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Abstract: Soil moisture (SM) plays a vital role in the global water and carbon cycles, with long-term impacts on ecosystem 13 

functioning and vegetation growth. However, under the background of climate change, a decoupling phenomenon have 14 

occurred between surface soil moisture (SMsurf) and rootzone soil moisture (SMroot). The variations and primary driving 15 

factors of SM across different layers have not been studied comprehensively. Therefore, this study explored the spatiotemporal 16 

dynamics of global SMsurf and SMroot from 2001 to 2021. The Random Forest coupled with numerical simulation 17 

experiments were applied to measure the influences of climate and vegetation dynamics to SM changes. The Partial Least 18 

Squares Structural Equation Modeling was employed to demonstrate the direct and indirect pathways of them to SM variability. 19 

Additionally, the copula functions were applied to examine the probability of SM loss under different stress scenarios caused 20 

by climate or vegetation changes. The results indicated that SM variation exhibited a significant spatial heterogeneity. Global 21 

greening significantly contributed to the increase in SMsurf at a rate of 0.000087 m³/m³/a, while precipitation (Pre) had the 22 

most significant impact on replenishing SMroot, with a contribution rate of 0.000117 m³/m³/a. Atmospheric water demand 23 

(Ep) was identified as the primary cause of global SM drought, with rates of -0.000089 m3/m3/a and -0.000075 m3/m3/a for 24 

SMsurf and SMroot respectively. Although vapor pressure deficit (VPD) had a significant dominant effect in regions with 25 

high VPD values, rather than globally, as global positive and negative VPD effects offset each other. Vegetation typically 26 

acted as an intermediary variable transmitting the indirect effects of climate factors on SM. Under the extreme scenarios, 27 

Precipitation, Standardized precipitation evapotranspiration index and vegetation resulted in the highest probability of SM loss. 28 

This research will furnish a theoretical underpinning for global water resource management and hold significant implications 29 

for the sustainable development of ecosystems. 30 

Short summary: 31 

This study explores global soil moisture changes from 2001 to 2021, revealing the distinct response mechanisms of surface 32 

and rootzone layers from both a contribution and probability perspective. Climate factors and vegetation both affect soil 33 

moisture, with precipitation and vegetation playing key roles in maintaining balance. The research highlights rising drought 34 

risks due to increased atmospheric demand and offers insights to support global water management and ecosystem 35 

sustainability. 36 
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1. Introduction 39 

Soil moisture (SM) constitutes a vital element within the soil-vegetation-atmosphere continuum (Berdugo et al., 2020; 40 

Liu et al., 2020b; Wang et al., 2017; Zhou et al., 2021a; Jung et al., 2010b), governing the transfer of water, carbon, and energy 41 

fluxes between terrestrial ecosystems and the atmosphere (Vereecken et al., 2014; Legates et al., 2011), playing an 42 

indispensable role in preserving the stability of the agricultural ecosystem. Compared to the total global water resources, 43 

although the quantity of SM may seem insignificant, its dynamics critically induce large CO2 fluxes (about two to three 44 

gigatons of carbon per year) (Green et al., 2019). More importantly, SM exhibits distinct functional stratification: Surface soil 45 

moisture (SMsurf) dominates short-term hydrological processes by controlling rainfall partitioning into infiltration versus 46 

runoff (Feng and Zhang, 2015), while root-zone soil moisture (SMroot) regulates vegetation water uptake and ecosystem 47 

resilience, and influences carbon assimilation, community succession and biogeochemical cycles (Hirschi et al., 2014b; Yang 48 

et al., 2022). 49 

Traditional in-situ observations have demonstrated substantial variability in the driving factors of SM dynamics across 50 

different spatial scales, temporal periods, and soil depths (Huang et al., 2016; Duan et al., 2016). Huang et al. (2016) revealed 51 

that the controlling factors of SM differ significantly across soil depths in the Wulongchi catchment. Based on slope-scale 52 

observations in the Loess Plateau, Duan et al. (2016) demonstrated that SM is predominantly controlled by a combination of 53 

topographic and soil characteristics at both hillslope and landscape scales. However, due to the difficulty of obtaining dense 54 

and long-term SM observations from in-situ networks on a global scale, these datasets may not be representative at large spatial 55 

scales (Guan et al., 2023). With the advancement and improvement of remote sensing technologies and SM retrieval algorithms, 56 

global monitoring of SM dynamics has become increasingly feasible. Nevertheless, accurately estimating SMroot remains 57 

challenging, as most remote sensing satellites primarily capture moisture in the near-surface layer (Feng, 2016) , such as ESA 58 

CCI (European Space Agency Climate Change Initiative) (Gruber et al., 2019; Dorigo et al., 2017). The emergence of 59 

reanalysis datasets, such as ERA5 (the land component of the fifth generation of European Reanalysis), and land surface 60 

model-based products such as GLEAM (Global Land Evaporation Amsterdam Model) and GLDAS (Global Land Data 61 

Assimilation System), has helped fill the long-standing gap in global SMroot data and is widely employed in 62 

hydrometeorological studies(Yuan et al., 2023; Zhang et al., 2025). 63 

SMsurf has received widespread attention in previous studies due to its observational accessibility and rapid response to 64 

atmospheric forcings such as precipitation and temperature (Feng and Zhang, 2015; Deng et al., 2020a). Global-scale analyses 65 

have consistently reported sustained decreases in SMsurf across 73% of vegetated lands since 1988, particularly in mid-latitude 66 

drylands (Dorigo et al., 2012). ESA CCI SM confirmed the "Dry Gets Drier, Wet Gets Wetter" (DGDWGW) paradigm (Feng 67 

and Zhang, 2015); however, this pattern was derived solely from SMsurf observations and did not account for the dynamics 68 
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of SMroot. The factors driving the SMsurf changing trends have also been extensively and thoroughly studied. Deng et al. 69 

(2020a) revealed that the declining trend in SMsurf is primarily driven by global temperature increases. Cho and Choi (2014) 70 

demonstrated SMsurf are dominantly regulated by precipitation and temperature/radiation. The development of land data 71 

assimilation techniques and land surface models has enabled large-scale investigations of SMroot. Globally, SMroot has 72 

decreased at an average rate of 0.14 × 10-3 m3/m3/year, primarily attributed to temperature anomalies (Luo et al., 2023).  73 

Intensifying land-atmosphere hydrological interactions have positioned climate forcing as a dominant regulator of SM 74 

dynamics under climate change (Bonan, 2008). Moreover, climate change not only directly influences SM availability and 75 

vegetation patterns but also modulates SM dynamics through vegetation-mediated feedback mechanisms. Emerging evidence 76 

highlights vegetation serves as a crucial intermediary between climatic forcing and SM responses (Zhang et al., 2022a; Yang 77 

et al., 2023). There exists a pronounced mutual constraint between vegetation and SM. Favorable climatic conditions promote 78 

vegetation growth; however, increased vegetation cover simultaneously intensifies SM consumption, potentially exacerbating 79 

soil drought. In turn, soil drought imposes constraints on vegetation growth, creating a feedback loop that regulates ecosystem 80 

dynamics (Lian et al., 2020; Zhu et al., 2016; Tietjen et al., 2017). Ruichen et al. (2023a) revealed that the increase in vegetation 81 

cover has generally diminished the responsiveness of SM to precipitation fluctuations in most regions. However, in regions 82 

with abundant vegetation cover, enhanced evapotranspiration has instead led to greater SM responsiveness to climate change. 83 

