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Abstract

Short-duration extreme rainfall can cause severe impacts in built environments and flood
mitigation measures require high-resolution rainfall data to be effective. It is a particular
challenge to observe convective storms, which are expected to intensify with climate change.
However, rainfall monitoring networks operated by national meteorological and hydrological
services generally have limited ability to observe rainfall at sub-hourly and sub-kilometer
scales. This paper investigates the capability of second- and third-party rainfall sensors to
observe a highly localized convective storm that hit southwestern Sweden in August 2022.
Specifically, we compared the observations from professional weather stations, C-band radar,
X-band radar, Commercial Microwave Links and Personal Weather Stations to get a full
impression of the sensors’ strengths and weaknesses in the context of convective storms. The
results suggest that second- and third-party networks can contribute important information on
short-duration extreme rainfall to national weather services. The second-party network
assisted in quantifying the magnitude and spatial variability of the event with high accuracy.
The third-party network could contribute to the understanding of the duration and spatial
distribution of the storm, but it underestimated the magnitude compared with the reference

SEensors.

1. Introduction

The global trend of urbanization is increasingly exposing people and assets to flood risks,
which particularly affects the urban poor (Winsemius et al., 2018; Petersson et al., 2020; UN-
Habitat, 2024). Flood mitigation and disaster preparedness measures require rainfall
measurements on sub-hourly and sub-kilometer scales to be effective from the planning phase

to post-event analysis (Guo, 2006; Marchi et al., 2009; Mailhot and Duchesne, 2010; Fuentes-
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Andino et al., 2017; Pulkkinen et al., 2019; Imhoff et al., 2020). However, traditional monitoring
techniques generally have limited ability to accurately observe rainfall at this spatiotemporal
resolution. The most impactful rainfall events in urban areas are typically convective storms,
which can cause heavy rain over small areas and short durations with severe damage as a

consequence (Kaiser et al., 2021; Mobini et al., 2021).

In Sweden, the Swedish Meteorological and Hydrological Institute (SMHI) operates around
600 rain gauges across a landmass of 410,000 km2. Of these, around 130 are automatic
stations recording accumulated rainfall depth every 15 minutes, and the remaining are manual
stations reporting daily amounts. The station network is complemented with 12 C-band
Weather Radars (CWR) across the country with outputs every 5 minutes at 2 km spatial
resolution. While CWR generally is capable of producing a good spatial representation of
precipitation, it has limitations caused by beam overshooting, beam blockage and clutter (van
de Beek et al.,, 2016; Einfalt et al., 2004). For highly localized convective events, the
spatiotemporal resolution of Sweden’s official gauge network and radar composite is too low
to capture essential rainfall dynamics, such as spatial variability and peak intensity.

One option for national meteorological and hydrological services (NMHS) to access high-
resolution rainfall measurements is to reach agreements with other professional entities like
municipal water utilities and universities that maintain their own monitoring networks, so-called
“second-party data” (Garcia-Marti et al., 2023). While these data might be trustworthy for
operational use, their sampling resolution may, just like official data, be insufficient on the
“unresolved spatial scale” in which convective storms occur (Lussana et al., 2023). In light of
this, SMHI has recently gained interest in additional external observations not operated by any
official agency, sometimes referred to as “third-party data”. The new technologies are often
enabled by digitalization and user-generated content on the Internet, which lowers the barriers
and costs associated with data acquisition. While these data can provide higher resolution
observations in space and time, they are often subject to uncertainties and bias due to the lack
of installation guidelines, maintenance protocols and mechanisms to reinforce such standards.
These promises and concerns have sparked research efforts on applications and quality
control of third-party data at SMHI and many other European NMHS (Hahn et al., 2022; Garcia-
Marti et al., 2023; Olsson et al., 2025).

This paper investigates the capability of second- and third-party rainfall sensors to observe a
highly localized convective storm that occurred on 18 August 2022 in Bastad, Sweden. The
second-party data comes from sensors managed by local authorities in Skane County and
consists of a traditional rain gauge and an X-band Weather Radar (XWR). As for third-party
data, we study rainfall observations from a Commercial Microwave Link (CML) and a set of

Personal Weather Stations (PWS). CML and PWS are sometimes referred to as “opportunistic
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sensors” (Fencl et al., 2024). Here, we will use the term “third-party data” for consistency. First,
the long-term (2021-2022) performance of the second-party rain gauge is evaluated against
the national weather stations to qualify as a trusted reference sensor for the study. Then, an
event analysis is performed by calculating evaluation metrics for each sensor compared with
the reference. Data from the radars and third-party sensors require pre-processing and quality

control to facilitate the analysis.

XWRs are lower-cost compared with conventional C-band and S-band weather radars and
provide higher resolution imagery. They are, on the other hand, more affected by attenuation,
especially in widespread heavy rainfalls due to the accumulated attenuation throughout the
signal path (Lengfeld et al.,, 2016; Bobotova et al., 2022). XWRs also have a shorter
observation range than conventional radars, typically 30-60 km (Thorndahl et al., 2017).

CMLs are radio links between base stations that connect the backbone of telecom networks
to local subnetworks (Chwala and Kunstmann, 2019). CMLs operate at frequencies where the
propagation of radio waves through the atmosphere is attenuated by rainfall. The transmitted
signal level (TSL) and received signal level (RSL) are collected by telecom companies for
network monitoring and maintenance purposes, so what is being considered as “noise” in
telecommunication can be used as a signal to estimate rainfall intensities for
hydrometeorological applications (Leijnse et al., 2007b). In this paper we study the spatial
variability of rainfall along a CML link by sampling XWR bins every 250 meters along the CML
reach, resulting in 20 XWR time series that are compared with the CML rainfall estimates. This
approach enables us to perform detailed investigations about bias in CML observations due to

the variability of rainfall intensity along a CML path.

PWS are weather stations installed by people on their private property. Here, we consider
PWS that can be connected to online platforms to share observations openly in real time.
Recent years have seen a remarkable increase in PWS connected to the internet, presumably
due to the adoption of smart home technologies (Sovacool and Furszyfer Del Rio, 2020).
Contrary to CML, PWS are designed to measure rainfall directly, but it can be assumed that
PWS data are subject to errors and bias linked to hardware, installation site and maintenance
(Boonstra, 2024). Various quality control protocols explicitly designed for PWS have been
presented in the literature (de Vos et al., 2019; Bardossy et al., 2021; Lewis et al., 2021).
However, it has not been investigated how the algorithms perform when applied to localized
extreme rainfall. In this paper, we apply an adjusted version of the PWS quality control protocol

suggested by de Vos et al. (2019) and compare the results with traditional evaluation metrics.

This paper addresses multiple gaps in high-resolution monitoring of convective rainfall by

bench-marking second- and third-party sensors with an official monitoring network, and by
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investigating the performance of a PWS quality control protocol in this context. The study is

guided by an ambition to contribute to answering the following general research questions:

e To what extent are second- and third-party sensors capable of observing convective
rainfall?
¢ What are the advantages and limitations of observing convective rainfall with second-

and third-party sensors, compared with a national monitoring network?

