
We would like to thank the reviewers for their time, constructive and helpful 

comments and suggestions.  Below, we have replied to each review and revised the 

draft accordingly. We have listed out the reviewer comments in blue italic and the 

replies in black.   

 

RC1:  

This study presents a robust local-scale inversion of agricultural ammonia emissions on 

the island of Schiermonnikoog in the Netherlands. The authors combine a high-

resolution chemistry transport model (LOTOS-EUROS) with a Bayesian inversion 

framework, incorporating observational constraints from the MAN passive sampling 

network and synthetic LML-like measurements. The work is timely and relevant, especially 

considering the national nitrogen crisis and the need for fine-scale emission estimates to 

support policy and conservation efforts. 

The manuscript is well structured and technically sound. It makes contribution by 

highlighting the limitations of existing monitoring networks and proposing practical 

strategies for observational enhancement. However, several aspects, including the 

inversion method, format of the manuscript, interpretation of the inversion results, 

treatment of uncertainties, and clarity of figures, require major revision before the 

manuscript can be considered for publication in ACP. 

 

Major Comments、 

1. Manuscript Structure: The current organization resembles a technical report 

rather than a research paper, especially the introduction section, and please 

consolidate the abstract into a single continuous paragraph. 

We have revised the abstract into a single continuous paragraph: 

Quantifying real-world emission reductions is a core goal of atmospheric 

inversion methods, yet direct validation against known events remains rare, 

especially for reactive species like ammonia. In this study, we have applied 

local-scale Bayesian inversions using ground-based measurements and the 

LOTOS-EUROS air quality model, with high-resolution emission inventories as 

prior input, not to explore a theoretical scenario, but to evaluate a 

documented emission reduction. On the island of Schiermonnikoog in the 

Netherlands, where GVE (grazing livestock units) decreased from 639 to 541, 

with a particularly notable reduction in dairy cattle, ammonia emissions are 

expected a 23% reduction between 2019 and 2022. Our inversion captured a 

similar trend, estimating a 51% decrease, which may be overestimated, 



largely attributed to uncertainties in the 2019 posterior emissions.  The 

posterior for 2022 shows consistency with the validation and indicates a 27\% 

reduction compared with the prior emissions of 2019. The associated 

uncertainty, derived from the posterior error covariance, highlights both the 

potential of the method and its limitations for policy verification. Moreover, 

we developed a method to assess the usefulness of individual observations 

and propose that adding a single high-quality continuous measurement in a 

strategically chosen location can significantly enhance the inversion 

performance. This strengthens the observational constraint and enhances 

the system’s ability to resolve temporal variations in emissions. 

2. Inversion Methodology (Lines 185-195): Clarify how Jacobian matrix KN= ∂y/∂x is 

approximated within the iterative Levenberg-Marquardt framework for solving Eq. 

(3). Given its computational intensity, explicitly state which finite differences 

methods are used to compute the Jacobian. Additionally, conclusion's claim that 

the method "assumes a linear relationship between emissions and 

concentrations" as this contradicts the nonlinearity inherently addressed through 

iterative K-updating. 

We have added the definition explicitly at line 182: KN is the Jacobian matrix 

at the Nth iteration, which updates accordingly through KN=Klinear diag(xlinear 

N)., following Eq. (4).   

Although the Jacobian matrix K updates every iteration step, the derivative is 

based on the linear relation between y and xlinear, so that the forward model 

could be approximated to Klinear xlinear 

3. The inversion indicates a 51% reduction in ammonia emissions from 2019 to 

2022, compared to a 23% reduction based on activity data (GVE and livestock). 

While the authors briefly acknowledge that the inversion might overestimate the 

reduction, the manuscript lacks a detailed discussion of possible reasons behind 

this discrepancy. Recommendation: (1)Test the inversion’s sensitivity to prior 

emission uncertainties (e.g., varying the prior error covariance β ). (2) Discuss 

confounding factors (e.g., unaccounted meteorological influences, changes in 

farming practices beyond livestock numbers, or biases in the "Other" category). 