Some studies suggested that in water-limited areas, vegetation greening and increased productivity accelerate soil evaporation, 84 

depleting SM (Yang et al., 2014; Jung et al., 2010b; Aragao, 2012; Jasechko et al., 2013; Seneviratne et al., 2010b; Li et al., 85 

2018). However, other research indicated that regional-scale interannual precipitation changes compensate for the depletion 86 

of SM caused by vegetation cover and increased productivity (Xie et al., 2015; Meng et al., 2020). Despite numerous studies 87 

has emphasized the variability of SM across multiple spatial and temporal scales, and highlighted the critical roles of climate 88 

change and vegetation dynamics in shaping SM variability, the quantitative assessment of the contributions of climate and 89 

vegetation change and their interaction to SM dynamics at different layers remains unclear. 90 

As the rapid-response layer of the climate system, SMsurf primarily regulates surface energy balance and the daily 91 

fluctuations of evapotranspiration. In contrast, SMroot, functioning as a slow-regulation layer, exerts profound seasonal 92 

influences on vegetation productivity, root distribution patterns, and belowground carbon allocation (Seneviratne et al., 2010a; 93 

Jung et al., 2010a).. Though SMsurf and SMroot exhibit strong hydraulic connectivity through vertical water redistribution via 94 

infiltration and plant root systems (Vereecken et al., 2022), recent studies reveal that climate change is decoupling the different 95 

layers of SM. Specifically, SM dynamics across different soil layers exhibit different change trends and the dominant driving 96 

factors may also vary, especially under climate change, which further complicating our comprehension of soil moisture-97 

climate-vegetation interactions (Zhou et al., 2021b; Hirschi et al., 2014a). Hirschi et al. (2014a) found that SMsurf gradually 98 
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becomes statistically decoupled from both SMroot and atmospheric conditions under drought conditions, by comparing the 99 

temporal variability of in situ observations of SMsurf and SMroot. Luo et al. (2023) also observed a negative correlation 100 

between SMsurf and SMroot in many parts of the world, particularly in high northern latitudes and arid regions such as central 101 

and western Australia. Several regional-scale studies have further confirmed the decoupling between SMsurf and SMroot. For 102 

example, Li et al. (2021a) found that SMsurf in the Loess Plateau is more sensitive to short-term climatic variables such as 103 

precipitation and potential evapotranspiration, as well as vegetation cover, whereas SMroot is more significantly influenced 104 

by long-term factors such as vegetation type (e.g., water use by deep-rooted plants) and global atmospheric circulation patterns 105 

(e.g., ENSO). In East Asia, Zohaib et al. (2017) demonstrated that reduced precipitation is the primary cause of SMsurf decline, 106 

while Cheng et al. (2015) highlighted that the dominant factors affecting SMroot vary across different climatic regions. 107 

Furthermore, the distinct variation trends of SMsurf and SMroot, as well as their driving mechanisms of climate and vegetation 108 

changes, have not been comprehensively examined, particularly considering the significant spatial heterogeneity across 109 

different climate zones. Additionally, the probability of SM deficits triggered by vegetation dynamics and climate change 110 

remains unexplored, which is crucial for optimizing agricultural irrigation strategies and maintaining the stability of 111 

agricultural ecosystems under climate change. Therefore, it is necessary to clarify these interaction mechanisms and assess the 112 

collaborative effects and comparative contributions of climate change and vegetation dynamics on SM at a global scale, which 113 

benefit for better comprehension of these processes will enhance our understanding of the complex interactions among climate, 114 

vegetation, and SM across diverse climatic regions. 115 

Previous studies have paid less attention to the changing trends and driving mechanism of SMsurf and SMroot under 116 

climate change and vegetation dynamics, especially across the different climatic zones globally. At the same time, the 117 

probability of SM extremes when abnormal situations occur among the influencing factors are inadequately resolved. 118 

Consequently, this study aims to (1) characterize the spatiotemporal dynamics of SMsurf and SMroot under distinct climatic 119 

regions, (2) measure the relative contributions of climate change and vegetation greening to SM fluctuations based on random 120 

forest coupled numerical simulation experiments, (3) elucidate both direct and indirect pathways through which vegetation 121 

dynamics and climatic variables regulate SM changes based on structural equation models, and (4) assess the sensitivity 122 

thresholds of SM responses to multifactorial drivers under coupled environmental interactions based on copula functions. This 123 

research will help understand soil hydrological processes and provide a theoretical basis for global water resources 124 

management. 125 
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2. Materials and methods 126 

2.1. Data sources and processing 127 

2.1.1 Köppen-Geiger climate classification data 128 

The Köppen-Geiger climate classification, first proposed by Vladimir Köppen in 1884, is one of the most widely used 129 

systems for categorizing global climates. It provides a valuable framework for analyzing climate distribution and predicting 130 

regional climate characteristics. To examine the temporal variations of SM across different climate zones at both global and 131 

regional scales, this study utilized the Köppen-Geiger climate classification map (Beck et al., 2018), which has a spatial 132 

resolution of 0.5° × 0.5° and covers the period from 1980 to 2016. Following Luo et al. (2023), this study further grouped the 133 

detailed climate zones into five broad categories: polar, boreal, temperate, arid, and tropical (Figure. 1). 134 

2.1.2. Soil moisture 135 

The Global Land Evaporation Amsterdam Model (GLEAM) SM dataset offers high-quality, spatially continuous 136 

estimates of surface (0–10 cm) and root-zone (10–250 cm) SM (http://gleam.eu/). With a high spatiotemporal resolution of 137 

0.1° at a daily scale since 1980, it is driven by a combination of satellite observations and reanalysis-based forcings, ensuring 138 

reliable and consistent SM assessments across diverse regions (Miralles et al., 2011; Martens et al., 2017a). GLEAM SM data 139 

has been applied in several researches in both global and regional contexts (Li et al., 2021c; Ye et al., 2019; Xu et al., 2023; 140 

Ruichen et al., 2023b; Zhang et al., 2022b). Benefiting from an improved representation of evaporative stress, an optimized 141 

water-balance module, and a refined SM data assimilation strategy, GLEAM SM offers enhanced accuracy and reliability, 142 

with a 0.1° spatial resolution and monthly time resolution, covering January 2001 - December 2021. 143 

The Global Land Data Assimilation System (GLDAS), developed by National Aeronautics and Space Administration 144 

(NASA) Goddard Space Flight Center, is a comprehensive hydrological modeling framework designed to synthesize multi-145 

source observational data (satellite remote sensing and in situ measurements) with advanced land surface models (Noah, CLM, 146 

VIC, Mosaic, and Catchment land surface models) and data assimilation techniques (https://disc.gsfc.nasa.gov/). GLDAS 147 

generates vertically stratified SM estimates across four depth layers (0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm), which 148 

serve as crucial basic supporting data for meteorological, land surface and hydrological research. This study utilized 149 

GLDAS_NOAH025_M SM data with a spatiotemporal resolution of 0.25° at a month scale from January 2001 to December 150 