This paper is organized as follows. After this introductory section, Section 2 presents the storm
event and area of interest that was selected for the case study. Section 3 describes the sensors
and data applied in the analysis. Section 4 presents evaluation metrics and methods applied
for the long-term and event analysis. Section 5 outlines the results of the long-term and event
analysis. Section 6 discusses the results, while Section 7 summarizes the main findings of the
study.

2. Case study

A convective rainfall event that hit the Bjare Peninsula in Skane County, Sweden, in the late
afternoon of 18 August 2022, was selected for the study. SMHI’s forecast had indicated a small
likelihood of rainfall intensities above 35 mm/3h, which is the institute’s threshold for rainfall
weather warnings. However, it was expected to hit further to the north, so no weather warning
was issued in the area at the time of the event. According to media reports, the rain was mixed
with hailstones of about 2 cm in diameter and caused flooding of around 60 buildings
(Gravlund, 2025; Bengtsson, 2023). A local water utility company (NSVA) operates a tipping
bucket rain gauge (hereafter ‘municipal gauge’) in the city of Bastad, which peaked at 216
mm/h and recorded 75.4 mm in 64 minutes. This corresponds to a return period of about 700
years, based on rainfall statistics developed for southwestern Sweden (Olsson et al., 2019).
The maximum depth recorded in 45 minutes was 71.2 mm, which breaks Sweden’s official
record of 61.1 mm in 45 minutes at the Dagl6sen station in Varmland County on 5 July 2000.
The predominant wind direction in the area is from the southwest to the northeast, and the
selected event was preceded by two dry days. The analysis focused on the urban area of
Bastad, a town with around 16,000 inhabitants located on the southern coast of the Laholm
Bay, covering approximately 9.4 km?. Fig. 1 shows the locations of all sensors included in the
study.
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Figure 1. Area of interest and locations of sensors.

3. Data

Three levels of data were considered in the study — Sweden’s national meteorological

monitoring network, a municipal gauge and XWR operated by local and regional agencies

(second-party network) and CML and PWS (third-party network). More details on the data

sets are provided below.

3.1 National monitoring network

The national weather monitoring network operated by SMHI consists of a combination of

manual and automatic weather stations and CWR. The Hov, Laholm D and Baramossa

weather stations, located 9-10 km away from Bastad (Fig. 1), report daily accumulated rainfall

at 06:00 UTC+2, manually observed by certified observers. The automatic rain gauge station

of weighing type on the island Hallands Vadero, situated 15 km west of Bastad, reports 15-

minute accumulations. As these data have passed quality assurance protocols at SMHI, we

consider them the most trustworthy source to use for benchmarking in the study. Precipitation

data from the stations for the year 2022 were downloaded from SMHI’s open data archive

(SMHI, 2025bh).




153
154
155
156
157
158
159
160
161
162
163
164

165
166

167

168
169
170

171
172

173
174
175
176

177
178

In addition, we studied a gauge-adjusted Plan Position Indicator (PPI) horizontal reflectivity
composite based on the lowest elevation scan (0.5°) from all radars operated by SMHI. The
composite is used operationally for weather forecasting at the institute. The composite is
available in 5-minute resolution at a spatial resolution of 2x2 km and distributed as radar
reflectivity data in SMHI's open radar archive (SMHI, 2025c¢).The gauge-adjustment technique
is based on the gauge-to-radar ratio and is targeted towards real-time applications (refer to
Michelson & Koistinen (2000), for details). Radar data compositing at SMHI is performed using
the BALTRAD software (Michelson et al., 2018). While the radars can operate in dual-
polarization mode, this product is based on the horizontal polarization. The closest radar (radar
location Angelholm) is situated 6 km south of Bastad, (Fig. 1, map 2). Since this radar was
operational during the selected event and the compositing method is based on the closest
radar, the studied composite is based on data from only this radar during the period of interest.

Radar reflectivity Z [mm®m3] can be expressed as integrals over the Drop Size Distribution
(DSD) in the pulse volume, here N(D) [mm/m?].
Z= f Dé(D)N(D)dD (1)
0
where D [mm] is the spherical drop diameter. It is generally expressed logarithmically as dBZ:

2)
dBZ = 10 X log,¢(Z)
The CWR composite retrieved from SMHI's radar archive is distributed as pseudo-dBZ E
(integer 0-255) to enable a smaller storage size, following European standards (Michelson et
al., 2014). To convert these integers back to dBZ, gain G and offset were applied:

3)
dBZ = E X G + of fset
where G = 0.4 and offset = -30 (Michelson et al., 2014). The rain rate Pcwr (mm/h) can be

found from the reflectivity following an inverted power law relationship:

Z\b (4)
Pewr = (E)
We applied the parameters suggested by Marshall & Palmer (1948), a=200 and b=1.6. The
actual values of a and b can vary greatly depending on the actual DSD, which may be different
within and from event to event (Battan, 1973). CWR time series at a 5-minute resolution were

sampled at the locations of the municipal rain gauge and the eight PWS.

Figure 2 shows the elevation profile and radar beam profile between the CWR location and the

location of the municipal gauge in Bastad. The low elevation angle and short distance to the



179
180
181
182
183
184
185
186
187
188

189

190
191

192
193
194
195
196
197
198

199
200
201
202
203

area of interest indicate that the observations are made at approximately 200-300 m above
sea level, eliminating the risk of beam overshooting, as convective precipitation in the summer
months typically originates from much higher altitudes. Overshooting is a common error in
radar data that appears when the radar beam shoots above the precipitation cloud (Battan,
1973; Seo et al., 2000). However, the Angelholm radar is affected by partial beam blockage in
a circular sector of around 60 degrees to the north of the radar location, which covers the area
of interest (Appendix Al., Fig. Al). This is caused by vegetation within 1 km north of the radar
location (Appendix Al., Fig. A2). Evaluations at SMHI have shown that the Angelholm radar
underestimated the accumulated rainfall depth of the years 2022-2023 by around 80% in the

affected area, compared with SMHI’'s weather stations.
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Figure 2. Elevation profile and beam profile between the CWR radar location and the municipal
gauge.

3.2 Second-party monitoring network

We consider two second-party sensors operated by local and regional authorities: a municipal
gauge in Bastad managed by the local water utility company NSVA, and a compact FURUNO
dual-polarization XWR operated by NSVA on behalf of Lund University. The municipal gauge
is a Casella tipping bucket, which records a tip each time the bucket volume (0.2 mm) is filled
on a 1-second resolution. Time series with 1-minute resolution from the municipal rain gauge

for the years 2021-2022 were received upon request from NSVA.

