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13 Abstract: Soil moisture (SM) plays a vital role in the global water and carbon cycles, with long-term impacts on ecosystem
14 functioning and vegetation growth. However, under the background of climate change, a decoupling phenomenon have
15 occurred between surface soil moisture (SMsurf) and rootzone soil moisture (SMroot). The variations and primary driving
16 factors of SM across different layers have not been studied comprehensively. Therefore, this study explored the spatiotemporal
17 dynamics of global SMsurf and SMroot from 2001 to 2021. The Random Forest coupled with numerical simulation
18 experiments were applied to measure the influences of climate and vegetation dynamics to SM changes. The Partial Least
19 Squares Structural Equation Modeling was employed to demonstrate the direct and indirect pathways of them to SM variability.
20  Additionally, the copula functions were applied to examine the probability of SM loss under different stress scenarios caused
21 by climate or vegetation changes. The results indicated that SM variation exhibited a significant spatial heterogeneity. Global
22 greening significantly contributed to the increase in SMsurf at a rate of 0.000087 m?*/m?>/a, while precipitation (Pre) had the
23 most significant impact on replenishing SMroot, with a contribution rate of 0.000117 m?*m?/a. Atmospheric water demand
24 (Ep) was identified as the primary cause of global SM drought, with rates of -0.000089 m3/m?/a and -0.000075 m3/m?/a for
25 SMsurf and SMroot respectively. Although vapor pressure deficit (VPD) had a significant dominant effect in regions with
26 high VPD values, rather than globally, as global positive and negative VPD effects offset each other. Vegetation typically
27 acted as an intermediary variable transmitting the indirect effects of climate factors on SM. Under the extreme scenarios,
28 Precipitation, Standardized precipitation evapotranspiration index and vegetation resulted in the highest probability of SM loss.
29 This research will furnish a theoretical underpinning for global water resource management and hold significant implications

30 for the sustainable development of ecosystems.

31 Short summary:

32 This study explores global soil moisture changes from 2001 to 2021, revealing the distinct response mechanisms of surface
33 and rootzone layers from both a contribution and probability perspective. Climate factors and vegetation both affect soil
34 moisture, with precipitation and vegetation playing key roles in maintaining balance. The research highlights rising drought
35 risks due to increased atmospheric demand and offers insights to support global water management and ecosystem

36 sustainability.
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39 1. Introduction

40 Soil moisture (SM) constitutes a vital element within the soil-vegetation-atmosphere continuum (Berdugo et al., 2020;
41 Liuetal., 2020b; Wang et al., 2017; Zhou et al., 2021a; Jung et al., 2010b), governing the transfer of water, carbon, and energy
42 fluxes between terrestrial ecosystems and the atmosphere (Vereecken et al., 2014; Legates et al., 2011), playing an
43 indispensable role in preserving the stability of the agricultural ecosystem. Compared to the total global water resources,
44 although the quantity of SM may seem insignificant, its dynamics critically induce large CO, fluxes (about two to three
45 gigatons of carbon per year) (Green et al., 2019). More importantly, SM exhibits distinct functional stratification: Surface soil
46 moisture (SMsurf) dominates short-term hydrological processes by controlling rainfall partitioning into infiltration versus
47 runoff (Feng and Zhang, 2015), while root-zone soil moisture (SMroot) regulates vegetation water uptake and ecosystem
48 resilience, and influences carbon assimilation, community succession and biogeochemical cycles (Hirschi et al., 2014b; Yang
49  etal, 2022).

50 Traditional in-situ observations have demonstrated substantial variability in the driving factors of SM dynamics across
51 different spatial scales, temporal periods, and soil depths (Huang et al., 2016; Duan et al., 2016). Huang et al. (2016) revealed
52 that the controlling factors of SM differ significantly across soil depths in the Wulongchi catchment. Based on slope-scale
53 observations in the Loess Plateau, Duan et al. (2016) demonstrated that SM is predominantly controlled by a combination of
54 topographic and soil characteristics at both hillslope and landscape scales. However, due to the difficulty of obtaining dense
55 and long-term SM observations from in-situ networks on a global scale, these datasets may not be representative at large spatial
56 scales (Guan et al., 2023). With the advancement and improvement of remote sensing technologies and SM retrieval algorithms,
57 global monitoring of SM dynamics has become increasingly feasible. Nevertheless, accurately estimating SMroot remains
58 challenging, as most remote sensing satellites primarily capture moisture in the near-surface layer (Feng, 2016) , such as ESA
59 CCI (European Space Agency Climate Change Initiative) (Gruber et al., 2019; Dorigo et al., 2017). The emergence of
60 reanalysis datasets, such as ERAS (the land component of the fifth generation of European Reanalysis), and land surface
61 model-based products such as GLEAM (Global Land Evaporation Amsterdam Model) and GLDAS (Global Land Data
62 Assimilation System), has helped fill the long-standing gap in global SMroot data and is widely employed in
63 hydrometeorological studies(Yuan et al., 2023; Zhang et al., 2025).

64 SMsurf has received widespread attention in previous studies due to its observational accessibility and rapid response to
65 atmospheric forcings such as precipitation and temperature (Feng and Zhang, 2015; Deng et al., 2020a). Global-scale analyses
66  have consistently reported sustained decreases in SMsurf across 73% of vegetated lands since 1988, particularly in mid-latitude
67 drylands (Dorigo et al., 2012). ESA CCI SM confirmed the "Dry Gets Drier, Wet Gets Wetter" (DGDWGW) paradigm (Feng

68 and Zhang, 2015); however, this pattern was derived solely from SMsurf observations and did not account for the dynamics
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69 of SMroot. The factors driving the SMsurf changing trends have also been extensively and thoroughly studied. Deng et al.
70 (2020a) revealed that the declining trend in SMsurf is primarily driven by global temperature increases. Cho and Choi (2014)
71 demonstrated SMsurf are dominantly regulated by precipitation and temperature/radiation. The development of land data
72 assimilation techniques and land surface models has enabled large-scale investigations of SMroot. Globally, SMroot has
73 decreased at an average rate of 0.14 x 103 m3/m?/year, primarily attributed to temperature anomalies (Luo et al., 2023).

74 Intensifying land-atmosphere hydrological interactions have positioned climate forcing as a dominant regulator of SM
75 dynamics under climate change (Bonan, 2008). Moreover, climate change not only directly influences SM availability and
76  vegetation patterns but also modulates SM dynamics through vegetation-mediated feedback mechanisms. Emerging evidence
77 highlights vegetation serves as a crucial intermediary between climatic forcing and SM responses (Zhang et al., 2022a; Yang
78 et al., 2023). There exists a pronounced mutual constraint between vegetation and SM. Favorable climatic conditions promote
79 vegetation growth; however, increased vegetation cover simultaneously intensifies SM consumption, potentially exacerbating
80 soil drought. In turn, soil drought imposes constraints on vegetation growth, creating a feedback loop that regulates ecosystem
81 dynamics (Lian et al., 2020; Zhu et al., 2016; Tietjen et al., 2017). Ruichen et al. (2023a) revealed that the increase in vegetation
82 cover has generally diminished the responsiveness of SM to precipitation fluctuations in most regions. However, in regions
83 with abundant vegetation cover, enhanced evapotranspiration has instead led to greater SM responsiveness to climate change.
84 Some studies suggested that in water-limited areas, vegetation greening and increased productivity accelerate soil evaporation,
85 depleting SM (Yang et al., 2014; Jung et al., 2010b; Aragao, 2012; Jasechko et al., 2013; Seneviratne et al., 2010b; Li et al.,
86 2018). However, other research indicated that regional-scale interannual precipitation changes compensate for the depletion
87 of SM caused by vegetation cover and increased productivity (Xie et al., 2015; Meng et al., 2020). Despite numerous studies
88 has emphasized the variability of SM across multiple spatial and temporal scales, and highlighted the critical roles of climate
89 change and vegetation dynamics in shaping SM variability, the quantitative assessment of the contributions of climate and
90 vegetation change and their interaction to SM dynamics at different layers remains unclear.

