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Abstract. Assessing ecosystem functioning is crucial for managing and conserving ecosystems and their services. Numerous 32 

ways to evaluate ecosystem functioning have been developed, using species traits, such as Plant Functional Types (PFTs), flux 33 

measurements with the Eddy Covariance (EC) technique, and remote sensing techniques. We propose that the spatial 34 

heterogeneity in ecosystem functioning at a regional scale can be assessed and monitored using satellite-derived Ecosystem 35 

Functional Types (EFTs): groups of ecosystems or patches of the land surface that share similar dynamics of matter and energy 36 

exchanges. We hypothesize that, as observed for PFTs, different EFTs should have distinct patterns and magnitudes of Net 37 

Ecosystem Exchange (NEE) of carbon dioxide measured using the EC technique. We derived EFTs from  2001-2014 time-38 

series of satellite images of the Enhanced Vegetation Index (EVI) and compared them with NEE measurements (derived from 39 
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in situ field observations using the EC technique) across 50 European sites. Our results show that distinct EFTs classes display 40 

significantly different dynamics and magnitudes of NEE and that EFTs perform marginally better than PFTs in explaining 41 

NEE regional patterns. Land-cover maps based on PFTs are difficult to update on an annual basis and are not sensitive to 42 

changes in ecosystem performance (e.g., droughts or pests) that do involve short-term changes in PFT composition. In contrast, 43 

satellite-derived EFTs are sensitive to short-term changes in ecosystem performance. Satellite-derived EFTs are an ecosystem 44 

functional classification built from satellite observations that allow the identification of homogeneous land patches based on 45 

ecosystem functions, e.g., ecosystem net productivity measured on the ground as NEE. Satellite-derived EFTs can be 46 

recalculated annually, providing a straightforward way to assess and monitor interannual changes in ecosystem functioning 47 

and functional diversity. 48 

1 Introduction 49 

Ecosystem functioning and functional diversity are critical issues in current ecological research (Jax, 2010; Violle et al. 2014, 50 

2017; Tilman et al. 2014; Pettorelli et al. 2018; Villarreal et al. 2018; Malaterre et al. 2019; Díaz et al. 2020). Quantifying, 51 

monitoring, and understanding ecosystem functioning help provide insights into the management and conservation of 52 

ecosystems and their services (Cabello et al. 2012; Pettorelli et al. 2018; Nicholson et al. 2021). Variables capable of describing 53 

ecosystem functioning at regional to global scales are needed to define essential biodiversity variables to monitor biodiversity 54 

status (Pereira et al. 2013; Jetz et al. 2019), to advance in the definition of critical but still unassessed planetary boundary 55 

(Steffen et al. 2015; Richardson et al. 2023), and to quantify their associated ecosystem services (Costanza et al. 1997; 56 

Balvanera et al. 2017).  57 

There are multiple ways to evaluate ecosystem functioning, from concepts such as species traits or Plant Functional Types 58 

(PFTs) to direct observation techniques such as eddy covariance (EC) and remote sensing. Traditionally, studies on ecosystem 59 

functioning were approached by grouping species into PFTs based on structural (e.g., biotypes), phylogenetic (e.g., 60 

coniferous), or functional species traits (e.g., metabolic pathway) that were linked to biological processes (Lavorel et al. 2002, 61 

2007). For instance, the PFT approach has been widely used in land-cover mapping and dynamic vegetation models to simplify 62 

the continuum of species traits into a reduced number of discrete categories suitable for regional-to-global synthesis and 63 

modeling studies (Wullschleger et al. 2014). However, this simplification can lead to information loss (Funk et al. 2017) and 64 

may not be capable of predicting the overall ecosystem functioning (Virtanen, 2017; Thomas et al. 2019). Another more recent 65 

way to evaluate ecosystem functioning is by using EC (Reichstein et al. 2014; Migliavacca et al. 2021). EC uses high-frequency 66 

wind and scalar mixing ratio data for calculating the Net Ecosystem CO2 Exchange (NEE) between the land surface and the 67 

atmosphere at the field scale (Baldocchi et al. 2001, 2020). This approach is widely used and regional (e.g., AmeriFlux, 68 

AsiaFlux, ICOS, NEON), and a global network of EC measurements has been formed (e.g., FLUXNET) (Franz et al. 2018; 69 

Knox et al. 2019). Although FLUXNET has provided unprecedented information on the carbon, water, and energy exchange 70 

between the earth's surface and the atmosphere, these measurements still show limitations to assessing ecosystem functioning 71 
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at regional or global scales due to their small footprints (essentially considered as point-scale data (Chu et al. 2021) and a lack 72 

of spatial representativity (Villarreal et al. 2018, 2021). In parallel, advances in remote sensing are providing new opportunities 73 

to quantify ecosystem functioning and functional diversity from regional to global scales (Rocchini et al. 2018; Skidmore et 74 

al. 2021). Consequently, combining field-based measurements (e.g., EC) with remote sensing data may allow for better 75 

information integration across multiple spatial and temporal scales (Running et al. 1999; Wang et al. 2017). Indeed, multiple 76 

studies have aimed to derive global maps combining flux measurements with earth observation data, although challenges and 77 

limitations still need to be addressed (e.g., FLUXCOM; Huang et al. 2019; Jung et al. 2020; Liu et al. 2023; Pacheco-Labrador 78 

et al. 2023; Gomarasca et al. 2024; Nelson et al. 2024). 79 

Ecosystem functioning and functional diversity at the regional scale can be assessed using satellite-derived Ecosystem 80 

Functional Types (EFTs) (Paruelo et al. 2001). Conceptually, EFTs are defined as patches of the land surface that share similar 81 

dynamics of matter and energy exchanges between the biota and the physical environment (Alcaraz-Segura et al. 2006, 2013; 82 

Cazorla et al. 2020, 2021, 2023). The concept of EFT is equivalent to the concept of PFTs but applied to a higher level of 83 

biological organization. That is, just like plant species can be grouped based on shared functional traits (e.g., growth rates, 84 

nitrogen fixation) into PFTs, ecosystems can be grouped based on their common functional dynamics (e.g., productivity, 85 

seasonality, phenology) into EFTs (Paruelo et al. 2001). Remote sensing has been empirically applied to identify EFTs, mainly 86 

through spectral indices related to carbon dynamics (Paruelo et al., 2001; Alcaraz-Segura et al., 2006; Ivits et al., 2013), but 87 

also incorporating other functional attributes such as evapotranspiration, surface temperature, and albedo (e.g., Fernández et 88 

al. 2010; Pérez-Hoyos et al. 2014) or soil characteristics based on their greenhouse gas flux dynamics (Petrakis et al. 2018).  89 

