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Abstract 11 

Short-duration extreme rainfall can cause severe impacts in built environments and flood 12 

mitigation measures require high-resolution rainfall data to be effective. It is a particular 13 

challenge to observe convective storms, which are expected to intensify with climate change. 14 

However, rainfall monitoring networks operated by national meteorological and hydrological 15 

services generally have limited ability to observe rainfall at sub-hourly and sub-kilometer 16 

scales. This paper investigates the capability of second- and third-party rainfall sensors to 17 

observe a highly localized convective storm that hit southwestern Sweden in August 2022. 18 

Specifically, we compared the observations from professional weather stations, C-band radar, 19 

X-band radar, Commercial Microwave Links and Personal Weather Stations to get a full 20 

impression of the sensors’ strengths and weaknesses in the context of convective storms. The 21 

results suggest that second- and third-party networks can contribute important information on 22 

short-duration extreme rainfall to national weather services. The second-party network 23 

assisted in quantifying the magnitude and spatial variability of the event with high accuracy. 24 

The third-party network could contribute to the understanding of the duration and spatial 25 

distribution of the storm, but it underestimated the magnitude compared with the reference 26 

sensors.  27 

1. Introduction 28 

The global trend of urbanization is increasingly exposing people and assets to flood risks, 29 

which particularly affects the urban poor (Winsemius et al., 2018; Petersson et al., 2020; UN-30 

Habitat, 2024). Flood mitigation and disaster preparedness measures require rainfall 31 

measurements on sub-hourly and sub-kilometer scales to be effective from the planning phase 32 

to post-event analysis (Guo, 2006; Marchi et al., 2009; Mailhot and Duchesne, 2010; Fuentes-33 
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Andino et al., 2017; Pulkkinen et al., 2019; Imhoff et al., 2020). However, traditional monitoring 34 

techniques generally have limited ability to accurately observe rainfall at this spatiotemporal 35 

resolution. The most impactful rainfall events in urban areas are typically convective storms, 36 

which can cause heavy rain over small areas and short durations with severe damage as a 37 

consequence (Kaiser et al., 2021; Mobini et al., 2021).  38 

In Sweden, the Swedish Meteorological and Hydrological Institute (SMHI) operates around 39 

600 rain gauges across a landmass of 410,000 km2. Of these, around 130 are automatic 40 

stations recording accumulated rainfall depth every 15 minutes, and the remaining are manual 41 

stations reporting daily amounts. The station network is complemented with 12 C-band 42 

Weather Radars (CWR) across the country with outputs every 5 minutes at 2 km spatial 43 

resolution. While CWR generally is capable of producing a good spatial representation of 44 

precipitation, it has limitations caused by beam overshooting, beam blockage and clutter (van 45 

de Beek et al., 2016; Einfalt et al., 2004). For highly localized convective events, the 46 

spatiotemporal resolution of Sweden’s official gauge network and radar composite is too low 47 

to capture essential rainfall dynamics, such as spatial variability and peak intensity.  48 

One option for national meteorological and hydrological services (NMHS) to access high-49 

resolution rainfall measurements is to reach agreements with other professional entities like 50 

municipal water utilities and universities that maintain their own monitoring networks, so-called 51 

“second-party data” (Garcia-Marti et al., 2023). While these data might be trustworthy for 52 

operational use, their sampling resolution may, just like official data, be insufficient on the 53 

“unresolved spatial scale” in which convective storms occur (Lussana et al., 2023). In light of 54 

this, SMHI has recently gained interest in additional external observations not operated by any 55 

official agency, sometimes referred to as “third-party data”. The new technologies are often 56 

enabled by digitalization and user-generated content on the Internet, which lowers the barriers 57 

and costs associated with data acquisition. While these data can provide higher resolution 58 

observations in space and time, they are often subject to uncertainties and bias due to the lack 59 

of installation guidelines, maintenance protocols and mechanisms to reinforce such standards. 60 

These promises and concerns have sparked research efforts on applications and quality 61 

control of third-party data at SMHI and many other European NMHS (Hahn et al., 2022; Garcia-62 

Marti et al., 2023; Olsson et al., 2025).  63 

This paper investigates the capability of second- and third-party rainfall sensors to observe a 64 

highly localized convective storm that occurred on 18 August 2022 in Båstad, Sweden. The 65 

second-party data comes from sensors managed by local authorities in Skåne County and 66 

consists of a traditional rain gauge and an X-band Weather Radar (XWR). As for third-party 67 

data, we study rainfall observations from a Commercial Microwave Link (CML) and a set of 68 

Personal Weather Stations (PWS). CML and PWS are sometimes referred to as “opportunistic 69 
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sensors” (Fencl et al., 2024). Here, we will use the term “third-party data” for consistency. First, 70 

the long-term (2021-2022) performance of the second-party rain gauge is evaluated against 71 

the national weather stations to qualify as a trusted reference sensor for the study. Then, an 72 

event analysis is performed by calculating evaluation metrics for each sensor compared with 73 

the reference. Data from the radars and third-party sensors require pre-processing and quality 74 

control to facilitate the analysis. 75 

XWRs are lower-cost compared with conventional C-band and S-band weather radars and 76 

provide higher resolution imagery. They are, on the other hand, more affected by attenuation, 77 

especially in widespread heavy rainfalls due to the accumulated attenuation throughout the 78 

signal path (Lengfeld et al., 2016; Bobotová et al., 2022). XWRs also have a shorter 79 

observation range than conventional radars, typically 30-60 km (Thorndahl et al., 2017).  80 

CMLs are radio links between base stations that connect the backbone of telecom networks 81 

to local subnetworks (Chwala and Kunstmann, 2019). CMLs operate at frequencies where the 82 

propagation of radio waves through the atmosphere is attenuated by rainfall. The transmitted 83 

signal level (TSL) and received signal level (RSL) are collected by telecom companies for 84 

network monitoring and maintenance purposes, so what is being considered as “noise” in 85 

telecommunication can be used as a signal to estimate rainfall intensities for 86 

hydrometeorological applications (Leijnse et al., 2007b). In this paper we study the spatial 87 

variability of rainfall along a CML link by sampling XWR bins every 250 meters along the CML 88 

reach, resulting in 20 XWR time series that are compared with the CML rainfall estimates. This 89 

approach enables us to perform detailed investigations about bias in CML observations due to 90 

the variability of rainfall intensity along a CML path.  91 

PWS are weather stations installed by people on their private property. Here, we consider 92 

PWS that can be connected to online platforms to share observations openly in real time. 93 

Recent years have seen a remarkable increase in PWS connected to the internet, presumably 94 

due to the adoption of smart home technologies (Sovacool and Furszyfer Del Rio, 2020). 95 

Contrary to CML, PWS are designed to measure rainfall directly, but it can be assumed that 96 

PWS data are subject to errors and bias linked to hardware, installation site and maintenance 97 

(Boonstra, 2024). Various quality control protocols explicitly designed for PWS have been 98 

presented in the literature (de Vos et al., 2019; Bárdossy et al., 2021; Lewis et al., 2021). 99 

However, it has not been investigated how the algorithms perform when applied to localized 100 

extreme rainfall. In this paper, we apply an adjusted version of the PWS quality control protocol 101 

suggested by de Vos et al. (2019) and compare the results with traditional evaluation metrics.  102 

This paper addresses multiple gaps in high-resolution monitoring of convective rainfall by 103 

bench-marking second- and third-party sensors with an official monitoring network, and by 104 
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investigating the performance of a PWS quality control protocol in this context. The study is 105 

guided by an ambition to contribute to answering the following general research questions: 106 

• To what extent are second- and third-party sensors capable of observing convective 107 

rainfall? 108 

• What are the advantages and limitations of observing convective rainfall with second- 109 

and third-party sensors, compared with a national monitoring network?  110 

This paper is organized as follows. After this introductory section, Section 2 presents the storm 111 

event and area of interest that was selected for the case study. Section 3 describes the sensors 112 

and data applied in the analysis. Section 4 presents evaluation metrics and methods applied 113 

for the long-term and event analysis.  Section 5 outlines the results of the long-term and event 114 

analysis. Section 6 discusses the results, while Section 7 summarizes the main findings of the 115 

study.  116 

2. Case study  117 

A convective rainfall event that hit the Bjäre Peninsula in Skåne County, Sweden, in the late 118 

afternoon of 18 August 2022, was selected for the study. SMHI’s forecast had indicated a small 119 

likelihood of rainfall intensities above 35 mm/3h, which is the institute’s threshold for rainfall 120 

weather warnings. However, it was expected to hit further to the north, so no weather warning 121 

was issued in the area at the time of the event. According to media reports, the rain was mixed 122 

with hailstones of about 2 cm in diameter and caused flooding of around 60 buildings 123 

