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Abstract 
 

For satellite measurements of atmospheric composition, the random uncertainty estimates provided by retrieval 25 

algorithms might be imperfect due to various approximations used in the retrievals or presence of unknown error sources.  This 

paper presents an overview of the methods used for validation of random uncertainty estimates. All methods discussed in this 

study are categorized, and assumptions and limitations of each method are discussed. This overview evaluates these methods 

in application to ozone profile measurements data from limb and occultation satellite instruments and provides practical 

illustrations of random uncertainty validation. 30 

1 Introduction 

In nearly all data analyses, such as data comparisons, aggregating/combining/merging data, data assimilation etc., information 

about data uncertainty is needed. Such characterization of uncertainty would ideally include both systematic and random 

components, as well as spatio-temporal resolution of the data, as discussed in von Clarmann et al. (2020). Validation of 

uncertainty estimates is needed, especially if the measurement uncertainty cannot be fully characterized or is based on 35 

assumptions. This is typical for remote-sensing measurements, which use retrievals of atmospheric parameters that solve 

inverse problems. Random uncertainty of the remote sensing measurements is usually estimated via propagation of 

instrumental noise and other random uncertainties through the inversion algorithm. These estimates, which are sometimes 

referred to as “ex-ante” errors (von Clarmann, 2006) (other terms are “prognostic”, “predicted”, “inductive”, or “bottom-up”), 

can be imperfect due to various approximations used in retrievals, or due to the presence of random components in parameter 40 

uncertainties.  

The aim of this paper is to provide an overview of the methods for validation of random error component. We extend the 

overview of such methods presented in the introduction of Sofieva et al. (2014) and illustrate them using ozone profile 
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retrievals from Earth-orbiting limb and occultation instruments. In our paper, we discuss the applicability and limitations of 

each method, with the focus on ozone profile retrievals from satellite measurements. 

This paper contributes to the APARC (Atmospheric Processes and their Role in Climate) activity TUNER (Towards 

UNified Error Reporting) https://www.aparc-climate.org/activities/tuner/. 

2 Data 5 

To illustrate the methods employed for validation of random uncertainties, we use ozone profiles retrieved from several limb 

and occultation measurements.  The summary of the datasets is collected in Table 1, and the principles of uncertainty estimates 

are described below.  

 

Table 1. Information about the ozone profile datasets used in the paper.  10 

Instrument/ 

satellite/processor 

Principle of retrieval 

appproach/uncertainty 

estimation and references 

Time period Vertical 

resolution 

Estimated 

random 

uncertainty 

in the 

stratosphere 

Profiles 

per day 

SAGE II/ ERBS 

NASA v7.0  

Error propagation 

(Damadeo et al., 2013) 

Oct 1984 – 

Aug 2005 

~1 km 0.5−5% 14−30 

OSIRIS/ Odin 

USask v7.2  

Error propagation 

(Bourassa et al., 2018) 

Nov 2011 – 

present 
2−3 km 2-10% ~250 

GOMOS/ Envisat 

ALGOM2s v1.0  

Error propagation of instrumental 

noise and residual scintillation error 

(Kyrölä et al., 2010; Sofieva et al., 

2017) 

Aug 2002 – 

Aug 2011 
2−3 km 0.5–5 % ~110 

MIPAS/ Envisat 

KIT/IAA V8  

 Error propagation 

 (von Clarmann et al., 2009; Kiefer 

et al., 2023) 

Jan 2005 – 

Apr 2012 
3−5 km 1–4% ~1000 

SCIAMACHY/ Envisat 

UBr v3.5 

Error propagation for retrieval 

noise, parameter errors are 

estimated for selected 

representative scenarios using the 

Monte-Carlo approach 

(Jia et al., 2015; Rahpoe et al., 

2013) 

Aug 2003 – 

Apr 2012 
3−3.5 km 1−7% ~1300 

ACE-FTS/ SCISAT 

V5.2 

Least-squares statistical fitting 

errors 

(Boone et al., 2005; Sheese et al., 

2022) 

Feb 2004 – 

present 

~3 km 1−4% ~30 

MLS/Aura 

NASA v.5 

Error propagation (Livesey et al., 

2006; Read et al., 2006) 

2004- Present ~ 3 km 2-5 %  ~3500 

OMPS-LP/ Suomi NPP 

USask 2D v1.3.0 

Error propagation of measurements 

uncertainty (Zawada et al., 2018) 
Apr 2012 − 

present 

~2 km 

 
2−10% ~2000 

OMPS-LP/ Suomi NPP 

UBr v4.1 

Error propagation for retrieval 

noise, parameter errors are 

estimated for selected 

representative scenarios using the 

Monte-Carlo approach 

(Arosio et al., 2022) 

Apr 2012 − 

present 

~2-3 km 3-5% ~2000 

OMPS-LP/Suomi NPP 

NASA v2.6 

Error propagation (Kramarova et 

al., 2024) 

April 2012-

present 

1.9 – 2.5 

km 

3-5% ~2000 

SAGE III /ISS 

NASA AO3 v5.3 

Error propagation 

 (Wang et al., 2020) 
2017 − 

present 

~1 km 2–4% ~30 
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2.1 Atmospheric Chemistry Experiment -Fourier Transform Spectrometer (ACE-FTS) 

In retrievals from ACE-FTS, estimated random uncertainties of ozone profiles are the fitting errors from the least-squares 

inversion process (Boone et al., 2005, Sheese et al., 2022). The mean relative random uncertainties are estimated to be lower 

than 3% between 12 and 62 km and typically less than 2% around 30–35 km. Relative uncertainties are slightly higher in polar 

regions. The ACE-FTS ozone uncertainty estimates slightly grow with time, going from ~1.7% in the middle stratosphere in 5 

the beginning of the mission to ~2.0% in the recent period. The vertical resolution of ACE-FTS ozone profiles is estimated to 

be ~ 3 km. 