2021. 151 

ERA5-Land, the most advanced reanalysis dataset from the European Centre for Medium-Range Weather Forecasts 152 

(ECMWF), is accessible via the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 153 

(https://cds.climate.copernicus.eu/), which offers a total of 50 variables and depict the water and energy cycles over land 154 
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globally. This study utilized ERA5-Land at one month interval and with a 0.25° spatial resolution, which include a four-layer 155 

vertical profile ranging from 0–7 cm to 100–289 cm, covering from January 2001 to December 2021. 156 

GLEAM SM was rigorously validated through extensive field SM measurements (e.g., International Soil Moisture 157 

Network), confirming its strong performance in capturing SM dynamics in different regions (Martens et al., 2017b). In order 158 

to enhance the stability of results, this research further evaluates the accuracy of the GLEAM SM product at both surface and 159 

root-zone depths. To ensure consistency across multiple SM datasets, a weighted averaging method was employed to 160 

standardize SM measurements to a uniform depth. Considering that SM values typically have small magnitudes, this research 161 

uses relative root mean square error (RRMSE) and Pearson correlation coefficient (R) as evaluation metrics to offer a more 162 

stringent and scientifically sound assessment of GLEAM SM. The results indicated that GLEAM exhibited high consistency 163 

with both GLDAS and ERA5, with a global mean RRMSE of less than 20% and R of around 0.6 (Figure. S2, Figure. S3). The 164 

agreement between SMsurf and other datasets is slightly stronger than that of SMroot. Specially, the global RRMSE results 165 

are great. Only south edge areas in Tibetan Plateau and Sahara Desert own the very unsatisfactory results (Figure. S2). The 166 

correlation coefficients between GLEAM and other datasets are relatively low in high-latitude regions of the Northern 167 

Hemisphere, averaging around 0.5, but they increase to 0.8 or even above 0.9 south of 60°N (Figure. S3).  168 

2.1.3. Vegetation parameters 169 

The Global Land Surface Satellites (GLASS) provided the Leaf Area Index (LAI) based on satellite data from multiple 170 

remote sensing sensors like Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution 171 

Radiometer (AVHRR). The data had a spatial resolution of 0.25° and an 8 - day temporal resolution. Owe to sophisticated 172 

processing and model inversion, this dataset has been widely used in ecological and hydrological research fields with high 173 

spatiotemporal resolution globally (Xiao et al., 2016; Li and Xiao, 2020; Xiao et al., 2017; Wang et al., 2014; Zeng et al., 2017; 174 

Wei et al., 2017). This study utilized the LAI dataset derived from the MODIS sensor with a spatial resolution of 0.25° and an 175 

8-day interval (http://www.glass.umd.edu/).  176 

Significant progress has been made in measuring terrestrial photosynthesis via Solar-Induced Fluorescence (SIF). SIF 177 

shows a strong relationship with Gross Primary Productivity (GPP) data (Li and Xiao, 2019). The Global OCO-2 SIF dataset 178 

(GOSIF) was further developed through data - driven methods, incorporating discrete OCO - 2 SIF detections, MODIS remote 179 

sensing data, and meteorological reanalysis data, and has seen extensive application (Zhang et al., 2022b; Chang et al., 2023). 180 

This study utilized the average global GOSIF-Gpp from 2001 to 2021, with a spatial resolution of 0.05° and a monthly temporal 181 

resolution from January 2001 to December 2021. (http://data.globalecology.unh.edu/data/GOSIF-GPP_v2/). 182 
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2.1.4. Climatic variables 183 

The meteorological data for this study were obtained from the GLDAS_NOAH025_M data product, boasting a spatial 184 

resolution of 0.25° and a monthly temporal resolution. GLDAS provide a variety of critical land surface parameters, such as 185 

downward longwave radiation (Lrad), downward shortwave radiation (Srad), atmospheric pressure, specific humidity, 186 

precipitation (Pre), atmospheric water demand (Ep), temperature (Temp), and wind speed (WS).  187 

For this study, the total radiation (Rad) was computed based on the original data, in accordance with Eq.1: 188 

 𝑅𝑎𝑑 = 𝐿𝑅𝑎𝑑 + 𝑆𝑅𝑎𝑑 (1) 189 

Where 𝑅𝑎𝑑  represents the total radiation; 𝐿𝑅𝑎𝑑  stands for the longwave downward radiation; and 𝑆𝑅𝑎𝑑  denotes the 190 

shortwave downward radiation. 191 

VPD was estimated based on Eq.2 and Eq.3: 192 

 𝑅𝐻 = 0.263𝑝𝑞 [𝑒
(

17.67(𝑇− 𝑇0)

𝑇−29.65
)
]

−1

 (2) 193 

 𝑉𝑃𝐷 = 0.61078 × 𝑒
17.27×(𝑇−273.16)

𝑇−273.16+237.3 × (1 − 𝑅𝐻)  (3) 194 

Where 𝑅𝐻 is Relative humidity, 𝑝 is the atmospheric pressure (Pa); 𝑞 is specific humidity (dimensionless); 𝑇 is the Temp (K); 195 

𝑇0 is the reference Temp (273.16 K usually). 196 

In order to further investigate the impact of global teleconnection factors such as NAO (North Atlantic Oscillation), PDO 197 

(Pacific Decadal Oscillation), AO (Arctic Oscillation), and ENSO (El Niño - Southern Oscillation) on SM. This study obtained 198 

teleconnection factors sourced from the National Centers for Environmental Information (https://www.ncei.noaa.gov/) (Zhao 199 

et al., 2020).  200 

2.1.5. SPEI 201 

The Standardized Precipitation Evapotranspiration Index (SPEI) is used to assess Meteorological drought conditions. By 202 

incorporating the cumulative effects of long-term climate variability rather than merely reflecting single-month conditions, the 203 

SPEI can characterize the degree of water deficit (the difference between precipitation and evapotranspiration) and capture the 204 

delayed responses of vegetation cover and SM to water deficit, for instance, spring droughts may not be directly caused by 205 

insufficient rainfall in that month but rather by a prolonged precipitation deficit from the previous autumn (Jiao et al., 2021). 206 

Given that vegetation growth and SM variations often lag behind climatic conditions by several months, the 12-month moving 207 

average of SPEI better aligns with the ecological inertia of these processes, rather than directly corresponding to instantaneous 208 

precipitation or evapotranspiration (Xu et al., 2023), which is of great significance for monitoring and predicting the impact 209 

of climate change on agricultural water resources management and agricultural ecosystem. The SPEI from the Global SPEI 210 
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database with a spatial resolution of 0.5° and a temporal scale of 12 months, were used in this study 211 

(https://spei.csic.es/spei_database) (Beguería et al., 2014). 212 

2.1.6. Pre-processing of datasets 213 

Bilinear interpolation was used to interpolate all data to a spatial resolution of 0.25° (Li et al., 2022). To aggregate the 214 

8-day time-scale LAI data into monthly values, the maximum value method was utilized.  215 