(Gravlund, 2025; Bengtsson, 2023). A local water utility company (NSVA) operates a tipping 124 

bucket rain gauge (hereafter ‘municipal gauge’) in the city of Båstad, which peaked at 216 125 

mm/h and recorded 75.4 mm in 64 minutes. This corresponds to a return period of about 700 126 

years, based on rainfall statistics developed for southwestern Sweden (Olsson et al., 2019). 127 

The maximum depth recorded in 45 minutes was 71.2 mm, which breaks Sweden’s official 128 

record of 61.1 mm in 45 minutes at the Daglösen station in Värmland County on 5 July 2000. 129 

The predominant wind direction in the area is from the southwest to the northeast, and the 130 

selected event was preceded by two dry days. The analysis focused on the urban area of 131 

Båstad, a town with around 16,000 inhabitants located on the southern coast of the Laholm 132 

Bay, covering approximately 9.4 km2. Fig. 1 shows the locations of all sensors included in the 133 

study.    134 
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 135 

 136 

Figure 1. Area of interest and locations of sensors.  137 

3. Data  138 

Three levels of data were considered in the study – Sweden’s national meteorological 139 

monitoring network, a municipal gauge and XWR operated by local and regional agencies 140 

(second-party network) and CML and PWS (third-party network). More details on the data 141 

sets are provided below.  142 

3.1 National monitoring network 143 

The national weather monitoring network operated by SMHI consists of a combination of 144 

manual and automatic weather stations and CWR. The Hov, Laholm D and Baramossa 145 

weather stations, located 9-10 km away from Båstad (Fig. 1), report daily accumulated rainfall 146 

at 06:00 UTC+2, manually observed by certified observers. The automatic rain gauge station 147 

of weighing type on the island Hallands Väderö, situated 15 km west of Båstad, reports 15-148 

minute accumulations. As these data have passed quality assurance protocols at SMHI, we 149 

consider them the most trustworthy source to use for benchmarking in the study. Precipitation 150 

data from the stations for the year 2022 were downloaded from SMHI’s open data archive 151 

(SMHI, 2025b). 152 
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In addition, we studied a gauge-adjusted Plan Position Indicator (PPI) horizontal reflectivity 153 

composite based on the lowest elevation scan (0.5°) from all radars operated by SMHI. The 154 

composite is used operationally for weather forecasting at the institute. The composite is 155 

available in 5-minute resolution at a spatial resolution of 2x2 km and distributed as radar 156 

reflectivity data in SMHI’s open radar archive (SMHI, 2025c).The gauge-adjustment technique 157 

is based on the gauge-to-radar ratio and is targeted towards real-time applications (refer to 158 

Michelson & Koistinen (2000), for details). Radar data compositing at SMHI is performed using 159 

the BALTRAD software (Michelson et al., 2018). While the radars can operate in dual-160 

polarization mode, this product is based on the horizontal polarization. The closest radar (radar 161 

location Ängelholm) is situated 6 km south of Båstad, (Fig. 1, map 2). Since this radar was 162 

operational during the selected event and the compositing method is based on the closest 163 

radar, the studied composite is based on data from only this radar during the period of interest.  164 

Radar reflectivity Z [mm6/m3] can be expressed as integrals over the Drop Size Distribution 165 

(DSD) in the pulse volume, here N(D) [mm/m3]. 166 

𝑍 = ∫ 𝐷6(𝐷)𝑁(𝐷)𝑑𝐷

∞

0

 (1) 

where D [mm] is the spherical drop diameter. It is generally expressed logarithmically as dBZ: 167 

𝑑𝐵𝑍 = 10 × log10(𝑍) 
(2) 

 

The CWR composite retrieved from SMHI’s radar archive is distributed as pseudo-dBZ E 168 

(integer 0-255) to enable a smaller storage size, following European standards (Michelson et 169 

al., 2014). To convert these integers back to dBZ, gain G and offset were applied: 170 

𝑑𝐵𝑍 = 𝐸 × 𝐺 + 𝑜𝑓𝑓𝑠𝑒𝑡 
(3) 

 

where G = 0.4 and offset = -30 (Michelson et al., 2014). The rain rate PCWR (mm/h) can be 171 

found from the reflectivity following an inverted power law relationship: 172 

𝑃𝐶𝑊𝑅 =  (
𝑍

𝑎
)

1
𝑏
 

(4) 

 

We applied the parameters suggested by Marshall & Palmer (1948), a=200 and b=1.6. The 173 

actual values of a and b can vary greatly depending on the actual DSD, which may be different 174 

within and from event to event (Battan, 1973). CWR time series at a 5-minute resolution were 175 

sampled at the locations of the municipal rain gauge and the eight PWS. 176 

Figure 2 shows the elevation profile and radar beam profile between the CWR location and the 177 

location of the municipal gauge in Båstad. The low elevation angle and short distance to the 178 
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area of interest indicate that the observations are made at approximately 200-300 m above 179 

sea level, eliminating the risk of beam overshooting, as convective precipitation in the summer 180 

months typically originates from much higher altitudes. Overshooting is a common error in 181 

radar data that appears when the radar beam shoots above the precipitation cloud (Battan, 182 

1973; Seo et al., 2000). However, the Ängelholm radar is affected by partial beam blockage in 183 

a circular sector of around 60 degrees to the north of the radar location, which covers the area 184 

of interest (Appendix A1., Fig. A1). This is caused by vegetation within 1 km north of the radar 185 

location (Appendix A1., Fig. A2). Evaluations at SMHI have shown that the Ängelholm radar 186 

underestimated the accumulated rainfall depth of the years 2022-2023 by around 80% in the 187 

affected area, compared with SMHI’s weather stations.  188 

 189 

Figure 2. Elevation profile and beam profile between the CWR radar location and the municipal 190 
gauge. 191 

3.2 Second-party monitoring network  192 

We consider two second-party sensors operated by local and regional authorities: a municipal 193 

gauge in Båstad managed by the local water utility company NSVA, and a compact FURUNO 194 

dual-polarization XWR operated by NSVA on behalf of Lund University. The municipal gauge 195 

is a Casella tipping bucket, which records a tip each time the bucket volume (0.2 mm) is filled 196 

on a 1-second resolution. Time series with 1-minute resolution from the municipal rain gauge 197 

for the years 2021-2022 were received upon request from NSVA.  198 

About 80% of Skåne County is covered by observations from two XWRs located in Dalby and 199 

Helsingborg (Hosseini et al., 2023). In this study, we used data from the XWR in Helsingborg, 200 

40 km south of Båstad (Fig. 1). The spatial resolution of the data is 0.5 degrees of azimuth and 201 

75 m of slant range. XWR data for the day of the event was acquired from VeVa (Weather 202 

Radar in the Water Sector) (Foreningen VeVa – Vejrradar i vandsektoren, 2025), a 203 

Radar Ängelholm 

Municipal 

gauge 
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collaboration between water utility companies in south Sweden and Denmark that distributes 204 

XWR data to its partners according to the EUMETNET Opera Data Information Model 205 

(Michelson et al., 2014).  206 

The manufacturer’s built-in precalculated rainfall rate PXWR (mm/h) from the lowest scan 207 

(elevation angle of 1°) on 1-minute resolution was used for the study. The underlying equations 208 

for calculating the rainfall rate are generally similar to CWR as described in Section 3.1. 209 

However, a main difference is that the XWR data integrates dual-polarization variables as a 210 

method for attenuation correction, as described in detail in Hosseini et al. (2020). This method 211 

estimates attenuation as an approximately linear function of the specific differential phase shift, 212 

which depends on phase rather than signal intensity and is therefore less sensitive to 213 

attenuation (Kumjian, 2013). The method has been shown to be useful for summer 214 

precipitation estimations in Sweden (Hosseini et al., 2023).  215 

Figure 3 shows that the XWR’s beamwidth has a much larger sampling volume and steeper 216 

elevation angle than CWR (Fig. 2) at the area of interest, which suggests a small risk of signal 217 

contamination due to beam blockage. As the profile extends 250-1750 meters above sea level 218 

over Båstad, this, just like for CWR, suggests a small risk of beam overshooting.   219 

