem modeling and functional diversity 104 

assessments remotely, as it provides empirical evidence for using the concept at these scales. 105 
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This study aims to provide field-based empirical evidence for using satellite-derived EFTs as descriptors of regional 106 

heterogeneity in ecosystem functioning measured on the ground (i.e., seasonal dynamics of NEE). We hypothesize that 107 

satellite-derived EFTs classes significantly differ in their exchanges of energy and matter with the atmosphere from each other, 108 

in the same way as estimated with in situ field observations. Here, we propose that different satellite-derived EFTs classes 109 

display significantly different NEE measurements using the EC technique, while sites under the same EFT should exhibit 110 

similar NEE dynamics. To achieve our goal, we used publicly available data across continental Europe, given its high density 111 

of EC sites, 1) to characterize the regional patterns of ecosystem functioning using satellite-derived EFTs; 2) to assess whether 112 

different satellite-derived EFTs correspond to different NEE dynamics measured on the ground with the EC technique; and 3) 113 

to assess how EFTs perform compared to traditional PFTs to discriminate different NEE dynamics. 114 

2 Material and methods 115 

2.1 Study area 116 

We used NEE information from continental Europe as it has one of the largest densities of EC sites worldwide (Table 1). The 117 

sites were distributed across four biogeographical regions (EEA 2016): Mediterranean (12 sites), Continental (21 sites), 118 

Atlantic (9 sites), and Alpine (8 sites). Only sites with a long-term (i.e., from 3 to 14 years) NEE time-series were included in 119 

the analysis (detailed below). 120 

 121 

Table 1. Main characteristics of the 50 Eddy Covariance (EC) sites in the study area. Data from FLUXNET 2015 dataset. 122 

ID Site Country PFT  EFT 

code 

Biogeogra

phical 

region 

n years  

(2001-2014) 

Eleva

tion 

(m) 

Latitude Longitude 

AT-Neu Neustift/

Stubai 

Valley 

Austria Grasslands Da2 Alpine 11 (2002-2013) 970 47.116 11.317 

BE-Bra Brasscha

at (De 

Inslag 

Trees) 

Belgium Mixed 

Trees 

Cc1 Atlantic 14 (2001-2014) 16 51.309 4.520 

BE-Lon Lonzee Belgium Croplands Ba1 Atlantic 11 (2004-2014) 167 50.552 4.744 

BE-Vie Vielsalm Belgium Mixed 

Trees 

Bc1 Continental 14 (2001-2014) 439 50.305 5.998 

CH-Cha Chamau 

grassland 

Switzerland Grasslands Db1 Continental 10 (2005-2014) 393 47.210 8.410 

CH-Dav Davos- Switzerland Evergreen Ac2 Alpine 14 (2001-2014) 1639 46.815 9.855 
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Seehorn 

forest 

Needleleaf 

Trees 

CH-Fru Fruebuel 

grassland 

Switzerland Grasslands Da2 Continental 10 (2005-2014) 982 47.115 8.537 

CH-Lae Laegeren Switzerland Mixed 

Trees 

Da1 Continental 11 (2004-2014) 689 47.478 8.365 

CH-Oe1 Oensinge

n1 grass 

Switzerland Croplands Cb1 Continental 7 (2002-2008) 450 47.285 7.731 

 

CH-Oe2 Oensinge

n2 crop 

Switzerland Croplands Cb1 Continental 11 (2004-2014) 452  47.286 7.733 

CZ-BK1 Bily Kriz- 

Beskidy 

Mountain

s 

Czech 

Republic 

Evergreen 

Needleleaf 

Trees 

Cc1 Continental 11 (2004-2014) 875 49.502 18.536 

CZ-BK2 Bily Kriz- 

grassland 

Czech 

Republic 

Grasslands Ac1 Alpine 9 (2004-2012) 855 49.494 18.542 

 

 

CZ-wet CZECH

WET 

Czech 

Republic 

Wetlands Ba1 Continental 9 (2004-2012) 426 49.024 14.770 

DE-Akm Anklam Germany Wetlands Ba1 Continental 5 (2010-2014) -1 53.866 13.683 

DE-Geb Gebesee Germany Croplands Ba1 Continental 14 (2001-2014) 161 51.100 10.914 

DE-Gri Grillenbu

rg- grass 

station 

Germany Grassland Da2 Continental 11 (2004-2014) 385 50.949 13.512 

DE-Hai Hainich Germany Mixed 

Trees 

Ca1 Continental 12 (2001-2012) 430 51.079 10.452 

DE-Kli Klingenb

erg 

Germany Croplands Ba1 Continental 11 (2004-2014) 478 50.892 13.522 

DE-Lkb Lackenbe

rg 

Germany Evergreen 

Needleleaf 

Trees 

Ab2 Continental 5 (2009-2013) 1308 49.099 13.304 

DE-Lnf Leinefeld

e 

Germany Deciduous 

Broadleaf 

Trees 

Da1 Continental 11 (2002-2012) 451 51.328 10.367 

 

 

DE-Obe Oberbäre

nburg 

Germany Evergreen 

Needleleaf 

Ac1 Continental 7 (2008-2014) 734 50.786 13.721 
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 Trees 