We thank the reviewer for this valuable comment. We conducted the 

validation and revised the manuscript accordingly (Sect. 3.3, line 356-365): 

The inversion results suggest a 51% reduction in ammonia emissions on 

Schiermonnikoog between 2019 and 2022. However, this figure may be an 

overestimate. To address the concern, we performed a leave-one-source-out 

cross-validation (LOSOCV). This approach is analogous to leave-one-out 

cross-validation (LOOCV), but instead of omitting one measurement site, we 

iteratively exclude one state vector element that represents external 



influences. In each case, we subtract the correlated contribution and then re-

conduct the inversion with the remaining elements. The posterior estimate 

for 2019 exceeded the range of the validation, although the credible interval 

still encompasses the validated values. This suggests that the apparent 

overestimation of the emission reduction originates primarily from an 

overestimation of the 2019 emissions rather than an underestimation in 

2022. In contrast, the posterior for 2022 shows consistency with the 

validation and indicates a 27% reduction compared with the prior emissions 

of 2019. Thus, the discrepancy between the inversion (51% reduction) and 

the activity data (23% reduction) can largely be attributed to uncertainties in 

the 2019 posterior emissions. 

 
Figure 1 Yearly emission inversion, updated Fig. 8a in the manuscript 

For meteorology influences, we validate the meteorology with KNMI 

measurement sites (see also our response to reviewer 2) and revised the 

manuscript (Sect. 3.1, line 255-260):  

To evaluate the representativeness of the meteorological forcing, model 

results were compared with observations from nearby KNMI stations on a 

daily basis (map shown in Fig. S1), including one located close to the island. 

The agreement was very good, with correlations for wind components, 

temperature, and pressure consistently above 0.96 and low RMSE values 

(Table S2, Fig. S2). Precipitation was also well reproduced, with correlations 

around 0.8. These results indicate that the meteorological fields are reliable 

and representative for the study area, supporting the robustness of the 

subsequent analysis. 

For the farming practices, the farmers started to use more mineral fertilizer 

because they wanted to boost the milk production of the remaining animals, 

since the milk price was good. The other factor was a more complex one: the 



number of animals decreased, but the surface area of the stable remained 

the same. Therefore, the excretion of the cows was less but still distributed 

over the same surface. This led to a lower emission reduction in the report.  

 

4. Sections 3.1.1 and 3.1.2: The model consistently underestimates peak 

concentrations near sources (e.g., Meteo Groenglop), attributed to coarse 

resolution (1.7 km × 2.15 km). However, Schiermonnikoog’s emissions are 

concentrated in a 275-ha polder, likely smaller than the model grid. 

Recommendation: Conduct a sub-grid sensitivity test (e.g., nesting a higher-

resolution domain over the polder) to assess resolution impacts. 

We thank the reviewer for the suggestion.  

We have conducted additional sub-grid simulations at a spatial resolution of 

500 m * 500 m to test the sensitivity to model resolution. The results, as 

showinhowever, show only limited improvement: the Pearson correlation 

and regression slope between observations and model output increase 

slightly, but the scatter plot indicates that the overall performance remains 

similar. This is mainly due to the emission inventory, which is available at a 

coarser resolution than 500 m * 500 m and thus limits the benefit of using 

finer model grids. We therefore retained the results from the coarser grid 

simulations (with bi-cubic interpolation for grid extraction) in the manuscript, 

as they remain representative for the current setup. A description of this 

additional sensitivity test has been added to the manuscript (line 300-305):  

To assess the potential impact of spatial resolution, we conducted additional 

simulations using a nested domain with 500 m * 500 m resolution over 

Schiermonnikoog (see the supplement). The results indicate only limited 

improvement compared to the coarser-resolution setup: the Pearson 

correlation and regression slope with observations increased slightly, but 

overall scatter remained similar. This limited gain is mainly due to the coarser 

resolution of the emission inventory, which constrains the benefit of refining 

the model grid. Therefore, for consistency, we present the results from the 

coarser-resolution simulations (with bi-cubic interpolation) in the main 

analysis. 



 
Figure 2  Monthly emission of simulation for 2022 with the prior 

 
Figure 3  Monthly surface concentration of simulation for 2022 with the prior 



 
Figure 4  The comparison of model and observation in monthly average of 2022 with the prior emission. 

5. Monthly Inversion Performance (Section 3.3): Monthly inversions fail due to high 

MAN uncertainties and sparse data. The proposed solution (adding one LML-like 

site) improves results (Fig. 10) but lacks validation against independent data. 

We strongly agree with the validation against independent data. But this is 

also a challenge for our study: the only data available on the island is the 

monthly ammonia measurement network MAN. We therefore used a 

theoretical excersise. The validation should therefore be done at a site where 

such measurements are available, but this is beyond the scope of our 

manuscript.  