Among these functional attributes, those linked to carbon dynamics, particularly primary production, represent one of the most 90 

integrative dimensions of ecosystem functioning because they reflect the main entry of energy into ecosystems and are directly 91 

related to key carbon and energy exchanges (Virginia and Wall 2001; Pereira et al. 2013; Xiao et al. 2019). Moreover, primary 92 

production provides a holistic response to environmental changes and constitutes a synthetic indicator of ecosystem health 93 

(Costanza et al. 1992; Skidmore et al. 2015). Other authors have used EFTs to: describe large-scale functional biogeographical 94 

patterns (Ivits et al. 2013; Cazorla et al. 2021), assess the representativeness of environmental observatory networks (Villarreal 95 

et al. 2018, 2019), assess the ecosystem functional diversity (Alcaraz-Segura et al. 2013; Liu et al. 2023; Amstrong et al. 2024), 96 

evaluate the effects of land-use changes on ecosystem functioning (Oki et al. 2012; Domingo-Marimon et al. 2024), improve 97 

weather forecasting (Lee et al. 2013; Müller et al. 2014) and species distribution/abundance models (Arenas-Castro et al. 2018, 98 

2019), and to identify geographic priorities for biodiversity conservation (Cazorla et al. 2020).  99 

So far, EFTs have been identified from satellite remote sensing data. However, whether such top-down-identified EFT classes 100 

are biologically meaningful in ecological processes measured on the ground, such as biogeochemical fluxes, remains untested. 101 

That is, whether satellite-derived EFT classes differ in their exchanges of energy and matter between ecosystems and the 102 

atmosphere. Therefore, linking satellite-derived EFTs identified at large scales to biogeochemical fluxes measured at the site 103 

level could help strengthen the ecological significance of the EFT patterns for ecosystem modeling and functional diversity 104 

assessments remotely, as it provides empirical evidence for using the concept at these scales. 105 
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This study aims to provide field-based empirical evidence for using satellite-derived EFTs as descriptors of regional 106 

heterogeneity in ecosystem functioning measured on the ground (i.e., seasonal dynamics of NEE). We hypothesize that 107 

satellite-derived EFTs classes significantly differ in their exchanges of energy and matter with the atmosphere from each other, 108 

in the same way as estimated with in situ field observations. Here, we propose that different satellite-derived EFTs classes 109 

display significantly different NEE measurements using the EC technique, while sites under the same EFT should exhibit 110 

similar NEE dynamics. To achieve our goal, we used publicly available data across continental Europe, given its high density 111 

of EC sites, 1) to characterize the regional patterns of ecosystem functioning using satellite-derived EFTs; 2) to assess whether 112 

different satellite-derived EFTs correspond to different NEE dynamics measured on the ground with the EC technique; and 3) 113 

to assess how EFTs perform compared to traditional PFTs to discriminate different NEE dynamics. 114 

2 Material and methods 115 

2.1 Study area 116 

We used NEE information from continental Europe as it has one of the largest densities of EC sites worldwide (Table 1). The 117 

sites were distributed across four biogeographical regions (EEA 2016): Mediterranean (12 sites), Continental (21 sites), 118 

Atlantic (9 sites), and Alpine (8 sites). Only sites with a long-term (i.e., from 3 to 14 years) NEE time-series were included in 119 

the analysis (detailed below). 120 

 121 

 122 

 123 

 124 

 125 
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Table 1. Main characteristics of the 50 Eddy Covariance (EC) sites in the study area. Data from FLUXNET 2015 dataset. 126 

ID Site Country PFT  EFT 

code 

Biogeographi

cal region 

n years  

(2001-2014) 

Elevati

on (m) 

Latitude Longitude 

AT-Neu Neustift/Stubai 

Valley 

Austria Grasslands Da2 Alpine 11 (2002-2013) 970 47.116 11.317 

BE-Bra Brasschaat (De 

Inslag Trees) 

Belgium Mixed 

Trees 

Cc1 Atlantic 14 (2001-2014) 16 51.309 4.520 

BE-Lon Lonzee Belgium Croplands Ba1 Atlantic 11 (2004-2014) 167 50.552 4.744 

BE-Vie Vielsalm Belgium Mixed 

Trees 

Bc1 Continental 14 (2001-2014) 439 50.305 5.998 

CH-Cha Chamau 

grassland 

Switzerlan

d 

Grasslands Db1 Continental 10 (2005-2014) 393 47.210 8.410 

CH-Dav Davos- 

Seehorn forest 

Switzerlan

d 

Evergreen 

Needleleaf 

Trees 

Ac2 Alpine 14 (2001-2014) 1639 46.815 9.855 

CH-Fru Fruebuel 

grassland 

Switzerlan

d 

Grasslands Da2 Continental 10 (2005-2014) 982 47.115 8.537 

CH-Lae Laegeren Switzerlan

d 

Mixed 

Trees 

Da1 Continental 11 (2004-2014) 689 47.478 8.365 

CH-Oe1 Oensingen1 

grass 

Switzerlan

d 

Croplands Cb1 Continental 7 (2002-2008) 450 47.285 7.731 

 

CH-Oe2 Oensingen2 

crop 

Switzerlan

d 

Croplands Cb1 Continental 11 (2004-2014) 452  47.286 7.733 

CZ-BK1 Bily Kriz- 

Beskidy 
Mountains 

Czech 

Republic 

Evergreen 

Needleleaf 
Trees 

Cc1 Continental 11 (2004-2014) 875 49.502 18.536 

CZ-BK2 Bily Kriz- 

grassland 

Czech 

Republic 

Grasslands Ac1 Alpine 9 (2004-2012) 855 49.494 18.542 
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ID Site Country PFT  EFT 

code 

Biogeographi

cal region 

n years  

(2001-2014) 

Elevati

on (m) 

Latitude Longitude 

CZ-wet CZECHWET Czech 

Republic 

Wetlands Ba1 Continental 9 (2004-2012) 426 49.024 14.770 

DE-Akm Anklam Germany Wetlands Ba1 Continental 5 (2010-2014) -1 53.866 13.683 

DE-Geb Gebesee Germany Croplands Ba1 Continental 14 (2001-2014) 161 51.100 10.914 

DE-Gri Grillenburg- 

grass station 

Germany Grassland Da2 Continental 11 (2004-2014) 385 50.949 13.512 

DE-Hai Hainich Germany Mixed 

Trees 

Ca1 Continental 12 (2001-2012) 430 51.079 10.452 

DE-Kli Klingenberg Germany Croplands Ba1 Continental 11 (2004-2014) 478 50.892 13.522 