DE-RuR Rollesbro

ich 

Germany Grasslands Da2 Continental 4 (2011-2014) 515 50.621 6.304 

DE-RuS Selhause

n Juelich 

Germany Croplands Cb1 Atlantic 4 (2011-2014) 103 50.865 6.447 

DE-Seh Selhause

n 

Germany Croplands Cb1 Atlantic 4 (2007-2010) 103 50.870 6.449 

DE-Spw Spreewal

d 

Germany Mixed 

Trees 

Ca1 Continental 5 (2010-2014) 61 51.892 14.033 

DE-Tha Tharandt- 

Anchor 

Station 

Germany Evergreen 

Needleleaf 

Trees 

Bc1 Continental 14 (2001-2014) 385 50.963 13.566 

DK-Eng Enghave Denmark Croplands Ca1 Continental 4 (2005-2008) 10 55.690 12.191 

 

DK-Sor Soroe- 

LilleBoge

skov 

Denmark Deciduous 

Broadleaf 

Trees 

Da1 Continental 14 (2001-2014) 40 55.485 11.644 

ES-Amo Amolader

as 

Spain Shrublands Ad4 Mediterran

ea 

6 (2007-2012) 58 36.833 -2.252 

ES-LJu Llano de 

los Juanes 

Spain Shrublands Ad1 Mediterran

ea 

10 (2004-2013) 1600 36.926 -2.752 

FR-Fon Fontaineb

leau 

France Deciduous 

Broadleaf 

Trees 

Da1 Atlantic 10 (2005-2014) 103 48.476 2.780 

FR-Gri Grignon   France Croplands Cc1 Atlantic 11 (2004-2014) 125 48.844 1.951 

FR-LBr Le Bray France Cropland Cd1 Atlantic 8 (2001 - 2008) 61 44.717 -0.769 

FR-Pue Puechabo

n 

France Mixed 

Trees 

Cd1 Mediterran

ea 

14 (2001-2014) 270 43.741 3.595 

IT-BCi Borgo 

Cioffi 

Italy Croplands Db4 Mediterran

ea 

11 (2004-2014) 20 40.523 14.957 

IT-CA1 Castel 

d`Asso1 

Italy Croplands Bd1 Mediterran

ea 

4 (2011-2014) 200 42.380 12.026 

IT-CA2 Castel 

d`Asso2 

Italy Croplands Cb1 Mediterran

ea 

4 (2011-2014) 200 42.377 12.026 
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IT-CA3 Castel 

d`Asso 3 

Italy Croplands Bd1 Mediterran

ea 

4 (2011-2014) 197 42.380 12.022 

IT-Col Collelong

o- Selva 

Piana 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Alpine 14 (2001-2014) 1560 41.849 13.588 

IT-Cpz Castelpor

ziano 

Italy Evergreen 

Needleleaf 

Trees 

Dd1 Mediterran

ea 

9 (2001-2009) 68 41.705 12.376 

IT-Lav Lavarone 

(after 

3/2002) 

Italy Evergreen 

Needleleaf 

Trees 

Bc1 Alpine 12 (2003-2014) 1353 45.956 11.281 

IT-MBo Monte 

Bondone 

Italy Grasslands Aa1 Alpine 11 (2003-2013) 1550 46.014 11.045 

IT-Noe Sardinia/

Arca di 

Noe 

Italy Shrublands Ad1 Mediterran

ea 

11 (2004-2014) 25 40.606 8.151 

 

IT-Ren Renon Italy Evergreen 

Needleleaf 

Trees 

Ac1 Alpine 13 (2001-2013) 1730 46.586 11.433 

IT-Ro1 Roccares

pampani1 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Mediterran

ea 

8 (2001-2008) 235 42.408 11.930 

IT-Ro2 Roccares

pampani2 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Mediterran

ea 

11 (2002-2012) 160 42.390 11.920 

IT-SRo San 

Rossore 

Italy Evergreen 

Needleleaf 

Trees 

Cd3 Mediterran

ea 

12 (2001-2012) 6 43.727 10.284 

IT-Tor Torgnon Italy Grassland Aa1 Alpine 7 (2008-2014) 1260 45.844 7.578 

NL-Hor Horsterm

eer 

Netherlands Mixed 

Trees 

Da1 Atlantic 8 (2004-2011) 2 52.240 5.071 

NL-Loo Loobos Netherlands Evergreen 

Needleleaf 

Trees 

Bd2 Atlantic 14 (2001-2014) 25 52.166 5.743 

123 
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 124 

2.2 Satellite-derived Ecosystem Functional Types (EFTs) 125 

To characterize the regional heterogeneity in ecosystem functioning across continental Europe, we identified EFTs based on 126 

the 2001-2014 time-series of satellite images of the Enhanced Vegetation Index (EVI) captured by the MODIS-Terra sensor. 127 

These images (MOD13Q1.C006 product) provide a maximum composite EVI value every 16 days at a ~230 m spatial 128 

resolution. EVI is a proxy for canopy greenness, vegetation carbon gains, or primary production (Huete et al. 1999). Based on 129 

the approach by Alcaraz-Segura et al. (2013), we identified EFTs using three biologically meaningful metrics of the EVI 130 

seasonal dynamics: the EVI annual mean (EVI_mean; an estimator of annual primary production), the EVI seasonal standard 131 

deviation (EVI_SD; a descriptor of seasonality), and the date of maximum EVI (EVI_DMAX; an indicator of phenology). We 132 

chose to use MODIS data instead of other satellites with higher spatial resolution (e.g., Landsat or Sentinel-2) because MODIS 133 

has several advantages in terms of data availability and quality (e.g. more years of data and cloud-free image every 16-days) 134 

along the time series (see S1). 135 

The range of values of each EVI metric was divided into four intervals, giving a potential number of 64 EFTs (4 × 4 × 4). For 136 