2.2 Global Ozone Monitoring by Occultation of Stars (GOMOS) 

In this paper we use the GOMOS ozone profiles processed with ALGOM2s v.1 Scientific Processor (Sofieva et al., 2017). The 

error propagation scheme is similar to that used in GOMOS IPF v.6 processor (Kyrölä et al., 2010; Tamminen et al., 2010), as 10 

the ALGOM2s ozone profiles are identical to those of IPF v.6 in the stratosphere and differ only in the UTLS.  The error 

estimates (square roots of the diagonal elements of the covariance matrix) are provided in the Level 2 data. The covariance 

matrix of retrieved profile uncertainties is obtained via Gaussian error propagation through the GOMOS inversion, see 

Tamminen et al. (2010) for details. Both noise and the dominating random modelling error (due to scintillations) are taken into 

account in GOMOS inversion. Thus, error estimates provided in Level 2 files represent the total random uncertainty estimates 15 

(if neglecting the random part of the parameter errors, which are expected to be minor compared to the abovementioned random 

error sources).   

The random uncertainties of GOMOS ozone profiles depend on stellar brightness, spectral class and obliquity of occultation. 

They are typically in the range from 0.5% to 5% in the stratosphere. Examples of typical uncertainties of GOMOS ozone 

profiles can be found in Tamminen et al. (2010). An extensive validation of GOMOS random uncertainty estimates is 20 

performed and reported in Sofieva et al. (2014). It was shown that GOMOS random uncertainty estimates are realistic for not-

dim stars. Due to instrument ageing, GOMOS random uncertainty estimate grow with time, especially for dim stars (Tamminen 

et al., 2010). 

2.3 Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) 

The random errors provided with version 8 IMK MIPAS data consist of the propagated covariance of the spectra, and further 25 

uncertainties of parameters used in the retrievals (like uncertainty of the temperature or the line-of-sight pointing) which are 

of random nature. A detailed description of how these random errors were calculated is provided by von Clarmann et al., 

(2022) and Kiefer et al. (2023). According to Kiefer et al. (2023, Supplement), the total random error is up to about a factor of 

2 to 3 (even >3 for unfavorable conditions like polar winter) higher than the pure measurement noise error in the lower part of 

the stratosphere (up to about 30 km), and by a factor of 1.1 to 1.4 higher in the upper part of the stratosphere. For illustrations 30 

in our paper, if not specified explicitly, we use the total random uncertainty. 

2.4 Microwave Limb Sounder (MLS)  

This paper uses the Aura MLS “Version 5” dataset (Livesey et al., 2024), retrieved using the same tomographic retrieval 

algorithm employed for all previous MLS data versions (Livesey et al., 2006; Read et al., 2006; Schwartz et al., 2006). The 

Level 2 data products consist of vertical profiles spaced 1.5º along the orbital track, with pressure as the vertical coordinate. 35 

Each profile is accompanied by a separate profile reporting the estimated precision uncertainty (i.e., random noise) in the 

profile. This is based on the square root of the diagonal of the solution covariance matrix from the optimal estimation-based 

retrieval and thus overestimates the scatter in the geophysical products in cases where the a priori information and other 

regularization constraints contribute significantly to the results (typically at the upper end of the useful vertical range of each 

product). Systematic errors due to uncertainties in instrument calibration, spectroscopy, and other parameters have been 40 
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quantified through multiple perturbation studies detailed in Read et al. (2007), and are documented for each version, along 

with averaging kernels and rules for data use and screening, in a data quality document (Livesey et al., 2024 for version 5). 

 

2.5 Ozone Mapper and Profile Suite - Limb Profiler (OMPS-LP) 

For illustrations in this paper, we use three ozone profile datasets from OMPS-LP instrument: OMPS-LP USask 2D v1.3.0 5 

processed at University of Saskatchewan, OMPS-LP UBr v.4.1 processed at University Bremen, and the NASA processor v. 

2.6 

The OMPS-LP USask two-dimensional retrieval process uses Gaussian error propagation to estimate the covariance of the 

retrieved solution due to measurement noise (ignoring the smoothing error). The reported precision is the square root of the 

diagonal elements of the converged solution covariance matrix. The measurement noise is assumed to be a constant 1% at all 10 

altitudes and wavelengths. 

OMPS-LP UBr v.4.1 Level 2 data provide covariance matrices for the retrieved profiles which are obtained by the propagation 

of the measurement noise errors. The latter are estimated from spectral fit residuals obtained during the pre-processing step. 

Contributions of the parameter errors are estimated using the Monte-Carlo approach for a set of representative observations 

and reported by (Arosio et al. 2022) along with the total error budget estimations.   15 

The NASA OMPS-LP v2.6 algorithm (Kramarova et al., 2024; Rault and Loughman, 2013) retrieves ozone profiles by 

employing the second order Tikhonov regularization method. The estimated precision for each profile retrieval is calculated 

using the square roots of diagonal elements of the solution covariance matrix. Systematic errors related to uncertainties in 

altitude registration, some algorithmic parameters, and apriori profiles have been evaluated and reported by (Kramarova et 

al., 2024; Moy et al., 2017).  20 

2.6  Optical and Spectroscopic Remote Imaging System (OSIRIS) 

OSIRIS V7.2 data uses standard Gaussian error propagation to estimate the uncertainties in the retrieved ozone profiles.  The 

covariance matrix is calculated through propagation of the measurement noise that is estimated through counting statistics.  

The reported precision is the square root of the diagonal elements of the covariance matrix.  

2.7 Stratospheric Aerosol and Gas Experiment (SAGE) 25 

The retrieval algorithms for both SAGE II v7.0 (Damadeo et al., 2003) and SAGE III/ISS v5.3 (see SAGE III ATBD (Wofsy 

et al., 2002) and Wang et al., 2020) are similar. The uncertainties are computed from the statistical distribution of observations 

in the L1 transmission data and then propagated through the retrieval algorithm via Gaussian error propagation into the 

uncertainties for the L2 profiles of ozone and other species. Typical retrieval noise values are within 1 % between 18 and 52 

km. 30 

2.8 Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)   

SCIAMACHY V3.5 Level 2 data provide covariance matrices for the retrieved profiles which are obtained by the propagation 

of the measurement noise errors. The latter are estimated from spectral fit residuals obtained during the pre-processing step. 