DE-Lkb Lackenberg Germany Evergreen 

Needleleaf 
Trees 

Ab2 Continental 5 (2009-2013) 1308 49.099 13.304 

DE-Lnf Leinefelde Germany Deciduous 

Broadleaf 

Trees 

Da1 Continental 11 (2002-2012) 451 51.328 10.367 

 

 

DE-Obe Oberbärenburg 

 

Germany Evergreen 

Needleleaf 

Trees 

Ac1 Continental 7 (2008-2014) 734 50.786 13.721 

DE-RuR Rollesbroich Germany Grasslands Da2 Continental 4 (2011-2014) 515 50.621 6.304 

DE-RuS Selhausen 

Juelich 

Germany Croplands Cb1 Atlantic 4 (2011-2014) 103 50.865 6.447 

DE-Seh Selhausen Germany Croplands Cb1 Atlantic 4 (2007-2010) 103 50.870 6.449 

DE-Spw Spreewald Germany Mixed 

Trees 

Ca1 Continental 5 (2010-2014) 61 51.892 14.033 

DE-Tha Tharandt- 

Anchor Station 

Germany Evergreen 

Needleleaf 

Trees 

Bc1 Continental 14 (2001-2014) 385 50.963 13.566 
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ID Site Country PFT  EFT 

code 

Biogeographi

cal region 

n years  

(2001-2014) 

Elevati

on (m) 

Latitude Longitude 

DK-Eng Enghave Denmark Croplands Ca1 Continental 4 (2005-2008) 10 55.690 12.191 

 

DK-Sor Soroe- 

LilleBogeskov 

Denmark Deciduous 

Broadleaf 

Trees 

Da1 Continental 14 (2001-2014) 40 55.485 11.644 

ES-Amo Amoladeras Spain Shrublands Ad4 Mediterranea 6 (2007-2012) 58 36.833 -2.252 

ES-LJu Llano de los 

Juanes 

Spain Shrublands Ad1 Mediterranea 10 (2004-2013) 1600 36.926 -2.752 

FR-Fon Fontainebleau France Deciduous 

Broadleaf 

Trees 

Da1 Atlantic 10 (2005-2014) 103 48.476 2.780 

FR-Gri Grignon   France Croplands Cc1 Atlantic 11 (2004-2014) 125 48.844 1.951 

FR-LBr Le Bray France Cropland Cd1 Atlantic 8 (2001 - 2008) 61 44.717 -0.769 

FR-Pue Puechabon France Mixed 

Trees 

Cd1 Mediterranea 14 (2001-2014) 270 43.741 3.595 

IT-BCi Borgo Cioffi Italy Croplands Db4 Mediterranea 11 (2004-2014) 20 40.523 14.957 

IT-CA1 Castel d`Asso1 Italy Croplands Bd1 Mediterranea 4 (2011-2014) 200 42.380 12.026 

IT-CA2 Castel d`Asso2 Italy Croplands Cb1 Mediterranea 4 (2011-2014) 200 42.377 12.026 

IT-CA3 Castel d`Asso 

3 

Italy Croplands Bd1 Mediterranea 4 (2011-2014) 197 42.380 12.022 

IT-Col Collelongo- 

Selva Piana 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Alpine 14 (2001-2014) 1560 41.849 13.588 

IT-Cpz Castelporziano Italy Evergreen 

Needleleaf 

Trees 

Dd1 Mediterranea 9 (2001-2009) 68 41.705 12.376 



8 

 

ID Site Country PFT  EFT 

code 

Biogeographi

cal region 

n years  

(2001-2014) 

Elevati

on (m) 

Latitude Longitude 

IT-Lav Lavarone 

(after 3/2002) 

Italy Evergreen 

Needleleaf 

Trees 

Bc1 Alpine 12 (2003-2014) 1353 45.956 11.281 

IT-MBo Monte 

Bondone 

Italy Grasslands Aa1 Alpine 11 (2003-2013) 1550 46.014 11.045 

IT-Noe Sardinia/Arca 

di Noe 

Italy Shrublands Ad1 Mediterranea 11 (2004-2014) 25 40.606 8.151 

 

IT-Ren Renon Italy Evergreen 

Needleleaf 

Trees 

Ac1 Alpine 13 (2001-2013) 1730 46.586 11.433 

IT-Ro1 Roccarespamp

ani1 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Mediterranea 8 (2001-2008) 235 42.408 11.930 

IT-Ro2 Roccarespamp
ani2 

Italy Deciduous 
Broadleaf 

Trees 

Da1 Mediterranea 11 (2002-2012) 160 42.390 11.920 

IT-SRo San Rossore Italy Evergreen 

Needleleaf 

Trees 

Cd3 Mediterranea 12 (2001-2012) 6 43.727 10.284 

IT-Tor Torgnon Italy Grassland Aa1 Alpine 7 (2008-2014) 1260 45.844 7.578 

NL-Hor Horstermeer Netherland

s 

Mixed 

Trees 

Da1 Atlantic 8 (2004-2011) 2 52.240 5.071 

NL-Loo Loobos Netherland

s 

Evergreen 

Needleleaf 

Trees 

Bd2 Atlantic 14 (2001-2014) 25 52.166 5.743 

127 
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 128 

2.2 Satellite-derived Ecosystem Functional Types (EFTs) 129 

To characterize the regional heterogeneity in ecosystem functioning across continental Europe, we identified EFTs based on 130 

the 2001-2014 time-series of satellite images of the Enhanced Vegetation Index (EVI) captured by the MODIS-Terra sensor. 131 

These images (MOD13Q1.C006 product) provide a maximum composite EVI value every 16 days at a ~230 m spatial 132 

resolution. EVI is a proxy for canopy greenness, vegetation carbon gains, or primary production (Huete et al. 1999). Based on 133 

the approach by Alcaraz-Segura et al. (2013), we identified EFTs using three biologically meaningful metrics of the EVI 134 

seasonal dynamics: the EVI annual mean (EVI_mean; an estimator of annual primary production), the EVI seasonal standard 135 

deviation (EVI_SD; a descriptor of seasonality), and the date of maximum EVI (EVI_DMAX; an indicator of phenology). We 136 

chose to use MODIS data instead of other satellites with higher spatial resolution (e.g., Landsat or Sentinel-2) because MODIS 137 

has several advantages in terms of data availability and quality (e.g. more years of data and cloud-free image every 16-days) 138 

along the time series (see S1). 139 

The range of values of each EVI metric was divided into four intervals, giving a potential number of 64 EFTs (4 × 4 × 4). For 140 