EVI_DMAX, the four intervals agreed with the four seasons of the year. For EVI_mean and EVI_SD, we extracted the first, 137 

second, and third quartiles for each year.  For each quartile, we calculated the interannual mean of the 14-year period and used 138 

them as breaks between classes. These breaks were applied back to each year as the thresholds for EVI_Mean and EVI_sSD 139 

to set EFT classes (S2, Table S1). We used this four-class discretization and fixed class boundaries to obtain a coherent and 140 

ecologically interpretable classification (Noble and Gitay 1996) that applies consistently across years. This approach enables 141 

interannual comparisons of spatial functional heterogeneity and maintains continuity with previous EFT implementations 142 

(Alcaraz-Segura et al. 2013, Cazorla et al. 2021, 2023). Moreover, recent methodological assessments indicate that EFT 143 

derivation is robust to the number of bins used to discretize EF attributes (e.g., Liu et al. 2023). To name EFTs, we used two 144 

letters and a number: the first capital letter indicates net primary production (EVI_mean), increasing from A to D; the second 145 

small letter represents seasonality (EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing 146 

season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter  (see S3, Table S2 for a schematic summary of 147 

code combinations and examples). To summarize the ecosystem functional diversity of the 2001–2014 period, we calculated 148 

the dominant EFT (i.e., the mode value for each pixel) of these years.  149 

2.3 Eddy covariance (EC) sites for net ecosystem exchange (NEE) 150 

To obtain NEE fluxes, 50 EC sites were selected across our study area from the FLUXNET2015 dataset (Table 1). The 151 

FLUXNET network (Baldocchi et al. 2001, 2020) provides high-quality, community-based, global data on CO2, H2O, and 152 

energy exchanges between the biosphere and the atmosphere measured using the EC technique (Baldocchi, 2003). We used 153 

data of NEE of CO2 (NEE_VUT_REF, gC m-2 d-1) from the FLUXNET2015 database. We selected data from 154 

FLUXNET2015 because they are publicly available and offer benefits in terms of standardized methodology. FLUXNET2015 155 
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incorporates NEE measurements along with a quality flag based on an annually determined Variable Ustar Threshold (VUT), 156 

which is selected to maximize model efficiency (MEF) (Pastorello et al. 2020). The MEF analysis is repeated for each one of 157 

the half-hourly data (Baldocchi et al. 2001, 2020). We selected sites that: (a) were located in our study area; (b) provided more 158 

than three consecutive years of data over the 2001-2014 period; (c) provided daily averages of NEE calculated from half-159 

hourly data; and (d) had quality control information (i.e., NEE_VUT_REF data with quality control flag QC > 1 were removed 160 

since they represent medium and poor quality gap-filled data).  161 

We applied Discriminant Analysis (DA) to assess whether different satellite-derived EFT classes correspond to different NEE 162 

dynamics and whether sites under the same EFT exhibit similar NEE dynamics (S4). The DA allowed us to examine the 163 

homogeneity within each EFT class and the differences among EFT classes based on the annual dynamics of NEE as a predictor 164 

variable (Williams,1981, 1983). We selected the EFT where each EC site was located and its corresponding interannual 165 

average of the seasonal cycle of NEE for the available years. EC sites fluxes were regarded as the ground truth standard against 166 

which the satellite data were compared to calculate five performance metrics: Kappa, Accuracy, Precision, Recall, and F1 167 

score (Table 2). 168 

 169 

Table 2. Metrics, interpretations, and equations used to evaluate and compare results from the discriminant analysis, Pr(a) is 170 

the relative observed agreement between observations, and Pr(e) is the hypothetical probability of agreement by chance. True 171 

Positives are correctly classified as positive, True Negative are correctly classified as negative, Positives are all positives 172 

including false positives (i.e., including falsely classified as positive, Type I error) and, Negatives are all negatives including 173 

false negatives (i.e. falsely classified as negative, Type II error). All performance metrics oscillate between 0 (disagreement) 174 

and 1 (maximum agreement). 175 

 176 

Metric Meaning Equation 

Kappa Measures the percentage of data values in the 

main diagonal of the contingency table and 

adjusts these values for agreement that could 

be expected due to chance alone 

K= Pr(a)-Pr(e) / 1-Pr(e) 

  

Accuracy Degree of closeness of measurements of a 

quantity to that quantity's true value 

Accuracy = (True Positives + 

True Negatives )/ 

(Positives+Negatives) 
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Precision Fraction of relevant instances among the 

retrieved instances (also called positive 

predictive value, i.e., how many EFTs were 

well discriminated) 

Precision = True Positives / (True 

  Positives+False Positives) 

Recall Fraction of relevant instances that have been 

retrieved over the total amount of relevant 

instances 

Recall = True Positives / (True 

Positives+False 

  Negatives) 

F1 Considers both the Precision and the Recall of 

the test to compute the score 

F1 score= 2 × (Precision × Recall) 

/ (Precision 

  + Recall) 

 177 

2.4 Comparing how EFTs and PFTs discriminate different NEE dynamics 178 

The PFT corresponding to each EC site was assigned by each of their principal investigators using the International Geosphere-179 

Biosphere Programme (IGBP, 1992). Subsequently, we verified the assigned PFTs using the MODIS MCD12Q1 land cover 180 

product. The PFT categories present in the EC sites were: cropland (15 sites), deciduous broadleaf trees (6), evergreen 181 

needleleaf trees (10), grassland (6), mixed trees (7), shrubland (3), and wetland (1) (Table 1). 182 