Contributions of the parameter errors are estimated using the Monte-Carlo approach for a set of representative observations. 

Rahpoe et al. (2013) described the method to estimate the parameter errors and reported resulting values along with the total 35 

error budget estimations for the precursor retrieval version (V2.5). The results for V3.5 are expected to be similar.  
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3  Methods for validation of random uncertainty estimates 

3.1 Specifics of satellite measurements of atmospheric composition 

In remote sensing, retrieved parameters result from solving the inverse problem. The reported random uncertainties are 

usually estimated via propagation of instrumental noise and other random errors through the inversion algorithm. Error 

estimates might be wrong if the source uncertainties used for propagation are not known well enough.  If some of the error 5 

sources are not characterized and the corresponding uncertainties are not considered, the reported uncertainty is 

underestimated. 

The normalized 2 statistics, 
2

norm ,is commonly used for assessing the adequacy of the theoretical description of 

measurements (forward model) and as an indication of the correctness of random uncertainty estimates. 
2

norm  is usually 

evaluated as: 10 

 ( ) ( )2 1

,

1 T

norm mod y random mod
N p

 −= − −
−

Sy y y y , (1)  

 where y is the vector of observed parameters (e.g., spectrally resolved radiance values, transmittances), ymod is the vector of 

modelled (theoretical) measurements, Sy, random is the covariance matrix of random measurement errors, N is the number of 

measurements and p is the number of retrieved parameters (e.g., Bevington and Robinson, 2003; Taylor, 1997). 
2

norm  is also 

called “ 
2 per degree of freedom”. If the theoretical model describes the experimental data correctly and the measurement 15 

errors are properly defined, 12 norm , ideally. Very large 
2

norm values indicate underestimated random uncertainties, while 

𝜒𝑛𝑜𝑟𝑚
2  smaller than 1 imply that they are overestimated (Bevington and Robinson, 2003).  This simple analysis of 

2

norm  has 

helped to discover a missing random error component in early GOMOS retrievals, which was due to uncorrected residual 

scintillation, and to parameterize it in later processing versions (Sofieva et al., 2010; Tamminen et al., 2010). In the first step 

of the GOMOS retrievals – the spectral inversion (Kyrölä et al., 2010) -  
2

norm  is evaluated at each tangent altitude 20 

independently; y and ymod  in the GOMOS case are measured and modelled transmittance spectra, N is  number of spectral 

pixels (maximum 1416) and p is the number of fitted parameters (slant column densities for ozone, NO2, NO3, and aerosol 

parameters). Figure 1 compares 
2

norm in the GOMOS retrievals in the set of oblique occultations from the brightest star Sirius 

when residual scintillation errors are ignored (blue) or considered (red). 
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Figure 1. Adapted from (Sofieva et al., 2010): 
2

norm in GOMOS retrievals from a set of  oblique occultations of Sirius (August 

2003, 66°S, obliquity angle is ~25°). Blue: random error due to residual scintillation is ignored, red: modelling errors are taken 

into account in the retrievals. Dots: values in individual occultations, bold lines indicate median values for the sets. The black 

dashed line indicates 
2 1norm =  5 

 

A similar analyses of 
2

norm applied to GOMOS IPF v6 data has spotted 
2

norm <1 at upper altitudes in case of dim stars, and 

a more detailed analysis  identified the reason and the influence on uncertainty estimates (Sofieva et al., 2014). 

In some retrievals, the uncertainty estimate is derived from the fit residuals, as it is done for SCIAMACHY and OMPS-LP 

UBr ozone retrievals (e.g., Arosio et al., 2022). Such an approach forces 
2

norm to be close to 1 and can provide an estimate 10 

the uncertainties of measurements in the case one does not trust the information on measurement uncertainty contained in the 

Level-1 data. 

   
2

norm  is a statistical and integral characteristic that indicates not only correctness of the random uncertainty 

estimates but also consistency of measurements with the forward model used for inversion of atmospheric parameters, which 

is itself often incomplete, or reflects inaccurate knowledge of instrument calibration and/or spectroscopic parameters. In some 15 

cases, a priori/regularization terms are included into 
2

norm  too. Sometimes, this metric is used to determine how strong the 

regularization should be. Therefore, analyses of 
2

norm  at the measurement level are useful, but they cannot substitute 

validation of uncertainty estimates of the retrieved ozone profiles. 

The retrieved ozone profiles are characterized not only by uncertainty estimates but also by vertical resolution and, in the case 

of tomographic retrievals, by horizontal resolution. This means that, for such retrievals, the impacts of radiance noise on 20 

adjacent data points are not independent, and the proper characterization of associated uncertainties is obtained using their 

covariance matrix.  

If the retrieval is performed with the Bayesian maximum a posteriori estimates (Rodgers, 2000; von Clarmann, 2006), a data 

correlation can also arise due to the usage of  a priori information. These aspects should be taken into account when validating 

uncertainties. 25 
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3.2 General strategy 

In the laboratory, experimental precision estimates can be obtained using repeated measurements under the same conditions: 

the sample variance 2 2var( ) ( )s x x x= = − (angular brackets denote the mean hereafter) approaches the variance of 

random error distribution 𝜎2 (i.e., squared precision) when the size of sample N tends to infinity. For different samples of size 

N, the values of sample variance will vary due to different random error realization. An ensemble of sample variances is a 5 

random variable with a distribution depending on noise variance 
2  and N. The quantity 