About 80% of Skane County is covered by observations from two XWRs located in Dalby and
Helsingborg (Hosseini et al., 2023). In this study, we used data from the XWR in Helsingborg,
40 km south of Bastad (Fig. 1). The spatial resolution of the data is 0.5 degrees of azimuth and
75 m of slant range. XWR data for the day of the event was acquired from VeVa (Weather
Radar in the Water Sector) (Foreningen VeVa — Vejrradar i vandsektoren, 2025), a
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collaboration between water utility companies in south Sweden and Denmark that distributes
XWR data to its partners according to the EUMETNET Opera Data Information Model
(Michelson et al., 2014).

The manufacturer’s built-in precalculated rainfall rate Pxws (mm/h) from the lowest scan
(elevation angle of 1°) on 1-minute resolution was used for the study. The underlying equations
for calculating the rainfall rate are generally similar to CWR as described in Section 3.1.
However, a main difference is that the XWR data integrates dual-polarization variables as a
method for attenuation correction, as described in detail in Hosseini et al. (2020). This method
estimates attenuation as an approximately linear function of the specific differential phase shift,
which depends on phase rather than signal intensity and is therefore less sensitive to
attenuation (Kumjian, 2013). The method has been shown to be useful for summer
precipitation estimations in Sweden (Hosseini et al., 2023).

Figure 3 shows that the XWR’s beamwidth has a much larger sampling volume and steeper
elevation angle than CWR (Fig. 2) at the area of interest, which suggests a small risk of signal
contamination due to beam blockage. As the profile extends 250-1750 meters above sea level
over Bastad, this, just like for CWR, suggests a small risk of beam overshooting.

1750 A
XWR beam (beamwidth=2.7°, elevation=1.0°)
1500 1 ™ Terrain (> 0 m)
1250 A
£ 10001
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©
2 750
<
500 A
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O _
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Figure 3. Elevation profile and beamwidth between the XWR radar location and the municipal gauge.

3.3 Third-party monitoring network

Two types of third-party sensors were included in the study — CML and PWS. The location of
the only CML in the area of interest is shown in Fig. 1. This link is approximately 4.8 km long
and has a frequency of 23.1 GHz. CML data were received as TSL and RSL at 10-second

resolution upon request from the telecom companies Ericsson AB and Tre. The data covered

8
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all base stations on the Bjare Peninsula for the days 18-19 August 2022. Each antenna
works as both a transmitting and receiving terminal, meaning that each link has bidirectional
transmission and provides at least two radio signals. Here, we use the term ‘sub-link’ to refer

to a single radio signal.

Received TSL and RSL were converted into rainfall rate using the MEMO (Microwave-based
Environmental Monitoring) method developed by SMHI (MEMO, 2025). This method follows
the general steps applied by most CML algorithms as described in Appendix A2. However, the
process does not explicitly correct for wet antenna attenuation, but instead applies a bias
correction factor CFa based on link length to the derived rain rate P.aw (mm/h) that compensates

for the wet antenna effect:

Pemr = Praw — (Any * CFy) (5)
Here, Praw is the uncorrected rainfall intensity and Ay is the net attenuation. More details on

CML processing are found in Appendix A2.

The selected PWS type in this study, NetAtmo, is an unheated plastic tipping bucket rain
gauge that reports the number of tips through a wireless connection to the accompanying
indoor module (de Vos et al., 2019). The indoor module broadcasts the observations to
Netatmo’s online platform at approximately 5-minute intervals. The default tipping bucket
volume is 0.101 mm, or another volume specified by the station owner using the product’s
calibration feature. PWS time series for the study were received from NetAtmo. PWS without
a rainfall sensor, and PWS that were offline during the storm event, were excluded from the
analysis. This resulted in a total of eight PWS located within the Bastad urban area (Fig. 1).
The PWS data were quality controlled as described in Section 4.4.

4. Methods

The analyses covered two stages — a long-term analysis and an event analysis. This section
first presents the evaluation metrics applied to assess the performance of the sensors in the
study, followed by descriptions of the methods applied in the long-term analysis and event
analysis. Then, the quality control of PWS data is described, as well as time lags applied to
the radar data.

4.1 Evaluation metrics

Three evaluation metrics were used to assess the performance of each sensor: Spearman’s
rank correlation (rs), Root Mean Squared Error (RMSE), and Percent Bias (PBIAS). The
metrics were calculated on different temporal resolutions in different analyses, see Sections
4.2 and 4.3. For each analysis, the metrics were calculated for the duration of the event as

recorded by the respective reference sensor, see Section 4.3.
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The Spearman correlation is a non-parametric test that measures the strength of a monotonic

relationship between two variables:

. eyd? (6)
BT Tamr-D
where d; is the difference between ranks for each pair of values and n is the number of
observations. The closer to -1 or 1, the better the negative or positive monotonic relationship.
As the Spearman correlation does not address the magnitude of error, it can be complemented

with RMSE (Hyndman and Koehler, 2006):

(7)

n
1
RMSE = EZ(oi —T;)?
i=1

where O; is the reference rainfall and T; is the evaluated data. Lower RMSE indicates a better

model performance. Finally, PBIAS quantifies the average bias, where a positive or negative
value suggests an underestimation or overestimation of rainfall depth, respectively (Gupta et
al., 1999):

PBIAS =100 x M
2i=1 0 (8)

4.2 Long-term analysis

As the magnitude of the selected event was not captured by the national network (see Results)
it was necessary to establish another reliable reference for the event analysis. Consequently,
the long-term (2021-2022) performance of the municipal gauge was evaluated against the
national weather stations using the metrics presented in Section 4.1 at daily resolution. The
gauge was cross-referenced with the manual stations Hov, Laholm D and Baramossa operated
by SMHI, all situated 9.3-9.7 km away (Fig. 1). The station Hallands Vaderd A was excluded
from the comparison as it is located on an island 15 km west of Bastad. The tips recorded by
the municipal gauge were resampled to daily accumulations between 06:00-05:59 UTC+2, as

this is the sampling frequency of the reference (manual) stations.

4.3 Event analysis

The temporal range of the studied event differed between each sensor, as the start and end
of the rainfall occurred at different times in the observed time series. The reference used for
each comparison is outlined below. The event start was defined as the first timestep when it

had been raining more than 0.1 mm/h for at least 5 minutes at the reference sensor, and the

10
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event stop was when it had been raining less than 0.1 mm/h for at least 5 minutes (Section
5.2.1). The return period of the event was calculated based on SMHI’s climate statistics for
southwestern Sweden (Olsson et al., 2019). The calculation of evaluation metrics, return

periods, and accumulated depths were carried out for the duration of the event as recorded

by the reference sensor.

Based on performance, it was decided to exclude CWR as a reference (Section 5.2.2). The
CWR composite was sampled at the location of the municipal gauge, and the metrics were

calculated at 5-minute resolution (the resolution of the CWR data) with the municipal gauge
as the reference. The accumulated rainfall Dcwr (mm) was then calculated at the location of

the municipal gauge and for the whole CWR composite in the area of interest.