EVI_DMAX, the four intervals agreed with the four seasons of the year. For EVI_mean and EVI_SD, we extracted the first, 141 

second, and third quartiles for each year.  For each quartile, we calculated the interannual mean of the 14-year period and used 142 

them as breaks between classes. These breaks were applied back to each year as the thresholds for EVI_Mean and EVI_sSD 143 

to set EFT classes (S2, Table S1). We used this four-class discretization and fixed class boundaries to obtain a coherent and 144 

ecologically interpretable classification (Noble and Gitay 1996) that applies consistently across years. This approach enables 145 

interannual comparisons of spatial functional heterogeneity and maintains continuity with previous EFT implementations 146 

(Alcaraz-Segura et al. 2013, Cazorla et al. 2021, 2023). Moreover, recent methodological assessments indicate that EFT 147 

derivation is robust to the number of bins used to discretize EF attributes (e.g., Liu et al. 2023). To name EFTs, we used two 148 

letters and a number: the first capital letter indicates net primary production (EVI_mean), increasing from A to D; the second 149 

small letter represents seasonality (EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing 150 

season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter  (see S3, Table S2 for a schematic summary of 151 

code combinations and examples). To summarize the ecosystem functional diversity of the 2001–2014 period, we calculated 152 

the dominant EFT (i.e., the mode value for each pixel) of these years.  153 

2.3 Eddy covariance (EC) sites for net ecosystem exchange (NEE) 154 

To obtain NEE fluxes, 50 EC sites were selected across our study area from the FLUXNET2015 dataset (Table 1). The 155 

FLUXNET network (Baldocchi et al. 2001, 2020) provides high-quality, community-based, global data on CO2, H2O, and 156 

energy exchanges between the biosphere and the atmosphere measured using the EC technique (Baldocchi, 2003). We used 157 

data of NEE of CO2 (NEE_VUT_REF, gC m-2 d-1) from the FLUXNET2015 database. We selected data from 158 

FLUXNET2015 because they are publicly available and offer benefits in terms of standardized methodology. FLUXNET2015 159 
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incorporates NEE measurements along with a quality flag based on an annually determined Variable Ustar Threshold (VUT), 160 

which is selected to maximize model efficiency (MEF) (Pastorello et al. 2020). The MEF analysis is repeated for each one of 161 

the half-hourly data (Baldocchi et al. 2001, 2020). We selected sites that: (a) were located in our study area; (b) provided more 162 

than three consecutive years of data over the 2001-2014 period; (c) provided daily averages of NEE calculated from half-163 

hourly data; and (d) had quality control information (i.e., NEE_VUT_REF data with quality control flag QC > 1 were removed 164 

since they represent medium and poor quality gap-filled data).  165 

We applied Discriminant Analysis (DA) to assess whether different satellite-derived EFT classes correspond to different NEE 166 

dynamics and whether sites under the same EFT exhibit similar NEE dynamics (S4). The DA allowed us to examine the 167 

homogeneity within each EFT class and the differences among EFT classes based on the annual dynamics of NEE as a predictor 168 

variable (Williams,1981, 1983). We selected the EFT where each EC site was located and its corresponding interannual 169 

average of the seasonal cycle of NEE for the available years. EC sites fluxes were regarded as the ground truth standard against 170 

which the satellite data were compared to calculate five performance metrics: Kappa, Accuracy, Precision, Recall, and F1 171 

score (Table 2). 172 

 173 

Table 2. Metrics, interpretations, and equations used to evaluate and compare results from the discriminant analysis, Pr(a) is 174 

the relative observed agreement between observations, and Pr(e) is the hypothetical probability of agreement by chance. True 175 

Positives are correctly classified as positive, True Negative are correctly classified as negative, Positives are all positives 176 

including false positives (i.e., including falsely classified as positive, Type I error) and, Negatives are all negatives including 177 

false negatives (i.e. falsely classified as negative, Type II error). All performance metrics oscillate between 0 (disagreement) 178 

and 1 (maximum agreement). 179 

 180 

Metric Meaning Equation 

Kappa Measures the percentage of data values in the 

main diagonal of the contingency table and 

adjusts these values for agreement that could 

be expected due to chance alone 

K= Pr(a)-Pr(e) / 1-Pr(e) 

  

Accuracy Degree of closeness of measurements of a 

quantity to that quantity's true value 

Accuracy = (True Positives + 

True Negatives )/ 

(Positives+Negatives) 

  



11 
 

Precision Fraction of relevant instances among the 

retrieved instances (also called positive 

predictive value, i.e., how many EFTs were 
well discriminated) 

Precision = True Positives / (True 

  Positives+False Positives) 

Recall Fraction of relevant instances that have been 

retrieved over the total amount of relevant 

instances 

Recall = True Positives / (True 

Positives+False 

  Negatives) 

F1 Considers both the Precision and the Recall of 

the test to compute the score 

F1 score= 2 × (Precision × Recall) 

/ (Precision 

  + Recall) 

 181 

2.4 Comparing how EFTs and PFTs discriminate different NEE dynamics 182 

The PFT corresponding to each EC site was assigned by each of their principal investigators using the International Geosphere-183 

Biosphere Programme (IGBP, 1992). Subsequently, we verified the assigned PFTs using the MODIS MCD12Q1 land cover 184 

product. The PFT categories present in the EC sites were: cropland (15 sites), deciduous broadleaf trees (6), evergreen 185 

needleleaf trees (10), grassland (6), mixed trees (7), shrubland (3), and wetland (1) (Table 1). 186 

During the comparison of the performance of PFTs and EFTs to discriminate the seasonal dynamics of NEE, we considered 187 

the unbalanced sample size due to the different number of classes of EFTs (18) and PFTs (7) represented by FLUXNET2015 188 

and the different number of EC sites per PFT class (which ranged between 3 and 31). To do this, we performed the following 189 

steps: 190 

First, we calculated all possible combinations (C) without repetitions between the 18 EFT and the 7 PFT classes (C(18,7) = 191 

31834). Second, since the DA needs balanced data, we discarded all combinations with different numbers of EC sites in the 192 

combined EFT and PFT classes. Third, for each combination, we applied discriminant analysis to assess how the EFT and PFT 193 

classifications performed to discriminate the seasonal dynamics of NEE. For each discriminant analysis, we obtained five 194 

metrics of performance (Table 2). Fourth, to assess whether significant differences existed in the performance metrics between 195 

EFTs and PFTs, we applied the Wilcoxon non-parametric test. For each combination of a number of classes and EC sites, there 196 

was a different number of discriminant analyses in the EFT subset and the PFT subset (S4 Table S3). To account for such an 197 

unbalanced design during the Wilcoxon test, we fixed the sample size to the smaller subset (either from the EFT or the PFT 198 

classification) and randomly bootstrapped the performance metrics from the bigger one. Fifth, we calculated the mean and 199 

standard deviation of each metric obtained by the EFTs and PFTs classifications, the average p-value, and the percentage of 200 

times we obtained significant differences (p-value <0.05) between EFTs and PFTs. 201 
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3 Results 202 