Minor Comments 

1. Section 2.4.1: Define how "external influences" (Groningen, Friesland, etc.) were 

selected for the state vector. Why not include Denmark? 

We have clarified the selection method for “external influences” in the revised 

manuscript (line 197). Specifically, any labeled region contributing more than 

10% to the total concentration in the labeling step was included explicitly in 

the state vector. 

While “Denmark” was added in the source apportionment analysis, its 

contribution remained low and below the threshold. In the inversion setup, 

Denmark was therefore grouped into the “Other” category, which includes all 

contributing regions not listed individually. 



2. Section 2.2: Briefly justify the use of CAMS-REG v5.1 (2019) for both 2019 and 

2022 prior emissions despite known livestock reductions. 

Although livestock numbers on the island decreased between 2019 and 2022 

(as indicated by the KringloopWijzer report), the official emission inventory 

for 2022 was not yet available at the start of this study. Since air quality 

models like LOTOS-EUROS rely on emission inventories as input, and such 

inventories are typically released with a multi-year delay and often lack 

annual continuity, we used the latest available dataset, CAMS-REG v5.1 

(2019), as a consistent prior for both years. The inversion method is then 

used to estimate deviations from this prior, effectively capturing emission 

changes (such as livestock reductions) even when there is no updated 

inventory reflecting them. 

3. 8b: Explain why monthly posterior uncertainties are asymmetric (e.g., wider in 

spring). 

We added the elaboration at Sect. 3.3 (line 366-379): 

We also attempted to use the MAN measurements for monthly emission 

inversion (see Fig 8b). However, the resulting posterior estimates exhibited 

high emission values during spring and notably low values in autumn. This 

asymmetry is caused by strong seasonal variability in both ammonia 

emissions and meteorological conditions. In spring, ammonia emissions 

increase and become more variable due to fertilizer application. 

Meteorological factors such as turbulence and boundary layer dynamics also 

contribute to greater atmospheric variability. Particularly, the posterior value 

of February exhibited more than four times the prior value, although the 

result falls within the leave-one-out cross-validation bounds (see Fig. S7). This 

increase likely reflects the onset of manure application season in February, 

when agricultural ammonia emissions typically peak due to fertilizer 

spreading on farmland. While both February and April fall within the spring 

period, in 2022, February experienced much stronger wind speeds (Fig. S5b), 

enhancing transport and dispersion. In contrast, April had lower wind speeds, 

which reduced the spread of ammonia and increased sensitivity to local 

sources. Additionally, in months like April, August, and September, prevailing 

north winds placed most observation sites on the leeward side of the source, 

reducing their sensitivity to local emissions and thus weakening the inversion 

constraint. In other words, the low results from the inversion may not be due 

to actually low emissions but rather to the measurements of those months 

that failed to capture and represent local emissions adequately. 

 

 



4. 9b: Include the location of the proposed Kooiduinen site on the map. 

We have updated the propsed site, which is near Waddenhaven 

Schiermonnikoog (53.472226° N, 6.167259° E) instead of Kooiduinen, and 

reanalyzed the results (Sect. 3.4, line 417-427). See also our response to 

reviewer 2.  

  

  



RC2:  

Review of “Local-Scale Inversion of Agricultural Ammonia Emissions: A Case Study on 

Schiermonnikoog, the Netherlands” by Li et al. 

Li et al. present an inversion for ammonia emissions in the Netherlands.  They use the 

LOTOS-EUROS model in a flux inversion.  They use a network of surface stations 

measuring ammonia with a focus on improving the representation of agricultural 

emissions.  They include both real and synthetic inversions.  It is clear that the authors 

have done a lot of work.  My may comments revolve around the overall framing of the 

problem and the analysis of the results.  Only 6% of the ammonia is local to the island 

they are studying.  Therefore, most of what they measure is transported from distant 

regions.  It’s not clear to me that an inversion using 6 sites on the island is really 

necessary since little of what they measure comes from the island.  It seems like we are 

probably learning more about the upwind sources, but the discussion focuses on 

Schiermonnikoog. 

This ties into my later comments (below) about their recommendations.  The authors 

recommend an additional measurement site on the island.  It feels like additional 

measurements in the upwind region would likely provide more value.  In their 

recommendation for the additional site they seem to disregard their own analysis (Fig 

9b).  They reject three potential sites suggested by their analysis.  It does not seem like the 

conclusions do not follow from their analysis. 