The XWR data were available in polar bins, that is, range gates at a given elevation and
azimuthal angle, in contrast to the regular Cartesian grids for the utilized CWR data. Thus,
time series were extracted from the XWR polar bin closest to the projected locations of
interest, accounting for elevation, range difference, and azimuth difference. The sampled
locations included the municipal gauge, the eight PWS, and 20 points along the CML path,
as described below. The elevation metrics were calculated on the XWR time series sampled
at the municipal gauge on a 5-minute resolution with the municipal gauge as reference. After
concluding that XWR recorded similar rainfall depth as the municipal rain gauge during the
event, XWR was used as a reference for CML and PWS to better account for the spatial
variability of the rainfall. For visualization purposes, the volumetric XWR data was gridded
into a Cartesian grid of 250-meter resolution using linear interpolation with Delaunay
triangulation. The accumulated rainfall Dxws (mm) was calculated for the whole area of

interest based on the gridded data.

A few missing values were found in the XWR time series, which occurred during the most
intense part of the storm. Investigations showed that these bins likely observed rainfall
intensities above 255 mm/h, which is the upper limit for storing integers in 8-bit format and
which was used by VeVa when calculating the rain rate. The missing values were filled with

temporal linear interpolation.

The CML included in this study consists of two sub-links. These recorded similar values, with
a difference in total rainfall depth of around 5% for the whole event. Thus, the mean rain rate
Pcwe and mean depth Dew per timestep of the two sub-links were used in the analysis. The
XWR polar bins data were sampled every 250 m (20 points, Fig. 1) along the reach of the
CML to investigate the variability of rainfall intensity along the link, resulting in 20 XWR time
series on 1-minute resolution. Evaluation metrics were calculated on 1-minute resolution with

the mean of 20 XWR samples, Pxwr, as reference.

11
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To investigate how CML estimates of extreme rainfall are impacted by spatial variability along
the link, the 10" and 90" percentiles were calculated to explore the range of Pxwr and Dxwr
along the CML path. The behavior of the XWR data along the CML during the intense part of
the storm was inspected visually. Hypothesizing that the difference in XWR and CML
observations is related to the XWR variability along the link, an ordinary least squares analysis
was performed on the difference Pxwr and Pcw, with the XWR standard deviation as the

independent variable.

For each PWS, the evaluation metrics were calculated compared with the XWR time series
sampled at the PWS location on 5-minute resolution. The PWS timeseries were processed

with a quality control package as described below.

4.4 PWS Quality Control
Research has shown that the quality of rainfall data from PWS can be improved significantly

by applying quality control and bias correction. The algorithms suggested in literature, e.g,
Mandement & Caumont (2020), Lewis et al. (2021), Bardossy et al. (2021), typically utilize the
high observation density of PWS by comparing rainfall time series with the performance of
neighboring stations, referred to as ‘buddy checks’ by Baserud et al. (2020). De Vos et al.
(2019) developed a quality control protocol for PWS rainfall data in the R programming
language, PWSQC. The method does not rely on a primary monitoring network, but flags
suspicious measurements based on the observations from nearby stations. The method has
been applied in gauge-adjustment of radar by Nielsen et al. (2024) and Overeem et al. (2024)
and has recently been converted to a Python package, pypwsqc, that was applied for the study
(Graf et al., 2025).

Event time series from the eight PWS were processed with pypwsqc. The algorithm applies
three filters utilizing neighbor checks — the Faulty Zeroes filter, High Influx filter, and Station
Outlier filter — to assess the quality of each time step in rainfall time series by comparing with
the records of neighboring PWS within a user-defined radius (refer to de Vos et al., 2019, for
details). The Faulty Zeroes filter flags timesteps when the evaluated station records zero
rainfall for at least ni time intervals, while the median of the surrounding rainfall observations
is larger than zero. The High Influx filter identifies unrealistically high rainfall amounts based
on a comparison with the median rainfall of the neighboring stations. The Station Outlier filter
flags a station as an “outlier” if the Pearson correlation with the median rainfall of neighbors in

a selected evaluation period falls below a set threshold.

To improve the performance of the neighboring checks, data from all PWS within a 10 km
radius around Bastad were considered, which resulted in a total of 58 stations. However, only
the results of the 8 PWS within the area of interest were evaluated during the event. To get a

better understanding of the long-term performance of each PWS, the quality control was also

12
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applied for the full year of 2022. The parameters were set to the same values as in the original
publication (de Vos et al., 2019), except Mmarch and min.. These parameters control how many
wet time steps at the evaluated PWS that must be overlapping with wet time steps at the
neighboring stations within a defined evaluation period to reliably apply the Station Outlier filter.
The numbers proposed by de Vos et al. (2019) were found to be too strict for the PWS dataset
in this study, as the Station Outlier filter could not be applied for very long periods, including
during the studied storm event. Instead, Mmach and Miy: were set to 100 and 8064, respectively,

to require less wet time steps during a longer evaluation period.

4.5 Time lags

The event analysis revealed low correlations (rs) between the radars (CWR and XWR) and
the reference (municipal gauge), see Sections 5.2.2 and 5.2.3. As convective rainfall is highly
variable in space and time, the observations per time step can be very different at nearby
locations, which can lead to low correlations even between high-quality observations.
Therefore, time lags were applied to the radar time series to see if this could increase the
correlation. The radar time series sampled at the municipal gauge were shifted from -10 to
+10 timesteps on a 5-minute resolution. For each lag, the correlation rs with the municipal
gauge was calculated over the event duration as defined by the reference. The highest

correlation value was then reported.

5. Results

5.1 Long-term analysis

Figure 4 shows daily accumulations from the Hov, Laholm D and Baramossa weather stations
and the municipal gauge for the years 2021 and 2022. The plot shows that the municipal gauge
recorded significantly less rainfall than Baramossa but followed Hov and Laholm D reasonably
well. These findings align with rainfall observations of the region in the period 1991-2020

(SMHI, 2025d). The inland regions of southwestern Sweden, including the northern parts of
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Skane County where Baramossa is located, overall receives more precipitation than the

coastal area, where the Bastad, Hov and Laholm stations are located.
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Figure 4. Accumulated depth 2021-2022 for municipal gauge and SMHI rain gauges located 9.3-9.7 km

away.

Table 1 shows the evaluation metrics of the municipal gauge, benchmarked with the three

reference stations. The PBIAS over 2 years was only -8% compared with Hov weather

station, which is considered low as the stations are situated 9.7 km apart. Based on these

results, the municipal gauge was accepted as a trusted reference for the event analysis.

Table 1. Cross-validation of the municipal gauge with three reference stations, 2021-2022.