During the comparison of the performance of PFTs and EFTs to discriminate the seasonal dynamics of NEE, we considered 183 

the unbalanced sample size due to the different number of classes of EFTs (18) and PFTs (7) represented by FLUXNET2015 184 

and the different number of EC sites per PFT class (which ranged between 3 and 31). To do this, we performed the following 185 

steps: 186 

First, we calculated all possible combinations (C) without repetitions between the 18 EFT and the 7 PFT classes (C(18,7) = 187 

31834). Second, since the DA needs balanced data, we discarded all combinations with different numbers of EC sites in the 188 

combined EFT and PFT classes. Third, for each combination, we applied discriminant analysis to assess how the EFT and PFT 189 

classifications performed to discriminate the seasonal dynamics of NEE. For each discriminant analysis, we obtained five 190 

metrics of performance (Table 2). Fourth, to assess whether significant differences existed in the performance metrics between 191 

EFTs and PFTs, we applied the Wilcoxon non-parametric test. For each combination of a number of classes and EC sites, there 192 

was a different number of discriminant analyses in the EFT subset and the PFT subset (S4 Table S3). To account for such an 193 

unbalanced design during the Wilcoxon test, we fixed the sample size to the smaller subset (either from the EFT or the PFT 194 

classification) and randomly bootstrapped the performance metrics from the bigger one. Fifth, we calculated the mean and 195 

standard deviation of each metric obtained by the EFTs and PFTs classifications, the average p-value, and the percentage of 196 

times we obtained significant differences (p-value <0.05) between EFTs and PFTs. 197 
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3 Results 198 

3.1 Regional heterogeneity in ecosystem functioning using satellite-derived EFTs  199 

The map of the EVI-derived proxies of productivity (EVI_mean), seasonality (EVI_SD), and phenology (DMAX) (S5 Fig. 200 

S1a-c) and their integration into EFTs (Fig. 1) provided a characterization of the spatial patterns of our focal ecosystem function 201 

across Europe. At the continental scale, productivity decreased eastwards and southwards (Fig. 1, S5 Fig. S4). Seasonality was 202 

greater in cultivated and mountain grassland areas (Fig. 1, S5 Fig. S5), and the most frequent EVI maxima occurred in spring 203 

and summer (Fig. 1, S5 Fig. S6).  204 

The greatest EVI_mean (D) was reached in the Atlantic and Continental biogeographic regions (Fig. 1, S5 Fig. S4d). At the 205 

same time, the lowest EVI_mean (A) occurred in the western part of the Mediterranean region, corresponding to most of the 206 

Iberian Peninsula, some parts of the Italian Peninsula, the mountainous areas of the Alpine region, and in the eastern part of 207 

the Continental region (Fig. 1, S5 Fig. S4a). The greatest seasonality (a) occurred in the highest altitudes of the Alpine region 208 

(peaks of Alps <3000 meters), the Continental region (southwestern, northwestern, and eastern part of this region), and the 209 

eastern part of the Atlantic region (Fig. 1, S5 Fig. S5a). The lowest seasonality (d) was observed in the western part of the 210 

Mediterranean region, specifically in the Iberian Peninsula, the Gulf of Lion’s surroundings, and the Atlantic region’s Coastal 211 

western places (Fig. 1, S5 Fig. S5d). The phenological indicator of the growing season, DMAX, showed that most areas of the 212 

Mediterranean region have the EVI maxima in spring (1). EVI maxima in spring (1) were also observed in the Continental and 213 

Alpine regions (Fig. 1, S5 Fig. S6a). Maxima in summer (2) were identified in western places of the Atlantic and most of the 214 

Alpine regions (Fig. 1, S5 Fig. S6b).  EVI maxima in autumn (3) mainly in the Mediterranean region (Fig. 1, S5 Fig. S6c). 215 

Maxima in winter (4) were rare and emerged in the eastern part of the Atlantic region, where the maximum productivity was 216 

found and in the western part of the Mediterranean region (Fig. 1, S5 Fig. S6d). A simplified representation of the EFT map, 217 

obtained by clustering EFTs based on their functional similarity, is provided in the Supplementary Material (S6). 218 
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 219 

Fig. 1. Ecosystem Functional Types (EFTs) based on MODIS-EVI dynamics (~230 m resolution) and Eddy Covariance (EC) 220 

sites corresponding to the 2001–2014 period. Capital letters in the legend correspond to the EVI annual mean (EVI_mean) 221 

level, ranging from A to D for low to high productivity. Small letters show the seasonal standard deviation (EVI_SD), ranging 222 

from a to d for high to low seasonality of carbon gains. The numbers indicate the season when the maximum EVI took place 223 

(DMAX): (1) spring, (2) summer, (3) autumn, (4) winter. Places with EC sites are indicated with colored circles , where each 224 

color represents a different plant functional type (PFT). Biogeographical regions are based on the official European 225 

biogeographical regions map (EEA, 2016) and are represented by black lines. 226 
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3.2 Ground-based NEE of the satellite-derived EFTs 227 

In total, 20 of the 64 potential EFTs, containing 73.10 % of our study area, were represented by the network of the 50 long-228 

term EC sites that met our selection criteria (Fig. 2). The most abundant EFT, Da1, showed high productivity (D), high 229 

seasonality (a), and maximum EVI in spring (1) (Fig. 2). Da1 occupied 10.87% of the surface and was distributed throughout 230 

the study area but abundantly in the western and southern extremes of the Atlantic Region). Da1 was represented by 8 EC sites 231 

that exhibited NEE with a strong seasonal variability, with a pronounced peak of carbon assimilation between -7.23 and -7.46 232 

g C m-2 d-1 in spring (Fig. 4) and corresponded with the most abundant ecosystem in Europe, the Deciduous Broadleaf and 233 