3.1 Regional heterogeneity in ecosystem functioning using satellite-derived EFTs  203 

The map of the EVI-derived proxies of productivity (EVI_mean), seasonality (EVI_SD), and phenology (DMAX) (S5 Fig. 204 

S1a-c) and their integration into EFTs (Fig. 1) provided a characterization of the spatial patterns of our focal ecosystem function 205 

across Europe. At the continental scale, productivity decreased eastwards and southwards (Fig. 1, S5 Fig. S4). Seasonality was 206 

greater in cultivated and mountain grassland areas (Fig. 1, S5 Fig. S5), and the most frequent EVI maxima occurred in spring 207 

and summer (Fig. 1, S5 Fig. S6).  208 

The greatest EVI_mean (D) was reached in the Atlantic and Continental biogeographic regions (Fig. 1, S5 Fig. S4d). At the 209 

same time, the lowest EVI_mean (A) occurred in the western part of the Mediterranean region, corresponding to most of the 210 

Iberian Peninsula, some parts of the Italian Peninsula, the mountainous areas of the Alpine region, and in the eastern part of 211 

the Continental region (Fig. 1, S5 Fig. S4a). The greatest seasonality (a) occurred in the highest altitudes of the Alpine region 212 

(peaks of Alps <3000 meters), the Continental region (southwestern, northwestern, and eastern part of this region), and the 213 

eastern part of the Atlantic region (Fig. 1, S5 Fig. S5a). The lowest seasonality (d) was observed in the western part of the 214 

Mediterranean region, specifically in the Iberian Peninsula, the Gulf of Lion’s surroundings, and the Atlantic region’s Coastal 215 

western places (Fig. 1, S5 Fig. S5d). The phenological indicator of the growing season, DMAX, showed that most areas of the 216 

Mediterranean region have the EVI maxima in spring (1). EVI maxima in spring (1) were also observed in the Continental and 217 

Alpine regions (Fig. 1, S5 Fig. S6a). Maxima in summer (2) were identified in western places of the Atlantic and most of the 218 

Alpine regions (Fig. 1, S5 Fig. S6b).  EVI maxima in autumn (3) mainly in the Mediterranean region (Fig. 1, S5 Fig. S6c). 219 

Maxima in winter (4) were rare and emerged in the eastern part of the Atlantic region, where the maximum productivity was 220 

found and in the western part of the Mediterranean region (Fig. 1, S5 Fig. S6d). A simplified representation of the EFT map, 221 

obtained by clustering EFTs based on their functional similarity, is provided in the Supplementary Material (S6). 222 
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 223 

Fig. 1. Ecosystem Functional Types (EFTs) based on MODIS-EVI dynamics (~230 m resolution) and Eddy Covariance (EC) 224 

sites corresponding to the 2001–2014 period. Capital letters in the legend correspond to the EVI annual mean (EVI_mean) 225 

level, ranging from A to D for low to high productivity. Small letters show the seasonal standard deviation (EVI_SD), ranging 226 

from a to d for high to low seasonality of carbon gains. The numbers indicate the season when the maximum EVI took place 227 

(DMAX): (1) spring, (2) summer, (3) autumn, (4) winter. Places with EC sites are indicated with colored circles , where each 228 

color represents a different plant functional type (PFT). Biogeographical regions are based on the official European 229 

biogeographical regions map (EEA, 2016) and are represented by black lines. 230 
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3.2 Ground-based NEE of the satellite-derived EFTs 231 

In total, 20 of the 64 potential EFTs, containing 73.10 % of our study area, were represented by the network of the 50 long-232 

term EC sites that met our selection criteria (Fig. 2). The most abundant EFT, Da1, showed high productivity (D), high 233 

seasonality (a), and maximum EVI in spring (1) (Fig. 2). Da1 occupied 10.87% of the surface and was distributed throughout 234 

the study area but abundantly in the western and southern extremes of the Atlantic Region). Da1 was represented by 8 EC sites 235 

that exhibited NEE with a strong seasonal variability, with a pronounced peak of carbon assimilation between -7.23 and -7.46 236 

g C m-2 d-1 in spring (Fig. 4) and corresponded with the most abundant ecosystem in Europe, the Deciduous Broadleaf and 237 

Mixed Forest (S4 Table S4). The second most abundant EFT, Ad1, showed low productivity (A), low seasonality (d), and 238 

maximum EVI also in spring (1). Ad1 occupied 9.98% of the territory, mainly in the Iberian Peninsula (Fig. 1). Ad1 was 239 

represented by 2 EC sites (Fig. 2) that exhibited NEE dynamics with low seasonality and the peak of carbon assimilation 240 

(NEE) between -0.72 and -1.98 g C m-2 d-1 in spring (Fig. 4) and was concentrated in areas dominated by shrub vegetation 241 

(S4 Table S4).  242 

 243 

 244 

Fig. 2. Accumulated area covered by the Ecosystem functional types (EFTs; in %) represented in the study (ordered from 245 

highest to lowest). Colors indicate the number of eddy covariance (EC) sites, and the numbers indicate the area occupied by 246 

each of these EC sites (in %). 247 

 248 



15 
 

Regarding the abundance of EC sites, the EFT Da1 mentioned above was represented by 8 EC sites, followed by EFT Ba1 and 249 

Cb1 with 5 EC sites. The EFT Ba1, was also abundant, occupying 7.4% of the total surface (Fig. 2), and was located mainly 250 

in the eastern part of the study area (Atlantic and Continental regions) (Fig. 1). The EFT Cb1, was less abundant than the 251 

previous one (3.61%) and was located in central areas of the Atlantic and Continental regions. NEE dynamics were 252 

characterized by high (a) and medium-high (b) seasonality and the peak time of carbon assimilation between -6.40 and -7.53 253 

g C m-2 d-1 in spring. In both cases, these places corresponded with cereal crops (S4 Table S4). 254 

Our discriminant analysis showed that EFTs significantly differed in NEE measured in situ with the EC technique. The average 255 

of the performance metrics obtained from the discrimination that satellite EFTs made of EC site NEE ranged between 0.953 256 

to 0.978 (Table 3a). NEE dynamics significantly differed between different EFTs but were similar within the same EFTs (S5 257 

Fig. S2). For example, the EFT “Da1”, which had high productivity, high seasonality, and spring EVI maxima, also showed 258 

high average NEE values, high seasonality in NEE, and maximum carbon assimilation in spring (Fig. 4, EC sites DE-Lnf, FR-259 