Reference Distance to rs RMSE Accumulated PBIAS (%)
station (SMHI) | municipal (mm/day) | difference (mm)

gauge (km)
Baramossa 9.4 0.55 6.1 674 -31%
Hov 9.7 0.46 5.87 -118 8%
Laholm 9.3 0.52 5.23 -233 19%

5.2 Event analysis

5.2.1 Event duration
Table 2 summarizes the event duration observed by each sensor. National weather stations

were excluded from the analysis, either because they record daily precipitation, or because
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they recorded very small total depth (Section 5.2.2). The municipal gauge recorded rainfall
for 64 minutes, which is among the shortest durations with only PWS 4 observing rain for a
shorter period (50 min). Notably, XWR recorded rain for 109 minutes at the location of the
municipal gauge. This follows the general pattern that XWR recorded rain for a longer period
than the corresponding gauge. The difference was generally around 30 minutes, possibly
due to the higher sensitivity of XWR to light drizzles, either never reaching the ground or
slowly accumulating in the tipping bucket before the first tip was recorded at the weather
station. Comparing XWR with CML, there was only 4 minutes difference in the observed

event start.

The PWS are concentrated in two clusters. PWS 1-4 are located in the western and central
part of Bastad together with the municipal gauge, and PWS 5-8 in the north-eastern part
(Fig.1). In Table 2, it can be seen that ground observations in the mid-western part of Bastad
started recording rain between 16:55 and 17:15, and the north-eastern part between 17:15
and 17:25, which suggests a gradual motion of the storm from west/south-west to the north-
east. A similar tendency is seen in the XWR data, but with approximately 30 minutes time
lag.

Table 2. Event duration observed by each sensor.

Sensor Type Event start  Event end Duration
(UTC+2) (UTC+2) (min)
Municipal gauge reference 17:05 18:09 64
XWR at municipal test 16:45 18:34 109
gauge
CWR at municipal test 16:45 17:55 70
gauge
XWR mean along CML reference 16:38 18:36 118
CML mean test 16:34 18:43 129
XWR at PWS 1 reference 16:40 18:30 110
PWS 1 test 17:05 18:30 85
XWR at PWS 2 reference 16:45 18:30 105
PWS 2 test 17:10 18:30 80
XWR at PWS 3 reference 16:40 18:30 110
PWS 3 test 16:55 18:10 75
XWR at PWS 4 reference 16:40 18:10 90
PWS 4 test 16:55 17:45 50
XWR at PWS 5 reference 16:45 18:35 110
PWS 5 test 17:25 20:00 155
XWR at PWS 6 reference 16:45 18:35 110
PWS 6 test 17:15 18:35 80
XWR at PWS 7 reference 16:50 18:35 105
PWS 7 test 17:25 18:35 70
XWR at PWS 8 reference 16:45 18:35 110
PWS 8 test 17:20 18:30 70
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5.2.2 National monitoring network
The total rainfall depth observed by the national monitoring network is shown in Fig. 5. The

CWR grid size is 2x2 km. The weather station Hallands Vadero A, situated 15 km west of
Bastad, records accumulated values every 15 minutes but only observed a total volume of
0.4 mm on the day of the event. The other stations report daily accumulations between
06:00-05:59 UTC+2, amounting to a maximum depth of 14.2 mm at Hov. All observations
from SMHI’s gauges corresponded to a return period of less than 1 year (Olsson et al.,
2019). The heaviest rainfall observed by CWR was concentrated in the south of the Bastad
urban area, with a maximum total depth of 65 mm, which corresponds to a return period of
around 400 years for a duration of 60 minutes (Olsson et al., 2019). The maximum recorded
depth in the area of interest was 25 mm (to the south-east), which corresponds to a return
period of 11 years for a duration of 60 minutes.

0 2.5 5 km QFH.S '

0.4

Legend

,,,,, Bastad urban area
(O C-band radar location
¢ Total depth SMHI stations (mm)

Total depth CWR (mm)

_ 105
I 5-10
7 10-20
[120-30
T130-40
71 40-50
Il > 50

Figure 5. Total accumulated depth (mm) of the event recorded by the national monitoring network.

Figure 6 shows the rainfall event observed by the municipal gauge, compared with CWR
sampled at the same location. CWR underestimated the total depth with 57 mm when
compared with the gauge, which suggests that CWR could not quantify the magnitude of the
event accurately. The CWR started to observe rain 20 minutes before the rain gauge. Different
time lags were applied to the time series by iteration, and it was found that rs could be raised
from 0.4 to 0.83 when adding a lag of 10 minutes to the CWR data.
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Figure 6. a) Rainfall intensity P (mm/h), Spearman’s rank coefficient rs (-) and RMSE (mm/h). b)
Accumulated depth D (mm), difference in total depth and PBIAS. Evaluation metrics applied on CWR

with municipal gauge as reference.

5.2.3 Second-party monitoring network
Figure 7 shows the total accumulated depth observed by the second-party network. The

municipal gauge observed a total depth of 75.4 mm between 17:05 and 18:09, which is here
approximated as 60 minutes. This corresponds to a return period of around 700 years (Olsson
et al., 2019). The location of the heaviest rainfall was different when comparing gridded XWR
data (250x250m) to the CWR composite, where the XWR data indicated that the storm was
centered just outside the coastline and not to the south of the Bastad urban area. The total
depth of XWR sampled at the location of the municipal gauge based on the closest XWR bin
was 78.4 mm, corresponding to a return period of around 800 years for 60 minutes duration,
with observations up to almost 90 mm within the area of interest. X\WR observations above 5
mm occurred over a much larger area compared with the CWR, especially to the north-east.
This suggests that the CWR indeed was affected by beam blockage during the event as

described in Section 3.1.
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Figure 7. Total accumulated depth (mm) of the event recorded by the second-party monitoring network.

Figure 8 shows the rainfall event observed by the municipal gauge, compared with XWR polar
data sampled at the same location. As for CWR, the XWR started to record rain almost 20
minutes before the rain gauge. The correlation rs could be raised from 0.56 to 0.7 when adding
a lag of 5 minutes to the XWR data. Even if the correlation was low with the reference, XWR
observed a similar total depth with only 3 mm overestimation. In Fig. 8a, there is a tendency
for XWR to underestimate the overall peak rainfall intensity and to overestimate lower rainfall
intensities. This might be related to signal attenuation during heavy rain and the higher
sensitivity of XWR to drizzles or observations of melting particles during light rain.
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Figure 8. a) Rainfall intensity P (mm/h), Spearman’s rank coefficient rs (-) and RMSE (mm/h). b)
Accumulated depth D (mm), difference in total depth and PBIAS. Evaluation metrics applied on XWR

with municipal gauge as reference.