Trends are often regarded as indicative of human activity, suggesting that non-stationary conditions could potentially 216 

distort the results inappropriately (Boulton et al., 2022). Therefore, prior to subsequent calculations, it is essential to eliminate 217 

the trend from the SM time series (Smith and Boers, 2023). This study employed the STL (Seasonal and Trend decomposition 218 

using Loess) method to separate SM time series of each grid cell into the overall trend, seasonal component, and residual 219 

component, which was implemented through the stl() function in the "stats" package in R (v4.2.1). The STL residual 220 

component, which represents the deseasonalized and detrended SM time series, was utilized for further analysis (Wang et al., 221 

2023). Taking global observational results as an example, although the mean values of the three SM products exhibited 222 

substantial differences, their dynamic fluctuation patterns showed a high degree of consistency (Figure. S4a, b). After STL 223 

decomposition, the detrended and deseasonalized residual components demonstrated near-uniform synchronicity (Figure. S4c, 224 

d), indicating that STL not only eliminated the effects of non-stationary conditions but also effectively removed systematic 225 

biases among products. This ensured the reliability of subsequent analytical results. 226 

2.2. Methods 227 

2.2.1. Trend analysis 228 

Theil-Sen slope estimation and Mann-Kendall (MK) test were used to identify and characterize trends in long-term time 229 

series data. The Theil-Sen method was utilized for calculating resilient linear trends with p-values that are robust against 230 

outliers (Gocic and Trajkovic, 2013). Simultaneously, the non-parametric MK test was applied to evaluate the significance of 231 

monotonic trends through the assessment of their slope values (Ma et al., 2020). 232 

2.2.2. Numerical simulation experiments based on Random Forests 233 

Random Forest (RF) has demonstrated favorable performance in simulating SM by capturing non-linear associations 234 

among variables (Breiman, 2001; Clewley et al., 2017; Li et al., 2021d; Liu et al., 2020c; Zhao et al., 2018). Due to the 235 

limitations of traditional physical models in representing input parameters, this study employed an RF-based surrogate model 236 

to simulate SM and subsequently conducted numerical experiments to separate the absolute contributions of different variables 237 

(Zhao et al., 2022). R2 and RMSE were used to evaluate the simulation results of RF. 238 
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The Feature Importance Index (FII) derived from RF quantitatively described the relative contributions of input features. 239 

Traditional control variable experiments or numerical simulations were typically based on physical models and were 240 

constrained by predefined input variables. This study has integrated the strengths of both approaches to propose numerical 241 

simulation experiments based on RF. The selected independent variables as shown in Table 1.  242 

The specific approach to separating variable contributions using this method is as follows: 243 

1. Input Actual Time-Series Data: real time-series data for all independent variables were input into RF model to simulate 244 

the dependent variable (SMsurf and SMroot), and the hyperparameters of the model were optimized using Bayesian algorithms.  245 

2. Fix a Specific Variable: one specific variable (e.g., LAI) was fixed in 2001, while the rest of the variables remain time-246 

varying, and the hyperparameters were the same as those from Step 1.  247 

3. Run Two Simulations: Since the data inputs differ between the two simulations, the difference between the two 248 

simulation outputs could be attributed to the contribution of LAI to SM (details in Table 1 and Figure. S5). 249 

The dominant factors of global SM were further identified. Specifically, this study simultaneously considered the 250 

contributions of and the changing trends of each factor and SM. For regions where SM increased, the factor with the highest 251 

positive contribution was determined as the dominant factor, and vice versa (Sun et al., 2022). 252 

 253 

Table 1. Description of numerical simulation experiments. 254 

Experiments Description 

𝐸𝑎𝑙𝑙 All variables remain time-varying 

𝐸𝐿𝐴𝐼 LAI is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑆𝐼𝐹𝐺𝑝𝑝 SIFGPP is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑆𝑃𝐸𝐼 SPEI is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑃𝑟𝑒 Pre is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝐸𝑝 Ep is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑉𝑃𝐷 VPD is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑇𝑒𝑚𝑝 Temp is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑅𝑎𝑑 Rad is fixed in 2001 while the rest of variables remain time-varying 

𝐸𝑊𝑆 WS is fixed in 2001 while the rest of variables remain time-varying 

2.2.3. PLS-SEM 255 

Partial Least Squares Structural Equation Modeling (PLS-SEM) is a robust and versatile multivariate analysis technique 256 

that has increasingly been applied in fields such as ecology and hydrology. In this study, PLS-SEM was employed to investigate 257 

the direct and indirect influence pathways of meteorological factors and vegetation on SM. Unlike covariance-based SEM 258 

(CB-SEM), PLS-SEM does not rely on strict normality assumptions and can be applied with relatively small sample sizes, 259 
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making it especially useful in exploratory research where theoretical models are less established (Hair et al., 2016). In this 260 

study, the PLS-SEM analysis was carried out using SmartPLS 3.3.1, a widely recognized software tool designed to implement 261 

this technique efficiently  (Westland, 2015; Thomson et al., 1995). The software enables bootstrapping procedures to assess 262 

the significance of paths and estimates in the model, thus providing a semi-parametric method for hypothesis testing. This 263 

methodological framework offers both explanatory and predictive capabilities, allowing the researchers to explore complex 264 

relationships between observed and latent variables, contributing to the robustness and reliability of the findings (Deng et al., 265 

2020b; Zani et al., 2020). 266 

2.2.4. Wavelet coherence analysis 267 

Wavelet coherence analysis is a time-frequency analysis method based on wavelet transform, which is used to study the 268 

mutual relationship and frequency coupling between two signals. By applying wavelet transform to each signal and calculating 269 

their coherence at different time and frequency scales, wavelet coherence analysis can reveal the time-frequency interactions 270 

and coherence level between two signals. This analysis method has been widely applied in fields such as meteorology and 271 

hydrology, aiding in the exploration of complex frequency characteristics and interaction mechanisms between signals 272 

(Torrence and Compo, 1998; Hu and Si, 2016; Li et al., 2021b). In this study, wavelet coherence analysis was employed to 273 

investigate the correlation between global teleconnection factors and SM. 274 

2.2.5. Copula functions 275 

Copula functions, a robust mathematical approach, are being used more and more in ecology and hydrology. They are 276 

employed to depict and model the tail dependencies among multiple variables (Wu et al., 2025), particularly those exhibiting 277 

complex, non-linear relationships (Qing et al., 2023; Zscheischler and Seneviratne, 2017). Sklar’s theorem is the foundation 278 

of copula theory. It posits that any multivariate distribution can be broken down into its marginal distributions and a copula, 279 

which represents the dependence structure (Sklar, 1959). Various types of copulas, like Gaussian, t-copula, Clayton, Gumbel, 280 

and Frank—are applied in hydrological scenarios to capture different types of dependence, covering both symmetric and 281 

asymmetric dependences (Genest and Favre, 2007). 282 

This study selected the optimal copula function from five copula functions and constructed a bivariate dependence 283 

function to characterize the joint distribution of SM and independent factors (details in Table S1). Taking Temp as an example, 284 

the corresponding joint distribution is expressed as follows:  285 

𝐹𝑆𝑀,𝑇𝑒𝑚𝑝(𝑠𝑚, 𝑡𝑒𝑚𝑝) = 𝑃(𝑆𝑀 ≤ sm𝑛−𝑡ℎ, 𝑇𝑒𝑚𝑝 ≥ temp𝑛−𝑡ℎ) =  𝐶(𝐹1(sm), 𝐹2(temp))                                                          (6) 286 