91 As the rapid-response layer of the climate system, SMsurf primarily regulates surface energy balance and the daily
92 fluctuations of evapotranspiration. In contrast, SMroot, functioning as a slow-regulation layer, exerts profound seasonal
93 influences on vegetation productivity, root distribution patterns, and belowground carbon allocation (Seneviratne et al., 2010a;
94 Jungetal., 2010a).. Though SMsurf and SMroot exhibit strong hydraulic connectivity through vertical water redistribution via
95 infiltration and plant root systems (Vereecken et al., 2022), recent studies reveal that climate change is decoupling the different
96 layers of SM. Specifically, SM dynamics across different soil layers exhibit different change trends and the dominant driving
97 factors may also vary, especially under climate change, which further complicating our comprehension of soil moisture-
98 climate-vegetation interactions (Zhou et al., 2021b; Hirschi et al., 2014a). Hirschi et al. (2014a) found that SMsurf gradually
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99 becomes statistically decoupled from both SMroot and atmospheric conditions under drought conditions, by comparing the
100 temporal variability of in situ observations of SMsurf and SMroot. Luo et al. (2023) also observed a negative correlation
101 between SMsurf and SMroot in many parts of the world, particularly in high northern latitudes and arid regions such as central
102 and western Australia. Several regional-scale studies have further confirmed the decoupling between SMsurf and SMroot. For
103 example, Li et al. (2021a) found that SMsurf in the Loess Plateau is more sensitive to short-term climatic variables such as
104  precipitation and potential evapotranspiration, as well as vegetation cover, whereas SMroot is more significantly influenced
105 by long-term factors such as vegetation type (e.g., water use by deep-rooted plants) and global atmospheric circulation patterns
106 (e.g., ENSO). In East Asia, Zohaib et al. (2017) demonstrated that reduced precipitation is the primary cause of SMsurf decline,
107 while Cheng et al. (2015) highlighted that the dominant factors affecting SMroot vary across different climatic regions.
108 Furthermore, the distinct variation trends of SMsurf and SMroot, as well as their driving mechanisms of climate and vegetation
109 changes, have not been comprehensively examined, particularly considering the significant spatial heterogeneity across
110 different climate zones. Additionally, the probability of SM deficits triggered by vegetation dynamics and climate change
111 remains unexplored, which is crucial for optimizing agricultural irrigation strategies and maintaining the stability of
112 agricultural ecosystems under climate change. Therefore, it is necessary to clarify these interaction mechanisms and assess the
113 collaborative effects and comparative contributions of climate change and vegetation dynamics on SM at a global scale, which
114 benefit for better comprehension of these processes will enhance our understanding of the complex interactions among climate,
115  vegetation, and SM across diverse climatic regions.

116 Previous studies have paid less attention to the changing trends and driving mechanism of SMsurf and SMroot under
117 climate change and vegetation dynamics, especially across the different climatic zones globally. At the same time, the
118 probability of SM extremes when abnormal situations occur among the influencing factors are inadequately resolved.
119 Consequently, this study aims to (1) characterize the spatiotemporal dynamics of SMsurf and SMroot under distinct climatic
120 regions, (2) measure the relative contributions of climate change and vegetation greening to SM fluctuations based on random
121 forest coupled numerical simulation experiments, (3) elucidate both direct and indirect pathways through which vegetation
122 dynamics and climatic variables regulate SM changes based on structural equation models, and (4) assess the sensitivity
123 thresholds of SM responses to multifactorial drivers under coupled environmental interactions based on copula functions. This
124 research will help understand soil hydrological processes and provide a theoretical basis for global water resources

125 management.
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126 2. Materials and methods
127 2.1. Data sources and processing

128 2.1.1 Képpen-Geiger climate classification data

129 The Koéppen-Geiger climate classification, first proposed by Vladimir Koppen in 1884, is one of the most widely used
130 systems for categorizing global climates. It provides a valuable framework for analyzing climate distribution and predicting
131 regional climate characteristics. To examine the temporal variations of SM across different climate zones at both global and
132 regional scales, this study utilized the Koppen-Geiger climate classification map (Beck et al., 2018), which has a spatial
133 resolution of 0.5° x 0.5° and covers the period from 1980 to 2016. Following Luo et al. (2023), this study further grouped the

134 detailed climate zones into five broad categories: polar, boreal, temperate, arid, and tropical (Figure. 1).
135 2.1.2. Soil moisture

136 The Global Land Evaporation Amsterdam Model (GLEAM) SM dataset offers high-quality, spatially continuous
137 estimates of surface (0-10 cm) and root-zone (10-250 cm) SM (http://gleam.eu/). With a high spatiotemporal resolution of
138 0.1° at a daily scale since 1980, it is driven by a combination of satellite observations and reanalysis-based forcings, ensuring
139 reliable and consistent SM assessments across diverse regions (Miralles et al., 2011; Martens et al., 2017a). GLEAM SM data
140 has been applied in several researches in both global and regional contexts (Li et al., 2021c¢; Ye et al., 2019; Xu et al., 2023;
141 Ruichen et al., 2023b; Zhang et al., 2022b). Benefiting from an improved representation of evaporative stress, an optimized
142 water-balance module, and a refined SM data assimilation strategy, GLEAM SM offers enhanced accuracy and reliability,
143 with a 0.1° spatial resolution and monthly time resolution, covering January 2001 - December 2021.

144 The Global Land Data Assimilation System (GLDAS), developed by National Aeronautics and Space Administration
145 (NASA) Goddard Space Flight Center, is a comprehensive hydrological modeling framework designed to synthesize multi-
146 source observational data (satellite remote sensing and in situ measurements) with advanced land surface models (Noah, CLM,
147 VIC, Mosaic, and Catchment land surface models) and data assimilation techniques (https:/disc.gsfc.nasa.gov/). GLDAS
148 generates vertically stratified SM estimates across four depth layers (0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm), which
149 serve as crucial basic supporting data for meteorological, land surface and hydrological research. This study utilized
150 GLDAS NOAHO025 M SM data with a spatiotemporal resolution of 0.25° at a month scale from January 2001 to December
151 2021.