 220 

Figure 3. Elevation profile and beamwidth between the XWR radar location and the municipal gauge. 221 

3.3 Third-party monitoring network 222 

Two types of third-party sensors were included in the study – CML and PWS. The location of 223 

the only CML in the area of interest is shown in Fig. 1. This link is approximately 4.8 km long 224 

and has a frequency of 23.1 GHz. CML data were received as TSL and RSL at 10-second 225 

resolution upon request from the telecom companies Ericsson AB and Tre. The data covered 226 

 

Radar 

Municipal 

gauge 
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all base stations on the Bjäre Peninsula for the days 18-19 August 2022. Each antenna 227 

works as both a transmitting and receiving terminal, meaning that each link has bidirectional 228 

transmission and provides at least two radio signals. Here, we use the term ‘sub-link’ to refer 229 

to a single radio signal.  230 

Received TSL and RSL were converted into rainfall rate using the MEMO (Microwave-based 231 

Environmental Monitoring) method developed by SMHI (MEMO, 2025). This method follows 232 

the general steps applied by most CML algorithms as described in Appendix A2. However, the 233 

process does not explicitly correct for wet antenna attenuation, but instead applies a bias 234 

correction factor CFA based on link length to the derived rain rate Praw (mm/h) that compensates 235 

for the wet antenna effect: 236 

𝑃𝐶𝑀𝐿 = 𝑃𝑟𝑎𝑤 − (𝐴𝑛𝑙 ∗ 𝐶𝐹𝐴) (5) 

Here, Praw is the uncorrected rainfall intensity and Anl is the net attenuation. More details on 237 

CML processing are found in Appendix A2. 238 

The selected PWS type in this study, NetAtmo, is an unheated plastic tipping bucket rain 239 

gauge that reports the number of tips through a wireless connection to the accompanying 240 

indoor module (de Vos et al., 2019). The indoor module broadcasts the observations to 241 

Netatmo’s online platform at approximately 5-minute intervals. The default tipping bucket 242 

volume is 0.101 mm, or another volume specified by the station owner using the product’s 243 

calibration feature. PWS time series for the study were received from NetAtmo. PWS without 244 

a rainfall sensor, and PWS that were offline during the storm event, were excluded from the 245 

analysis. This resulted in a total of eight PWS located within the Båstad urban area (Fig. 1). 246 

The PWS data were quality controlled as described in Section 4.4.  247 

4. Methods 248 

The analyses covered two stages – a long-term analysis and an event analysis. This section 249 

first presents the evaluation metrics applied to assess the performance of the sensors in the 250 

study, followed by descriptions of the methods applied in the long-term analysis and event 251 

analysis. Then, the quality control of PWS data is described, as well as time lags applied to 252 

the radar data.  253 

4.1 Evaluation metrics 254 

Three evaluation metrics were used to assess the performance of each sensor: Spearman’s 255 

rank correlation (rs), Root Mean Squared Error (RMSE), and Percent Bias (PBIAS). The 256 

metrics were calculated on different temporal resolutions in different analyses, see Sections 257 

4.2 and 4.3. For each analysis, the metrics were calculated for the duration of the event as 258 

recorded by the respective reference sensor, see Section 4.3.  259 
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The Spearman correlation is a non-parametric test that measures the strength of a monotonic 260 

relationship between two variables: 261 

 262 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

(6) 

 

where di is the difference between ranks for each pair of values and n is the number of 263 

observations. The closer to -1 or 1, the better the negative or positive monotonic relationship. 264 

As the Spearman correlation does not address the magnitude of error, it can be complemented 265 

with RMSE (Hyndman and Koehler, 2006): 266 

 267 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝑇𝑖)2

𝑛

𝑖=1

 
(7) 

 

where Oi is the reference rainfall and Ti is the evaluated data. Lower RMSE indicates a better 268 

model performance. Finally, PBIAS quantifies the average bias, where a positive or negative 269 

value suggests an underestimation or overestimation of rainfall depth, respectively (Gupta et 270 

al., 1999): 271 

 272 

𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑂𝑖 − 𝑇𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 

 

(8) 

4.2 Long-term analysis 273 

As the magnitude of the selected event was not captured by the national network (see Results) 274 

it was necessary to establish another reliable reference for the event analysis. Consequently, 275 

the long-term (2021-2022) performance of the municipal gauge was evaluated against the 276 

national weather stations using the metrics presented in Section 4.1 at daily resolution. The 277 

gauge was cross-referenced with the manual stations Hov, Laholm D and Baramossa operated 278 

by SMHI, all situated 9.3-9.7 km away (Fig. 1). The station Hallands Väderö A was excluded 279 

from the comparison as it is located on an island 15 km west of Båstad. The tips recorded by 280 

the municipal gauge were resampled to daily accumulations between 06:00-05:59 UTC+2, as 281 

this is the sampling frequency of the reference (manual) stations.  282 

4.3 Event analysis 283 

The temporal range of the studied event differed between each sensor, as the start and end 284 

of the rainfall occurred at different times in the observed time series. The reference used for 285 

each comparison is outlined below. The event start was defined as the first timestep when it 286 

had been raining more than 0.1 mm/h for at least 5 minutes at the reference sensor, and the 287 
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event stop was when it had been raining less than 0.1 mm/h for at least 5 minutes (Section 288 

5.2.1). The return period of the event was calculated based on SMHI’s climate statistics for 289 

southwestern Sweden (Olsson et al., 2019). The calculation of evaluation metrics, return 290 

periods, and accumulated depths were carried out for the duration of the event as recorded 291 

by the reference sensor.  292 

Based on performance, it was decided to exclude CWR as a reference (Section 5.2.2). The 293 

CWR composite was sampled at the location of the municipal gauge, and the metrics were 294 

calculated at 5-minute resolution (the resolution of the CWR data) with the municipal gauge 295 

as the reference. The accumulated rainfall DCWR (mm) was then calculated at the location of 296 

the municipal gauge and for the whole CWR composite in the area of interest. 297 

The XWR data were available in polar bins, that is, range gates at a given elevation and 298 

azimuthal angle, in contrast to the regular Cartesian grids for the utilized CWR data. Thus, 299 

time series were extracted from the XWR polar bin closest to the projected locations of 300 

interest, accounting for elevation, range difference, and azimuth difference. The sampled 301 

locations included the municipal gauge, the eight PWS, and 20 points along the CML path, 302 

as described below. The elevation metrics were calculated on the XWR time series sampled 303 

at the municipal gauge on a 5-minute resolution with the municipal gauge as reference. After 304 

concluding that XWR recorded similar rainfall depth as the municipal rain gauge during the 305 

event, XWR was used as a reference for CML and PWS to better account for the spatial 306 

variability of the rainfall. For visualization purposes, the volumetric XWR data was gridded 307 

into a Cartesian grid of 250-meter resolution using linear interpolation with Delaunay 308 

triangulation. The accumulated rainfall DXWR (mm) was calculated for the whole area of 309 

interest based on the gridded data.  310 

A few missing values were found in the XWR time series, which occurred during the most 311 

intense part of the storm. Investigations showed that these bins likely observed rainfall 312 

intensities above 255 mm/h, which is the upper limit for storing integers in 8-bit format and 313 

which was used by VeVa when calculating the rain rate. The missing values were filled with 314 

temporal linear interpolation.  315 

The CML included in this study consists of two sub-links. These recorded similar values, with 316 

a difference in total rainfall depth of around 5% for the whole event. Thus, the mean rain rate 317 

P̄CML and mean depth D̄CML per timestep of the two sub-links were used in the analysis. The 318 

XWR polar bins data were sampled every 250 m (20 points, Fig. 1) along the reach of the 319 