Overall, I think the authors have done a lot of good work.  I think the authors should 

reconsider the conclusions they draw and ensure they are supported by their results.  I 

would recommend major revisions for the manuscript. 

We thank the reviewer for this constructive comment. We agree that the observed 

ammonia on Schiermonnikoog is influenced by upwind sources outside the island, 

and have revised the framing of the study to reflect this more clearly. Our aim was 

not only to study local emissions, but also to test the sensitivity of a local-scale 

inversion to known emission reductions under real conditions. 

We have updated the Introduction and Discussion to emphasize the broader 

objective: assessing whether a reduction in local emissions can be detected despite 

dominant long-range transport. 

Regarding the measurement site recommendation, we have clarified our rationale 

and addressed the discrepancy with Fig. 9b. While several high-sensitivity sites were 

identified, our recommendation focused on improving the final inversion on the 

island for validation purposes. We now explicitly acknowledge the value of upwind 

measurements and include this in our revised discussion.  



Furthermore, we have updated the monthly breakdown for the source contributions 

(Figs. a and b). Earlier we only included the agricultural contributions, but now we 

combine the agricultural and other sector emissions in the figure. The original figure 

could be found in the supplement. 

 

Comments 

1) Is this the right tool?  

The authors mention in Section 3.1.2 and show in Figure 6 that emissions from 

Schiemonnikoog only contribute 6% of observed concentrations.  The study is motivated 

by high spatio-temporal variability in ammonia emissions, yet that does not seem to be 

the case here.  This site is dominated by transport.  It seems like we would learn more 

about ammonia emissions from additional measurements in the regions with much 

larger emissions. 

I think the authors can address this through some additional discussion.  I.e., justifying 

why these measurements are still valuable and why this framework is needed to address 

their questions. 

Thank you for your comment. It could be more relevant to do the same excesise in 

regions with larger emissions. However, the advantage of Schiermonnikoog was its 

isolation with some high local emissions which make it useful to study.  

We have added this in the Discussion as suggested by the reviewer (Sect. 4.2, line 

474-477): 

The source apportionment analysis revealed that ammonia concentrations on 

Schiermonnikoog are dominated by long-range transport, which makes emission 

reductions more difficult to detect due to the relatively high uncertainty in MAN 

measurements. However, the inversion results provide not only the emission 

changes but also an improved estimate of the transport contribution. While the 

model indicated that approximately 50\% of the ammonia originated from 

Germany, the posterior inversion suggests a lower contribution of about 30\%. 

Consequently, the local contribution is likely larger than indicated by the original 

source apportionment.  

 2) Optimizing the network 

The authors set up a nice framework to identify the most useful site on the island to 

improve the inversion.  However they seemingly disregard all of the information from 

that analysis.  It was unclear to me why they go through the effort if they are going to 

throw out the three most promising sites.  Their text is copied below: 



“Although Fig. 9(b) indicates that the most informative location would be directly at the 

island’s main emission source, near the Schiermonnikoog-Meteo Groenglop site, this 

location is not ideal in practice. As discussed in Sect. 3.1.1, this site shows the least 

agreement between model and observation, likely due to unresolved spatial 

heterogeneity between reality and model. Moreover, measurement close to the source 

can lead to a large bias in regional misrepresentation of ammonia concentration (Schulte 

et al., 2022). The next model-suggested site is Schiermonnikoog-Om de West, at the 

western edge of the island. However, this site consistently records the lowest ammonia 

concentrations and is strongly influenced by sea winds, making it less suitable for 

detecting local agricultural emissions. Another candidate is the Schiermonnikoog-

Paardenwei site, located in the north. While the model indicates it as a potentially useful 

location, this site is surrounded by dense vegetation, which in reality limits its sensitivity 

to nearby agricultural sources (see Sect. 3.1.1)” 

I understand that there are practical considerations that need to be taken into account, 

but the conclusions don’t seem to follow from the analysis. 

A minor point regarding Figure 9a and the associated discussion.  The observation error 

will also represent the errors due to the model.  I.e., it is more aptly thought of as the 

“model-data mismatch”.  I mention this because I wonder what the authors would 

consider the model error for LOTOS-EUROS. 

Improving the instrument precision will eventually be limited by the ability of the model 

to represent the measurements.  Therefore, part of the parameter space in Figure 9a will 

likely be limited by the model error.  This is something that is discussed in Turner et al. 

(2016; doi:10.5194/acp-16-13465-2016) for a pseudo-data study of urban CO2 emissions. 