152 ERAS-Land, the most advanced reanalysis dataset from the European Centre for Medium-Range Weather Forecasts
153 (ECMWF), is accessible via the Copernicus Climate Change Service (C3S) Climate Data Store (CDS)

154 (https://cds.climate.copernicus.eu/), which offers a total of 50 variables and depict the water and energy cycles over land
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155 globally. This study utilized ERA5-Land at one month interval and with a 0.25° spatial resolution, which include a four-layer
156 vertical profile ranging from 0—7 cm to 100-289 c¢m, covering from January 2001 to December 2021.

157 GLEAM SM was rigorously validated through extensive field SM measurements (e.g., International Soil Moisture
158 Network), confirming its strong performance in capturing SM dynamics in different regions (Martens et al., 2017b). In order
159 to enhance the stability of results, this research further evaluates the accuracy of the GLEAM SM product at both surface and
160  root-zone depths. To ensure consistency across multiple SM datasets, a weighted averaging method was employed to
161 standardize SM measurements to a uniform depth. Considering that SM values typically have small magnitudes, this research
162 uses relative root mean square error (RRMSE) and Pearson correlation coefficient (R) as evaluation metrics to offer a more
163 stringent and scientifically sound assessment of GLEAM SM. The results indicated that GLEAM exhibited high consistency
164 with both GLDAS and ERAS, with a global mean RRMSE of less than 20% and R of around 0.6 (Figure. S2, Figure. S3). The
165 agreement between SMsurf and other datasets is slightly stronger than that of SMroot. Specially, the global RRMSE results
166 are great. Only south edge areas in Tibetan Plateau and Sahara Desert own the very unsatisfactory results (Figure. S2). The
167 correlation coefficients between GLEAM and other datasets are relatively low in high-latitude regions of the Northern

168 Hemisphere, averaging around 0.5, but they increase to 0.8 or even above 0.9 south of 60°N (Figure. S3).
169 2.1.3. Vegetation parameters

170 The Global Land Surface Satellites (GLASS) provided the Leaf Area Index (LAI) based on satellite data from multiple
171 remote sensing sensors like Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution
172 Radiometer (AVHRR). The data had a spatial resolution of 0.25° and an 8 - day temporal resolution. Owe to sophisticated
173 processing and model inversion, this dataset has been widely used in ecological and hydrological research fields with high
174 spatiotemporal resolution globally (Xiao et al., 2016; Li and Xiao, 2020; Xiao et al.,2017; Wang et al., 2014; Zeng et al., 2017,
175 Wei et al., 2017). This study utilized the LAI dataset derived from the MODIS sensor with a spatial resolution of 0.25° and an
176 8-day interval (http://www.glass.umd.edu/).

177 Significant progress has been made in measuring terrestrial photosynthesis via Solar-Induced Fluorescence (SIF). SIF
178 shows a strong relationship with Gross Primary Productivity (GPP) data (Li and Xiao, 2019). The Global OCO-2 SIF dataset
179 (GOSIF) was further developed through data - driven methods, incorporating discrete OCO - 2 SIF detections, MODIS remote
180 sensing data, and meteorological reanalysis data, and has seen extensive application (Zhang et al., 2022b; Chang et al., 2023).
181 This study utilized the average global GOSIF-Gpp from 2001 to 2021, with a spatial resolution of 0.05° and a monthly temporal

182 resolution from January 2001 to December 2021. (http://data.globalecology.unh.edu/data/GOSIF-GPP_v2/).
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183 2.1.4. Climatic variables

184 The meteorological data for this study were obtained from the GLDAS NOAHO025_M data product, boasting a spatial
185 resolution of 0.25° and a monthly temporal resolution. GLDAS provide a variety of critical land surface parameters, such as
186 downward longwave radiation (Lrad), downward shortwave radiation (Srad), atmospheric pressure, specific humidity,
187 precipitation (Pre), atmospheric water demand (Ep), temperature (Temp), and wind speed (WS).

188 For this study, the total radiation (Rad) was computed based on the original data, in accordance with Eq.1:

189 Rad = LRad + SRad (1)

190  Where Rad represents the total radiation; LRad stands for the longwave downward radiation; and SRad denotes the

191 shortwave downward radiation.

192 VPD was estimated based on Eq.2 and Eq.3:
(17.67(T— TU)) -1
193 RH = 0.263pq [e T-29.65 ] ®)
17.27%(T—-273.16)
194 VPD = 0.61078 X e T-273.16+2373 X (1 — RH) 3)

195 Where RH is Relative humidity, p is the atmospheric pressure (Pa); q is specific humidity (dimensionless); T is the Temp (K);
196 Ty is the reference Temp (273.16 K usually).

197 In order to further investigate the impact of global teleconnection factors such as NAO (North Atlantic Oscillation), PDO
198 (Pacific Decadal Oscillation), AO (Arctic Oscillation), and ENSO (EI Nifio - Southern Oscillation) on SM. This study obtained
199 teleconnection factors sourced from the National Centers for Environmental Information (https://www.ncei.noaa.gov/) (Zhao

200 etal., 2020).

201 2.1.5. SPEI

202 The Standardized Precipitation Evapotranspiration Index (SPEI) is used to assess Meteorological drought conditions. By
203 incorporating the cumulative effects of long-term climate variability rather than merely reflecting single-month conditions, the
204 SPEI can characterize the degree of water deficit (the difference between precipitation and evapotranspiration) and capture the
205 delayed responses of vegetation cover and SM to water deficit, for instance, spring droughts may not be directly caused by
206 insufficient rainfall in that month but rather by a prolonged precipitation deficit from the previous autumn (Jiao et al., 2021).
207 Given that vegetation growth and SM variations often lag behind climatic conditions by several months, the 12-month moving
208 average of SPEI better aligns with the ecological inertia of these processes, rather than directly corresponding to instantaneous
209 precipitation or evapotranspiration (Xu et al., 2023), which is of great significance for monitoring and predicting the impact

210 of climate change on agricultural water resources management and agricultural ecosystem. The SPEI from the Global SPEI



https://doi.org/10.5194/egusphere-2025-2828
Preprint. Discussion started: 8 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

211 database with a spatial resolution of 0.5° and a temporal scale of 12 months, were used in this study

212 (https://spei.csic.es/spei_database) (Begueria et al., 2014).
213 2.1.6. Pre-processing of datasets

214 Bilinear interpolation was used to interpolate all data to a spatial resolution of 0.25° (Li et al., 2022). To aggregate the
215 8-day time-scale LAI data into monthly values, the maximum value method was utilized.

216 Trends are often regarded as indicative of human activity, suggesting that non-stationary conditions could potentially
217 distort the results inappropriately (Boulton et al., 2022). Therefore, prior to subsequent calculations, it is essential to eliminate
218 the trend from the SM time series (Smith and Boers, 2023). This study employed the STL (Seasonal and Trend decomposition
219 using Loess) method to separate SM time series of each grid cell into the overall trend, seasonal component, and residual
220 component, which was implemented through the s#/() function in the "stats" package in R (v4.2.1). The STL residual
221 component, which represents the deseasonalized and detrended SM time series, was utilized for further analysis (Wang et al.,
222 2023). Taking global observational results as an example, although the mean values of the three SM products exhibited
223 substantial differences, their dynamic fluctuation patterns showed a high degree of consistency (Figure. S4a, b). After STL
224 decomposition, the detrended and deseasonalized residual components demonstrated near-uniform synchronicity (Figure. S4c,
225 d), indicating that STL not only eliminated the effects of non-stationary conditions but also effectively removed systematic

226 biases among products. This ensured the reliability of subsequent analytical results.