CML to investigate the variability of rainfall intensity along the link, resulting in 20 XWR time 320 

series on 1-minute resolution. Evaluation metrics were calculated on 1-minute resolution with 321 

the mean of 20 XWR samples, P̄XWR, as reference.   322 
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To investigate how CML estimates of extreme rainfall are impacted by spatial variability along 323 

the link, the 10th and 90th percentiles were calculated to explore the range of PXWR and DXWR 324 

along the CML path. The behavior of the XWR data along the CML during the intense part of 325 

the storm was inspected visually. Hypothesizing that the difference in XWR and CML 326 

observations is related to the XWR variability along the link, an ordinary least squares analysis 327 

was performed on the difference P̄XWR and P̄CML, with the XWR standard deviation as the 328 

independent variable.  329 

For each PWS, the evaluation metrics were calculated compared with the XWR time series 330 

sampled at the PWS location on 5-minute resolution. The PWS timeseries were processed 331 

with a quality control package as described below.  332 

4.4 PWS Quality Control 333 

Research has shown that the quality of rainfall data from PWS can be improved significantly 334 

by applying quality control and bias correction. The algorithms suggested in literature, e.g, 335 

Mandement & Caumont (2020), Lewis et al. (2021), Bárdossy et al. (2021), typically utilize the 336 

high observation density of PWS by comparing rainfall time series with the performance of 337 

neighboring stations, referred to as ‘buddy checks’ by Båserud et al. (2020). De Vos et al. 338 

(2019) developed a quality control protocol for PWS rainfall data in the R programming 339 

language, PWSQC. The method does not rely on a primary monitoring network, but flags 340 

suspicious measurements based on the observations from nearby stations. The method has 341 

been applied in gauge-adjustment of radar by Nielsen et al. (2024) and Overeem et al. (2024) 342 

and has recently been converted to a Python package, pypwsqc, that was applied for the study 343 

(Graf et al., 2025). 344 

Event time series from the eight PWS were processed with pypwsqc. The algorithm applies 345 

three filters utilizing neighbor checks – the Faulty Zeroes filter, High Influx filter, and Station 346 

Outlier filter – to assess the quality of each time step in rainfall time series by comparing with 347 

the records of neighboring PWS within a user-defined radius (refer to de Vos et al., 2019, for 348 

details). The Faulty Zeroes filter flags timesteps when the evaluated station records zero 349 

rainfall for at least nint time intervals, while the median of the surrounding rainfall observations 350 

is larger than zero. The High Influx filter identifies unrealistically high rainfall amounts based 351 

on a comparison with the median rainfall of the neighboring stations. The Station Outlier filter 352 

flags a station as an “outlier” if the Pearson correlation with the median rainfall of neighbors in 353 

a selected evaluation period falls below a set threshold. 354 

To improve the performance of the neighboring checks, data from all PWS within a 10 km 355 

radius around Båstad were considered, which resulted in a total of 58 stations. However, only 356 

the results of the 8 PWS within the area of interest were evaluated during the event. To get a 357 

better understanding of the long-term performance of each PWS, the quality control was also 358 
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applied for the full year of 2022. The parameters were set to the same values as in the original 359 

publication (de Vos et al., 2019), except mmatch and mint. These parameters control how many 360 

wet time steps at the evaluated PWS that must be overlapping with wet time steps at the 361 

neighboring stations within a defined evaluation period to reliably apply the Station Outlier filter. 362 

The numbers proposed by de Vos et al. (2019) were found to be too strict for the PWS dataset 363 

in this study, as the Station Outlier filter could not be applied for very long periods, including 364 

during the studied storm event. Instead, mmatch and mint were set to 100 and 8064, respectively, 365 

to require less wet time steps during a longer evaluation period. 366 

4.5 Time lags 367 

The event analysis revealed low correlations (rs) between the radars (CWR and XWR) and 368 

the reference (municipal gauge), see Sections 5.2.2 and 5.2.3. As convective rainfall is highly 369 

variable in space and time, the observations per time step can be very different at nearby 370 

locations, which can lead to low correlations even between high-quality observations. 371 

Therefore, time lags were applied to the radar time series to see if this could increase the 372 

correlation. The radar time series sampled at the municipal gauge were shifted from -10 to 373 

+10 timesteps on a 5-minute resolution. For each lag, the correlation rs with the municipal 374 

gauge was calculated over the event duration as defined by the reference. The highest 375 

correlation value was then reported.    376 

5. Results 377 

5.1 Long-term analysis  378 

Figure 4 shows daily accumulations from the Hov, Laholm D and Baramossa weather stations 379 

and the municipal gauge for the years 2021 and 2022. The plot shows that the municipal gauge 380 

recorded significantly less rainfall than Baramossa but followed Hov and Laholm D reasonably 381 

well. These findings align with rainfall observations of the region in the period 1991-2020 382 

(SMHI, 2025d). The inland regions of southwestern Sweden, including the northern parts of 383 
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Skåne County where Baramossa is located, overall receives more precipitation than the 384 

coastal area, where the Båstad, Hov and Laholm stations are located.  385 

 386 

Figure 4. Accumulated depth 2021-2022 for municipal gauge and SMHI rain gauges located 9.3-9.7 km 387 

away. 388 

Table 1 shows the evaluation metrics of the municipal gauge, benchmarked with the three 389 

reference stations. The PBIAS over 2 years was only -8% compared with Hov weather 390 

station, which is considered low as the stations are situated 9.7 km apart. Based on these 391 

results, the municipal gauge was accepted as a trusted reference for the event analysis.  392 

Table 1. Cross-validation of the municipal gauge with three reference stations, 2021-2022. 393 

Reference 
station (SMHI) 

Distance to 
municipal 
gauge (km) 

rs RMSE 
(mm/day) 

Accumulated 
difference (mm) 

PBIAS (%) 

Baramossa 9.4 0.55 6.1 674 -31% 

Hov 9.7 0.46 5.87 -118 8% 

Laholm 9.3 0.52 5.23 -233 19% 

 394 

5.2 Event analysis 395 

5.2.1 Event duration 396 

Table 2 summarizes the event duration observed by each sensor. National weather stations 397 

were excluded from the analysis, either because they record daily precipitation, or because 398 



 

15 
 

they recorded very small total depth (Section 5.2.2). The municipal gauge recorded rainfall 399 

for 64 minutes, which is among the shortest durations with only PWS 4 observing rain for a 400 

shorter period (50 min). Notably, XWR recorded rain for 109 minutes at the location of the 401 

municipal gauge. This follows the general pattern that XWR recorded rain for a longer period 402 

than the corresponding gauge. The difference was generally around 30 minutes, possibly 403 

due to the higher sensitivity of XWR to light drizzles, either never reaching the ground or 404 

slowly accumulating in the tipping bucket before the first tip was recorded at the weather 405 

station. Comparing XWR with CML, there was only 4 minutes difference in the observed 406 

event start.  407 

The PWS are concentrated in two clusters. PWS 1-4 are located in the western and central 408 

part of Båstad together with the municipal gauge, and PWS 5-8 in the north-eastern part 409 

(Fig.1). In Table 2, it can be seen that ground observations in the mid-western part of Båstad 410 

started recording rain between 16:55 and 17:15, and the north-eastern part between 17:15 411 

and 17:25, which suggests a gradual motion of the storm from west/south-west to the north-412 

east. A similar tendency is seen in the XWR data, but with approximately 30 minutes time 413 

lag. 414 

Table 2. Event duration observed by each sensor. 415 

Sensor Type Event start 
(UTC+2) 

Event end 
(UTC+2) 

Duration 
(min) 

Municipal gauge reference 17:05 18:09 64 
XWR at municipal 
gauge 

test 16:45 18:34 109 

CWR at municipal 
gauge 

test 16:45 17:55 70 

XWR mean along CML reference 16:38 18:36 118 
CML mean test 16:34 18:43 129 

XWR at PWS 1 reference 16:40 18:30 110 
PWS 1 test 17:05 18:30 85 

XWR at PWS 2 reference 16:45 18:30 105 
PWS 2 test 17:10 18:30 80 

XWR at PWS 3 reference 16:40 18:30 110 
PWS 3 test 16:55 18:10 75 

XWR at PWS 4 reference 16:40 18:10 90 
PWS 4 test 16:55 17:45 50 

XWR at PWS 5 reference 16:45 18:35 110 
PWS 5 test 17:25 20:00 155 

XWR at PWS 6 reference 16:45 18:35 110 
PWS 6 test 17:15 18:35 80 

XWR at PWS 7 reference 16:50 18:35 105 
PWS 7 test 17:25 18:35 70 

XWR at PWS 8 reference 16:45 18:35 110 
PWS 8 test 17:20 18:30 70 

 416 
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5.2.2 National monitoring network 417 

The total rainfall depth observed by the national monitoring network is shown in Fig. 5. The 418 