Mixed Forest (S4 Table S4). The second most abundant EFT, Ad1, showed low productivity (A), low seasonality (d), and 234 

maximum EVI also in spring (1). Ad1 occupied 9.98% of the territory, mainly in the Iberian Peninsula (Fig. 1). Ad1 was 235 

represented by 2 EC sites (Fig. 2) that exhibited NEE dynamics with low seasonality and the peak of carbon assimilation 236 

(NEE) between -0.72 and -1.98 g C m-2 d-1 in spring (Fig. 4) and was concentrated in areas dominated by shrub vegetation 237 

(S4 Table S4).  238 

 239 

 240 

Fig. 2. Accumulated area covered by the Ecosystem functional types (EFTs; in %) represented in the study (ordered from 241 

highest to lowest). Colors indicate the number of eddy covariance (EC) sites, and the numbers indicate the area occupied by 242 

each of these EC sites (in %). 243 

 244 
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Regarding the abundance of EC sites, the EFT Da1 mentioned above was represented by 8 EC sites, followed by EFT Ba1 and 245 

Cb1 with 5 EC sites. The EFT Ba1, was also abundant, occupying 7.4% of the total surface (Fig. 2), and was located mainly 246 

in the eastern part of the study area (Atlantic and Continental regions) (Fig. 1). The EFT Cb1, was less abundant than the 247 

previous one (3.61%) and was located in central areas of the Atlantic and Continental regions. NEE dynamics were 248 

characterized by high (a) and medium-high (b) seasonality and the peak time of carbon assimilation between -6.40 and -7.53 249 

g C m-2 d-1 in spring. In both cases, these places corresponded with cereal crops (S4 Table S4). 250 

Our discriminant analysis showed that EFTs significantly differed in NEE measured in situ with the EC technique. The average 251 

of the performance metrics obtained from the discrimination that satellite EFTs made of EC site NEE ranged between 0.953 252 

to 0.978 (Table 3a). NEE dynamics significantly differed between different EFTs but were similar within the same EFTs (S5 253 

Fig. S2). For example, the EFT “Da1”, which had high productivity, high seasonality, and spring EVI maxima, also showed 254 

high average NEE values, high seasonality in NEE, and maximum carbon assimilation in spring (Fig. 4, EC sites DE-Lnf, FR-255 

Fon). The EFT “Bc1”, with medium to high productivity, medium seasonality, and spring EVI maxima, was also characterized 256 

by moderate seasonality in terms of NEE and maximum carbon assimilation in spring (Fig. 4a for EC sites BE-Vie, DE-Tha). 257 

Contrary, the EFT “Ad1”, which had low productivity, low seasonality, and EVI spring maxima, also showed low average 258 

NEE, low seasonality in NEE, and a peak of maximum carbon assimilation in spring (ES-Lju, IT-Noe). As another example, 259 

the EFT “Cb1”, with medium productivity, medium-high seasonality, and spring EVI maxima, also showed medium to high 260 

seasonality in terms of NEE and maximum carbon assimilation in spring (Fig. 4a for EC sites DE-she, DE-RuS). 261 

3.3 Comparison between EFTs and PFTs to discriminate NEE measured by EC 262 

EFTs performed marginally better than PFTs in capturing differences in NEE dynamics measured on the ground (Table 3). 263 

The average across all discriminant analyses in all performance indices was marginally but not significantly higher for EFTs 264 

(e.g., mean Kappa = 0.953) than for PFTs (e.g., mean Kappa = 0.923) (Table 3, Fig. 3); However, the standard deviation (s.d.) 265 

across all discriminant analyses was higher for PFTs (e.g., s. d. of Kappa = 0.078) than for EFTs (e.g., s. d. of Kappa = 0.067). 266 

No significant differences between the performance metrics of EFTs and PFTs were detected by the Wilcoxon-test in any of 267 

the indices (Table 3). 268 

 269 

 270 

Table 3. Mean performances metrics, their standard deviation (SD) and differences in: Kappa, Accuracy, Precision, Recall 271 

and F1 values obtained from discriminant analysis of combinations with equal number of classes and EC sites of (a) ecosystem 272 

functional types (EFTs) and (b) plant functional types (PFTs). To assess for significant differences, we applied a Wilcoxon-273 

test (p-values showed), and we calculated the percentage of cases in which differences between EFTs or PFTs with NEE were 274 

significant (% sig), in this case, none. 275 

 276 
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a. EFTs       b. PFTs   Difference 

mean SD mean SD p-value % sig 

Kappa 0.953 0.067 0.923 0.078 1 0 

Accuracy 0.972 0.040 0.952 0.051 1 0 

Precision 0.967 0.047 0.959 0.057 1 0 

Recall 0.978 0.033 0.960 0.040 1 0 

F1 0.972 0.040 0.959 0.048 1 0 

 277 

Fig. 3. Histograms of performances from discriminant analysis for all combinations of Ecosystem Functional Types (EFTs) 278 

and Plant Functional Types (PFTs) with equal number of classes and EC sites. Blue lines correspond to EFTs and green lines 279 

to PFTs. 280 

 281 

In general, NEE dynamics were similar for the same PFT or EFT across EC sites (Fig. 4), though there were some exceptions 282 

for certain PFTs (Fig. 4b; S5 Fig. S3). Sites corresponding to the PFT “deciduous broadleaf trees” or the EFT “Da1” always 283 

showed similar NEE (Fig. 4; Table 1). However, for the PFT “evergreen needleleaf trees”, NEE dynamics exhibited a different 284 

seasonality and variable maximum carbon assimilation across sites (Fig. 4b for EC sites CH-Dav, DE-Lkb). Differences in 285 
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NEE dynamics across sites were also observed for shrublands where the ES-LJu site (EFT Ad1) was assimilating carbon 286 

throughout the year, particularly in spring, while the ES-Amo site (EFT Ad4) was mainly emitting carbon throughout the year 287 

except for winter. Larger differences in NEE occurred in the PFT croplands, with maximum carbon sequestration occurring 288 

in different seasons (Fig. 4b, for sites CH-Oe1 and CH-Oe2 (EFT Cb1). 289 

 290 

 291 

Fig. 4. Comparison of the variability within and across classes of Ecosystem Functional Types (EFTs) and Plant Functional 292 