5.2.4 XWR and CML analysis along the CML path
Figure 9 shows the rainfall intensity Pcw and depth Dem expressed as the mean of the two

CML sub-links and the 10"-90" percentiles of the XWR bins sampled along each 250 m
(amounting to 20 sample time series) along the CML path. The mean intensity of the XWR
samples, Pxwr, is highlighted in grey and was used as a reference for the CML. XWR on
average started to observe rainfall at 16:38 along the link path, and CML at 16:43. Pcw.
reached a ‘plateau’ at 83 mm/h and stayed almost constant at this level for 31 minutes between
17:27-17:58. This effect is caused by the complete loss of radio signal between the CML base
stations, which is induced by the heavy rainfall, as described by Blettner et al. (2023) and Polz
et al. (2023). Likely by coincidence, CML recorded a similar total depth as the reference during
the event, leading to a relatively small PBIAS. The large spread of 10-90'" percentiles obtained
from the 20 XWR observations suggests a large spatial variability of rainfall along the link.
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Figure 9. a) Rainfall intensity P (mm/h) of CML (mean) and XWR (mean and 10" to 90" percentile)
along CML path. Spearman’s rank coefficient rs (-) and RMSE (mm/h). b) Accumulated depth D (mm)
of CML (mean) and XWR (mean and 10" to 90" percentile) along CML path. Difference in total depth

and PBIAS. Evaluation metrics applied on CML mean with XWR mean as reference.

By inspecting radar fields, it was observed that the storm propagated almost perpendicularly
over the CML link, which is favorable for a detailed comparison between the XWR and CML
observations over the link path. Given the sudden constant records of rainfall rate observed in
the CML time series, which are clearly not representative of the actual rainfall rate, the CML
plateau period was considered unsuitable for the comparison. Instead, the following analysis
focused on the periods right before and after the signal loss, from 16:38-17:26 and 17:59-

18:36, for a total of 85 minutes.

Figure 10 shows the rainfall intensity distribution along the CML as observed by XWR for five
minutes before and after the plateau. The first bin to the left in the plots was sampled at the
western end of the CML, approximately 3.4 km away from the municipal gauge, and the last
bin to the right was sampled at the eastern end, 1.6 km away from the gauge (see Fig 1.). The
XWR sampling points closest to the rain gauge (bins 14 and 15, counting from the left) are at
approximately 700 meters’ distance from the gauge. Pcy. and Pmunicipal are also shown for each
time step. The XWR spatial distribution was sometimes rather smooth, with a gradual increase
and decrease along the link (e.g., Fig. 10b), but sometimes more intermittent, with large
differences between adjacent XWR samples (e.g., Fig. 10g). In the pre-plateau period (Fig.
10a-10e) Pcuwe < Pxwr consistently, whereas in the post-plateau period the relation was

generally the opposite (Fig. 10f-10j).

20



504

P (mm/h)

X

P (mm/h)

P (mm/h)

3

P (mm/h)

!

P (mm/h)

200+

=
v
o

50

200+

1504

100

50 A

200 4

1504

1004

50 4

200+

1504

100

50

200+

=
w
o

1004

50 A

(a)

(c)

(723

(e)

(f)

(9)

[T

(h)

(i)

[1501]

11117 |

()

|

21

118:03]  mmm XWR 1-20

. XWR mean
CML mean
EEE municipal




505
506
507

508
509
510
511
512
513
514
515

516
517

518
519

520
521

522
523
524
525
526
527

528
529
530
531

Figure 10. (a)-(e) Rainfall intensity 5 minutes before CML signal loss (17:22-17:26). (f)-())
Rainfall intensity 5 minutes after signal loss (17:59-18:03). Twenty radar bins sampled along
CML path every 250 meters (XWR 1-20), XWR mean, CML mean and municipal gauge.

The relationship between Pxwr and Pcw. is shown for all observations in the pre- and post-
plateau periods (in total 85 data points) in Fig. 11a. Pcu. was generally lower, and especially
when Pywr < 20 mm/h, then Pow was consistently very low. This suggests that XWR is more
sensitive to light rain than CML, as was observed when comparing with the municipal gauge
(Section 5.2.3). Hypothesizing that the difference between Pxwr and Pcu was related to the
XWR variability over the link, Fig. 11b shows the difference as a function of the X-band
standard deviation oxwr. Despite a substantial scatter, a reasonably linear trend is suggested

(R2=0.31) with Pcumi gradually underestimating more as the standard deviation increases.
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Figure 11. a) Mean rainfall intensity P (mm/h) along the CML link as estimated by CML and XWR
observations for 85 timesteps, before and after the plateau. b) Difference between CML and XWR

mean intensity values as a function of XWR standard deviation oxwr along the CML link.

5.2.5 Personal Weather Stations
This section starts with the results of the PWS quality control, before presenting the event

observations. No faulty zeros or high influxes were detected during the event at any of the
eight PWS in the area of interest. Three of the PWS — PWS 1, PWS 3 and PWS 4 — were
flagged as station outliers. Nevertheless, all PWS were considered for further analysis to
compare the output of the PWS quality control with traditional evaluation metrics. The eight
PWS had between 25 and 29 stations within a 10 km radius that were included in the

neighboring checks.

The PWS time series were also checked for the full year 2022. PWS 1 and 4 were flagged as
faulty zeroes continuously during the winter months but had no Faulty Zero flags during the
summer months (see Appendix A3, Fig. A2). The other PWS got intermittently flagged, but

overall, there were few Faulty Zero flags during the year. No high influxes were detected at
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any PWS during 2022. All stations were flagged as Station Outliers during extended periods
throughout the year, except one (PWS 6), which only had a few Station Outlier flags in
December 2022 (see Appendix A3, Fig. A3).

Figure 12 shows the rainfall intensity P (mm/h) observed by the eight PWS and XWR sampled
at the PWS location, with metrics calculated with XWR as reference. The correlation with XWR
was generally quite high, above 0.7 for five of the eight PWS. The CWR sampled at the PWS
locations is included for comparison. Note that the CWR time series are identical for PWS 1
and 2, PWS 3 and 4, and PWS 6, 7 and 8 respectively, meaning that the PWS are situated in
the same CWR grid cell.
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calculated with XWR sampled at each PWS as reference. CWR sampled at each PWS included for

comparison.

Figure 13 shows the accumulated rainfall depth D (mm) for the event. Almost all PWS
significantly underestimated the total depth compared with the XWR reference. However, the
estimate was closer to the reference compared with CWR, with two exceptions (PWS 5 and
PWS 7). PWS 1 is the only PWS that overestimated compared with the reference, in total 7.7
mm (PBIAS -12.43%).
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XWR sampled at each PWS as reference. CWR sampled at each PWS included for comparison.

6. Discussion

This study investigates the capacity of second- and third-party sensors to observe short-
duration extreme rainfall, compared with a conventional rainfall monitoring network. Sweden’s
national rainfall monitoring network, composed of automatic and manual weather stations and
a CWR composite, is used as a conventional network in the study. The second-party network
consists of a municipal rain gauge and an XWR operated by a local water utility company. CML
and PWS are studied as third-party sensors. First, a long-term analysis of the municipal gauge
is performed by cross-referencing two years of data with the national monitoring network. In
this way, the municipal gauge is established as a trusted reference sensor for the study. Then,
a convective rainfall event that hit southwestern Sweden in the late afternoon of 18 August
2022 is selected as a case study. The event analysis focuses on the urban area of Bastad, a
small seaside municipality on the coast of Laholm Bay, as this location was particularly affected

according to media reports.