We thank the reviewer for this constructive suggestion. We agree that promising 

sites should be considered within our study regardless of practical constraints. 

Therefore, we do not restrict ourselves to the existing MAN sites and instead 

propose a new location near Waddenhaven, Schiermonnikoog (53.472226° N, 

6.167259° E). We also updated the manuscript (Sect 3.4, line 417-432):  

We then propose adding an LML-like measurement site near Waddenhaven 

Schiermonnikoog(53.472226° N, 6.167259° E), as shown in Fig. 9(b). The most 

informative location would be directly at the island’s main emission source. 

However, measurement close to the source can lead to a large bias in regional 

misrepresentation of ammonia concentration  (Schulte et al., 2022). Waddenhaven 

offers a compromise: it is near the source but lies outside Banckspolder, a 

reclaimed polder valued for farming. In addition, all existing MAN sites are situated 

to the north of the source, which limits their effectiveness under northerly winds. By 

contrast, Waddenhaven lies within the footprint of the local emission and is typically 

downwind of the main source, making it the most suitable candidate for improving 

inversion performance. 



Figure 10 illustrates the effect of incorporating a single high-quality, LML-like 

observation on monthly ammonia emission inversion for 2022. The synthetic 

observational error for the LML-like site is set at 3.5 %, based on values reported by 

by Dammers(2017) and Blank (2001). Compared to the current MAN-only network, 

the addition of one strategically placed LML-like measurement significantly reduces 

uncertainty in most months. Posterior estimates not only align closely with target 

values but also exhibit a narrower percentile spread across most months, indicating 

improved stability. Overall, this result demonstrates that even a single, well-placed, 

high-precision observation can substantially improve inversion performance, 

enhancing the system's ability to track temporal variability and increase DFS. With 

high-frequency, low-error measurements, it becomes feasible to detect near-real-

time emission changes. 

 

Figure 5 Where to put the site? Updated also in the draft, Fig. 9b 

 

Figure 6  The posterior emission after adding one LML-like measurement, updated also in the draft Fig. 10b 

 

We also acknowledge the reviewer’s point that a denser monitoring network may be 

limited by the ceiling of the model itself. We have added a discussion of this in the 

manuscript (Sect. 3.4, line 401-405):  



Note that for denser monitoring networks (e.g., the bottom-right corner of Fig. 9a), 

the achievable improvement may eventually be limited by the ceiling of the model 

itself. In this case, part of the parameter space could be biased by model error, as 

also discussed in Turner et. Al (2016). Nevertheless, for the current monitoring 

network, as well as for moderate improvements in measurement precision, the 

analysis still provides valuable insights. 

3) Description of the inversion 

There are some key details in the inversion that seem to be lacking.  For example, it was 

not clear from the methods section what the temporal resolution of the inversion 

was.  Are the authors solving for 5 parameters (single scaling factors for their 

regions)?  From Section 3.2, it seems like the authors have two setups: an annual 

inversion and a monthly inversion.  I am not entirely sure though. 

The inversion is conducted for both yearly and monthly ammonia emissions. We 

have added the resolution at line 151. And indeed we are optimizing 5 parameters, 

1 for emission of the island and another 4 to fix the boundary conditions. We added 

this to the manuscript (line 200).  

As an aside, it would be helpful to indicate where some of their different regions are in 

the Netherlands.  I would suggest adding that to Figure 1 or Figure 2.  I am not familiar 

with the geography of the Netherlands and do not know the spatial extent of Groningen, 

Friesland, etc.  This would be very helpful for understanding the actual setup of their 

inversion and interpreting the results. 

We have added Fig. 2(b) to show the Dutch provinces and the region for inversion:  

 

Figure 7  Dutch provinces 



Boundaries: It was not clear to me what the domain of the inversion was.  What domain 

is being simulated and where are the boundaries.  How are the boundary conditions 

specified? 

The domain of inversion is shown in Fig 2(b). The nested domains employed for 

LOTOS-EUROS simulation are Domains 1, 2, and 3 displayed in Fig. 2(a). 

We define the external fluences based on its relative contribution. And the external 

fluences then are used for fixing the boundary conditions of the inversion (line 197-

205).  

Jacobian: How was the the Jacobian constructed?  Do you recompute K at each iteration 

in the LM method?  Is K being constructed from perturbations?  If so, is this a one-sided, 

two-sided, how big is the perturbation, etc. 