227 2.2. Methods

228 2.2.1. Trend analysis

229 Theil-Sen slope estimation and Mann-Kendall (MK) test were used to identify and characterize trends in long-term time
230 series data. The Theil-Sen method was utilized for calculating resilient linear trends with p-values that are robust against
231 outliers (Gocic and Trajkovic, 2013). Simultaneously, the non-parametric MK test was applied to evaluate the significance of

232 monotonic trends through the assessment of their slope values (Ma et al., 2020).
233 2.2.2. Numerical simulation experiments based on Random Forests

234 Random Forest (RF) has demonstrated favorable performance in simulating SM by capturing non-linear associations
235 among variables (Breiman, 2001; Clewley et al., 2017; Li et al., 2021d; Liu et al., 2020c; Zhao et al., 2018). Due to the
236 limitations of traditional physical models in representing input parameters, this study employed an RF-based surrogate model
237 to simulate SM and subsequently conducted numerical experiments to separate the absolute contributions of different variables

238 (Zhao et al., 2022). R? and RMSE were used to evaluate the simulation results of RF.

9
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The Feature Importance Index (FII) derived from RF quantitatively described the relative contributions of input features.

Traditional control variable experiments or numerical simulations were typically based on physical models and were

constrained by predefined input variables. This study has integrated the strengths of both approaches to propose numerical

simulation experiments based on RF. The selected independent variables as shown in Table 1.

The specific approach to separating variable contributions using this method is as follows:

1. Input Actual Time-Series Data: real time-series data for all independent variables were input into RF model to simulate

the dependent variable (SMsurf and SMroot), and the hyperparameters of the model were optimized using Bayesian algorithms.

2. Fix a Specific Variable: one specific variable (e.g., LAI) was fixed in 2001, while the rest of the variables remain time-

varying, and the hyperparameters were the same as those from Step 1.

3. Run Two Simulations: Since the data inputs differ between the two simulations, the difference between the two

simulation outputs could be attributed to the contribution of LAI to SM (details in Table 1 and Figure. S5).

The dominant factors of global SM were further identified. Specifically, this study simultaneously considered the

contributions of and the changing trends of each factor and SM. For regions where SM increased, the factor with the highest

positive contribution was determined as the dominant factor, and vice versa (Sun et al., 2022).

Table 1. Description of numerical simulation experiments.

Experiments Description
Equ All variables remain time-varying
Epar LAl is fixed in 2001 while the rest of variables remain time-varying
Esircpp SIFGPP is fixed in 2001 while the rest of variables remain time-varying
Espgr SPEI is fixed in 2001 while the rest of variables remain time-varying
Epre Pre is fixed in 2001 while the rest of variables remain time-varying
Egp Ep is fixed in 2001 while the rest of variables remain time-varying
Eypp VPD is fixed in 2001 while the rest of variables remain time-varying
Eremp Temp is fixed in 2001 while the rest of variables remain time-varying
Erada Rad is fixed in 2001 while the rest of variables remain time-varying
Eys WS is fixed in 2001 while the rest of variables remain time-varying
2.2.3. PLS-SEM

Partial Least Squares Structural Equation Modeling (PLS-SEM) is a robust and versatile multivariate analysis technique

that has increasingly been applied in fields such as ecology and hydrology. In this study, PLS-SEM was employed to investigate
the direct and indirect influence pathways of meteorological factors and vegetation on SM. Unlike covariance-based SEM

(CB-SEM), PLS-SEM does not rely on strict normality assumptions and can be applied with relatively small sample sizes,
10
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260 making it especially useful in exploratory research where theoretical models are less established (Hair et al., 2016). In this
261 study, the PLS-SEM analysis was carried out using SmartPLS 3.3.1, a widely recognized software tool designed to implement
262 this technique efficiently (Westland, 2015; Thomson et al., 1995). The software enables bootstrapping procedures to assess
263 the significance of paths and estimates in the model, thus providing a semi-parametric method for hypothesis testing. This
264  methodological framework offers both explanatory and predictive capabilities, allowing the researchers to explore complex
265 relationships between observed and latent variables, contributing to the robustness and reliability of the findings (Deng et al.,

266 2020b; Zani et al., 2020).
267 2.2.4. Wavelet coherence analysis

268 Wavelet coherence analysis is a time-frequency analysis method based on wavelet transform, which is used to study the
269 mutual relationship and frequency coupling between two signals. By applying wavelet transform to each signal and calculating
270 their coherence at different time and frequency scales, wavelet coherence analysis can reveal the time-frequency interactions
271 and coherence level between two signals. This analysis method has been widely applied in fields such as meteorology and
272 hydrology, aiding in the exploration of complex frequency characteristics and interaction mechanisms between signals
273 (Torrence and Compo, 1998; Hu and Si, 2016; Li et al., 2021b). In this study, wavelet coherence analysis was employed to

274  investigate the correlation between global teleconnection factors and SM.
275 2.2.5. Copula functions

276 Copula functions, a robust mathematical approach, are being used more and more in ecology and hydrology. They are
277 employed to depict and model the tail dependencies among multiple variables (Wu et al., 2025), particularly those exhibiting
278 complex, non-linear relationships (Qing et al., 2023; Zscheischler and Seneviratne, 2017). Sklar’s theorem is the foundation
279 of copula theory. It posits that any multivariate distribution can be broken down into its marginal distributions and a copula,
280  which represents the dependence structure (Sklar, 1959). Various types of copulas, like Gaussian, t-copula, Clayton, Gumbel,
281 and Frank—are applied in hydrological scenarios to capture different types of dependence, covering both symmetric and
282 asymmetric dependences (Genest and Favre, 2007).

283 This study selected the optimal copula function from five copula functions and constructed a bivariate dependence
284 function to characterize the joint distribution of SM and independent factors (details in Table S1). Taking Temp as an example,
285 the corresponding joint distribution is expressed as follows:

286 Fopremp(sm, temp) = P(SM < sm™t", Temp > temp™~t") = C(F,(sm), F,(temp)) 6)
287  Where, C() denotes a copula function. F; (sm™ ") and F,(vpd™~") represent the marginal distributions of SM and Temp,

288 respectively.



https://doi.org/10.5194/egusphere-2025-2828
Preprint. Discussion started: 8 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

289 The performance of the Copula function is assessed through the squared Euclidean distance d (i.e. the difference between
290  the probabilities obtained from each Copula function and those from the empirical Copula function), calculated as follows:
291 d =Xy |Comp(Fi(sm), F(temp)) — Cy(Fy (sm), F,(temp))|? O
292 Based on the determined joint distribution function, we calculated the joint conditional probabilities of different levels of
293 SM deficiency under different stress scenarios, that is, moderate, severe, and extreme scenarios. These were defined as the
294  time series of factors being located at the 50th, 30th, and 10th percentiles, respectively, which were unfavorable for maintaining
295 SM. Taking the Temp of a certain pixel as an example, when sorting the time series from small to large, the minimum value
296  was located at the Oth percentile, and the maximum value was located at the 100th percentile. Assuming that high Temp were
297 unfavorable for maintaining SM, extreme Temp scenarios occurred when the temperature exceeded the 10th percentile of the
298 time series. Subsequently, we used the magnitude of the joint conditional probabilities to indicate the sensitivity of SM to
299 Temp. Taking SM deficiency under different temperature scenarios as an example, the calculation of conditional probabilities
300 is as shown in Eq.7:

P(u; <SM<u, Tempztempt®th) — Fsy Temp(tz,temp ) —Fgy Temp(uy tempt0th)

P(Temp=temp10th) Fsmuz—Fsmuq

301  P(u; < SM < u,|Temp > tempt0®h) = 8)

302 Where, temp*%® represents temperatures within the top 10th percentile, u; and u, are the upper and lower limits of SM,

303 Fsm, rempdenotes the joint distribution of the two variables, with Fgy; being the marginal distribution of SM.

304 3. Results

305 3.1. Spatiotemporal variations of SM

306 The spatiotemporal dynamics of global SM exhibited pronounced spatial heterogeneity (Figure. 1). While the spatial
307  variation rates of SMsurf and SMroot were relatively similar (Figure. S6), discrepancies emerge in hotspot regions of SM
308 change (Figure. 1). Specifically, the mean values of SMsurf and SMroot differed significantly in the Northern Hemisphere,
309 whereas they remained nearly identical in the Southern Hemisphere. Furthermore, our study revealed that in hotspot regions
310 of SM change, SMsurf exhibited greater fluctuations compared to SMroot. Notable declining trends were observed across
311 central North America, Central and Eastern Europe, the Central Siberian Plateau, the Brazilian and Parana Plateaus, the Congo
312 Basin in Central Africa, and northwestern Australia. Conversely, significant increases were detected in northwestern Europe,
313 the West Siberian Plain, Central East Asia, the Indian subcontinent, and the southeastern region of the Great Artesian Basin,
314 with maximum rates exceeding 0.002 m3/m3/a (Figure. 1). From a latitudinal perspective, the most pronounced increase in SM

315 occurred between 30°N and 40°N, whereas the most substantial decline was concentrated around 20°S. Longitudinally, regions
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316 near 120°W, 60°E, and 120°E exhibited the highest rates of increase. The detailed description of the spatiotemporal variations

317 in vegetation indicators, drought indicators, and climate factors can be found in Text S1 and Figure. S7-S15.

318
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322 Figure. 1. Spatiotemporal Trends of SM from 2001 to 2021. The red polyline in the line chart represents SMsurf, while the
323 blue polyline represents SMroot.

324
325 3.2. Contributions of vegetation indicators, drought indicator and climate factors to SM variations

326 RF-based numerical simulation experiments were conducted to measure the contributions of various factors to SM, with
327 the model demonstrating good performance (Figure. S16). Figure. 2 indicated significant regional differences in the
328 contributions of different factors to SM, with Pre, Ep, and VPD playing a relatively large role. Pre had a strong positive
329 contribution to SM in the Guiana Highlands, the Western Ghats, the Northeast China Plain and the North China Plain, reaching
330  up to0.0008 m*/m?/a. However, it had a negative contribution of up to -0.0006 m*/m>/a in the Kara-Kum Desert, the Australian
331 Basin, the Parana Plateau, and southeastern China. Ep showed a negative contribution of up to -0.0008 m*/m’/a in the
332 Australian Basin, south of the West Siberian Plain, the Mongolian Plateau, the North American Great Plains, and the Chad
333 Basin, while exhibiting a prominent positive contribution in Europe, vegetation-covered areas of the Sahara Desert, the Arabian
334 Peninsula, the Congo Basin, and south of the Yangtze River in China. VPD had a significant negative contribution to SM

335 between 30°S and 30°N, but a positive contribution in higher latitude regions. Additionally, LAI had a significant positive
13
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336 contribution in the Congo Basin, the Amazon Basin, and south of the Himalayas, while exhibiting a large negative contribution
337 in the Guinea Gulf region, the Mississippi Plain, the Orinoco Plain, the Brazilian Plateau, the Indian Peninsula, the Indochina
338 Peninsula, and eastern and central parts of China. WS had a substantial positive contribution in the Qinghai-Tibet Plateau,
339 while the contributions of Temp and Rad showed less spatial variation. Overall, the magnitude and direction of contributions
340  varied for different climate zones and globally. From a global perspective, LAI and Rad increased SMsurf but decreased
341 SMroot, while Pre decreased SMsurf but increased SMroot (Figure. 3).
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343 Figure. 2. Spatial distribution of absolute contribution of vegetation characteristics, climate factors, and drought indices to
344  SMsurf and SMroot (m*/m?/a).
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346  Figure. 3. Absolute contribution of vegetation to (a) SMsurf and (b) SMroot in different Kdppen-Geiger climatic zones.

347

348 Figure.4 revealed the spatial distribution of the dominant factors influencing SM globally and statistically analyzed the
349  dominant areas of each factor based on climatic zones. LAI and SIFGpp dominated the changes in SM over relatively small
350 areas, but held a prominent position in typical vegetation restoration areas, such as the Loess Plateau in China. Regions
351 predominantly influenced by SPEI were most concentrated around the Arabian Plateau. The dominant area of Pre was
352 relatively large, mainly distributed in the South American highlands, the eastern coastal highland mountainous regions of
353 North America, the Gedan Plateau, the East European Plain, the Pacific coast, and some desert areas in Australia. The
354 distribution of dominant areas influenced by Ep was more scattered, primarily concentrated in the Arid region. From the high-
355 latitude Polar region to the low-latitude Tropical, the area dominated by VPD gradually increased, overall dominating nearly
356 a quarter of the global area. Temp and Rad had a relatively small proportion of domination globally, but held a larger proportion
357 in the Polar region. WS occupied a dominant position in the variation of SM in the Polar and Boreal regions, with the dominant

358 area decreasing gradually from high latitudes to low latitudes.
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360  Figure. 4. (1) Spatial distribution and (2) proportion of dominant factors in different Koppen-Geiger climatic zones of (a)

361 SMsurf and (b) SMroot.

362 3.3. Influencing pathways of vegetation indicators, drought indicator and climate factors on SM variations

363 The PLS-SEM model was constructed from both global and local perspectives, and the model's fit metrics were
364 satisfactory. Specifically, the Goodness of Fit Index (GFI) was over 0.9, Root Mean Square Error of Approximation (RMSEA)
365 was below 0.10, Comparative Fit Index (CFI) exceeded 0.9, Normed Fit Index (NFI) was above 0.9, Non-Normed Fit Index
366 (NNFI) surpassed 0.9, and a ¥2/df ratio was less than 3 (Henseler and Sarstedt, 2013).