2

2

( 1)N s



−
 has a 2 distribution with 

𝑁 − 1 degrees of freedom, 
2

1N −
 ( e.g., Bevington and Robinson, 2003; Taylor, 1997). For large N, 

2

1N −
 distribution can be 

approximated by a Gaussian distribution with variance 2N thus 
2

2

( 1)
var 2

N s
N



 −
= 

 
. This gives the uncertainty of the 

experimentally estimated random error 

2 4 2var( )s
N

 .       (2) 10 

In contrast with many laboratory experiments, geophysical observation conditions cannot be kept exactly constant for 

atmospheric measurements. Therefore, the sample variance contains a contribution from the natural variability 
2

nat : 

 
2 2 2

nats   + . (3)  

For validation of uncertainty estimates, 
2

nat  should be minimized by selecting collocated measurements or it should be 

estimated from independent sources (for example, from a chemistry-transport model, CTM). 15 

Approaches for validation of error estimates usually rely on the variance of the difference, 
2

12 1 2var( )s x x= − ,  in a set of 

collocated measurements x1 and x2: 

      
2 2 2 2

12 0, 1 2nats   = + + .     (4) 

In Eq.(4), 2

0,nat  stands for the natural variability within a space-time collocation window (note that 
2

0,nat , which represent 

the mismatch uncertainty, is different from 
2

nat (natural variability in a certain  location) in Eq.(3)). 20 

It is important to note that for the vertically resolved ozone profile data involved, calculating differences and combining data 

require harmonization of data representations in terms of physical quantities and vertical sampling at least. As the satellite data 

result from a retrieval process, knowledge of prior information and averaging kernel matrices in principle allows retrieval 

differences to be accounted for as well. Keppens et al. (2019) provide an overview of harmonization operations for atmospheric 

profile observations is provided, covering vertical representation matching, vertical smoothing matching, and retrieval 25 

matching (essentially the prior information contributions). The effect of these manipulations on the information content and 

uncertainty budget of the original data is extensively discussed in that work and will not be repeated here.  In the following, 

we assume that all profiles are presented in a similar vertical resolution. For the illustrations in this paper, the harmonization 

of the vertical resolution is not needed, as the satellite limb profiles have similar vertical resolution, see Table 1. 

 30 

We divide the methods for random uncertainty validation into two groups depending on what kind of data are used: (1) from 

the same instrument and (2) from different instruments. 
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3.3 Using collocated measurements from the same instrument 

For perfectly collocated measurements (
2

0, 0nat  ) from the same instrument with the same precisions 1 2  = = , 

Eq.(4) is reduced to 
2 2

12 2s  , thus allowing validation of the uncertainty estimate 
2 2

12
ˆ 2s = . In this estimate, random 

errors in 1x  and 2x  are assumed to be uncorrelated. This uncertainty validation method was realized, for example, for closely 

collocated MIPAS ozone profiles (Piccolo and Dudhia, 2007) and OSIRIS ozone measurements (Bourassa et al., 2012). The 5 

uncertainty of this experimental precision estimate is defined by the uncertainty of sample variance 
2

12s . 

There are several limitations associated with this method. First, natural variability 
2

0,nat  is not necessarily small, even with a 

tight spatio-temporal window. In such cases 𝑠12
2  will be larger than a combined uncertainty 2𝜎 

2, thus the estimate 2 2

12
ˆ 2s =  

will be biased high. Second, the number of self-collocated measurements for limb satellites is limited (self-collocated 

measurements are usually found around the Poles, while at other latitudes a larger temporal separation has to be accepted). In 10 

addition, the number of self-collocated measurements for instruments with coarse sampling (stellar and solar occultation) is 

relatively low. For example, ~ 200  collocated occultations (with spatial separation r  less than 300 km and temporal 

separation t  less than 3h) per year of  the star S30 (notation  in the GOMOS catalogue) can be found for GOMOS; all 

located near the North Pole in winter. For ACE-FTS, fewer than 100 self-collocations per year with the criteria 

3h, 300 kmt r =  =  are found, and ~400 self-collocated measurements per year can be found with the collocation 15 

criteria 5h, 500 kmt r =  = . For SAGE II and SAGE III/ISS, there are no self-collocated measurements with the 

abovementioned collocation criteria.  

Provided many collocated measurements from the same instrument are available (self-collocations), the precision of 

the dataset can also be estimated by computing a so-called structure function ( )D ρ  (e.g., Tatarskii, 1961), or the RMS 

difference  of the field as a function of increasing separation in time and in space: 20 

  
2

1 2 1 2

1
( ) ( ) ( ) ( )

2
D D f f= − = −ρ r r r r  (5) 

where 1r  and 2r are two locations and a vector  is their spatio-temporal separation. In geostatistics, D is called 

the variogram (Cressie, 1993; Matheron, 1963; Wackernagel, 2003). When using experimental (noisy) data for evaluation of 

the variogram/structure function, the difference of an atmospheric parameter in two locations is defined not only by the natural 

variability of this atmospheric parameter, but also by uncertainty of the measurements. Therefore, with the spatio-temporal 25 

separation 𝜌 → 0 , 𝐷(𝝆)  tends toward the random uncertainty variance 
2

noise  (the offset at zero is called “nugget” in 

geostatistics). Since self-collocated measurements are from the same instrument, no biases between them are expected. Figure 

2 illustrates the structure function method, which is discussed in details in Sofieva et al. (2021) and applied to TROPOMI total 

ozone measurements. 

 30 

( )f r

1 2= −ρ r r
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Figure 2. Reproduced from (Sofieva et al., 2021): The schematic representation of the structure function estimated from noisy 

measurements,  denotes spatio-temporal separation. 

 

For ozone profiles from limb instruments, the structure function method is difficult to apply, as it requires a substantial number 5 

of measurements with close separation. An analogous method - evaluation of the one-dimensional structure function in polar 

regions (with transformation of temporal mismatch to spatial separation using the ECMWF wind field) - has been applied for 

validation of random uncertainty estimates of the MIPAS and GOMOS ozone profiles (Laeng et al., 2015; Laeng and Von 

Clarmann, 2021; Sofieva et al., 2014).  