Where, 𝐶( ) denotes a copula function. 𝐹1(sm𝑛−𝑡ℎ) and 𝐹2(vpd𝑛−𝑡ℎ) represent the marginal distributions of SM and Temp, 287 

respectively. 288 
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The performance of the Copula function is assessed through the squared Euclidean distance 𝑑 (i.e. the difference between 289 

the probabilities obtained from each Copula function and those from the empirical Copula function), calculated as follows: 290 

𝑑 = ∑  𝑛
𝑖=1 |𝐶𝑒𝑚𝑝(𝐹1(sm), 𝐹2(temp)) − 𝐶𝑘(𝐹1(sm), 𝐹2(temp))|2                                                                                            (7) 291 

Based on the determined joint distribution function, we calculated the joint conditional probabilities of different levels of 292 

SM deficiency under different stress scenarios, that is, moderate, severe, and extreme scenarios. These were defined as the 293 

time series of factors being located at the 50th, 30th, and 10th percentiles, respectively, which were unfavorable for maintaining 294 

SM. Taking the Temp of a certain pixel as an example, when sorting the time series from small to large, the minimum value 295 

was located at the 0th percentile, and the maximum value was located at the 100th percentile. Assuming that high Temp were 296 

unfavorable for maintaining SM, extreme Temp scenarios occurred when the temperature exceeded the 10th percentile of the 297 

time series. Subsequently, we used the magnitude of the joint conditional probabilities to indicate the sensitivity of SM to 298 

Temp. Taking SM deficiency under different temperature scenarios as an example, the calculation of conditional probabilities 299 

is as shown in Eq.7: 300 

𝑃(𝑢1 < SM ⩽ 𝑢2|Temp ≥ temp10𝑡ℎ) =
𝑃(𝑢1<SM⩽𝑢2,Temp≥temp10𝑡ℎ)

𝑃(Temp≥temp10𝑡ℎ)
=

𝐹SM, Temp(𝑢2,temp10𝑡ℎ)−𝐹SM, Temp(𝑢1,temp10𝑡ℎ)

𝐹SM𝑢2−𝐹SM𝑢1
                    (8) 301 

Where, temp10𝑡ℎ represents temperatures within the top 10th percentile, 𝑢1 and 𝑢2 are the upper and lower limits of SM, 302 

𝐹SM, Tempdenotes the joint distribution of the two variables, with 𝐹SM being the marginal distribution of SM. 303 

3. Results 304 

3.1. Spatiotemporal variations of SM 305 

The spatiotemporal dynamics of global SM exhibited pronounced spatial heterogeneity (Figure. 1). While the spatial 306 

variation rates of SMsurf and SMroot were relatively similar (Figure. S6), discrepancies emerge in hotspot regions of SM 307 

change (Figure. 1). Specifically, the mean values of SMsurf and SMroot differed significantly in the Northern Hemisphere, 308 

whereas they remained nearly identical in the Southern Hemisphere. Furthermore, our study revealed that in hotspot regions 309 

of SM change, SMsurf exhibited greater fluctuations compared to SMroot. Notable declining trends were observed across 310 

central North America, Central and Eastern Europe, the Central Siberian Plateau, the Brazilian and Paraná Plateaus, the Congo 311 

Basin in Central Africa, and northwestern Australia. Conversely, significant increases were detected in northwestern Europe, 312 

the West Siberian Plain, Central East Asia, the Indian subcontinent, and the southeastern region of the Great Artesian Basin, 313 

with maximum rates exceeding 0.002 m³/m³/a (Figure. 1). From a latitudinal perspective, the most pronounced increase in SM 314 

occurred between 30°N and 40°N, whereas the most substantial decline was concentrated around 20°S. Longitudinally, regions 315 
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near 120°W, 60°E, and 120°E exhibited the highest rates of increase. The detailed description of the spatiotemporal variations 316 

in vegetation indicators, drought indicators, and climate factors can be found in Text S1 and Figure. S7–S15. 317 

 318 

 319 

 320 

 321 

Figure. 1. Spatiotemporal Trends of SM from 2001 to 2021. The red polyline in the line chart represents SMsurf, while the 322 

blue polyline represents SMroot. 323 

 324 

3.2. Contributions of vegetation indicators, drought indicator and climate factors to SM variations 325 

RF-based numerical simulation experiments were conducted to measure the contributions of various factors to SM, with 326 

the model demonstrating good performance (Figure. S16). Figure. 2 indicated significant regional differences in the 327 

contributions of different factors to SM, with Pre, Ep, and VPD playing a relatively large role. Pre had a strong positive 328 

contribution to SM in the Guiana Highlands, the Western Ghats, the Northeast China Plain and the North China Plain, reaching 329 

up to 0.0008 m3/m3/a. However, it had a negative contribution of up to -0.0006 m3/m3/a in the Kara-Kum Desert, the Australian 330 

Basin, the Paraná Plateau, and southeastern China. Ep showed a negative contribution of up to -0.0008 m3/m3/a in the 331 

Australian Basin, south of the West Siberian Plain, the Mongolian Plateau, the North American Great Plains, and the Chad 332 

Basin, while exhibiting a prominent positive contribution in Europe, vegetation-covered areas of the Sahara Desert, the Arabian 333 

Peninsula, the Congo Basin, and south of the Yangtze River in China. VPD had a significant negative contribution to SM 334 

between 30°S and 30°N, but a positive contribution in higher latitude regions. Additionally, LAI had a significant positive 335 
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contribution in the Congo Basin, the Amazon Basin, and south of the Himalayas, while exhibiting a large negative contribution 336 

in the Guinea Gulf region, the Mississippi Plain, the Orinoco Plain, the Brazilian Plateau, the Indian Peninsula, the Indochina 337 

Peninsula, and eastern and central parts of China. WS had a substantial positive contribution in the Qinghai-Tibet Plateau, 338 

while the contributions of Temp and Rad showed less spatial variation. Overall, the magnitude and direction of contributions 339 

varied for different climate zones and globally. From a global perspective, LAI and Rad increased SMsurf but decreased 340 

SMroot, while Pre decreased SMsurf but increased SMroot (Figure. 3). 341 

 342 

Figure. 2. Spatial distribution of absolute contribution of vegetation characteristics, climate factors, and drought indices to 343 

SMsurf and SMroot (m3/m3/a). 344 
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 345 

Figure. 3. Absolute contribution of vegetation to (a) SMsurf and (b) SMroot in different Köppen-Geiger climatic zones. 346 

 347 

Figure.4 revealed the spatial distribution of the dominant factors influencing SM globally and statistically analyzed the 348 

dominant areas of each factor based on climatic zones. LAI and SIFGpp dominated the changes in SM over relatively small 349 

areas, but held a prominent position in typical vegetation restoration areas, such as the Loess Plateau in China. Regions 350 

predominantly influenced by SPEI were most concentrated around the Arabian Plateau. The dominant area of Pre was 351 

relatively large, mainly distributed in the South American highlands, the eastern coastal highland mountainous regions of 352 