Types (PFTs) in the seasonal dynamics of NEE. a) Variability inter EFTs: annual mean of NEE dynamics from different places 293 
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randomly selected with the same EFT; and b) variability inter PFTs and intra EFTs: annual mean of NEE dynamics from 294 

different places with the same PFT and different EFT. 295 

4 Discussion 296 

Remotely-sensed EFTs successfully mapped functionally homogeneous land patches regarding NEE dynamics measured in 297 

situ with the EC technique. Furthermore, EFTs performed at least similarly to the commonly used PFTs for discriminating 298 

among different NEE seasonal dynamics (Table 3). EFTs have the advantage of being more sensitive in their responses to 299 

short-term changes in ecosystem functioning than the slower-responding plant community composition or canopy structure. 300 

Furthermore, they can be recalculated on an annual basis using the same classification rules, which provides a straightforward 301 

way to track interannual changes in ecosystem functioning (Müller et al. 2014). Our focal ecosystem function was NEE 302 

dynamics, which is related to primary production (but also to ecosystem respiration), one of the most essential and integrative 303 

descriptors of ecosystem functioning (Virginia and Wall, 2010). Hence, satellite-derived EFT classifications could be used to 304 

monitor the status and changes of the regional heterogeneity or spatial diversity of the essential variable of ecosystem 305 

productivity as a surrogate of the overall ecosystem performance (Jax, 2010; Pettorelli et al., 2016). 306 

4.1 EFTs capture differences in NEE  307 

EFTs quantified and mapped the spatio-temporal characteristics of carbon dynamics, a crucial aspect for biodiversity 308 

conservation and ecosystem services maintenance in a global change context (Midgley et al. 2010). Twenty of the 64 EFTs 309 

identified in Europe (corresponding to 73% of the study area) were represented by at least one EC site in the FLUXNET2015 310 

dataset with at least three years of data. This number of site-years and the covered area provided sufficient evidence to confirm 311 

the validity of the EFT concept. Therefore, our approach could help to assess carbon dynamics at a regional scale by providing 312 

homogeneous land areas in terms of their primary production dynamics (Running et al. 2004, Zhang et al. 2015). This fact 313 

helps to understand the regional patterns and drivers of the differences in carbon dynamics at the regional scale and could 314 

contribute to reducing the uncertainties in the global carbon balance (Beer et al. 2010).  315 

EFTs capture spatial differences in NEE seasonal dynamics equally well or marginally better than other mainstream 316 

approaches, such as PFTs. Different areas may respond differently to environmental changes despite being dominated by the 317 

same PFT, and frequently, ecosystem-process models (parameterized for a specific PFT) may not be able to represent these 318 

differential responses (Vargas et al. 2013). Usually, the parameterization of a particular PFT is homogeneous within such PFT 319 

and does not change, for instance, according to the eco-physiological status of a specific area or its intrinsic plasticity (Müller 320 

et al. 2014). In addition, land-cover maps based on a PFT concept are static and difficult to update (i.e., PFT database structure 321 

and assumptions are not easily adapted to new data). At the same time, EFTs are a data-driven classification through which 322 

we can annually obtain new data and detect changes in the exchange of matter and energy between the ecosystems and the 323 

atmosphere in response to environmental variability. In this sense, the literature (Bret-Harte et al. 2008; Suding et al. 2008; 324 
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Clark et al. 2016; Saccone and Virtanen 2017; Thomas et al. 2018) has pointed out that the PFT approach is not straightforward 325 

enough to represent ecosystem functional properties at the ecosystem level.  326 

EFTs derived in this study rely on EVI-based attributes, which primarily represent the dynamics of primary production. This 327 

focus is consistent with the fact that vegetation greenness and light absorption are tightly linked to APAR, GPP and NEE (e.g. 328 

Huete et al. 1997; Running et al. 2004; Shi et al. 2017), making EVI a direct and widely used indicator of ecosystem functional 329 

behaviour at large scales. The strong agreement between our EFTs and in situ NEE patterns confirms that EVI captures the 330 

dominant functional axis related to carbon uptake. Although additional attributes associated with water or energy fluxes (e.g., 331 

NDWI, land-surface temperature or albedo) could enrich multidimensional EFT frameworks in the future, the carbon-related 332 

dynamics encoded in EVI already provide a robust and ecologically meaningful foundation for functional ecosystem 333 

classification. 334 

4.2 EFT spatial patterns and environmental controls  335 

EFTs allowed us to characterize the regional heterogeneity of ecosystem functioning across Europe. In relation to the three 336 

descriptive attributes of ecosystem functioning from which the EFTs were constructed (EVI_mean; an estimator of primary 337 

production, EVI_SD; a descriptor of seasonality and EVI_DMAX; an indicator of phenology), we found general patterns 338 

determined by the combination of vegetation characteristics and environmental controls. The role of environmental variables 339 