367 This study not only revealed the impact pathways of all driving factors on SM but also analyzed from a systemic
368  perspective. Based on the functional correlations among factors, LAI and SIFGpp were classified as the ‘Global Greening’
369 module, while Pre, Ep, VPD, Temp, Rad, and WS were categorized as the ‘Climate Change’ module, with SPEI representing
370  the ‘Drought Intensification’ module (Figure. 5). The paths we built not only included connections from ‘Global Greening,’
371 ‘Climate Change,” and ‘Drought Intensification’ to SM, but also encompassed links from ‘Climate Change’ and ‘Drought
372 Intensification’ to ‘Global Greening,” as well as from ‘Climate Change’ to ‘Drought Intensification’. Regardless of whether
373 viewed from climatic zones or globally, ‘Climate Change’ significantly moderated the impact of ‘Global Greening.’ In the

374  high-latitude Polar region and Boreal region, the effects of each module on SM were not significant. In the Temperate region,

16
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375 ‘Climate Change’ exhibited a significant negative impact on SM (p < 0.05), while both ‘Global Greening’ and ‘Drought
376 Intensification’ showed highly significant positive effects on SM (p < 0.01). In the Arid region, apart from the significant
377 negative effect of ‘Global Greening’ on ‘Drought Intensification’ (p < 0.05), all three modules demonstrated highly significant
378 direct positive effects on SM (p < 0.01). In the Tropical, the path coefficient of 'Global Greening' on SMsurf was 0.324 (p <
379 0.05), while its effect on SMroot was not significant. Additionally, 'Drought Intensification' exhibited a highly significant
380  positive impact on SM (p < 0.01).

381 To further explore the pathways of various factors on SM, only LAI and SIFGpp were grouped as "Vegetation," while
382 the remaining factors were not merged (Figure.5). The direct, indirect, and total path coefficients of various factors on SM
383 were presented in Table S2 and Table S3. Only complete paths with all sub-paths being significant are focused on (p < 0.05).
384 In the Polar region, all pathways were not significant, indicating a relatively simple or small impact on SM. In the Boreal
385 region, Vegetation acted as the main mediating variable, with a total effect of 0.035 for Pre— Vegetation— SMsurf/SMroot,
386 0.087 for Temp — Vegetation — SMsurf/SMroot, and 0.270 for Rad—Temp— SMsurf/SMroot. The direct effect of Pre on
387 SMroot was -0.362. In the Temperate region, the total effects were highest for Temp— Vegetation— SMsurf/SMroot, with
388 values of 0.692 and 0.733 respectively. The total effects of Ep—SPEI— SMsurf/SMroot were 0.340 and 0.296 respectively.
389 Temp acted as the mediating variable for WS and Rad's influence on SM. In the Arid region, the pathways were more complex,
390 with Ep and Pre significantly impacting SM through SPEIL, including Ep/Pre—SPEI—SMsurf/SMroot and
391 Ep/Pre—SPEI— Vegetation—SMsurf/SMroot. Pre and Temp indirectly influenced SM through their positive effects on
392 Vegetation. The total effects of Rad—Temp— SMsurf/SMroot were 0.583 and 0.618 respectively. In the Tropical, significant
393 pathways included Rad—Temp— Vegetation— SMsurf/SMroot, Pre—SMsurf/SMroot, and SPEI—SMsurf/SMroot. From a

394 global perspective, only the Rad—Temp— SMsurf/SMroot pathway was significant.



https://doi.org/10.5194/egusphere-2025-2828
Preprint. Discussion started: 8 July 2025 EG U
~ sphere

(© Author(s) 2025. CC BY 4.0 License.

Glimate Change Glimate Change
(a-1) (a-3) G
2 a
TS
| 0179 © -1 0. \33
Global Gleemngx _5 Soil Moisure Global Greening vo Soi Moisure
2 2
o\ ﬂ )
Drought Intensification Dmughl Intensification
(b 1 ) Climate Change (b %) Climate Change
& % 2
el % & <.
| o BM y 4% B 0645 ;
y g
% 3 ,
Global Greening ‘0‘) Sﬂl Moisture. Global Greening 0. § Soil Moisture
) ho) ﬁ &
Drought ntensif fcahun Drought nensifcation
Clmate Change Glimate Change
(c-1) (c-3) ?
¢
»“ ” < $ o>
Bl o m\ ? % f X m 3
Giobal Gleem»g ‘Soil Moisture Giobal Gmenmg ;‘é’ Sol Moisture

Dvcughl Intensification

( d-3 ) Ciimate Change

%

g nszz

Dmughl Intensification

( d-1 ) Climate Change

%

f
Global Graamng & Global Greening 2, QB

Dronghl Intensification Drought Intensification

Climate Change

Climate Change
(e-1) (e-3) '
4 /
8 0 09!
Global Greening & Soil Mms!we

Dvaughl Intensification

( £3 ) Climate Change

Dmnghl Intensification

( f-1 ) Climate, cmng-

§ 0. 184
Global Graanmg Soil Moisture:

395 Dvougnl Wiensicaton

Drought Intensification

396  Figure. 5. The direct and indirect influences of driving factors on SMsurf and SMroot. (a), (b), (c), (d), (e), and (f) correspond
397 to the Polar, Boreal, Temperate, Arid, Tropical, and Global regions, respectively. The first and third columns represent the
398 impact pathways of different systems on SMsurf, while the second and fourth columns depict the influence pathways of all
399 driving factors on SMroot. *, ** indicate the significance at p < 0.05, p <0.01 levels, respectively.

400
401 3.4. The probability of SM loss under different stress scenarios

402 The probability of varying degrees of SM deficit under different stress scenarios was quantified using the optimized
403 copula function, enabling the identification of high-risk factors affecting SM as well as high-risk sensitivity regions for SM

404 depletion (Figure.S19, Figure. S20, Figure. S21). Taking the joint conditional probability of extreme soil moisture deficit under

18
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405 extreme development scenarios as an example, we demonstrate the spatial distribution of high-risk areas for soil moisture
406 deficit (Figure 6). From a spatial distribution perspective, areas with high sensitivity of SM to LAI and SIFGpp were
407 concentrated in the Great Plains of North America, the Brown Coop, the Pampas grasslands, the Kalahari Basin, the East
408 African Plateau, the Mediterranean region, the Australian Great Basin, as well as high plateau regions represented by the
409 Iranian Plateau, the Deccan Plateau, the Mongolian Plateau, and the plains south of the Siberian Plateau. When LAI and
410 SIFGpp were in an extreme development scenario, the probability of extreme SM deficit occurring was 0.08, while the
411 probabilities of severe SM deficit were 0.23 and 0.22, respectively, and the probability of moderate SM deficit was both 0.34,
412 indicating a high level of sensitivity in each scenario. It was observed that in any developmental scenario, the sensitivity of
413 SM to Pre was higher in the Temperate, Arid, and Tropical regions located at mid to low latitudes, with values of 0.35, 0.34,
414 and 0.33, respectively, whereas it was lower in the Polar and Boreal regions at high latitudes, with values of 0.3 and 0.31,
415 respectively. Apart from the Eastern European Plain, the Congo Basin, and higher latitude regions, SM exhibited relatively
416  high sensitivity to SPEL The sensitivity of SM to Ep, VPD, Temp, Rad, and WS displayed distinct regional differences. Among
417 them, the spatial distribution pattern of high sensitivity areas of SM to Ep, VPD, Temp, and Rad was similar, with high
418 sensitivity areas concentrated in the Sahara Desert, the Arabian Plateau, the Rub' al Khali Desert, the lower reaches of the
419 Indus River with the Taklimakan Desert in China, the Qinghai-Tibet Plateau, the Mongolian Plateau, the Labrador Plateau,
420 and other highland and desert regions. Among these four factors, the high-value areas of SM sensitivity to Temp were more
421 widely distributed compared to other factors. High-value areas of SM sensitivity to WS were detected in the Arabian Plateau,
422 the Tarim Desert, and the Western Siberian Plain. In terms of climatic zones, overall, SM exhibited the greatest sensitivity to
423 various factors in the Arid region, followed by the Temperate and Tropical regions. It was also evident that in the Arid region,
424 the sensitivity of SM to Pre ranked fourth, while in any other climatic zone, Pre and SPEI were the most sensitive factors
425 (Figure.7).