North America, the Gedan Plateau, the East European Plain, the Pacific coast, and some desert areas in Australia. The 353 

distribution of dominant areas influenced by Ep was more scattered, primarily concentrated in the Arid region. From the high-354 

latitude Polar region to the low-latitude Tropical, the area dominated by VPD gradually increased, overall dominating nearly 355 

a quarter of the global area. Temp and Rad had a relatively small proportion of domination globally, but held a larger proportion 356 

in the Polar region. WS occupied a dominant position in the variation of SM in the Polar and Boreal regions, with the dominant 357 

area decreasing gradually from high latitudes to low latitudes. 358 
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 359 

Figure. 4. (1) Spatial distribution and (2) proportion of dominant factors in different Köppen-Geiger climatic zones of (a) 360 

SMsurf and (b) SMroot. 361 

3.3. Influencing pathways of vegetation indicators, drought indicator and climate factors on SM variations 362 

The PLS-SEM model was constructed from both global and local perspectives, and the model's fit metrics were 363 

satisfactory. Specifically, the Goodness of Fit Index (GFI) was over 0.9, Root Mean Square Error of Approximation (RMSEA) 364 

was below 0.10, Comparative Fit Index (CFI) exceeded 0.9, Normed Fit Index (NFI) was above 0.9, Non-Normed Fit Index 365 

(NNFI) surpassed 0.9, and a χ2/df ratio was less than 3 (Henseler and Sarstedt, 2013). 366 

This study not only revealed the impact pathways of all driving factors on SM but also analyzed from a systemic 367 

perspective. Based on the functional correlations among factors, LAI and SIFGpp were classified as the ‘Global Greening’ 368 

module, while Pre, Ep, VPD, Temp, Rad, and WS were categorized as the ‘Climate Change’ module, with SPEI representing 369 

the ‘Drought Intensification’ module (Figure. 5). The paths we built not only included connections from ‘Global Greening,’ 370 

‘Climate Change,’ and ‘Drought Intensification’ to SM, but also encompassed links from ‘Climate Change’ and ‘Drought 371 

Intensification’ to ‘Global Greening,’ as well as from ‘Climate Change’ to ‘Drought Intensification’. Regardless of whether 372 

viewed from climatic zones or globally, ‘Climate Change’ significantly moderated the impact of ‘Global Greening.’ In the 373 

high-latitude Polar region and Boreal region, the effects of each module on SM were not significant. In the Temperate region, 374 
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‘Climate Change’ exhibited a significant negative impact on SM (p < 0.05), while both ‘Global Greening’ and ‘Drought 375 

Intensification’ showed highly significant positive effects on SM (p < 0.01). In the Arid region, apart from the significant 376 

negative effect of ‘Global Greening’ on ‘Drought Intensification’ (p < 0.05), all three modules demonstrated highly significant 377 

direct positive effects on SM (p < 0.01). In the Tropical, the path coefficient of 'Global Greening' on SMsurf was 0.324 (p < 378 

0.05), while its effect on SMroot was not significant. Additionally, 'Drought Intensification' exhibited a highly significant 379 

positive impact on SM (p < 0.01). 380 

To further explore the pathways of various factors on SM, only LAI and SIFGpp were grouped as "Vegetation," while 381 

the remaining factors were not merged (Figure.5). The direct, indirect, and total path coefficients of various factors on SM 382 

were presented in Table S2 and Table S3. Only complete paths with all sub-paths being significant are focused on (p < 0.05). 383 

In the Polar region, all pathways were not significant, indicating a relatively simple or small impact on SM. In the Boreal 384 

region, Vegetation acted as the main mediating variable, with a total effect of 0.035 for Pre→Vegetation→SMsurf/SMroot, 385 

0.087 for Temp → Vegetation → SMsurf/SMroot, and 0.270 for Rad→Temp→SMsurf/SMroot. The direct effect of Pre on 386 

SMroot was -0.362. In the Temperate region, the total effects were highest for Temp→Vegetation→SMsurf/SMroot, with 387 

values of 0.692 and 0.733 respectively. The total effects of Ep→SPEI→SMsurf/SMroot were 0.340 and 0.296 respectively. 388 

Temp acted as the mediating variable for WS and Rad's influence on SM. In the Arid region, the pathways were more complex, 389 

with Ep and Pre significantly impacting SM through SPEI, including Ep/Pre→SPEI→SMsurf/SMroot and 390 

Ep/Pre→SPEI→Vegetation→SMsurf/SMroot. Pre and Temp indirectly influenced SM through their positive effects on 391 

Vegetation. The total effects of Rad→Temp→SMsurf/SMroot were 0.583 and 0.618 respectively. In the Tropical, significant 392 

pathways included Rad→Temp→Vegetation→SMsurf/SMroot, Pre→SMsurf/SMroot, and SPEI→SMsurf/SMroot. From a 393 

global perspective, only the Rad→Temp→SMsurf/SMroot pathway was significant. 394 
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 395 

Figure. 5. The direct and indirect influences of driving factors on SMsurf and SMroot. (a), (b), (c), (d), (e), and (f) correspond 396 

to the Polar, Boreal, Temperate, Arid, Tropical, and Global regions, respectively. The first and third columns represent the 397 

impact pathways of different systems on SMsurf, while the second and fourth columns depict the influence pathways of all 398 

driving factors on SMroot. *, ** indicate the significance at p < 0.05, p < 0.01 levels, respectively. 399 

 400 

3.4. The probability of SM loss under different stress scenarios 401 

The probability of varying degrees of SM deficit under different stress scenarios was quantified using the optimized 402 

copula function, enabling the identification of high-risk factors affecting SM as well as high-risk sensitivity regions for SM 403 

depletion (Figure.S19, Figure. S20, Figure. S21). Taking the joint conditional probability of extreme soil moisture deficit under 404 
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extreme development scenarios as an example, we demonstrate the spatial distribution of high-risk areas for soil moisture 405 

deficit (Figure 6). From a spatial distribution perspective, areas with high sensitivity of SM to LAI and SIFGpp were 406 

concentrated in the Great Plains of North America, the Brown Coop, the Pampas grasslands, the Kalahari Basin, the East 407 

African Plateau, the Mediterranean region, the Australian Great Basin, as well as high plateau regions represented by the 408 

Iranian Plateau, the Deccan Plateau, the Mongolian Plateau, and the plains south of the Siberian Plateau. When LAI and 409 

SIFGpp were in an extreme development scenario, the probability of extreme SM deficit occurring was 0.08, while the 410 

probabilities of severe SM deficit were 0.23 and 0.22, respectively, and the probability of moderate SM deficit was both 0.34, 411 

indicating a high level of sensitivity in each scenario. It was observed that in any developmental scenario, the sensitivity of 412 

SM to Pre was higher in the Temperate, Arid, and Tropical regions located at mid to low latitudes, with values of 0.35, 0.34, 413 

and 0.33, respectively, whereas it was lower in the Polar and Boreal regions at high latitudes, with values of 0.3 and 0.31, 414 

respectively. Apart from the Eastern European Plain, the Congo Basin, and higher latitude regions, SM exhibited relatively 415 

high sensitivity to SPEI. The sensitivity of SM to Ep, VPD, Temp, Rad, and WS displayed distinct regional differences. Among 416 

them, the spatial distribution pattern of high sensitivity areas of SM to Ep, VPD, Temp, and Rad was similar, with high 417 

sensitivity areas concentrated in the Sahara Desert, the Arabian Plateau, the Rub' al Khali Desert, the lower reaches of the 418 