No weather station in the national monitoring network captured the magnitude of the event as
reported by the media (Section 5.2.2). The rainfall observed by the automatic and manual
weather stations during the day of the event corresponded to a return period of less than one
year, which suggests that the rainfall fell between the stations. CWR recorded a maximum total
depth of 65 mm corresponding to a return period of 400 years, but the observation was made
south of the Bastad urban area (Fig. 5). Within the area of interest, the maximum recorded
depth was only 25 mm, which does not align with the municipal observations and the media
reports about flooded streets and buildings.

CWR peaked at 92 mm/h at 17:25 in the sampling point at PWS 5, which is the only CWR
observation in the expected magnitude of the event based on the municipal gauge. The specific
CWR used in the study (location Angelholm) is known to be affected by partial beam blockage
which likely caused the severe underestimation (Appendix Al). This suggests that the siting of
the radar should be improved, for example by vegetation clearance, increasing the height of
the radar tower or relocation, to allow for better rainfall estimates. The underestimation may
also be attributed to, for example, a lack of dual-polarization variables, insufficient attenuation
correction (Hosseini et al., 2020), radar calibration or ground clutter removal (van de Beek et
al., 2016). Furthermore, the use of the traditional Z-R (reflectivity — rain rate) relationship based
on Marshall-Palmer coefficients (Marshall and Palmer, 1948) in the CWR data processing may
not be well suited for convective storms. SMHI is currently developing new Z-R relationships
for different weather conditions to improve the accuracy of CWR-based precipitation estimates

in the future.
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When turning to the second-party data, the magnitude of the event is starting to emerge. The
municipal gauge showed good agreement with the national monitoring network in the long-
term analysis and observed a ~700-year rainfall in the Bastad urban area during the event
(Section 5.2.3). The XWR sampled at the location of the municipal gauge recorded a total
depth of 78.4 mm, corresponding to a return period of ~800 years. It must be emphasized that
estimated long return periods are highly dependent on the estimated rainfall duration, which
may vary significantly in space and are difficult to firmly determine (Section 5.2.1).
Furthermore, return period estimates are highly uncertain and should therefore not be
guantified with high precision. In this context, a difference of ~100 years must be considered

relatively small and rather indicates a good agreement between the estimates.

XWR could accurately estimate the total rainfall depth compared with the municipal gauge
(PBIAS 9.4%). However, both radars showed a relatively low correlation with the reference;
0.56 for XWR (Fig. 8) and 0.4 for CWR (Fig. 6). The low correlation may be due to differences
in the observation height between radar and gauge measurements. This could partly be
accounted for by applying time lags and shifting the time series 5 and 10 minutes respectively,
but also highlights the importance of accurate time stamping in the context of convective rainfall

measurements.

XWR observations, particularly at long ranges, are known to be affected by signal attenuation
due to interactions with hydrometeors (Bobotova et al., 2022; Lengfeld et al., 2016). However,
XWR performed well during this event at a 40-km range, likely because the event occurred
locally under a mostly clear sky. Remarkably, there was no intervening precipitation between
the radar and the target area. Furthermore, it is perceived that beam overshooting was unlikely
due to the higher altitude of summer precipitation compared to the XWR sampling volume at

the lowest elevation angle.

One CML with a length of 4.8 km is located in the area of interest. The CML observed a
similar duration of the event as the XWR reference (Section 5.2.4). The correlation was
spuriously high (0.9) due to lack of variation in the CML rainfall rate, as it reached a ‘plateau’
and stayed constant at this level for about 30 minutes, leading to an underestimation of the
total depth. This effect is sometimes referred to as ‘blackout’ (Polz et al., 2023) and appears
when the radio signal is completely attenuated by heavy rainfall (ITU-R, 2005). Telecom
network providers design the CML hardware so that transmission outages are allowed to
occur 0.01% of the time on an annual basis. Indeed, Polz et al. (2023) found that blackout
gaps were present in less than 1% of attenuation data from 4000 CMLs over 3 years in
Germany, and that the effect on long-term timescales was generally low. However, the
probability of a blackout at rainfall intensities above 100 mm/h was above 40%, which implies

that the CML technology currently has limitations in quantifying extreme events.
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The analysis of XWR data along the CML link revealed some notable results. Firstly, the XWR
data at some time steps exhibited a large bin-to-bin variability, sometimes shifting from one
intensity level to another (Fig.10b). This can be attributed to the turbulent nature of convective
storms, and local attenuations of XWR signals during heavy rain bursts due to possible
uncertainties in the attenuation correction. Despite overall agreement between Pxwr and Pcw
along the link, a substantial scatter was found where, in particular, low intensities were
consistently higher in the XWR data than CML (Fig. 11). Generally, there was a clear indication
that the CML underestimation increased with increasing rainfall intensity as well as variability
along the link. Berne & Uijlenhoet (2007) and de Vos et al.,, (2018) showed that spatial
variability of rainfall can significantly affect CML-based rainfall estimates. A systematic
underestimation of CML is expected for a < 1 (see Appendix A2, Eq. A2) (Leijnse et al., 2010).
Notably, the estimations of the event duration based on radars and CML were significantly
different from the in-situ gauge observations. For example, the municipal gauge started to
observe the event 20 minutes after CWR. These discrepancies could be attributed to the larger
sensitivity of CML and radars to light rainfall and slow accumulations in the tipping-bucket
gauge during light drizzles preceding the heavy bursts.

Regarding the eight PWS in the area of interest, the tipping bucket mechanism seems to have
reached a maximum tipping frequency (i.e., detectable intensity) during the highest-intensity
periods, as no observation exceeded 100 mm/h (Fig. 12). A similar tendency has been
observed by others (Lussana et al., 2023; Wolf and Larsson, 2024). Among the PWS with
lowest RMSE, this led to a PBIAS of 30-40% compared with the XWR reference (Fig. 13).
PWS 1 performed reasonably well on all evaluation metrics with a Spearman correlation of
0.85, RMSE 26.4 mm/h and PBIAS —12.4%. In most cases, the correlation with reference was

medium to high, with only two PWS (PWS 4 and 7, Fig. 12) having a correlation below 0.6.