Figure 3 illustrates the application of the structure function method to MIPAS v8 ozone profiles, which have a detailed error 10 

characterization. With decreasing separation distance between measurements, ex-post uncertainties 12

2

S  approach to a 

curve, which is between ex-ante estimates for total random error (thick red curves) and for instrumental noise (thick magenta 

curves) .  

 

Figure 3. Colored thin vurves: experimental precision estimates 12

2

S for different separation distances; thick curves with 15 

errorbars: the mean ex-ante uncertainty estimate its standard deviation for propagated instrumental noise (magenta) and full 

random uncertainty (red);  MIPAS self-collocations close to the North and South Poles in 2005–20011 during local summer are used. 
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3.4 Using measurements from different instruments 

3.4.1 Method of Fioletov et al. (2006) 

Fioletov et al (2006) have proposed estimating simultaneously the random data uncertainties and natural variability 

from sample variances of two perfectly collocated datasets and the variance of their difference. We reproduce the formulae 

here, as we assess the application of this method. The Fioletov method relies on sample variances 
2

is  of the collocated data: 5 

 
2 2 2 , 1,2i nat is i = + =  (6) 

and the variance of their difference (Eq. (4)), which is reduced to:  

 
2 2 2

12 1 2s  = + ,  (7) 

by assuming  
2

0, 0nat  . It is also assumed that the bias between datasets is the same for the selected sample.  

In  (6) and (7), 
2

nat  is natural variability and 
2

i  are measurement precisions. Solving (6) and (7) for 
2

nat , 
2

1  and 
2

2 , we 10 

get their experimental estimates based on sample variance: 

 

( )

( )

( )

2 2 2 2

1 2 12

2 2 2 2

1 1 2 12

2 2 2 2

2 2 1 12

ˆ 0.5

ˆ 0.5

ˆ 0.5

nat s s s

s s s

s s s







= + −

= − +

= − +

 (8) 

The uncertainty of the natural variability and precision estimates given by (8) depend on uncertainty of sample variances, 

which depend, in turn, on sample variances themselves and the number of measurements. The estimates are thus only as 

accurate as the least accurate of these parameters. In approximation of large samples (when uncertainty of  the sample variance 15 

can be approximated by Eq.(2)), the variance of the estimates (8) can be expressed in terms of „true“ natural variability and 

precision variances 
2

nat , 
2

1  and 
2

2  as (using Eqs (2, 6-8)): 

 ( ) ( ) ( )( )
2 2 2

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2

1
ˆ ˆ ˆvar( ) var( ) var( )

2
nat nat nat

N
        = = = + + + + +  (9) 

with the following simple estimates for upper and lower limits (after opening brackets in Eq.(9)): 

 ( ) ( )
2

4 4 4 2 2 2 2

1 2 1,2, 1 2

1 1
ˆvar( )nat nat nat

N N
      + +   + + .  (10) 20 

Since the precision estimates by the Fioletov method are linear combinations of three sample variances, they can have large 

uncertainty if one of the sample variances is large and/or the number of collocated measurements is limited. Not for all 

combinations of limb instruments perfectly collocated measurements can be found (especially for instruments with not dense 

sampling). In practice, satellite measurements separated by a few hundreds of kilometers and a few hours are considered 

collocated. The natural variability within the space-time collocation window is small but not zero. This results in additional 25 

difficulties in the application of this method. Note that the estimates from Eq.(8) do not ensure positivity of 
2

1  and 
2

2 . 

Negative solutions can be within uncertainty intervals; their appearance can be caused either by insufficient amount of data or 

by the unaccounted natural variability within the collocation window. 

 For illustration, we applied this method to MIPAS and SCIAMACHY measurements in 2007. Collocated profiles with time 

separation less than 5 h, spatial distance less than 400 km and latitude difference less than 2° were selected in the tropics 30 

(20°S–20°N), with13785 such profile pairs found. The left panel of Figure 4 shows sample standard deviations 1s  and 2s  of 

MIPAS  and SCIAMACHY profiles, respectively, and the standard deviation of differences 12s . The right panel shows the  a-
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posteriori (ex-post) estimates of random uncertainties and natural variability from Eq.(8) with uncertainties therein given by 

Eq.(9). The estimates of random errors reported by the retrieval algorithms (“ex-ante” in terminology of (von Clarmann et al., 

2020)) are also shown in right panels of Figure 4 by dashed lines. Negative estimates of 
2

1  and 
2

2  are ignored. All 

computations are performed in absolute units, but the estimates are plotted as a percentage for clarity. We observe that the ex-

ante and ex-post uncertainties of MIPAS ozone profiles are very close to each other. For SCIAMACHY, Fioletov’s method 5 

suggests a larger uncertainty estimates at altitudes 25–37 km than reported in the retrievals. 

 

Figure 4. Application of Fioletov’s method to MIPAS and SCIAMACHY ozone datasets in 2007. Left: sample standard deviations 

s1 and s2 in collocated pairs, and the standard deviation of differences 
12s .  Right: a-posteriori uncertainty estimates 

1̂  and 2̂ , 

and the estimate of natural variability  ˆ
nat  with 1-sigma uncertainties (solid lines).  Ex-ante uncertainty estimates are shown with 10 

dashed lines.  

As a general note for this and subsequent illustrations, the ex-ante random uncertainties for some instruments (see Table 1 for 

details) are due to measurement noise. This is a dominating source of random error, however not the only one (von Clarmann 

et al., 2020). As a result, a posteriori random uncertainty estimates are expected to be slightly larger. 