426
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428  Figure 6. Spatial distribution of the joint conditional probability of extreme soil moisture deficit under extreme development

429 scenarios. (a)-(i) represent the joint conditional probabilities of LAI, SIFGpp, SPEL Pre, Ep, VPD, Temp, Rad, and WS with
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430 SMsurf, respectively, and (j)-(r) represent the joint conditional probabilities of LAI, SIFGpp, SPEI, Pre, Ep, VPD, Temp, Rad,
431 and WS with SMroot, respectively.
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434 Figure. 7. The sensitivity of (1) SMsurf and (2) SMroot across various climatic zones under (a) Extreme, (b) Severe, and (c)

435 Moderate development scenarios.

436 4. Discussion

437 4.1 Global Changes Jointly Impact SM

438 The hotspot regions of SM variation all exhibited fluctuating trends. However, a closer examination revealed that the

439 fluctuation periods and frequencies of SM differed across regions (Figure. 1). For instance, Central and Eastern Europe, as

21
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440 well as Central East Asia, both showed an accelerating drying trend during the growing season, likely due to increased water
441 consumption by vegetation resulting from climate warming. Different regions, due to varying land use and conservation
442 measures, also displayed distinct temporal evolution patterns. For example, in East Asia, the implementation of the Three-
443 North Shelterbelt Program significantly enhanced the water conservation capacity of the root zone(Xu et al., 2023). In contrast,
444 in Central and Eastern Europe, ongoing grassland shrinkage and simultaneous forest expansion led to an upward trend in SM
445 depletion. In the southeastern region of the Great Artesian Basin, an increasing trend in SM was observed, likely due to the
446 excessively high groundwater salinity in the basin, which precludes its direct use for irrigation. Consequently, artificial
447 irrigation has replenished the consumption of SM.

448 Our study indicated that vegetation greening is one of the key factors contributing to the increase in global SMsurf, a
449 viewpoint supported by related research. On the one hand, vegetation greening leads to an increase in vegetation cover,
450  resulting in reduced soil evaporation (Li et al., 2019). Furthermore, vegetation greening results in the formation of a thicker
451 litter layer, more extensive root systems, and increased organic matter, which aid in the formation of good soil aggregates,
452 thereby enhancing the soil's water retention capacity (Yang et al., 2016; Yang et al., 2017; Zhang et al., 2019b; Adams et al.,
453 1991). Simultaneously, we observed that vegetation greening led to a decrease in global SMroot, particularly in Tropical,
454 possibly due to the dense vegetation characteristic of this climatic zone. Vegetation in Tropical rainforest areas is tall, with
455 well-developed root systems anchored deep in the soil, leading to higher consumption of SMroot. Similarly, the vegetation
456 index SIFGpp slightly decreased global SM due to increased productivity consuming more soil water. However, in the
457 Temperate and Tropical regions, SIFGpp increased SMroot. This is probably because during high-temperature droughts, plants
458  close leaf stomata to prevent water loss via transpiration; the resulting retained water may reduce vegetation greenness and
459 leaf size (i.e., LAI) but can still maintain stable vegetation productivity (Novick et al., 2016; Oren et al., 1999; Sinclair et al.,
460  2017). In other words, it is possible for SIFGpp to increase without an increase in vegetation transpiration water consumption
461 in some high-temperature or drought-prone areas.

462 Several regional-scale studies have suggested that climate-induced vegetation changes increased evapotranspiration,
463 resulting in drier soils (Deng et al., 2020b; Zeng et al., 2018). Our study found that at a global scale, SM increased concurrently
464 with vegetation greening and enhanced productivity. The results from the PLS-SEM indicated that LAI and SIFGpp typically
465 acted as intermediary variables transmitting the indirect effects of climate factors on SM, thereby demonstrating the viewpoint
466 that the positive or negative impact of vegetation greening on SM largely depended on climatic conditions (Xu et al., 2023).
467 Pre, as the primary water supply for SM, directly influenced its variability. Additionally, Pre was beneficial for vegetation
468 greening and enhanced productivity. The restoration of grasslands and sparse vegetation contributed primarily to vegetation
469 greening. Grassland root systems are shallow with low water absorption capacity, leading to greater retention of Pre in the soil,
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470 further increasing SM (Wang et al., 2021). However, the contribution of Pre to the annual variation of SM was not significant
471 due to the increasing decomposition of terrestrial Pre into evapotranspiration with rising temperatures (Pascolini-Campbell et
472 al,2021).

473 Our study also found that Ep was a significant factor contributing to global soil aridity, particularly pronounced in water-
474  deficient Arid regions. The increase in Ep indicates an enhanced potential for evapotranspiration. In the Arid region where
475 water resources are scarce and vegetation and crops have high water demands, the rise in Ep signifies greater water
476 consumption by vegetation and soil evaporation, further exacerbating the decrease in SM (Condon et al., 2020; Feng et al.,
477 2020). This may underscore the impact of water output on SM (Ge et al., 2020; Isabelle et al., 2020). Luo et al. (2023) indicated
478 that the variations in global SMroot were primarily caused by Temp increases, with similar findings only observed in Tropical.
479 This is attributed to the higher Temp in the Tropical, where climate warming and high Temp lead to increased evaporation
480 demand and atmospheric dryness (Cheng and Huang, 2016; Deng et al., 2020a; Fang et al., 2022). VPD played a dominant
481 role in the changes in local SM, but its positive and negative contributions offset each other at a global scale. We found a more
482 significant impact of VPD on SM reduction in regions with high VPD values globally, particularly in the Arid and Temperate
483 regions, due to higher VPD leading to increased land evapotranspiration, further accelerating SM depletion (Luo et al., 2023),
484 consistent with the conclusions of Qing et al. (2023).We also found that WS played a dominant role in the changes of SM in
485 high latitude regions in the Northern Hemisphere, primarily resulting in SM reduction. This was further validated through
486 PLS-SEM, where higher WS accelerated the rate of water evaporation from both the soil (direct effect) and vegetation surfaces
487 (indirect effect) into the atmosphere, consequently exacerbating SM loss (Tang and Tang, 2021; Shi et al., 2022; Roderick et
488 al., 2007; Zhang et al., 2007).