(abiotic and biotic) that control ecosystem processes differ according to the level of biological organization and the spatial 340 

scale considered (Reed et al. 1993; Pearson and Dawson, 2003). Ecosystem functioning in natural areas are known to be mainly 341 

driven by precipitation (Lauenroth et al. 1978), temperature (Rosenzweig and Dickinson 1968; Jobbagy et al. 2002), soil 342 

characteristics (NoyMeir 1973), and vegetation structure (Epstein et al. 1998). In this case, EFTs productivity decreased from 343 

east to west influenced by rainfall patterns determined by the Gulf Stream and the distance from the ocean (Palter 2015), which 344 

also determines changes in vegetation. Regarding the seasonality of EVI, it increased in relation to two factors: 1) the altitude, 345 

having the highest values of seasonality in the mountainous areas (influenced by changes in precipitation, temperature, and 346 

consequently, in vegetation), and; 2) the crop areas, where management practices, harvests, and crop changes are responsible 347 

of this dynamic and therefore it cannot be explained by natural environmental controls alone. Peaks of maximum EVI in 348 

Europe took place in spring and summer when the availability of water (precipitation) and energy (temperature) for vegetation 349 

was at its optimum (Whittaker et al. 2003). 350 

Boundaries of the biogeographical regions (EEA 2016) were consistent with the EFTs (Fig. 1). Still, while the classification 351 

from EEA is static, EFTs provide a data-driven classification that could be better coupled to ecosystem functioning. The Alpine 352 

region was dominated by EFTs with low productivity, high seasonality, and maxima in summer. In the high mountain peaks 353 

(<3000 meters), the vegetation was reduced to a low density of highly adapted plants that can tolerate extreme conditions (i.e., 354 

the short growing period and fluctuating air temperatures, and therefore, has low productivity, also detected in the global 355 

primary productivity patterns of Beer et al. (2010) and Zhang et al. (2017)). In the highest altitudes, snow is present over most 356 
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of the year, leaving only a short period for the development of the plants, mainly in summer, leading to a summer maximum 357 

and a high seasonality (Sundseth, 2009a).  358 

A high heterogeneity of EFTs characterized the Mediterranean region due to their high habitat diversity (i.e., high mountains 359 

and rocky shores, thick scrub and semi-arid steppes, coastal wetlands, and sandy beaches, constituting a global biodiversity 360 

hotspot (Myers et al. 2000)). The main driver of ecosystem functional diversity is the climate (characterized by hot, dry 361 

summers and cool winters) (Lionello et al. 2006), in combination with human influence, (i.e., livestock grazing, forest 362 

cultivation, and forest fires) (Blondel and Aronson, 1999). 363 

The Atlantic region was characterized by EFTs with high productivity, high seasonality, and maximum greening in spring due 364 

to the mild winters, cool summers, predominantly westerly winds, and moderate rainfall throughout the year (Hurrel, 1995). 365 

These conditions favor non-water-limited deciduous species with high productivity, resulting in a high seasonality. Due to the 366 

anthropogenic influence, agricultural landscapes are widespread in this region, one of Europe's five major agricultural regions, 367 

according to Kostrowicki (1991). Thus, the region’s high productivity must be partly attributed to irrigation, and high 368 

seasonality is driven by harvest and cropping cycles. 369 

Finally, in the Continental region, the ecosystem’s functioning varied largely in terms of productivity, reflecting regional 370 

climatic patterns. In the eastern part of the continental region, extremes of hot and cold temperatures and wet and dry conditions 371 

are more frequent and strongly impact ecosystem functioning (dominant EFT was Aa1, low productivity, high seasonality, and 372 

maximum in spring). These areas are mountainous and experience sub-alpine conditions. Moving west, the climate is 373 

characterized by relatively small temperature fluctuations due to the buffering effect of the nearby ocean and the flat landscape 374 

(Da1 and Ca1 in the transition) (Sundseth, 2009b). 375 

4.3 Opportunities and limitations of EFTs 376 

Since EFTs describe ecosystem functioning on an annual basis in homogeneous patches on the land surface, they offer 377 

opportunities for application in ecology and conservation compared to approaches that do not represent short-term dynamics 378 

(such as PFTs). The concept of EFT has been highlighted as “the first serious attempt to group ecosystems (at large scales) 379 

based on shared functional behavior” (Mucina, 2019), and its strength for being applied as a classification scheme is determined 380 

by its ability to translate ecosystem functions into discrete entities that can be mapped. EFTs are identified by remote sensing 381 

tools from aggregated measurements of ecosystem functions at the pixel level, which, in practice, represents information on 382 

the performance of the whole ecosystem at that grain scale. Having the possibility of mapping entities (EFTs) that reflect the 383 

principal performance of the entire ecosystem opens a straightforward, tangible, and biologically meaningful way to quantify 384 

distributions of ecosystem functions at the regional scale, complementing our traditional view of ecosystems (Paruelo et al. 385 

2001; Butchart et al. 2010; Asner et al. 2017). Specifically, satellite-derived dynamic functional classifications, such as EFTs, 386 

have several advantages over other static approaches, such as PFTs. Satellite-derived EFAs and EFTs 1) are capable of 387 

capturing differences in ecosystem processes as measured in the field; 2) they provide a valuable framework for understanding 388 

the mechanisms underlying large-scale ecological changes (Cabello et al. 2016; Alcaraz-Segura et al. 2017; Requena-Mullor 389 
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et al. 2017, 2018; Arenas-Castro et al. 2018; Lourenço et al. 2018; Vaz et al. 2018); 3) they offer a faster response than 390 

compositional or structural approaches to environmental changes (McNaughton, 1989; Mouillot et al. 2013), which are 391 

particularly noticeable at the ecosystem level (Vitousek, 1994); 4) they can be more easily monitored and updated than 392 

structural or compositional ones under a common protocol in space and time, at different spatial scales and over large 393 

extents  (Paruelo et al. 2001); 5) they can complement information on vegetation structure and composition (e.g., canopy 394 

architecture, vegetation type, PFT), because they constitute complementary dimensions of biodiversity complexity (Noss, 395 