Indus River with the Taklimakan Desert in China, the Qinghai-Tibet Plateau, the Mongolian Plateau, the Labrador Plateau, 419 

and other highland and desert regions. Among these four factors, the high-value areas of SM sensitivity to Temp were more 420 

widely distributed compared to other factors. High-value areas of SM sensitivity to WS were detected in the Arabian Plateau, 421 

the Tarim Desert, and the Western Siberian Plain. In terms of climatic zones, overall, SM exhibited the greatest sensitivity to 422 

various factors in the Arid region, followed by the Temperate and Tropical regions. It was also evident that in the Arid region, 423 

the sensitivity of SM to Pre ranked fourth, while in any other climatic zone, Pre and SPEI were the most sensitive factors 424 

(Figure.7). 425 

 426 
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 427 

Figure 6. Spatial distribution of the joint conditional probability of extreme soil moisture deficit under extreme development 428 

scenarios. (a)-(i) represent the joint conditional probabilities of LAI, SIFGpp, SPEI, Pre, Ep, VPD, Temp, Rad, and WS with 429 
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SMsurf, respectively, and (j)-(r) represent the joint conditional probabilities of LAI, SIFGpp, SPEI, Pre, Ep, VPD, Temp, Rad, 430 

and WS with SMroot, respectively. 431 

 432 

 433 

Figure. 7. The sensitivity of (1) SMsurf and (2) SMroot across various climatic zones under (a) Extreme, (b) Severe, and (c) 434 

Moderate development scenarios. 435 

4. Discussion 436 

4.1 Global Changes Jointly Impact SM 437 

The hotspot regions of SM variation all exhibited fluctuating trends. However, a closer examination revealed that the 438 

fluctuation periods and frequencies of SM differed across regions (Figure. 1). For instance, Central and Eastern Europe, as 439 
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well as Central East Asia, both showed an accelerating drying trend during the growing season, likely due to increased water 440 

consumption by vegetation resulting from climate warming. Different regions, due to varying land use and conservation 441 

measures, also displayed distinct temporal evolution patterns. For example, in East Asia, the implementation of the Three-442 

North Shelterbelt Program significantly enhanced the water conservation capacity of the root zone(Xu et al., 2023). In contrast, 443 

in Central and Eastern Europe, ongoing grassland shrinkage and simultaneous forest expansion led to an upward trend in SM 444 

depletion. In the southeastern region of the Great Artesian Basin, an increasing trend in SM was observed, likely due to the 445 

excessively high groundwater salinity in the basin, which precludes its direct use for irrigation. Consequently, artificial 446 

irrigation has replenished the consumption of SM. 447 

Our study indicated that vegetation greening is one of the key factors contributing to the increase in global SMsurf, a 448 

viewpoint supported by related research. On the one hand, vegetation greening leads to an increase in vegetation cover, 449 

resulting in reduced soil evaporation (Li et al., 2019). Furthermore, vegetation greening results in the formation of a thicker 450 

litter layer, more extensive root systems, and increased organic matter, which aid in the formation of good soil aggregates, 451 

thereby enhancing the soil's water retention capacity (Yang et al., 2016; Yang et al., 2017; Zhang et al., 2019b; Adams et al., 452 

1991). Simultaneously, we observed that vegetation greening led to a decrease in global SMroot, particularly in Tropical, 453 

possibly due to the dense vegetation characteristic of this climatic zone. Vegetation in Tropical rainforest areas is tall, with 454 

well-developed root systems anchored deep in the soil, leading to higher consumption of SMroot. Similarly, the vegetation 455 

index SIFGpp slightly decreased global SM due to increased productivity consuming more soil water. However, in the 456 

Temperate and Tropical regions, SIFGpp increased SMroot. This is probably because during high-temperature droughts, plants 457 

close leaf stomata to prevent water loss via transpiration; the resulting retained water may reduce vegetation greenness and 458 

leaf size (i.e., LAI) but can still maintain stable vegetation productivity (Novick et al., 2016; Oren et al., 1999; Sinclair et al., 459 

2017). In other words, it is possible for SIFGpp to increase without an increase in vegetation transpiration water consumption 460 

in some high-temperature or drought-prone areas. 461 

Several regional-scale studies have suggested that climate-induced vegetation changes increased evapotranspiration, 462 

resulting in drier soils (Deng et al., 2020b; Zeng et al., 2018). Our study found that at a global scale, SM increased concurrently 463 

with vegetation greening and enhanced productivity. The results from the PLS-SEM indicated that LAI and SIFGpp typically 464 

acted as intermediary variables transmitting the indirect effects of climate factors on SM, thereby demonstrating the viewpoint 465 

that the positive or negative impact of vegetation greening on SM largely depended on climatic conditions (Xu et al., 2023). 466 

Pre, as the primary water supply for SM, directly influenced its variability. Additionally, Pre was beneficial for vegetation 467 

greening and enhanced productivity. The restoration of grasslands and sparse vegetation contributed primarily to vegetation 468 

greening. Grassland root systems are shallow with low water absorption capacity, leading to greater retention of Pre in the soil, 469 
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further increasing SM (Wang et al., 2021). However, the contribution of Pre to the annual variation of SM was not significant 470 

due to the increasing decomposition of terrestrial Pre into evapotranspiration with rising temperatures (Pascolini-Campbell et 471 

al., 2021). 472 

Our study also found that Ep was a significant factor contributing to global soil aridity, particularly pronounced in water-473 

deficient Arid regions. The increase in Ep indicates an enhanced potential for evapotranspiration. In the Arid region where 474 

water resources are scarce and vegetation and crops have high water demands, the rise in Ep signifies greater water 475 

consumption by vegetation and soil evaporation, further exacerbating the decrease in SM (Condon et al., 2020; Feng et al., 476 

2020). This may underscore the impact of water output on SM (Ge et al., 2020; Isabelle et al., 2020). Luo et al. (2023) indicated 477 

that the variations in global SMroot were primarily caused by Temp increases, with similar findings only observed in Tropical. 478 

This is attributed to the higher Temp in the Tropical, where climate warming and high Temp lead to increased evaporation 479 

demand and atmospheric dryness (Cheng and Huang, 2016; Deng et al., 2020a; Fang et al., 2022). VPD played a dominant 480 

role in the changes in local SM, but its positive and negative contributions offset each other at a global scale. We found a more 481 

significant impact of VPD on SM reduction in regions with high VPD values globally, particularly in the Arid and Temperate 482 

regions, due to higher VPD leading to increased land evapotranspiration, further accelerating SM depletion (Luo et al., 2023), 483 

consistent with the conclusions of Qing et al. (2023).We also found that WS played a dominant role in the changes of SM in 484 

high latitude regions in the Northern Hemisphere, primarily resulting in SM reduction. This was further validated through 485 

PLS-SEM, where higher WS accelerated the rate of water evaporation from both the soil (direct effect) and vegetation surfaces 486 

(indirect effect) into the atmosphere, consequently exacerbating SM loss (Tang and Tang, 2021; Shi et al., 2022; Roderick et 487 

al., 2007; Zhang et al., 2007).  488 

Global atmospheric circulation can impact regional water cycles (Allen and Ingram, 2002). Therefore, this study 489 

examined the teleconnection relationship between global environmental factors and SM through wavelet coherence analysis 490 