We have added the definition at line 182:  

Klinear  is the Jacobian in linear space, which is constructed with an one-sided 

perturbation of 40%. Notably, for monthly emission inversions, the Jacobian is 

defined as a block diagonal matrix so that each month is considered independent. 

Prior error covariance matrix: the description of Sa seems to be missing.  How large are 

the uncertainties in Sa?  Are there off-diagonal error covariances in the monthly 

inversion?  The authors mention that the monthly inversion performs poorly, but this 

strikes me as odd because a monthly inversion with temporal error correlations should 

give something similar. 

We defined the prior error covariance matrix Sa at Sect. 2.4.1. The matrix is 

constructed diagonally with terms defined as (ln β)², between lines 207 and 211. 

There are no off-diagonal terms in the prior error covariance. Also we constructed 

the Jacobian matrix as block diagonal so that each month is considered 

independent, reflecting ammonia’s short lifetime and high meteorological 

sensitivity. Unlike long-lived greenhouse gases, ammonia emissions show limited 

month-to-month correlation due to rapid atmospheric processing and highly 

variable seasonal source patterns, which is the reason that the uncertainty of 

monthly ammonia emissions is set to a factor of 4 and yearly to 2.  

Observational error covariance matrix: I appreciate that the authors have tried to 

develop an So matrix that they think is a better representation of their network.  However, 

it seems that they neglect off-diagonal terms in So.  This may be fine for the monthly 

inversion, but I think it could be problematic for the annual inversion.  The authors show 

seasonal biases in the simulation of ammonia.  This seasonal bias will manifest itself as a 

correlated error in the annual inversion because the model has errors in the seasonality 

(So is the model-data mismatch, and there is an error in the model as mentioned in the 



previous comment).  I think a justification for neglecting off-diagonal errors is needed or 

a test using off-diagonal errors. 

We thank the reviewer for pointing this out. The observational error covariance 

matrix S_o in our study was constructed from two components: residual errors  and 

documented measurement errors.  

The residual errors were used to construct the main part of S_o. In our framework 

these residual errors represent the random error, which we attribute primarily to 

uncertainties in the emissions, given that the ECMWF meteorology and LOTOS-

EUROS model have been extensively validated. The extended MAN error was 

applied due to its documented high uncertainties. 

According to Lolkema et al. (2015) and Noordijk et al. (2020), the measurement 

uncertainty in the MAN network mainly consists of (i) random errors of the passive 

sampler, (ii) calibration method errors, and (iii) calibration standard errors. The first 

two are random and therefore uncorrelated across sites, while the third is a 

systematic component (~8%). Compared to the magnitude of the random and 

residual errors, this systematic part is small, and thus its contribution to off-diagonal 

terms is limited. 

To further test potential spatial correlations, we examined pairs of stations located 

within the same grid cell (showing below). The comparison shows that the 

documented measurement errors are larger than the representation error between 

nearby stations. This supports the assumption that correlations between stations 

(off-diagonal terms) are of secondary importance. Moreover, we applied bicubic 

interpolation when sampling model values at the station locations to reduce 

representativity errors. 

Based on this analysis we consider the neglect of off-diagonal terms in S_o to be a 

reasonable approximation for our inversion framework. We agree that for long-

term (annual) inversions, correlated errors from seasonal biases are a potential 

issue, and we will clarify this limitation in the manuscript (Sect. 4.2, line 483-487): 

In this study we neglected off-diagonal terms in the observational error covariance 

matrix, effectively assuming errors are uncorrelated between sites. This assumption 

is supported by the dominance of random measurement errors and by the 

relatively small representation errors observed between nearby stations. 

Nevertheless, neglecting correlations means that potential systematic errors, such 

as seasonal biases in the model, are not explicitly accounted for. While this 

simplification is unlikely to strongly affect monthly inversions, correlated errors 

could become more relevant for annual-scale inversions. 



 

Figure 8 Stations within the same grid cell, 2019 

 

Figure 9  Stations  within the same grid cell, 2022 

Meteorology: How good is the meteorology for this region?  Getting the PBL height 

correct is likely important.  Is this well-represented at the site?  Models often times have 

difficulty getting coastal areas, is this an issue for your island?  Given the large 

contribution of distant sources, getting the transport correct seems critical.  Assessment 

of the meteorology seems important for this application. 