CWR grid size is 2x2 km. The weather station Hallands Väderö A, situated 15 km west of 419 

Båstad, records accumulated values every 15 minutes but only observed a total volume of 420 

0.4 mm on the day of the event. The other stations report daily accumulations between 421 

06:00-05:59 UTC+2, amounting to a maximum depth of 14.2 mm at Hov. All observations 422 

from SMHI’s gauges corresponded to a return period of less than 1 year (Olsson et al., 423 

2019). The heaviest rainfall observed by CWR was concentrated in the south of the Båstad 424 

urban area, with a maximum total depth of 65 mm, which corresponds to a return period of 425 

around 400 years for a duration of 60 minutes (Olsson et al., 2019). The maximum recorded 426 

depth in the area of interest was 25 mm (to the south-east), which corresponds to a return 427 

period of 11 years for a duration of 60 minutes.  428 

 429 

Figure 5. Total accumulated depth (mm) of the event recorded by the national monitoring network.  430 

Figure 6 shows the rainfall event observed by the municipal gauge, compared with CWR 431 

sampled at the same location. CWR underestimated the total depth with 57 mm when 432 

compared with the gauge, which suggests that CWR could not quantify the magnitude of the 433 

event accurately. The CWR started to observe rain 20 minutes before the rain gauge. Different 434 

time lags were applied to the time series by iteration, and it was found that rs could be raised 435 

from 0.4 to 0.83 when adding a lag of 10 minutes to the CWR data.  436 
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 437 

Figure 6. a) Rainfall intensity P (mm/h), Spearman’s rank coefficient rs (-) and RMSE (mm/h). b) 438 

Accumulated depth D (mm), difference in total depth and PBIAS. Evaluation metrics applied on CWR 439 

with municipal gauge as reference.  440 

5.2.3 Second-party monitoring network 441 

Figure 7 shows the total accumulated depth observed by the second-party network. The 442 

municipal gauge observed a total depth of 75.4 mm between 17:05 and 18:09, which is here 443 

approximated as 60 minutes. This corresponds to a return period of around 700 years (Olsson 444 

et al., 2019). The location of the heaviest rainfall was different when comparing gridded XWR 445 

data (250x250m) to the CWR composite, where the XWR data indicated that the storm was 446 

centered just outside the coastline and not to the south of the Båstad urban area. The total 447 

depth of XWR sampled at the location of the municipal gauge based on the closest XWR bin 448 

was 78.4 mm, corresponding to a return period of around 800 years for 60 minutes duration, 449 

with observations up to almost 90 mm within the area of interest. XWR observations above 5 450 

mm occurred over a much larger area compared with the CWR, especially to the north-east. 451 

This suggests that the CWR indeed was affected by beam blockage during the event as 452 

described in Section 3.1.  453 
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 454 

 455 

Figure 7. Total accumulated depth (mm) of the event recorded by the second-party monitoring network. 456 

Figure 8 shows the rainfall event observed by the municipal gauge, compared with XWR polar 457 

data sampled at the same location. As for CWR, the XWR started to record rain almost 20 458 

minutes before the rain gauge. The correlation rs could be raised from 0.56 to 0.7 when adding 459 

a lag of 5 minutes to the XWR data. Even if the correlation was low with the reference, XWR 460 

observed a similar total depth with only 3 mm overestimation. In Fig. 8a, there is a tendency 461 

for XWR to underestimate the overall peak rainfall intensity and to overestimate lower rainfall 462 

intensities. This might be related to signal attenuation during heavy rain and the higher 463 

sensitivity of XWR to drizzles or observations of melting particles during light rain.  464 
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 465 

Figure 8. a) Rainfall intensity P (mm/h), Spearman’s rank coefficient rs (-) and RMSE (mm/h). b) 466 

Accumulated depth D (mm), difference in total depth and PBIAS. Evaluation metrics applied on XWR 467 

with municipal gauge as reference. 468 

5.2.4 XWR and CML analysis along the CML path 469 

Figure 9 shows the rainfall intensity P̄CML and depth D̄CML expressed as the mean of the two 470 

CML sub-links and the 10th-90th percentiles of the XWR bins sampled along each 250 m 471 

(amounting to 20 sample time series) along the CML path. The mean intensity of the XWR 472 

samples, P̄XWR, is highlighted in grey and was used as a reference for the CML. XWR on 473 

average started to observe rainfall at 16:38 along the link path, and CML at 16:43. P̄CML 474 

reached a ‘plateau’ at 83 mm/h and stayed almost constant at this level for 31 minutes between 475 

17:27-17:58. This effect is caused by the complete loss of radio signal between the CML base 476 

stations, which is induced by the heavy rainfall, as described by Blettner et al. (2023) and Polz 477 

et al. (2023). Likely by coincidence, CML recorded a similar total depth as the reference during 478 

the event, leading to a relatively small PBIAS. The large spread of 10-90th percentiles obtained 479 

from the 20 XWR observations suggests a large spatial variability of rainfall along the link.  480 
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 481 

Figure 9. a) Rainfall intensity P (mm/h) of CML (mean) and XWR (mean and 10th to 90th percentile) 482 

along CML path. Spearman’s rank coefficient rs (-) and RMSE (mm/h).  b) Accumulated depth D (mm) 483 

of CML (mean) and XWR (mean and 10th to 90th percentile) along CML path. Difference in total depth 484 

and PBIAS. Evaluation metrics applied on CML mean with XWR mean as reference. 485 

By inspecting radar fields, it was observed that the storm propagated almost perpendicularly 486 

over the CML link, which is favorable for a detailed comparison between the XWR and CML 487 

observations over the link path. Given the sudden constant records of rainfall rate observed in 488 

the CML time series, which are clearly not representative of the actual rainfall rate, the CML 489 

plateau period was considered unsuitable for the comparison. Instead, the following analysis 490 

focused on the periods right before and after the signal loss, from 16:38-17:26 and 17:59-491 

18:36, for a total of 85 minutes.  492 

Figure 10 shows the rainfall intensity distribution along the CML as observed by XWR for five 493 

minutes before and after the plateau. The first bin to the left in the plots was sampled at the 494 

western end of the CML, approximately 3.4 km away from the municipal gauge, and the last 495 

bin to the right was sampled at the eastern end, 1.6 km away from the gauge (see Fig 1.). The 496 

XWR sampling points closest to the rain gauge (bins 14 and 15, counting from the left) are at 497 

approximately 700 meters’ distance from the gauge. P̄CML and Pmunicipal are also shown for each 498 

time step. The XWR spatial distribution was sometimes rather smooth, with a gradual increase 499 

and decrease along the link (e.g., Fig. 10b), but sometimes more intermittent, with large 500 

differences between adjacent XWR samples (e.g., Fig. 10g). In the pre-plateau period (Fig. 501 

10a-10e) P̄CML < P̄XWR consistently, whereas in the post-plateau period the relation was 502 

generally the opposite (Fig. 10f-10j). 503 
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Figure 10. (a)-(e) Rainfall intensity 5 minutes before CML signal loss (17:22-17:26). (f)-(j) 505 
Rainfall intensity 5 minutes after signal loss (17:59-18:03). Twenty radar bins sampled along 506 
CML path every 250 meters (XWR 1-20), XWR mean, CML mean and municipal gauge. 507 

The relationship between P̄XWR and P̄CML is shown for all observations in the pre- and post-508 

plateau periods (in total 85 data points) in Fig. 11a. P̄CML was generally lower, and especially 509 

when P̄XWR < 20 mm/h, then P̄CML was consistently very low.  This suggests that XWR is more 510 

sensitive to light rain than CML, as was observed when comparing with the municipal gauge 511 

(Section 5.2.3). Hypothesizing that the difference between P̄XWR and P̄CML was related to the 512 

XWR variability over the link, Fig. 11b shows the difference as a function of the X-band 513 

standard deviation σXWR. Despite a substantial scatter, a reasonably linear trend is suggested 514 

(R²=0.31) with P̄CML gradually underestimating more as the standard deviation increases.  515 

516 

Figure 11. a) Mean rainfall intensity P (mm/h) along the CML link as estimated by CML and XWR 517 

observations for 85 timesteps, before and after the plateau. b)  Difference between CML and XWR 518 

mean intensity values as a function of XWR standard deviation σXWR along the CML link. 519 