The best performance of the Fioletov’s method is expected for datasets with dense sampling and similar random uncertainty 15 

estimates. The data should be selected in the regions of low variability. As mentioned above, Fioletov’s method requires a 

large number of collocated profiles to yield reliable estimates of a posteriori uncertainties. The application of this method to 

solar occultation data by ACE-FTS and SAGE III/ISS is illustrated in Figure 5.  The same collocation criteria are used, but the 

number of collocated profiles is significantly smaller than for MIPAS and SCIAMACHY, even though more years of data are 

used. For MLS and ACE-FTS, the number of collocations is 741 for years 2018-2019 and 1471 for years 2018-2022.  The a 20 

posteriori uncertainty estimates from Fioletov’s method have substantial error bars (Figure 5 a, b). In application to ACE-FTS 

and SAGE III/ISS, only 19 collocated profiles are found, so the resulting uncertainty estimates have huge error bars (Figure 5 

c). 
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Figure 5.  Ex-ante and ex-post uncertainty estimates from Fioletov’s method for MLS and ACE-FTS in years 2018-2019 (a) and 

2018-2022(b), and SAGE III/ISS and ACE-FTS in years 2018-2023.  The number of collocated profiles is indicated in the panel titles.  

This method is applicable to both individual-profile and tomographic retrievals, as the data in collocated pair can be considered 

as uncorrelated. As a general note, the fully proper way of finding co-locations with a tomographic retrieval would be not 5 

consider profiles the same way as for individual profile retrievals. Since the along-track dimension is part of the retrieval, 

interpolation should be done in this dimension to the co-location point.  

 

3.4.2 A differential method:  comparisons of natural variability patterns 

Sofieva et al. (2014) proposed a simple method for detecting flaws and/or checking of consistency of random uncertainty 10 

estimates. The authors called it a “differential method”. Let us consider, for example, two datasets selected in a region of small 

and slowly changing natural variability. A large sample size is assumed. If the random uncertainty estimates for both datasets 

are correct, then the difference in sample variance 
2 2

1 2s s−  will be equal to the difference in precision estimates 
2 2

1 2 − . 

The term 
2

nat  from Eq. (3) cancels out because it is assumed to be the same for both samples. The estimates of the sample 

variance, 
2

is , provide the upper limit for experimental estimates of measurement precision, as 
2 2

i is  . 15 

A simple comparison of sample variance 
2

is  with the random uncertainty estimate 
2

i   enables the detection of  overestimated 

random uncertainties, if the relation 
2 2

i is   is violated. Through such a comparison, Sofieva et al. (2024) found 

overestimated random uncertainties for the GOMOS ozone profiles using very dim stars (further investigation by the 

instrument experts detected the flaw with accounting instrumental dark charge noise).  

If one of the datasets has realistic precision estimates (for example, from well calibrated instruments (so-called Fiducial 20 

Reference Measurements), or those estimates are validated by other methods), then application of the differential method is 

straightforward. 

If there are several datasets with unvalidated (or not completely validated) uncertainty estimates, one can consider confronting 

natural variability estimates 
2 2 2ˆ
nat i is = −  .  Since the natural variability estimates from various datasets should agree within 

uncertainty intervals, strong deviations from the majority estimates can potentially indicate flaws in error estimation.  25 

For example, Sofieva et al. (2024) compared estimates of natural variability in the tropics from GOMOS data using different 

stars and found consistent positive values of 
2ˆ
nat  for bright stars (

2 1norm    and  application of the structure function method 
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also suggested that the random uncertainties are realistic for bright stars). However, for very dim stars, negative values of 
2ˆ
nat  

have been detected, which, together with 
2 1norm  , pointed to overestimated random uncertainties.  

In this paper, we illustrate this differential method by considering sample variance and uncertainty estimates from several limb 

and occultation instruments. The measurements are selected in the tropics, 20°S-20°N, in three periods, 2002–2004 (first 

column of Figure 6), 2006–2008 (2nd column) and 2018-2020 (3rd and 4th column of Figure 6), for the limb instruments 5 

operating in these periods. The upper panels of  Figure 6 show the sample standard deviation (solid lines) and the mean random 

uncertainty estimates (dashed lines).  The lower panels show the estimates of natural variability ˆ
nat  with associated 

uncertainties indicated by error bars. For GOMOS, occultations of the 30 brightest stars are used for the analysis, in order to 

make the GOMOS dataset more homogeneous and to avoid data with overestimated uncertainties. SAGE II and SAGE III/ISS 

ozone profiles were smoothed down to 2 km vertical resolution, for compatibility with other datasets. 10 

 As observed in Figure 6, for all datasets except for OMPS USask, s >  as expected. In case of OMPS USask, the mean 

uncertainty   exceeds the sample standard deviation s  at several altitudes, which indicates an overestimation of the random 

uncertainty component. The overestimation is caused by a bug in the V1.3.0 product and will be fixed in a future version. The 

profiles of natural variability ˆ
nat  obtained from GOMOS, MIPAS, OSIRIS, ACE-FTS, SAGE II, SAGE III/ISS , OMPS 

UBr and OMPS NASA are very close to each other, and their uncertainty intervals overlap. For SCIAMACHY, the pattern of 15 

natural variability is also similar, but the increased sample variance at 25–35 km is not explained by its random uncertainty 

estimates; this suggests a slight underestimation of random error component at these altitudes. For MLS and SAGE III/ISS, 

there is a very good agreement with other datasets below 40-45 km; above 45 km, the random uncertainty estimates grow fast 

with altitude, which results in somewhat smaller estimates of ˆ
nat  compared to other datasets. This indicates an overestimation 

of MLS and SAGE III/ISS random uncertainties above 40-45 km (see also the explanation in Sect. 2.4). 20 

 

Figure 6. Top panels: Sample standard deviation s  (solid lines) and the mean uncertainty estimates  (dashed lines) in the tropical 

stratosphere (20°S-20°N) in 2002-2004 (1st column), 2006-2008 (2nd column) and 2018-2020 (3rd and 4th  column). Bottom panels: the 

estimates of the natural variability 
2 2ˆ

nat s = −  with its uncertainty (1 std)  in the tropics for the same periods. Colors are 

specified in the bottom panels. For GOMOS, occultations of 30 brightest stars are selected for the analysis. 25 

 

Successful application of this method implies the following conditions: 
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(a) Natural variability should be the same for both samples. 