Fon). The EFT “Bc1”, with medium to high productivity, medium seasonality, and spring EVI maxima, was also characterized 260 

by moderate seasonality in terms of NEE and maximum carbon assimilation in spring (Fig. 4a for EC sites BE-Vie, DE-Tha). 261 

Contrary, the EFT “Ad1”, which had low productivity, low seasonality, and EVI spring maxima, also showed low average 262 

NEE, low seasonality in NEE, and a peak of maximum carbon assimilation in spring (ES-Lju, IT-Noe). As another example, 263 

the EFT “Cb1”, with medium productivity, medium-high seasonality, and spring EVI maxima, also showed medium to high 264 

seasonality in terms of NEE and maximum carbon assimilation in spring (Fig. 4a for EC sites DE-she, DE-RuS). 265 

3.3 Comparison between EFTs and PFTs to discriminate NEE measured by EC 266 

EFTs performed marginally better than PFTs in capturing differences in NEE dynamics measured on the ground (Table 3). 267 

The average across all discriminant analyses in all performance indices was marginally but not significantly higher for EFTs 268 

(e.g., mean Kappa = 0.953) than for PFTs (e.g., mean Kappa = 0.923) (Table 3, Fig. 3); However, the standard deviation (s.d.) 269 

across all discriminant analyses was higher for PFTs (e.g., s. d. of Kappa = 0.078) than for EFTs (e.g., s. d. of Kappa = 0.067). 270 

No significant differences between the performance metrics of EFTs and PFTs were detected by the Wilcoxon-test in any of 271 

the indices (Table 3). 272 

 273 

 274 

 275 

 276 

Table 3. Mean performances metrics, their standard deviation (SD) and differences in: Kappa, Accuracy, Precision, Recall 277 

and F1 values obtained from discriminant analysis of combinations with equal number of classes and EC sites of (a) ecosystem 278 

functional types (EFTs) and (b) plant functional types (PFTs). To assess for significant differences, we applied a Wilcoxon-279 
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test (p-values showed), and we calculated the percentage of cases in which differences between EFTs or PFTs with NEE were 280 

significant (% sig), in this case, none. 281 

 282 

 

 

a. EFTs       b. PFTs   Difference 

mean SD mean SD p-value % sig 

Kappa 0.953 0.067 0.923 0.078 1 0 

Accuracy 0.972 0.040 0.952 0.051 1 0 

Precision 0.967 0.047 0.959 0.057 1 0 

Recall 0.978 0.033 0.960 0.040 1 0 

F1 0.972 0.040 0.959 0.048 1 0 

 283 

Fig. 3. Histograms of performances from discriminant analysis for all combinations of Ecosystem Functional Types (EFTs) 284 

and Plant Functional Types (PFTs) with equal number of classes and EC sites. Blue lines correspond to EFTs and green lines 285 

to PFTs. 286 

 287 

In general, NEE dynamics were similar for the same PFT or EFT across EC sites (Fig. 4), though there were some exceptions 288 

for certain PFTs (Fig. 4b; S5 Fig. S3). Sites corresponding to the PFT “deciduous broadleaf trees” or the EFT “Da1” always 289 
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showed similar NEE (Fig. 4; Table 1). However, for the PFT “evergreen needleleaf trees”, NEE dynamics exhibited a different 290 

seasonality and variable maximum carbon assimilation across sites (Fig. 4b for EC sites CH-Dav, DE-Lkb). Differences in 291 

NEE dynamics across sites were also observed for shrublands where the ES-LJu site (EFT Ad1) was assimilating carbon 292 

throughout the year, particularly in spring, while the ES-Amo site (EFT Ad4) was mainly emitting carbon throughout the year 293 

except for winter. Larger differences in NEE occurred in the PFT croplands, with maximum carbon sequestration occurring 294 

in different seasons (Fig. 4b, for sites CH-Oe1 and CH-Oe2 (EFT Cb1). 295 

 296 

 297 

Fig. 4. Comparison of the variability within and across classes of Ecosystem Functional Types (EFTs) and Plant Functional 298 

Types (PFTs) in the seasonal dynamics of NEE. a) Variability inter EFTs: annual mean of NEE dynamics from different places 299 
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randomly selected with the same EFT; and b) variability inter PFTs and intra EFTs: annual mean of NEE dynamics from 300 

different places with the same PFT and different EFT. 301 

4 Discussion 302 

Remotely-sensed EFTs successfully mapped functionally homogeneous land patches regarding NEE dynamics measured in 303 

situ with the EC technique. Furthermore, EFTs performed at least similarly to the commonly used PFTs for discriminating 304 

among different NEE seasonal dynamics (Table 3). EFTs have the advantage of being more sensitive in their responses to 305 

short-term changes in ecosystem functioning than the slower-responding plant community composition or canopy structure. 306 

Furthermore, they can be recalculated on an annual basis using the same classification rules, which provides a straightforward 307 

way to track interannual changes in ecosystem functioning (Müller et al. 2014). Our focal ecosystem function was NEE 308 

dynamics, which is related to primary production (but also to ecosystem respiration), one of the most essential and integrative 309 

descriptors of ecosystem functioning (Virginia and Wall, 2010). Hence, satellite-derived EFT classifications could be used to 310 

monitor the status and changes of the regional heterogeneity or spatial diversity of the essential variable of ecosystem 311 

productivity as a surrogate of the overall ecosystem performance (Jax, 2010; Pettorelli et al., 2016). 312 

4.1 EFTs capture differences in NEE  313 

EFTs quantified and mapped the spatio-temporal characteristics of carbon dynamics, a crucial aspect for biodiversity 314 

conservation and ecosystem services maintenance in a global change context (Midgley et al. 2010). Twenty of the 64 EFTs 315 

identified in Europe (corresponding to 73% of the study area) were represented by at least one EC site in the FLUXNET2015 316 

dataset with at least three years of data. This number of site-years and the covered area provided sufficient evidence to confirm 317 

the validity of the EFT concept. Therefore, our approach could help to assess carbon dynamics at a regional scale by providing 318 

homogeneous land areas in terms of their primary production dynamics (Running et al. 2004, Zhang et al. 2015). This fact 319 

helps to understand the regional patterns and drivers of the differences in carbon dynamics at the regional scale and could 320 

contribute to reducing the uncertainties in the global carbon balance (Beer et al. 2010).  321 