5.2.5 Personal Weather Stations 520 

This section starts with the results of the PWS quality control, before presenting the event 521 

observations. No faulty zeros or high influxes were detected during the event at any of the 522 

eight PWS in the area of interest. Three of the PWS – PWS 1, PWS 3 and PWS 4 – were 523 

flagged as station outliers. Nevertheless, all PWS were considered for further analysis to 524 

compare the output of the PWS quality control with traditional evaluation metrics. The eight 525 

PWS had between 25 and 29 stations within a 10 km radius that were included in the 526 

neighboring checks. 527 

The PWS time series were also checked for the full year 2022. PWS 1 and 4 were flagged as 528 

faulty zeroes continuously during the winter months but had no Faulty Zero flags during the 529 

summer months (see Appendix A3, Fig. A2). The other PWS got intermittently flagged, but 530 

overall, there were few Faulty Zero flags during the year. No high influxes were detected at 531 
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any PWS during 2022. All stations were flagged as Station Outliers during extended periods 532 

throughout the year, except one (PWS 6), which only had a few Station Outlier flags in 533 

December 2022 (see Appendix A3, Fig. A3). 534 

Figure 12 shows the rainfall intensity P (mm/h) observed by the eight PWS and XWR sampled 535 

at the PWS location, with metrics calculated with XWR as reference. The correlation with XWR 536 

was generally quite high, above 0.7 for five of the eight PWS. The CWR sampled at the PWS 537 

locations is included for comparison. Note that the CWR time series are identical for PWS 1 538 

and 2, PWS 3 and 4, and PWS 6, 7 and 8 respectively, meaning that the PWS are situated in 539 

the same CWR grid cell.   540 
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541 

Figure 12. Rainfall intensity P (mm/h) for PWS 1-8. Spearman rank coefficient rs (-) and RMSE (mm/h) 542 
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calculated with XWR sampled at each PWS as reference. CWR sampled at each PWS included for 543 

comparison. 544 

Figure 13 shows the accumulated rainfall depth D (mm) for the event. Almost all PWS 545 

significantly underestimated the total depth compared with the XWR reference. However, the 546 

estimate was closer to the reference compared with CWR, with two exceptions (PWS 5 and 547 

PWS 7). PWS 1 is the only PWS that overestimated compared with the reference, in total 7.7 548 

mm (PBIAS -12.43%). 549 
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550 

Figure 13. Accumulated depth D (mm), difference in total depth and PBIAS calculated for PWS 1-8 with 551 
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XWR sampled at each PWS as reference. CWR sampled at each PWS included for comparison. 552 

6. Discussion 553 

This study investigates the capacity of second- and third-party sensors to observe short-554 

duration extreme rainfall, compared with a conventional rainfall monitoring network. Sweden’s 555 

national rainfall monitoring network, composed of automatic and manual weather stations and 556 

a CWR composite, is used as a conventional network in the study. The second-party network 557 

consists of a municipal rain gauge and an XWR operated by a local water utility company. CML 558 

and PWS are studied as third-party sensors. First, a long-term analysis of the municipal gauge 559 

is performed by cross-referencing two years of data with the national monitoring network. In 560 

this way, the municipal gauge is established as a trusted reference sensor for the study. Then, 561 

a convective rainfall event that hit southwestern Sweden in the late afternoon of 18 August 562 

2022 is selected as a case study. The event analysis focuses on the urban area of Båstad, a 563 

small seaside municipality on the coast of Laholm Bay, as this location was particularly affected 564 

according to media reports.  565 

No weather station in the national monitoring network captured the magnitude of the event as 566 

reported by the media (Section 5.2.2). The rainfall observed by the automatic and manual 567 

weather stations during the day of the event corresponded to a return period of less than one 568 

year, which suggests that the rainfall fell between the stations. CWR recorded a maximum total 569 

depth of 65 mm corresponding to a return period of 400 years, but the observation was made 570 

south of the Båstad urban area (Fig. 5). Within the area of interest, the maximum recorded 571 

depth was only 25 mm, which does not align with the municipal observations and the media 572 

reports about flooded streets and buildings.  573 

CWR peaked at 92 mm/h at 17:25 in the sampling point at PWS 5, which is the only CWR 574 

observation in the expected magnitude of the event based on the municipal gauge. The specific 575 

CWR used in the study (location Ängelholm) is known to be affected by partial beam blockage 576 

which likely caused the severe underestimation (Appendix A1). This suggests that the siting of 577 

the radar should be improved, for example by vegetation clearance, increasing the height of 578 

the radar tower or relocation, to allow for better rainfall estimates. The underestimation may 579 

also be attributed to, for example, a lack of dual-polarization variables, insufficient attenuation 580 

correction (Hosseini et al., 2020), radar calibration or ground clutter removal (van de Beek et 581 

al., 2016). Furthermore, the use of the traditional Z-R (reflectivity – rain rate) relationship based 582 

on Marshall-Palmer coefficients (Marshall and Palmer, 1948) in the CWR data processing may 583 

not be well suited for convective storms. SMHI is currently developing new Z-R relationships 584 

for different weather conditions to improve the accuracy of CWR-based precipitation estimates 585 

in the future.  586 
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When turning to the second-party data, the magnitude of the event is starting to emerge. The 587 

municipal gauge showed good agreement with the national monitoring network in the long-588 

term analysis and observed a ~700-year rainfall in the Båstad urban area during the event 589 

(Section 5.2.3). The XWR sampled at the location of the municipal gauge recorded a total 590 

depth of 78.4 mm, corresponding to a return period of ~800 years. It must be emphasized that 591 

estimated long return periods are highly dependent on the estimated rainfall duration, which 592 

may vary significantly in space and are difficult to firmly determine (Section 5.2.1). 593 

Furthermore, return period estimates are highly uncertain and should therefore not be 594 

quantified with high precision. In this context, a difference of ~100 years must be considered 595 

relatively small and rather indicates a good agreement between the estimates.  596 

XWR could accurately estimate the total rainfall depth compared with the municipal gauge 597 

(PBIAS 9.4%). However, both radars showed a relatively low correlation with the reference; 598 

0.56 for XWR (Fig. 8) and 0.4 for CWR (Fig. 6). The low correlation may be due to differences 599 

in the observation height between radar and gauge measurements. This could partly be 600 

accounted for by applying time lags and shifting the time series 5 and 10 minutes respectively, 601 

but also highlights the importance of accurate time stamping in the context of convective rainfall 602 

measurements.  603 

XWR observations, particularly at long ranges, are known to be affected by signal attenuation 604 

due to interactions with hydrometeors (Bobotová et al., 2022; Lengfeld et al., 2016). However, 605 

XWR performed well during this event at a 40-km range, likely because the event occurred 606 

locally under a mostly clear sky. Remarkably, there was no intervening precipitation between 607 

the radar and the target area. Furthermore, it is perceived that beam overshooting was unlikely 608 

due to the higher altitude of summer precipitation compared to the XWR sampling volume at 609 

the lowest elevation angle. 610 

One CML with a length of 4.8 km is located in the area of interest. The CML observed a 611 

similar duration of the event as the XWR reference (Section 5.2.4). The correlation was 612 

spuriously high (0.9) due to lack of variation in the CML rainfall rate, as it reached a ‘plateau’ 613 

and stayed constant at this level for about 30 minutes, leading to an underestimation of the 614 

total depth. This effect is sometimes referred to as ‘blackout’ (Polz et al., 2023) and appears 615 

when the radio signal is completely attenuated by heavy rainfall (ITU-R, 2005). Telecom 616 

network providers design the CML hardware so that transmission outages are allowed to 617 

occur 0.01% of the time on an annual basis. Indeed, Polz et al. (2023) found that blackout 618 

gaps were present in less than 1% of attenuation data from 4000 CMLs over 3 years in 619 

Germany, and that the effect on long-term timescales was generally low. However, the 620 

probability of a blackout at rainfall intensities above 100 mm/h was above 40%, which implies 621 

that the CML technology currently has limitations in quantifying extreme events.  622 
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The analysis of XWR data along the CML link revealed some notable results. Firstly, the XWR 623 

data at some time steps exhibited a large bin-to-bin variability, sometimes shifting from one 624 

intensity level to another (Fig.10b). This can be attributed to the turbulent nature of convective 625 

storms, and local attenuations of XWR signals during heavy rain bursts due to possible 626 

uncertainties in the attenuation correction. Despite overall agreement between P̄XWR and P̄CML 627 

along the link, a substantial scatter was found where, in particular, low intensities were 628 

consistently higher in the XWR data than CML (Fig. 11). Generally, there was a clear indication 629 

that the CML underestimation increased with increasing rainfall intensity as well as variability 630 

along the link. Berne & Uijlenhoet (2007) and de Vos et al., (2018) showed that spatial 631 

variability of rainfall can significantly affect CML-based rainfall estimates. A systematic 632 

underestimation of CML is expected for α < 1 (see Appendix A2, Eq. A2) (Leijnse et al., 2010). 633 