(b) Natural variability should not be large compared to the precision estimates, otherwise the sample variance estimates will 

have large uncertainty. This condition of small natural variability is satisfied for ozone in the tropical stratosphere and in the 

summer stratosphere at other latitudes.  

(c) Measurements in each sample should have similar precision. 5 

The method can also be applied to the data retrieved with the tomographic approach, if the selected region is sufficiently large 

(exceeding the horizontal correlation length). 

 

If the natural variability is known from an external source (for example, estimated from the measurements with  

realistic uncertainty estimates or from a model with the correct variability), a posteriori (ex-post in von Clarmann et al., (2020) 10 

terminology) uncertainties can be estimated as 
2 2 2ˆ
ex post nats − = − , where 

2s  is the sample variance in a set of measurements 

and 2

nat  is the estimated of the natural variability. The use of the modelled data in validation of random uncertainty estimates 

is also discussed in Sect 3.5 of this paper. 
 

3.4.3 Triple collocation methods 15 

3.4.3.1 Stoffelen’s method 

The idea of using the collocated measurements from three (or more) systems for data calibration and validation of uncertainties 

was proposed by Stoffelen (1998). In his formulation, it is supposed that three measurement systems X, Y, Z provide collocated 

measurements of the same quantity t. Let system X be the reference system with respect to which systems Y and Z are to be 

calibrated. Suppose also that linear calibration (simple scaling) is sufficient for the whole range of values under consideration, 20 

and that the reference system X is free of bias. Then the measurements can be written as 

 ( )

( )

x

y y

z z

x t

y c t

z c t







= +

= +

= +

, (11) 

where 
yc  and zc  are scaling factors and , ,x y z    are random errors in each measurement sample. The random error 

components are assumed to be unbiased and not correlated with each other and with the parameter t. The calibration 

coefficients can be derived from covariances  25 

 
cov( , ) cov( , )

cov( , ) cov( , )

y

z

c y z x z

c y z x y

=

=
,  (12) 

 where cov( , )   denotes covariance. These coefficients allow creating the calibrated data  
* 1 * 1,y zy c y z c z− −= = .  Then the 

natural variability of the parameter t   can be estimated as e.g. 
2 *cov( , )t x y =  and uncertainty variances as 

 

2 2

2 2

2 2

var( )

var( *)

var( *)

x t

y t

z t

x

y

z

 

 

 

= −

= −

= −

. (13) 

The main assumptions of the method are: (a) the measurements are a linear function of the true signal with additive zero-mean 30 

random measurement noise; (b) measurement errors and true signal are stationary, and they are independent; (c)  measurement 

errors are independent, and (d) the measurements are perfectly collocated, i.e. mismatch uncertainty is zero. The assumptions 

(b-d) are similar to other methods described above. The application of this method to validation of random uncertainties of 

tropospheric ozone from nadir instruments can be found in Hubert et al. (2021). In case of limb satellite observations, the 
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requirement of triple collocation reduces dramatically (by an order of magnitude) the length of the sample; this results in larger 

uncertainties of estimated parameters. 

Another variant of the triple collocation method is described in the following subsection. 

 

3.4.3.2 Von Clarmann’s method 5 

Von Clarmann proposed a method for random uncertainty validation, which used 3 sets of measurements with pairwise 

collocations (Laeng and Von Clarmann, 2021). This method takes into account the small-scale natural variability, which is 

estimated using a high-resolution chemistry-transport model data. Let us denote by
2

ijs  the sample variance of differences in 

collocated datasets i and j, 2

ij  natural variability (mismatch) variance in the collocated datasets i and j, and 
i ex-ante 

uncertainty estimates, and assume that the true random uncertainties are 
2 2

, , 1,2,3true i i ic i = = . Then the expression for the 10 

sample variance in the collocated pairs results in the following system for determination of correction factors 
ic  

 

2 2 2 2

1 1 2 2 12 12

2 2 2 2

1 1 3 3 13 13

2 2 2 2

2 2 3 3 23 23

c c s

c c s

c c s

  

  

  

+ + =

+ + =

+ + =

 (14) 

 

If 2

ij  are known, the solution of the linear system (14) is 

 

2 2 2 2 2 2

2 12 12 13 13 23 232

1

2 2 2 2 2 2

2 12 12 23 23 13 132

2

2 2 2 2 2 2

3 13 13 23 23 12 122

3

1
( ) ( ) ( )

2

1
( ) ( ) ( )

2

1
( ) ( ) ( )

2

c s s s

c s s s

c s s s

  


  


  


 = − + − − − 

 = − + − − − 

 = − + − − − 

 (15) 15 

The Eqs .(14) and (15) are written in terms of correction factors, as it is presented in the original report   however, they can be 

also presented in  terms of ex-ante and ex-post uncertainties.   As for Fioletov’s method, Eq.(15)  does not require positivity 

of ic  (solution of the linear system), which may result in unphysical negative estimates of random error variance. Since the 

estimates by Eq. (15) are the linear combinations of sample variances, the accurate estimate require many collocated data, 

similarly to the Fioletov method. 20 

For illustration, the method was applied to MIPAS, MLS, and SCIAMACHY data in 2007 at 20°S–20°N, where 3236 triple 

collocations (with time difference < 4h and spatial separation < 300 km) are found. The small-scale variability estimates were 

obtained from BASCOE model data field down-sampled to typical horizontal resolution along line of sight of limb instrument 

data (Laeng et al., 2022). 
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Figure 7.  Dashed lines: ex-ante uncertainties; solid lines with error bars: ex-post  random uncertainties estimated by the von 

Clarmann method.  