EFTs capture spatial differences in NEE seasonal dynamics equally well or marginally better than other mainstream 322 

approaches, such as PFTs. Different areas may respond differently to environmental changes despite being dominated by the 323 

same PFT, and frequently, ecosystem-process models (parameterized for a specific PFT) may not be able to represent these 324 

differential responses (Vargas et al. 2013). Usually, the parameterization of a particular PFT is homogeneous within such PFT 325 

and does not change, for instance, according to the eco-physiological status of a specific area or its intrinsic plasticity (Müller 326 

et al. 2014). In addition, land-cover maps based on a PFT concept are static and difficult to update (i.e., PFT database structure 327 

and assumptions are not easily adapted to new data). At the same time, EFTs are a data-driven classification through which 328 

we can annually obtain new data and detect changes in the exchange of matter and energy between the ecosystems and the 329 

atmosphere in response to environmental variability. In this sense, the literature (Bret-Harte et al. 2008; Suding et al. 2008; 330 
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Clark et al. 2016; Saccone and Virtanen 2017; Thomas et al. 2018) has pointed out that the PFT approach is not straightforward 331 

enough to represent ecosystem functional properties at the ecosystem level.  332 

EFTs derived in this study rely on EVI-based attributes, which primarily represent the dynamics of primary production. This 333 

focus is consistent with the fact that vegetation greenness and light absorption are tightly linked to APAR, GPP and NEE (e.g. 334 

Huete et al. 1997; Running et al. 2004; Shi et al. 2017), making EVI a direct and widely used indicator of ecosystem functional 335 

behaviour at large scales. The strong agreement between our EFTs and in situ NEE patterns confirms that EVI captures the 336 

dominant functional axis related to carbon uptake. Although additional attributes associated with water or energy fluxes (e.g., 337 

NDWI, land-surface temperature or albedo) could enrich multidimensional EFT frameworks in the future, the carbon-related 338 

dynamics encoded in EVI already provide a robust and ecologically meaningful foundation for functional ecosystem 339 

classification. 340 

4.2 EFT spatial patterns and environmental controls  341 

EFTs allowed us to characterize the regional heterogeneity of ecosystem functioning across Europe. In relation to the three 342 

descriptive attributes of ecosystem functioning from which the EFTs were constructed (EVI_mean; an estimator of primary 343 

production, EVI_SD; a descriptor of seasonality and EVI_DMAX; an indicator of phenology), we found general patterns 344 

determined by the combination of vegetation characteristics and environmental controls. The role of environmental variables 345 

(abiotic and biotic) that control ecosystem processes differ according to the level of biological organization and the spatial 346 

scale considered (Reed et al. 1993; Pearson and Dawson, 2003). Ecosystem functioning in natural areas are known to be mainly 347 

driven by precipitation (Lauenroth et al. 1978), temperature (Rosenzweig and Dickinson 1968; Jobbagy et al. 2002), soil 348 

characteristics (NoyMeir 1973), and vegetation structure (Epstein et al. 1998). In this case, EFTs productivity decreased from 349 

east to west influenced by rainfall patterns determined by the Gulf Stream and the distance from the ocean (Palter 2015), which 350 

also determines changes in vegetation. Regarding the seasonality of EVI, it increased in relation to two factors: 1) the altitude, 351 

having the highest values of seasonality in the mountainous areas (influenced by changes in precipitation, temperature, and 352 

consequently, in vegetation), and; 2) the crop areas, where management practices, harvests, and crop changes are responsible 353 

of this dynamic and therefore it cannot be explained by natural environmental controls alone. Peaks of maximum EVI in 354 

Europe took place in spring and summer when the availability of water (precipitation) and energy (temperature) for vegetation 355 

was at its optimum (Whittaker et al. 2003). 356 

Boundaries of the biogeographical regions (EEA 2016) were consistent with the EFTs (Fig. 1). Still, while the classification 357 

from EEA is static, EFTs provide a data-driven classification that could be better coupled to ecosystem functioning. The Alpine 358 

region was dominated by EFTs with low productivity, high seasonality, and maxima in summer. In the high mountain peaks 359 

(<3000 meters), the vegetation was reduced to a low density of highly adapted plants that can tolerate extreme conditions (i.e., 360 

the short growing period and fluctuating air temperatures, and therefore, has low productivity, also detected in the global 361 

primary productivity patterns of Beer et al. (2010) and Zhang et al. (2017)). In the highest altitudes, snow is present over most 362 
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of the year, leaving only a short period for the development of the plants, mainly in summer, leading to a summer maximum 363 

and a high seasonality (Sundseth, 2009a).  364 

A high heterogeneity of EFTs characterized the Mediterranean region due to their high habitat diversity (i.e., high mountains 365 

and rocky shores, thick scrub and semi-arid steppes, coastal wetlands, and sandy beaches, constituting a global biodiversity 366 

hotspot (Myers et al. 2000)). The main driver of ecosystem functional diversity is the climate (characterized by hot, dry 367 

summers and cool winters) (Lionello et al. 2006), in combination with human influence, (i.e., livestock grazing, forest 368 

cultivation, and forest fires) (Blondel and Aronson, 1999). 369 

The Atlantic region was characterized by EFTs with high productivity, high seasonality, and maximum greening in spring due 370 

to the mild winters, cool summers, predominantly westerly winds, and moderate rainfall throughout the year (Hurrel, 1995). 371 

These conditions favor non-water-limited deciduous species with high productivity, resulting in a high seasonality. Due to the 372 

anthropogenic influence, agricultural landscapes are widespread in this region, one of Europe's five major agricultural regions, 373 

according to Kostrowicki (1991). Thus, the region’s high productivity must be partly attributed to irrigation, and high 374 

seasonality is driven by harvest and cropping cycles. 375 

Finally, in the Continental region, the ecosystem’s functioning varied largely in terms of productivity, reflecting regional 376 

climatic patterns. In the eastern part of the continental region, extremes of hot and cold temperatures and wet and dry conditions 377 

are more frequent and strongly impact ecosystem functioning (dominant EFT was Aa1, low productivity, high seasonality, and 378 

maximum in spring). These areas are mountainous and experience sub-alpine conditions. Moving west, the climate is 379 

characterized by relatively small temperature fluctuations due to the buffering effect of the nearby ocean and the flat landscape 380 

(Da1 and Ca1 in the transition) (Sundseth, 2009b). 381 

4.3 Opportunities and limitations of EFTs 382 

Since EFTs describe ecosystem functioning on an annual basis in homogeneous patches on the land surface, they offer 383 

opportunities for application in ecology and conservation compared to approaches that do not represent short-term dynamics 384 