489 Global atmospheric circulation can impact regional water cycles (Allen and Ingram, 2002). Therefore, this study
490 examined the teleconnection relationship between global environmental factors and SM through wavelet coherence analysis
491 (Figure. S17 and Figure. S18). he cone-shaped thin lines in the Figureures denoted the effective spectral region, with thick
492 lines within the effective area representing the 95% confidence interval of significant signals; arrows indicate phase differences,
493 leftward implying a negative correlation between two sequences, while rightward indicating a positive correlation. All four
494 global environmental factors exhibited significant cycles of 8-16 months at both global and climatic zones scales. Additionally,
495 NAO, PDO, and AO showed multiple significant cycles of 4-8 months in Polar, Boreal, and Arid. In the Tropical, NAO and
496 PDO were negatively or approximately negatively correlated with SM, while in other climatic zones, they demonstrated
497 positive or nearly positive correlations. The high-energy areas in the Arid and Polar regions were relatively scattered, with
498  NAO exerting the most significant impact on SM and ENSO showing the least influence. In the Boreal, Temperate, and
499 Tropical regions, the high-energy zones were more continuous, with resonance periods concentrated around 2001-2008, 2010-
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500 2018, and 2019-2020, with only 2-3 years of insignificant correlation. Overall, the correlation between ENSO and SM was
501 relatively weak, and the NAO and PDO had the greatest influence on SM. Meanwhile, it is important to note that global
502 environmental factors mostly indirectly affect hydrological processes by disturbing regional climates and vegetation (Li et al.,

503 2021b; Su et al., 2019; Huang et al., 2013; Yang et al., 2021).
504 4.2 High-risk factors for SM loss

505 For the first time, we calculated the probability of SM loss under different stress scenarios. The results indicated that Pre
506 and SPEI had the highest probabilities of causing SM loss. In all climatic zones, precipitation deficit was consistently the
507 highest risk factor for SM depletion. As the primary source of SM, Pre plays a crucial role in maintaining the dynamic balance
508 of SM (Chen et al., 2019; Maina et al., 2022). Insufficient precipitation disrupts this balance, leading to soil drying and
509 adversely affecting both vegetation and SM (Lesk et al., 2021). In arid regions, the probability of vegetation-induced SM loss
510 was second only to Pre, and, apart from arid zones, the SM deficit probabilities in other climatic regions were also significantly
511 influenced by SPEI.

512 However, why does Ep contribute the most to SM deficit, while Pre and SPEI cause the highest probability of SM loss?
513 This may seem confusing. We believe the results are not contradictory. The numerical simulations based on RF quantify the
514 average predictive contribution of variables to SM, reflecting the dominant role of precipitation deficits and SPEI in the overall
515 data. On the other hand, the Copula method, through joint probability distributions, reveals the extreme dependence
516  relationships between variables, indicating that under extreme conditions, such as drought, the synergistic effect of
517 precipitation deficit and SPEI significantly amplifies the conditional probability of SM loss. Machine learning focuses on the
518 "importance of variables under typical scenarios," while Copula emphasizes the "risk coupling under extreme conditions." For
519 example, SPEI may be weakened in contribution within machine learning models due to its inclusion of precipitation data, but
520 the Copula method captures its tail dependence with precipitation during droughts, explaining the extreme risk triggered by
521 their combined effects. Therefore, these two approaches, from the perspectives of predictive modeling and risk probability,

522 complement each other and jointly help us understand the evolving patterns of SM.
523 4.3. Implications for Sustainable Water Resource Management

524 SM ranks among crucial indicators for agricultural drought. It has a direct impact on soil physical and chemical
525 characteristics as well as vegetation development, thereby exerting a substantial influence on global food production (Liu and
526 Yang, 2023). Liu et al. (2023) has found a downward trend from 1980 to 2000, followed by a gradual increase after 2000. The
527 serious consequences of soil drought have been recognized, leading to the implementation of multiple tree - planting initiatives

528 aimed at averting land deterioration and desert encroachment, such as the Great Green Wall in the Sahara and Sahel regions
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529 (Goftner et al., 2019), the Indian banyan hedge (Mladenova et al., 2019), and the Three-North Shelterbelt Program (Qiu et al.,
530 2017), which have substantially transformed the vegetation conFigureurations in relevant semi - arid or arid zones, and in
531 doing so, accomplished the preservation of water resources. Additionally, beneficial climate shifts from arid to humid can
532 promote vegetation proliferation, thereby serving the goal of safeguarding SM, but the reduction in SM triggered by the
533 expansion of vegetation resulting from warming might give rise to severe drought (Qiu et al., 2021; Zhang et al., 2021). In
534 other words, despite the continuous increase in SM since 2000, many regions still harbor potential ecological drought risks
535 within the trends of climate change and greening (Holl and Brancalion, 2020; Liu et al., 2020a). In these areas, the cultivation
536 of drought-resistant vegetation indeed plays an important role in soil and water conservation and sand fixation. However,
537 considering the possible scarcity of water resources in these regions, a careful and strict assessment of the water requirements
538 of vegetation and planting density/structure is needed before implementation to promote ecological sustainable development

539 (Strassburg et al., 2020; Qiu et al., 2021).
540 4.4. Limitations, Uncertainties, and Prospects

541 While our study attempted to reveal the reasons for SM variability using a more comprehensive set of factors and analyzed
542 the influencing pathways, thus filling the knowledge gap on long-term SM at different depths globally, there were still some
543 limitations and uncertainties. Firstly, factors closely related to SM dynamics such as atmospheric circulation (Liang et al.,
544 2023), snowmelt (Bales et al., 2011), and water diversion projects (Liu and Zheng, 2002) may require further exploration.
545 However, quantifying the impact of some of these factors on SM could prove challenging. Additionally, the response
546 mechanisms of regional agricultural irrigation and groundwater extraction to SM need further investigation (Zhang et al.,
547 2019a). Finally, this study calculated the probability of SM deficit by considering only the individual effects of specific factors
548 under particular scenarios, without accounting for the synergistic and compound impacts of factors such as temperature and
549 precipitation on SM. Therefore, further analysis of the probability of SM deficit using high-dimensional copula could be a

550  potential direction for future research.

551 5. Conclusion

552 This study analyzed the spatiotemporal evolution characteristics of global SMsurf and SMroot from 2001 to 2021. By
553 employing a comprehensive set of factors, the study aimed to reveal the contribution and pathways (direct and indirect) of
554 vegetation characteristics, climate factors, and drought indices to SM variability. Furthermore, it ultimately revealing the
555 probability of SM deficit under different stress scenarios.

556 (1) The SM variation trends exhibited a significant regional convergence and spatial differentiation pattern.
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557 (2) The increase in surface and root-zone SM globally can be attributed to vegetation greening and precipitation,
558 respectively. And Atmospheric water demand (Ep) was identified as the primary cause of global SM aridity.

559 (3) Vegetation typically acted as an intermediate variable transmitting the indirect effects of climate factors and global
560 environmental factors on SM.

561 (4) Precipitation, the standardized precipitation-evapotranspiration index, and vegetation dynamics were the primary
562 factors driving the highest probability of SM deficit.

563 The research findings are expected to provide decision-making support for global sustainable water resource management
564  under climate change conditions.
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