(Figure. S17 and Figure. S18). he cone-shaped thin lines in the Figureures denoted the effective spectral region, with thick 491 

lines within the effective area representing the 95% confidence interval of significant signals; arrows indicate phase differences, 492 

leftward implying a negative correlation between two sequences, while rightward indicating a positive correlation. All four 493 

global environmental factors exhibited significant cycles of 8-16 months at both global and climatic zones scales. Additionally, 494 

NAO, PDO, and AO showed multiple significant cycles of 4-8 months in Polar, Boreal, and Arid. In the Tropical, NAO and 495 

PDO were negatively or approximately negatively correlated with SM, while in other climatic zones, they demonstrated 496 

positive or nearly positive correlations. The high-energy areas in the Arid and Polar regions were relatively scattered, with 497 

NAO exerting the most significant impact on SM and ENSO showing the least influence. In the Boreal, Temperate, and 498 

Tropical regions, the high-energy zones were more continuous, with resonance periods concentrated around 2001-2008, 2010-499 
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2018, and 2019-2020, with only 2-3 years of insignificant correlation. Overall, the correlation between ENSO and SM was 500 

relatively weak, and the NAO and PDO had the greatest influence on SM. Meanwhile, it is important to note that global 501 

environmental factors mostly indirectly affect hydrological processes by disturbing regional climates and vegetation (Li et al., 502 

2021b; Su et al., 2019; Huang et al., 2013; Yang et al., 2021). 503 

4.2 High-risk factors for SM loss 504 

For the first time, we calculated the probability of SM loss under different stress scenarios. The results indicated that Pre 505 

and SPEI had the highest probabilities of causing SM loss. In all climatic zones, precipitation deficit was consistently the 506 

highest risk factor for SM depletion. As the primary source of SM, Pre plays a crucial role in maintaining the dynamic balance 507 

of SM (Chen et al., 2019; Maina et al., 2022). Insufficient precipitation disrupts this balance, leading to soil drying and 508 

adversely affecting both vegetation and SM (Lesk et al., 2021). In arid regions, the probability of vegetation-induced SM loss 509 

was second only to Pre, and, apart from arid zones, the SM deficit probabilities in other climatic regions were also significantly 510 

influenced by SPEI. 511 

However, why does Ep contribute the most to SM deficit, while Pre and SPEI cause the highest probability of SM loss? 512 

This may seem confusing. We believe the results are not contradictory. The numerical simulations based on RF quantify the 513 

average predictive contribution of variables to SM, reflecting the dominant role of precipitation deficits and SPEI in the overall 514 

data. On the other hand, the Copula method, through joint probability distributions, reveals the extreme dependence 515 

relationships between variables, indicating that under extreme conditions, such as drought, the synergistic effect of 516 

precipitation deficit and SPEI significantly amplifies the conditional probability of SM loss. Machine learning focuses on the 517 

"importance of variables under typical scenarios," while Copula emphasizes the "risk coupling under extreme conditions." For 518 

example, SPEI may be weakened in contribution within machine learning models due to its inclusion of precipitation data, but 519 

the Copula method captures its tail dependence with precipitation during droughts, explaining the extreme risk triggered by 520 

their combined effects. Therefore, these two approaches, from the perspectives of predictive modeling and risk probability, 521 

complement each other and jointly help us understand the evolving patterns of SM. 522 

4.3. Implications for Sustainable Water Resource Management 523 

SM ranks among crucial indicators for agricultural drought. It has a direct impact on soil physical and chemical 524 

characteristics as well as vegetation development, thereby exerting a substantial influence on global food production (Liu and 525 

Yang, 2023). Liu et al. (2023) has found a downward trend from 1980 to 2000, followed by a gradual increase after 2000. The 526 

serious consequences of soil drought have been recognized, leading to the implementation of multiple tree - planting initiatives 527 

aimed at averting land deterioration and desert encroachment, such as the Great Green Wall in the Sahara and Sahel regions 528 
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(Goffner et al., 2019), the Indian banyan hedge (Mladenova et al., 2019), and the Three-North Shelterbelt Program (Qiu et al., 529 

2017), which have substantially transformed the vegetation conFigureurations in relevant semi - arid or arid zones, and in 530 

doing so, accomplished the preservation of water resources. Additionally, beneficial climate shifts from arid to humid can 531 

promote vegetation proliferation, thereby serving the goal of safeguarding SM, but the reduction in SM triggered by the 532 

expansion of vegetation resulting from warming might give rise to severe drought (Qiu et al., 2021; Zhang et al., 2021). In 533 

other words, despite the continuous increase in SM since 2000, many regions still harbor potential ecological drought risks 534 

within the trends of climate change and greening (Holl and Brancalion, 2020; Liu et al., 2020a). In these areas, the cultivation 535 

of drought-resistant vegetation indeed plays an important role in soil and water conservation and sand fixation. However, 536 

considering the possible scarcity of water resources in these regions, a careful and strict assessment of the water requirements 537 

of vegetation and planting density/structure is needed before implementation to promote ecological sustainable development 538 

(Strassburg et al., 2020; Qiu et al., 2021). 539 

4.4. Limitations, Uncertainties, and Prospects 540 

While our study attempted to reveal the reasons for SM variability using a more comprehensive set of factors and analyzed 541 

the influencing pathways, thus filling the knowledge gap on long-term SM at different depths globally, there were still some 542 

limitations and uncertainties. Firstly, factors closely related to SM dynamics such as atmospheric circulation (Liang et al., 543 

2023), snowmelt (Bales et al., 2011), and water diversion projects (Liu and Zheng, 2002) may require further exploration. 544 

However, quantifying the impact of some of these factors on SM could prove challenging. Additionally, the response 545 

mechanisms of regional agricultural irrigation and groundwater extraction to SM need further investigation (Zhang et al., 546 

2019a). Finally, this study calculated the probability of SM deficit by considering only the individual effects of specific factors 547 

under particular scenarios, without accounting for the synergistic and compound impacts of factors such as temperature and 548 

precipitation on SM. Therefore, further analysis of the probability of SM deficit using high-dimensional copula could be a 549 

potential direction for future research. 550 

5. Conclusion 551 

This study analyzed the spatiotemporal evolution characteristics of global SMsurf and SMroot from 2001 to 2021. By 552 

employing a comprehensive set of factors, the study aimed to reveal the contribution and pathways (direct and indirect) of 553 

vegetation characteristics, climate factors, and drought indices to SM variability. Furthermore, it ultimately revealing the 554 

probability of SM deficit under different stress scenarios.  555 

(1) The SM variation trends exhibited a significant regional convergence and spatial differentiation pattern.  556 
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(2) The increase in surface and root-zone SM globally can be attributed to vegetation greening and precipitation, 557 

respectively. And Atmospheric water demand (Ep) was identified as the primary cause of global SM aridity. 558 

(3) Vegetation typically acted as an intermediate variable transmitting the indirect effects of climate factors and global 559 

environmental factors on SM.  560 

(4) Precipitation, the standardized precipitation-evapotranspiration index, and vegetation dynamics were the primary 561 

factors driving the highest probability of SM deficit.  562 

The research findings are expected to provide decision-making support for global sustainable water resource management 563 

under climate change conditions. 564 
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