1990); 6) they facilitate the direct assessment of ecosystem functions and services (Costanza et al. 2006; Hellmann et al. 2017) 396 

and would link critical dimensions of biodiversity to ecosystem processes including the carbon cycle, the water cycle and the 397 

provisioning of ecosystem services; 7) they have already been proposed as essential variables for monitoring biodiversity 398 

(Pettorelli et al. 2016; Skidmore et al. 2021). 399 

Our approach, as with any other ecosystem classification framework, is still subject to some challenges. First, EFTs represented 400 

by several EC sites could be parameterized in terms of NEE dynamics, though not all EFTs (18%) are represented yet. 401 

Nevertheless, the subset of EFTs covered by multiple EC sites spans the dominant functional types across Europe, providing 402 

a solid empirical basis for validating the classification. Second, the footprint or spatial resolution of the EC measurements 403 

varies depending on the micrometeorological conditions (wind direction, wind speed, atmospheric stability) and the ratio of 404 

measurement to vegetation height, e.g., forest flux footprints are generally larger than grassland footprints (oscillates between 405 

50 m and 200 m) (Schmid 1997; Kljun et al. 2015). In contrast, the MODIS pixels used have a constant spatial resolution of 406 

~231 m, generating an unavoidable scale mismatch. However, because EC towers are typically placed in relatively large and 407 

functionally homogeneous land patches (Aubinet et al. 2012), the MODIS pixel and the flux footprint generally sample 408 

comparable surfaces, limiting the practical impact of this mismatch on the regional-scale patterns captured by our EFTs. 409 

Nonetheless, we acknowledge that some challenges regarding spatial representativeness remain (Chu et al. 2021). Future 410 

studies may reduce this mismatch by using higher-resolution sensors such as Sentinel-2 (10 m/pixel), but currently is not 411 

possible because the time period of Sentinel-2 data is not covered by FLUXNET data (i.e., Sentinel-2 starts taking data in 2015 412 

and the available FLUXNET 2015 database goes up to this year). Alternatively, footprint modelling could be applied when 413 

appropriate micrometeorological data exist, but footprint-weighted averaging was not feasible in our study because daily or 414 

sub-daily footprint estimates are unavailable for most FLUXNET sites and years, a limitation commonly acknowledged in 415 

previous RS–flux integration studies (Chu et al. 2021). Third, different ecosystems regarding other functional aspects (e.g., 416 

evapotranspiration, heat exchange) can be classified here as the same EFT from the NEE dynamics, as dime we used it as our 417 

focal function. However, EFTs could also be identified to characterize the spatiotemporal heterogeneity of multiple ecosystem 418 

processes and functions at different scales, including other functional aspects (e.g., albedo, evapotranspiration, heat exchange) 419 

(Fernandez et al. 2010). Also other temporal metrics, such as daily anomalies or interannual variability can provide 420 

complementary information on short-term or year-to-year ecosystem responses, but they are not expected to improve the 421 

discrimination among EFTs, which is intrinsically based on intra-annual functional patterns. Similarly, additional phenological 422 

transition metrics such as the start and end of the season (SOS/EOS) may offer complementary insights into growing-season 423 
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timing and duration; however, their higher sensitivity to noise and temporal gaps, particularly in 16-day MODIS time series, 424 

makes peak-greenness metrics like EVI_DMAX more robust and comparable for regional-scale functional classifications. 425 

Finally, incorporating EFTs into earth system models is challenging since these models generally use simple and few numbers 426 

of categories in a variable, and some models might not be able to run with so many (64) EFT categories. Nevertheless, some 427 

studies have successfully incorporated EFTs into earth system models (Lee et al. 2013; Müller et al. 2014). The incorporation 428 

of these types of variables (dynamic and easily accessible) into the models might be helpful in the monitoring and sustainable 429 

management of carbon reservoirs at short to medium-time scales. 430 

5 Conclusion 431 

Satellite-derived EFTs are an ecosystem functional classification built from satellite observations of radiation exchanges 432 

between the land surface and the atmosphere that allow the identification of homogeneous land patches in terms of an essential 433 

ecosystem function, e.g., NEE dynamics, measured on the ground by means of which is related to ecosystem productivity. 434 

EFTs performed as well as PFTs in discriminating different NEE dynamics, EFTs, however, have two main advantages: they 435 

can be easily updated for any region of the world at an annual frequency based on available satellite information, and EFTs 436 

maps are more sensitive to environmental changes than vegetation composition or structure. 437 

Our results showed the capability of using ecosystem functional attributes for grouping ecosystems at large scales according 438 

to their different net carbon flux dynamics. Such classification, based on the essential biodiversity variable of ecosystem 439 

production as a focal ecosystem function, opens the possibility of assessing and monitoring ecosystem functional diversity, 440 

the spatial heterogeneity in ecosystem functioning, and carbon-related ecosystem services at regional to global scales. 441 

Therefore, our study demonstrates that satellite-derived EFTs provide a valid tool to assess and monitor ecosystem functioning 442 

with potential applications in ecosystem monitoring and modeling and biodiversity and carbon management programs. 443 
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