 

The use of the small-scale variability from the ozone field generated by an advanced chemistry-transport model with a high 5 

horizontal resolution seems to be correct, as this mismatched variability is caused by dynamics, and it is characterized by the 

statistical characteristic (variance). Although some small-scale processes may not be resolved in a model, this does not 

influence the 
ij  estimates, as the effective horizontal resolution of the limb measurements along the line of sight is ~300 km.  

The results of application of the von Clarmann’s method (Figure 7) agree very well with other methods presented in our paper. 

 10 

3.5 Using CTM simulation in validation of uncertainties 

Modern chemistry-transport models have high horizontal and vertical resolution, and a majority of them use meteorological 

reanalyses in the advection schemes. They show good agreement with the observational data, therefore it is attractive to use 

the information the models provide in validation of uncertainties. For example, the modelled field can be used for 

characterization of differences due to the co-location mismatch, i.e. differences in spatio-temporal sampling and smoothing of 15 

the variable and inhomogeneous ozone field. Such an approach has been applied in several studies ( e.g., Sheese et al., 2021; 

Verhoelst et al., 2015).  

The model estimates of small-scale natural variability are used also in von Clarmann’s method. Potentially, analogous 

characterization would also improve the Fioletov’s method.  

Sofieva et al. (2022) used ozone data, which are simulated with the chemistry-transport model SILAM adjusted to 20 

MLS for a posteriori random uncertainty estimates by the differential method. For each instrument and each month, the authors 

evaluated sample variance in 10° latitude zones from experimental data and the SILAM-adjusted field, which is sub-sampled 

at measurements locations. The model sample variance provides the estimates of natural variability. Then a posteriori 

uncertainties were estimated as 
2 2 2ˆ
ex post nats − = − , where 

2s  is the sample variance in a set of measurements and 
2

nat  is the 

estimate of the natural variability.  Figure 8 illustrates ex-ante and ex-post uncertainties for GOMOS, MIPAS, SCIAMACHY, 25 

OSIRIS and MLS using the data in September 2007.  These estimates agree very well with those obtained by the Fioletov’s 
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method (Figure 4, right). The approach of Sofieva et al. (2022)  allows  selecting sufficiently large data samples in a relatively 

short time period ; the authors applied their method to the adjustment of random uncertainties for each month.  

 

Figure 8.  Ex-ante (dashed lines) and ex-post (solid lines) random uncertainty estimates for September 2008, based on the method 

described in Sofieva et al. (2022) 5 

 

3.6 Notes on validation with fiducial reference measurements 

If  a dataset with well known (or validated and concluded to be realistic) uncertainty estimates is available, then the validation 

of uncertainties of a second dataset using Eq. (4) or the differential method is straightforward. Such an approach is usually 

used in validation of satellite measurements with ground-based data. When exploiting Eq. (4), it is advantageous to 10 

characterize/simulate 
2

var,0 . Such  approach was explored for the validation of  satellite total ozone column data  by ground-

based measurements (Verhoelst et al., 2015).  

For ozone profiles, ozonesondes are usually used for validation of satellite data (evaluation of biases and drifts). However, 

according to (Tarasick et al., 2021) the characterization of ozonesonde uncertainties is even more complicated than for satellite 

data, and the uncertainties are not constant but varying in the range 5-10% (sometimes even up to 20%). Together with a 15 

limited number of tight collocations, these features impose limitations in validation of satellite random uncertainties using 

ozonesonde data. 

3.7 On using the Markov Chain Monte Carlo method 

The random uncertainties reported by retrieval algorithms are usually estimated via propagation of instrumental noise and 

other random uncertainties through the inversion algorithm. Markov chain Monte Carlo (MCMC) method can be used to 20 

produce a robust estimate of the probability distribution of a retrieved quantity that is nonlinearly related to the measurements 

and that has non-Gaussian error statistics. A methodology for validating the traditional error characterization by applying the 

MCMC technique can be found in e.g. Tamminen (2004). This paper shows the application of MCMC method to GOMOS 

data. The MCMC technique is suitable for studying uncertainties of retrieved parameters and it enables analyzing the error 

structure also in a nonlinear case (and thus validating the standard Gaussian characterization). The advantage of the sampling 25 
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based MCMC method is also that it allows implementing non-Gaussian measurement and modelling error characterization as 

well as using non-Gaussian prior information. While the MCMC method cannot provide information about missing or 

overestimated uncertainties directly, the method is often implemented so that unknown uncertainties are parametrized and 

included, e.g., via hierarchical formulation, allowing these uncertainties to be taken into account. It would be very useful to 

compare such approaches with the ones presented in this overview paper, in the future. 5 

4 Summary  

In this paper, we presented methods for random uncertainty validation, which were illustrated using ozone profiles 

retrieved from measurements by satellite instruments in the limb-viewing geometry. These methods rely on deriving a-

posteriori random uncertainties using statistical analyses of collocated data samples. Advantages and limitations of each 

method are discussed, as well as accuracy of a-posteriori random uncertainty estimates. 10 

As a general requirement for all methods, the data samples should be selected in regions of small and slowly changing 

natural variability. Otherwise, if the natural variability exceeds significantly random uncertainties, this prevents the 

computation of reliable a-posteriori estimates of random uncertainties. The methods for random uncertainty validation are 

divided into two groups depending on what kind of data are used: (1) from the same instrument and (2) from different 

instruments.   15 

Practical examples for validation of random uncertainty with the discussion of advantages and limitations of each method 

are provided in this study. It is shown that, for instruments with dense sampling, such as MIPAS and MLS, several methods 

can be applied, for example those based on self-collocations or collocations with other datasets. For datasets that are obtained 

with tomographic retrievals, the Fioletov’s, von Clarmann and differential methods can be applied. For instruments with coarse 

sampling, such as GOMOS, ACE-FTS or SAGE II-III, the differential method is the most appropriate. It has been shown 20 

previously and confirmed in this study that simulations with high-quality and high-resolution chemistry-transport models are 

useful in validation of reported random uncertainties: the model simulations can be used for estimation of small-scale natural 

variability.  
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