We agree with the reviewer that PBL height is important and usually an issue in 

coastal regions. However, we currently don’t have local data on the boundary layer 

height as observations are lacking, and secondly we're limited to the datasets that 

are available. Intercomparison with Harmonie or WRF would be interesting but 

outside of the scope of this paper as its not standard meteorology thats coupled to 

LOTOS-EUROS.  

To further evaluate the meteorological representation in our model, we analyzed 

the boundary layer height (BLH) patterns for 2022. The seasonal variability showing 

below, which reflects meteorologically consistent patterns rather than model 

artifacts. The elevated February BLH corresponds to multiple cyclonic systems that 



transited the region during this period, enhancing vertical mixing through 

mechanical turbulence and convective processes. Conversely, the lower summer 

values (June and August) are consistent with our island's position between Arctic 

cyclonic systems and European continental anticyclones, where subsiding motion 

suppresses boundary layer development. The March minimum aligns with high-

pressure dominance typical of early spring conditions. This seasonal BLH variability 

reflects the maritime influence and limited continental thermal contrasts 

characteristic of island locations, demonstrating that our model appropriately 

captures the local meteorological regime. 

 

Figure 10  Contour maps of boudary layer height (BLH) in 2022 

While direct BLH observations at our site are not available for validation, the 

model's skill in representing surface meteorological conditions provides confidence 

in the overall meteorological framework. We validate the meteorology with KNMI 

measurement sites available within the inversion domain: Leeuwarden, 



Lauwersoog, Eelde and Nieuw Beerta, of which map is shown below and in the 

supplement:  

 

 

Figure 11 Meteorological measurement sites available for the validation (cyan circles) 

The comparision is showing below, which is also added to the supplement. Note 

that the abbrevations correspond to the site names: Leeuwarden, Lauwersoog, 

Eelde, and Nieuw Beerta. And the measurement of pressure is not available at 

Lauwersoog and Nieuw Beerta.  

The agreement was very good, with correlations for wind components, 

temperature, and pressure consistently above 0.96 and low RMSE values. 

Precipitation was also well reproduced, with correlations around 0.8. These results 

indicate that the meteorological fields are reliable and representative for the study 

area, supporting the robustness of the subsequent analysis.  

Table 1 The statistics between the modeled and the measured meteorological parameters: horizontal components 

of 10m wind (U and V), precipitation, temperature, and pressure, including Pearson’s correlation coefficient (r), 

root-mean-square error (RMSE) 

   LW LS EE NB 

2
0

1
9

 

U(m/s) 
r 0.99 0.98 0.99 0.99 

RMSE 0.53 0.83 0.47 0.58 

V(m/s) 
r 0.98 0.99 0.97 0.97 

RMSE 0.54 0.79 0.63 0.76 

T(K) 
r 1.00 0.99 1.00 1.00 

RMSE 0.59 0.86 0.62 0.62 



R(mm) 
r 0.75 0.83 0.81 0.82 

RMSE 3.34 2.18 2.19 2.06 

P(hPa) 
r 1.00  1.00  

RMSE 1.43  1.81  
2

0
2

2
 

U(m/s) 
r 0.99 0.99 0.99 0.99 

RMSE 0.66 0.86 0.47 0.64 

V(m/s) 
r 0.98 0.98 0.96 0.97 

RMSE 0.58 0.79 0.69 0.71 

T(K) 
r 0.99 0.99 0.99 1.00 
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Figure 12  Horizontal components of 10~m wind (U and V), precipitation, temperature, and pressure obtained 

from simulations and observations, 2019 



 

Figure 13  Horizontal components of 10~m wind (U and V), precipitation, temperature, and pressure obtained 

from simulations and observations, 2022 

4) Inversion evaluation 

They claim the monthly inversion produces “unrealistically high” values in the spring (Line 

358), but how was this assessed?  Evaluation against independent observations or k-fold 

cross validation are two common approaches for evaluating inversions, but it does not 

seem like the authors have done that. 

We have conducted the leave-one-out cross validation (LOOCV). The current result 

falls within the validated bounds, however the value in February exhibited 4 times 

higher comparing the prior, which is much higher as expected.  

We have rephrased the paragraph in the draft (Sect. 3.3, line 370-379):  

Particularly, the posterior value of February exhibited more than four times the 

prior value, although the result falls within the leave-one-out cross-validation 

bounds (see the figure below). This increase likely reflects the onset of manure 

application season in February, when agricultural ammonia emissions typically peak 

due to fertilizer spreading on farmland. While both February and April fall within the 

spring period, in 2022, February experienced much stronger wind speeds (Fig.~S5b), 

enhancing transport and dispersion. In contrast, April had lower wind speeds, which 

reduced the spread of ammonia and increased sensitivity to local sources. 