Notably, the estimations of the event duration based on radars and CML were significantly 634 

different from the in-situ gauge observations. For example, the municipal gauge started to 635 

observe the event 20 minutes after CWR. These discrepancies could be attributed to the larger 636 

sensitivity of CML and radars to light rainfall and slow accumulations in the tipping-bucket 637 

gauge during light drizzles preceding the heavy bursts.  638 

Regarding the eight PWS in the area of interest, the tipping bucket mechanism seems to have 639 

reached a maximum tipping frequency (i.e., detectable intensity) during the highest-intensity 640 

periods, as no observation exceeded 100 mm/h (Fig. 12). A similar tendency has been 641 

observed by others (Lussana et al., 2023; Wolf and Larsson, 2024). Among the PWS with 642 

lowest RMSE, this led to a PBIAS of 30-40% compared with the XWR reference (Fig. 13). 643 

PWS 1 performed reasonably well on all evaluation metrics with a Spearman correlation of 644 

0.85, RMSE 26.4 mm/h and PBIAS –12.4%. In most cases, the correlation with reference was 645 

medium to high, with only two PWS (PWS 4 and 7, Fig. 12) having a correlation below 0.6. 646 

We applied a quality control specifically designed for PWS rainfall data, pypwsqc (Graf et al., 647 

2025) on the event and full year 2022 (Section 5.2.5). The algorithm applies three filters – 648 

Faulty Zeroes filter, High Influx filter, and Station Outlier filter – to assess the quality of each 649 

time step by utilizing neighbor checks with nearby stations. No faulty zeroes were detected 650 

during the event, which is reasonable as all PWS in the area of interest measured rainfall at 651 

all timesteps. No high influxes were found, suggesting that all PWS in the area measured 652 

enough rainfall not to trigger high influx flags at the neighboring stations. On the other hand, 653 

no high influx was detected at any PWS during the entire year 2022. There might indeed not 654 

have been any high influx recorded by any of the 58 PWS on the Bjäre Peninsula in 2022, but 655 

the results also raise the question of whether the filter parameters should be tuned differently 656 

to better capture unrealistically high inflows.  657 
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Regarding the Station Outlier filter, three stations were flagged as station outliers during the 658 

event – PWS 1, PWS 3 and PWS 4. However, when inspecting the time series and evaluation 659 

metrics for these stations, it appeared that PWS 1 and PWS 3 had among the highest 660 

correlations and lowest RMSE of all PWS and generally showed a reasonable rainfall pattern 661 

compared with the other PWS (Fig. 12). These results point to a limitation of neighboring 662 

checks in the context of convective storms. PWS 1, PWS 3 and PWS 4 are all located in the 663 

western part of Båstad. As such, the Station Outlier filter considered the observations of PWS 664 

located further to the west on the Bjäre Peninsula, which experienced a total depth of only 10 665 

mm according to the XWR observations. The high spatial variability of the event therefore 666 

triggered station outlier flags at the three PWS located closest to the drier area, even if two of 667 

them performed well when compared with the XWR reference.  668 

The parameter settings suggested in literature (Section 4.4) (de Vos et al., 2019) were changed 669 

in the Station Outlier filter. However, it is not expected that the changes created these results 670 

as the filter would not have been possible to apply at all for the event with the original numbers 671 

as there were too few wet time steps in the weeks preceding the storm. If the flagged PWS 672 

had been removed from further analysis based on the results from the Station Outlier filter, 673 

sound observations would have been lost. Conversely, the performance of PWS 5 and PWS 674 

7 was very poor compared with the XWR reference, but these stations were not flagged in the 675 

automatic quality control. Future research should explore how the spatial density of PWS and 676 

the considered evaluation range influence the capability of neighbor checks to be applicable 677 

as quality control protocols for localized rainfall.  678 

The findings of this study align with the well-established fact that conventional monitoring 679 

networks have limitations in terms of observing convective rainfall. To strengthen capacity in 680 

this field, NMHS can include second-party data in operational tools and workflows. However, 681 

differences in acquisition protocols, data formats etc. adopted by different actors may cause 682 

an additional burden and hinder the integration of second-party sensors. Importantly, Skåne 683 

County has an excellent coverage of second-party sensors thanks to the combination of XWR 684 

and rain gauges operated by local authorities, which is certainly not the case for all points of 685 

interest, particularly in countries with limited resources (Winsemius et al., 2018). In those 686 

cases, NMHS can turn to third-party sensors, particularly CML that are typically available in 687 

populated settlements across the globe (Chwala and Kunstmann, 2019; Blettner et al., 2023). 688 

However, the results of this study suggest that these sensors currently have limitations in 689 

quantifying the correct magnitude of convective storms. Still, the results show that third-party 690 

data may assist in detecting storm durations and the spatial distribution of rainfall. 691 

Regarding limitations of the study, a few remarks can be made. First, there are uncertainties 692 

associated with all observations in the study, especially the indirect rainfall measurements 693 
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(radars and CML) and the PWS. The long-term assessment of the municipal gauge, combined 694 

with the good agreement between the municipal gauge and XWR, still provide solid evidence 695 

for the actual magnitude of the event. Secondly, some findings are expected to be specific for 696 

this study, such as the low performance by CWR caused by beam blockage in the area of 697 

interest. On the other hand, the underestimation of rainfall observed by the third-party network 698 

aligns with previous studies. It is also expected that quality control protocols that utilize 699 

neighboring checks will be problematic for other convective storms, depending on the station 700 

network density and considered range of the analysis. Although no general conclusions can 701 

be drawn from a case study, we believe that the depth of this analysis contributes to the 702 

understanding of advantages and limitations when observing convective rainfall with second- 703 

and third-party sensors.  704 

7. Conclusion  705 

This study investigated the capacity of second- and third-party sensors to observe short-706 

duration extreme rainfall compared with a conventional rainfall monitoring network in a case 707 

study. The results show that the conventional network underestimated the total rainfall depth 708 

of the event and was unable to fully capture the extreme spatial variability of the convective 709 

storm. Only when considering observations from second- and third-party sensors, more 710 

accurate representations of the magnitude and spatial extent of the storm could be obtained, 711 

which suggests that NMHS could utilize these sensors to improve observations of convective 712 

rainfall. However, second-party sensors are not always available, particularly in resource-713 

strained settings. Furthermore, the results suggest that third-party sensors can assist in 714 

detecting storm durations and spatial variability of rainfall but have limitations in quantifying 715 

the correct magnitude of convective storms. Third-party data may also be difficult to obtain 716 

for NMHS and has known problems with data quality. Future research is suggested to 717 

continue the efforts on quality control of third-party data, especially related to extreme 718 

events. In addition, more research is needed on the integration of second- and third-party 719 

data in the workflows of NMHS.  720 

Appendix A 721 

A.1 Vegetation affecting the Ängelholm radar location 722 

The Ängelholm radar location is affected by partial beam blockage in a circular sector of 723 

around 60 degrees to the North (Fig. A1) (SMHI, 2025a). Båstad is located 6 km to the north 724 

of the radar. The figure shows accumulated precipitation detected by the radar during the 725 

period 3-17 October, 2019. Darker color indicates less total precipitation.  726 
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 727 

Figure A1. Accumulated precipitation detected by CWR Ängelholm, 3-17 October, 2019.  728 

The partial beam blockage is caused by vegetation within 1 km north of the radar location. 729 

Fig. A2 shows the Ängelholm radar beam in the north direction overlaid with a point cloud of 730 

vegetation based on aerial laser scans (Lantmäteriet, 2025). Note that the figure reflects the 731 

status as of 2019 and the vegetation has likely grown taller since.  732 

 733 

Figure A2. Ängelholm radar beam in the north direction overlaid with a point cloud of vegetation 734 
based on aerial laser scans (Lantmäteriet, 2025). 735 
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A.2 CML processing 736 