(such as PFTs). The concept of EFT has been highlighted as “the first serious attempt to group ecosystems (at large scales) 385 

based on shared functional behavior” (Mucina, 2019), and its strength for being applied as a classification scheme is determined 386 

by its ability to translate ecosystem functions into discrete entities that can be mapped. EFTs are identified by remote sensing 387 

tools from aggregated measurements of ecosystem functions at the pixel level, which, in practice, represents information on 388 

the performance of the whole ecosystem at that grain scale. Having the possibility of mapping entities (EFTs) that reflect the 389 

principal performance of the entire ecosystem opens a straightforward, tangible, and biologically meaningful way to quantify 390 

distributions of ecosystem functions at the regional scale, complementing our traditional view of ecosystems (Paruelo et al. 391 

2001; Butchart et al. 2010; Asner et al. 2017). Specifically, satellite-derived dynamic functional classifications, such as EFTs, 392 

have several advantages over other static approaches, such as PFTs. Satellite-derived EFAs and EFTs 1) are capable of 393 

capturing differences in ecosystem processes as measured in the field; 2) they provide a valuable framework for understanding 394 

the mechanisms underlying large-scale ecological changes (Cabello et al. 2016; Alcaraz-Segura et al. 2017; Requena-Mullor 395 
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et al. 2017, 2018; Arenas-Castro et al. 2018; Lourenço et al. 2018; Vaz et al. 2018); 3) they offer a faster response than 396 

compositional or structural approaches to environmental changes (McNaughton, 1989; Mouillot et al. 2013), which are 397 

particularly noticeable at the ecosystem level (Vitousek, 1994); 4) they can be more easily monitored and updated than 398 

structural or compositional ones under a common protocol in space and time, at different spatial scales and over large 399 

extents  (Paruelo et al. 2001); 5) they can complement information on vegetation structure and composition (e.g., canopy 400 

architecture, vegetation type, PFT), because they constitute complementary dimensions of biodiversity complexity (Noss, 401 

1990); 6) they facilitate the direct assessment of ecosystem functions and services (Costanza et al. 2006; Hellmann et al. 2017) 402 

and would link critical dimensions of biodiversity to ecosystem processes including the carbon cycle, the water cycle and the 403 

provisioning of ecosystem services; 7) they have already been proposed as essential variables for monitoring biodiversity 404 

(Pettorelli et al. 2016; Skidmore et al. 2021). 405 

Our approach, as with any other ecosystem classification framework, is still subject to some challenges. First, EFTs represented 406 

by several EC sites could be parameterized in terms of NEE dynamics, though not all EFTs (18%) are represented yet. 407 

Nevertheless, the subset of EFTs covered by multiple EC sites spans the dominant functional types across Europe, providing 408 

a solid empirical basis for validating the classification. Second, the footprint or spatial resolution of the EC measurements 409 

varies depending on the micrometeorological conditions (wind direction, wind speed, atmospheric stability) and the ratio of 410 

measurement to vegetation height, e.g., forest flux footprints are generally larger than grassland footprints (oscillates between 411 

50 m and 200 m) (Schmid 1997; Kljun et al. 2015). In contrast, the MODIS pixels used have a constant spatial resolution of 412 

~231 m, generating an unavoidable scale mismatch. However, because EC towers are typically placed in relatively large and 413 

functionally homogeneous land patches (Aubinet et al. 2012), the MODIS pixel and the flux footprint generally sample 414 

comparable surfaces, limiting the practical impact of this mismatch on the regional-scale patterns captured by our EFTs. 415 

Nonetheless, we acknowledge that some challenges regarding spatial representativeness remain (Chu et al. 2021). Future 416 

studies may reduce this mismatch by using higher-resolution sensors such as Sentinel-2 (10 m/pixel), but currently is not 417 

possible because the time period of Sentinel-2 data is not covered by FLUXNET data (i.e., Sentinel-2 starts taking data in 2015 418 

and the available FLUXNET 2015 database goes up to this year). Alternatively, footprint modelling could be applied when 419 

appropriate micrometeorological data exist, but footprint-weighted averaging was not feasible in our study because daily or 420 

sub-daily footprint estimates are unavailable for most FLUXNET sites and years, a limitation commonly acknowledged in 421 

previous RS–flux integration studies (Chu et al. 2021). Third, different ecosystems regarding other functional aspects (e.g., 422 

evapotranspiration, heat exchange) can be classified here as the same EFT from the NEE dynamics, as dime we used it as our 423 

focal function. However, EFTs could also be identified to characterize the spatiotemporal heterogeneity of multiple ecosystem 424 

processes and functions at different scales, including other functional aspects (e.g., albedo, evapotranspiration, heat exchange) 425 

(Fernandez et al. 2010). Also other temporal metrics, such as daily anomalies or interannual variability can provide 426 

complementary information on short-term or year-to-year ecosystem responses, but they are not expected to improve the 427 

discrimination among EFTs, which is intrinsically based on intra-annual functional patterns. Similarly, additional phenological 428 

transition metrics such as the start and end of the season (SOS/EOS) may offer complementary insights into growing-season 429 
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timing and duration; however, their higher sensitivity to noise and temporal gaps, particularly in 16-day MODIS time series, 430 

makes peak-greenness metrics like EVI_DMAX more robust and comparable for regional-scale functional classifications. 431 

Finally, incorporating EFTs into earth system models is challenging since these models generally use simple and few numbers 432 

of categories in a variable, and some models might not be able to run with so many (64) EFT categories. Nevertheless, some 433 

studies have successfully incorporated EFTs into earth system models (Lee et al. 2013; Müller et al. 2014). The incorporation 434 

of these types of variables (dynamic and easily accessible) into the models might be helpful in the monitoring and sustainable 435 

management of carbon reservoirs at short to medium-time scales. 436 

5 Conclusion 437 

Satellite-derived EFTs are an ecosystem functional classification built from satellite observations of radiation exchanges 438 

between the land surface and the atmosphere that allow the identification of homogeneous land patches in terms of an essential 439 

ecosystem function, e.g., NEE dynamics, measured on the ground by means of which is related to ecosystem productivity. 440 

EFTs performed as well as PFTs in discriminating different NEE dynamics, EFTs, however, have two main advantages: they 441 

can be easily updated for any region of the world at an annual frequency based on available satellite information, and EFTs 442 

maps are more sensitive to environmental changes than vegetation composition or structure. 443 

Our results showed the capability of using ecosystem functional attributes for grouping ecosystems at large scales according 444 

to their different net carbon flux dynamics. Such classification, based on the essential biodiversity variable of ecosystem 445 

production as a focal ecosystem function, opens the possibility of assessing and monitoring ecosystem functional diversity, 446 

the spatial heterogeneity in ecosystem functioning, and carbon-related ecosystem services at regional to global scales. 447 

Therefore, our study demonstrates that satellite-derived EFTs provide a valid tool to assess and monitor ecosystem functioning 448 

with potential applications in ecosystem monitoring and modeling and biodiversity and carbon management programs. 449 

 450 
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