Additionally, in months like April, August, and September, prevailing north winds 

placed most observation sites on the leeward side of the source, reducing their 

sensitivity to local emissions and thus weakening the inversion constraint. In other 

words, the low results from the inversion may not be due to actually low emissions 

but rather to the measurements of those months that failed to capture and 

represent local emissions adequately. 

 

  

5) Inversion discussion 

The entirety of the discussion of the real inversion is half a page.  It seems odd to spend 

17 pages discussing work and methods to estimate emissions of ammonia and then only 

discuss the results for half a page. 

We have rewritten and re-examined our results. See also our response to reviewer 

1. 

  

Specific comments 

Abstract: Why is it broken into 4 short paragraphs?  The whole abstract is 10 sentences, 

why is it broken into 4 paragraphs?  Standard practice would typically be to have one 

paragraph.  Also a lot of superfluous intro.  Nearly half is intro/background (4/10 

sentences). 



We have revised the abstract: 

Quantifying real-world emission reductions is a core goal of atmospheric inversion 

methods, yet direct validation against known events remains rare, especially for 

reactive species like ammonia. In this study, we have applied local-scale Bayesian 

inversions using ground-based measurements and the LOTOS-EUROS air quality 

model, with high-resolution emission inventories as prior input, not to explore a 

theoretical scenario, but to evaluate a documented emission reduction. On the 

island of Schiermonnikoog in the Netherlands, where GVE (grazing livestock units) 

decreased from 639 to 541, with a particularly notable reduction in dairy cattle, 

ammonia emissions are expected a 23% reduction between 2019 and 2022. Our 

inversion captured a similar trend, estimating a 51% decrease, which may be 

overestimated, largely attributed to uncertainties in the 2019 posterior emissions.  

The posterior for 2022 shows consistency with the validation and indicates a 27\% 

reduction compared with the prior emissions of 2019. The associated uncertainty, 

derived from the posterior error covariance, highlights both the potential of the 

method and its limitations for policy verification. Moreover, we developed a method 

to assess the usefulness of individual observations and propose that adding a single 

high-quality continuous measurement in a strategically chosen location can 

significantly enhance the inversion performance. This strengthens the observational 

constraint and enhances the system’s ability to resolve temporal variations in 

emissions. 

Figure 1: How big is this island?  Some sort of scale would be important 

We have added a figure (Fig. 2b) indicating the Dutch provinces and the size of 

Schiermonnikoog.  

Line 145: How many grid cells?  Maybe add to table 1 

We have added the grid configuration of the finest domain to Table 1 (174 * 160 grid 

cells).  

Line 175: Related, how is x defined?  Is it each pixel, time-dependent, etc?  Ah, see its 

defined on Line 208, would be good to explicitly state in a table somewhere or make sure 

its apparent.  Is it time-dependent or are you assuming temporally constant? 

We have added this definition explicitly at line 160. For the yearly emission 

inversion, the state vector is time-independent; for the monthly emission inversion, 

the state vector is time-dependent with a block diagonal Jacobian.  

Lines 235+: I’m confused why they add to So.  If anything, having off-diagonal 

correlations in So would be more appropriate because the model could easily introduce 

correlated errors due to transport, the PBL, etc 



Following the previous discussion, we elaborate on the reason why we neglect the 

off-diagonal terms and further discuss the possible limitations in the draft (Sect. 4.2, 

line 483-487): 

In this study we neglected off-diagonal terms in the observational error covariance 

matrix, effectively assuming errors are uncorrelated between sites. This assumption 

is supported by the dominance of random measurement errors and by the 

relatively small representation errors observed between nearby stations. 

Nevertheless, neglecting correlations means that potential systematic errors, such 

as seasonal biases in the model, are not explicitly accounted for. While this 

simplification is unlikely to strongly affect monthly inversions, correlated errors 

could become more relevant for annual-scale inversions. 

Table 2 and Figs 4+: are these using the prior?  It’s a bit confusing because you describe 

the inversion and then start talking about the model performance but not clear if its 

prior or posterior.  It would be helpful to clarify that in the figure captions. 

Yes, these are the results using the prior. We have also revised the captions of 

figures (Fig. 4, 5, and 6) and Table 2.  

 