When estimating rainfall intensity from CML data, the first step is to identify a link-specific 737 

threshold for classification of wet and dry timesteps. The challenge is to detect small rainfall 738 

volumes (true wet periods) without including too many dry periods with strong attenuation 739 

from other causes, such as changes in water vapor content or air temperature (false wet 740 

periods). Several approaches have been suggested in literature (Rayitsfeld et al., 2012; 741 

Wang et al., 2012; Cherkassky et al., 2014; Overeem et al., 2016). Schleiss & Berne (2010) 742 

proposed a simple classification method that considers the rolling standard deviation of the 743 

attenuation, assuming that the variability is small during dry periods and large during wet 744 

periods. The time step is classified as dry if the variability falls below a defined threshold 745 

value, which must be calibrated with secondary observations nearby the link. More recently, 746 

machine learning approaches has shown strong potential to effectively classify wet and dry 747 

timesteps in CML data (Habi and Messer, 2018; Polz et al., 2020; Øydvin et al., 2024).  748 

The second step is to define a ‘baseline level’, that is, RSL during dry weather. This is used as 749 

the reference level for the rain attenuation calculation and is typically based on the signal 750 

attenuation during dry time steps preceding a wet period (Andersson et al., 2022). In addition, 751 

the signal is often corrected for additional attenuation caused by water on the cover of the 752 

antenna, so-called ‘wet antenna attenuation’ (e.g., Leijnse et al., 2007a, 2008; Graf et al., 753 

2020). Finally, the corrected attenuation is converted into rain rate using an inverted power law 754 

relationship. The MEMO method was developed and tested on an open data set (‘OpenMRG’) 755 

that consists of 364 CML and 11 rainfall gauges in Gothenburg, Sweden, for the period June-756 

August 2015 (Andersson et al., 2022).  The processing steps of the MEMO methodology are 757 

outlined below. 758 

A.2.1 Data pre-processing 759 

The 10-second attenuation was calculated by taking the difference between TSL and RSL. 760 

Then, the median value over a 1-minute period Aml was taken for all minutes that had more 761 

than four 10-second values in one minute and if less data were available, that minute was 762 

flagged as missing data. 763 

A.2.2 Wet-dry classification 764 

Sub-links in the OpenMRG dataset were scrutinized to find a wet-dry classification method that 765 

does not rely on secondary observations. The links considered were located within 500 m from 766 

a municipal rain gauge in Gothenburg that records at 1-minute temporal resolution, resulting 767 

in 72 links. First, dry time steps recorded by the station between 2015-05-14 to 2015-08-31 768 

were considered. A time buffer of 30 minutes was added before and after each rain event 769 

recorded by the rain gauge, to consider that rainfall arrives at different timesteps to the links. 770 

The 99th percentile of Aml at dry timesteps identified by the rain gauge was considered to 771 
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address that the links may record rainfall that was missed by the rain gauge. Then, the 772 

empirical distribution of Aml at the dry timesteps was plotted and inspected for the 72 links. An 773 

example is shown in Fig. A3. In this example, the difference between the median and 99th 774 

percentile of the attenuation is 0.35 dB.  775 

 776 

Figure A3. Example of empirical distribution of attenuation level (Aml) at dry timesteps for Link 312.  777 

The plots showed that the difference in 𝐴𝑚𝑙 between the median attenuation and the 99th 778 

percentile was typically between 0.35-0.6 dB at dry timesteps. However, the difference for one 779 

link with considerable fluctuations in signal attenuation was 1.7 dB. Based on these results, it 780 

was decided to set the threshold for the wet-dry classification to the median attenuation over 781 

the past 2 weeks plus an additional 1.7 dB (here called the ‘median buffer method’). In this 782 

study, where only two days of data was available, the median was taken over all available 783 

preceding time steps.  784 

The median buffer method was compared with classifying all timesteps with attenuation above 785 

the median of the last two weeks as wet (‘median method’) and the method presented by 786 

Schleiss and Berne (2010) (‘Schleiss method’). The median method resulted in overestimation 787 

of the number of wet timesteps compared with the rain gauge. The Schleiss method performed 788 

similarly to the median buffer method in correctly identifying the number of wet timesteps but 789 

resulted in some outliers and produced more false wet time steps. Based on these results, the 790 

median buffer method was used for further analysis.  791 
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A.2.3 Baseline definition 792 

The baseline 𝐴𝑏𝑙 is the expected difference between TSL and RSL during dry weather. This 793 

means that during dry periods, based on the wet-dry classification in the previous step, the 794 

baseline is equal to the attenuation 𝐴𝑚𝑙. During wet periods, the baseline is taken as the 795 

median of the last N timesteps from the first wet timestep. A suitable reference period for N 796 

was found to be 240 minutes.  797 

A.2.4 Conversion of net attenuation to rain rate 798 

By subtracting the baseline from the attenuation, the net attenuation 𝐴𝑛𝑙 was found as 799 

𝐴𝑛𝑙 = 𝐴𝑚𝑙 − 𝐴𝑏𝑙 (A1) 

Following common practice in CML literature (Leijnse et al., 2007b; Messer et al., 2006), 800 

specific attenuation (dB km-1) was converted to rain rate (Praw) using link length (L, km) and the 801 

power-law relationship: 802 

𝐴𝑛𝑙

𝐿
= 𝑘𝑃𝑟𝑎𝑤

𝛼 
      

(A2) 

The parameters k and α depend on link frequency, the polarization state, and the elevation 803 

angle of the signal path and was found by applying the equations derived by ITU-R (2005). For 804 

the link in this paper, k = 0.13 and α = 0.96 (23.1 GHz, vertical polarization). In contrast to 805 

radar scatter, the sensitivity to DSD (Eq.1) is very limited around 30 GHz because α is 806 

approximately 1 in this range, suggesting a nearly linear relation between net attenuation and 807 

rain rate (Chwala and Kunstmann, 2019). At frequencies further from 30 GHz, DSD will play a 808 

larger role and biases can occur. Most links in Sweden operate near 30 GHz (Andersson et 809 

al., 2022).  810 

A.2.5 Bias correction based on link length  811 

The derived rain rate was analyzed for the 72 links situated within 500 m range from the 11 812 

rain gauges in the OpenMRG dataset for July 2015. When plotting the residuals of the rain rate 813 

at the closest gauge against 15-min accumulated net attenuation of the link, a linear 814 

relationship was found, indicating potential for bias correction. The slope of the residuals was 815 

derived by linear regression for each link and plotted against the link frequency, link length and 816 

the parameters k and α in Eq. A2. The most distinct relationship was found for link length, 817 

suggesting that the shorter the length, the higher the slope of the residuals. One probable 818 

reason for the relationship is the wet-antenna effect, which is stronger over shorter distances 819 

(Chwala and Kunstmann, 2019).   820 

It was found that the slope of the regression line of the residuals could be estimated from link 821 

length by applying a simple inverse equation: 822 
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𝑆𝑙𝑜𝑝𝑒 = 𝑓 ×
1

𝐿𝑔
+ ℎ (A3) 

where L is the link length. The parameters f, g, and h were optimized by minimizing the Mean 823 

Absolute Error for the 72 links, arriving at 2.85214, 1.672 and 0.1615, respectively. The bias 824 

corrected rain rate for the CML in Båstad was then found by calculating the correction factor: 825 

𝐶𝐹𝐴 = 2.85214 ∗ (1/𝐿1.672) + 0.1615 (A4) 

 826 

where L is 4.8 km in this case. Then, applying the factor to the derived rain rate: 827 

𝑃𝐶𝑀𝐿 = 𝑃𝑟𝑎𝑤 − (𝐴𝑛𝑙 ∗ 𝐶𝐹𝐴) (A5) 

 828 

A.3 PWS quality control 2022 829 

Figure A4 shows Faulty Zero (FZ) flags for the eight PWS in the area of interest for the full 830 

year 2022.  831 
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 832 

Figure A4. Faulty Zero (FZ) flags 2022. 1 = FZ flag, 0 = no FZ-flag, -1 = FZ-filter could not be applied. 833 
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Figure A5 shows Station Outlier (SO) flags for the eight PWS in the area of interest for the 834 

full year 2022. 835 
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 836 

Figure A5. SO-flags 2022. 1 = SO flag, 0 = no SO-flag, -1 = SO-filter could not be applied. 837 
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