We applied a quality control specifically designed for PWS rainfall data, pypwsqc (Graf et al.,
2025) on the event and full year 2022 (Section 5.2.5). The algorithm applies three filters —
Faulty Zeroes filter, High Influx filter, and Station Outlier filter — to assess the quality of each
time step by utilizing neighbor checks with nearby stations. No faulty zeroes were detected
during the event, which is reasonable as all PWS in the area of interest measured rainfall at
all timesteps. No high influxes were found, suggesting that all PWS in the area measured
enough rainfall not to trigger high influx flags at the neighboring stations. On the other hand,
no high influx was detected at any PWS during the entire year 2022. There might indeed not
have been any high influx recorded by any of the 58 PWS on the Bjare Peninsula in 2022, but
the results also raise the question of whether the filter parameters should be tuned differently

to better capture unrealistically high inflows.
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Regarding the Station Oultlier filter, three stations were flagged as station outliers during the
event— PWS 1, PWS 3 and PWS 4. However, when inspecting the time series and evaluation
metrics for these stations, it appeared that PWS 1 and PWS 3 had among the highest
correlations and lowest RMSE of all PWS and generally showed a reasonable rainfall pattern
compared with the other PWS (Fig. 12). These results point to a limitation of neighboring
checks in the context of convective storms. PWS 1, PWS 3 and PWS 4 are all located in the
western part of Bastad. As such, the Station Outlier filter considered the observations of PWS
located further to the west on the Bjare Peninsula, which experienced a total depth of only 10
mm according to the XWR observations. The high spatial variability of the event therefore
triggered station outlier flags at the three PWS located closest to the drier area, even if two of

them performed well when compared with the XWR reference.

The parameter settings suggested in literature (Section 4.4) (de Vos et al., 2019) were changed
in the Station Outlier filter. However, it is not expected that the changes created these results
as the filter would not have been possible to apply at all for the event with the original numbers
as there were too few wet time steps in the weeks preceding the storm. If the flagged PWS
had been removed from further analysis based on the results from the Station Outlier filter,
sound observations would have been lost. Conversely, the performance of PWS 5 and PWS
7 was very poor compared with the XWR reference, but these stations were not flagged in the
automatic quality control. Future research should explore how the spatial density of PWS and
the considered evaluation range influence the capability of neighbor checks to be applicable

as quality control protocols for localized rainfall.

The findings of this study align with the well-established fact that conventional monitoring
networks have limitations in terms of observing convective rainfall. To strengthen capacity in
this field, NMHS can include second-party data in operational tools and workflows. However,
differences in acquisition protocols, data formats etc. adopted by different actors may cause
an additional burden and hinder the integration of second-party sensors. Importantly, Skane
County has an excellent coverage of second-party sensors thanks to the combination of X\WR
and rain gauges operated by local authorities, which is certainly not the case for all points of
interest, particularly in countries with limited resources (Winsemius et al., 2018). In those
cases, NMHS can turn to third-party sensors, particularly CML that are typically available in
populated settlements across the globe (Chwala and Kunstmann, 2019; Blettner et al., 2023).
However, the results of this study suggest that these sensors currently have limitations in
guantifying the correct magnitude of convective storms. Still, the results show that third-party

data may assist in detecting storm durations and the spatial distribution of rainfall.

Regarding limitations of the study, a few remarks can be made. First, there are uncertainties

associated with all observations in the study, especially the indirect rainfall measurements
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(radars and CML) and the PWS. The long-term assessment of the municipal gauge, combined
with the good agreement between the municipal gauge and XWR, still provide solid evidence
for the actual magnitude of the event. Secondly, some findings are expected to be specific for
this study, such as the low performance by CWR caused by beam blockage in the area of
interest. On the other hand, the underestimation of rainfall observed by the third-party network
aligns with previous studies. It is also expected that quality control protocols that utilize
neighboring checks will be problematic for other convective storms, depending on the station
network density and considered range of the analysis. Although no general conclusions can
be drawn from a case study, we believe that the depth of this analysis contributes to the
understanding of advantages and limitations when observing convective rainfall with second-

and third-party sensors.

7. Conclusion

This study investigated the capacity of second- and third-party sensors to observe short-
duration extreme rainfall compared with a conventional rainfall monitoring network in a case
study. The results show that the conventional network underestimated the total rainfall depth
of the event and was unable to fully capture the extreme spatial variability of the convective
storm. Only when considering observations from second- and third-party sensors, more
accurate representations of the magnitude and spatial extent of the storm could be obtained,
which suggests that NMHS could utilize these sensors to improve observations of convective
rainfall. However, second-party sensors are not always available, particularly in resource-
strained settings. Furthermore, the results suggest that third-party sensors can assist in
detecting storm durations and spatial variability of rainfall but have limitations in quantifying
the correct magnitude of convective storms. Third-party data may also be difficult to obtain
for NMHS and has known problems with data quality. Future research is suggested to
continue the efforts on quality control of third-party data, especially related to extreme
events. In addition, more research is needed on the integration of second- and third-party
data in the workflows of NMHS.

Appendix A

A.1 Vegetation affecting the Angelholm radar location

The Angelholm radar location is affected by partial beam blockage in a circular sector of
around 60 degrees to the North (Fig. A1) (SMHI, 2025a). Bastad is located 6 km to the north
of the radar. The figure shows accumulated precipitation detected by the radar during the

period 3-17 October, 2019. Darker color indicates less total precipitation.
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727
728 Figure A1l. Accumulated precipitation detected by CWR Angelholm, 3-17 October, 2019.

729  The partial beam blockage is caused by vegetation within 1 km north of the radar location.
730  Fig. A2 shows the Angelholm radar beam in the north direction overlaid with a point cloud of
731  vegetation based on aerial laser scans (Lantmateriet, 2025). Note that the figure reflects the

732  status as of 2019 and the vegetation has likely grown taller since.

150
6249000 6249500 6250000 6250500 6251000 6251500 6252000 6252500
north-south cross section [m]

733

734  Figure A2. Angelholm radar beam in the north direction overlaid with a point cloud of vegetation
735 based on aerial laser scans (Lantmateriet, 2025).
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A.2 CML processing
When estimating rainfall intensity from CML data, the first step is to identify a link-specific

threshold for classification of wet and dry timesteps. The challenge is to detect small rainfall
volumes (true wet periods) without including too many dry periods with strong attenuation
from other causes, such as changes in water vapor content or air temperature (false wet
periods). Several approaches have been suggested in literature (Rayitsfeld et al., 2012;
Wang et al., 2012; Cherkassky et al., 2014; Overeem et al., 2016). Schleiss & Berne (2010)
proposed a simple classification method that considers the rolling standard deviation of the
attenuation, assuming that the variability is small during dry periods and large during wet
periods. The time step is classified as dry if the variability falls below a defined threshold
value, which must be calibrated with secondary observations nearby the link. More recently,
machine learning approaches has shown strong potential to effectively classify wet and dry
timesteps in CML data (Habi and Messer, 2018; Polz et al., 2020; @ydvin et al., 2024).

The second step is to define a ‘baseline level’, that is, RSL during dry weather. This is used as
the reference level for the rain attenuation calculation and is typically based on the signal
attenuation during dry time steps preceding a wet period (Andersson et al., 2022). In addition,
the signal is often corrected for additional attenuation caused by water on the cover of the
antenna, so-called ‘wet antenna attenuation’ (e.g., Leijnse et al., 2007a, 2008; Graf et al.,
2020). Finally, the corrected attenuation is converted into rain rate using an inverted power law
relationship. The MEMO method was developed and tested on an open data set (‘OpenMRG’)
that consists of 364 CML and 11 rainfall gauges in Gothenburg, Sweden, for the period June-
August 2015 (Andersson et al., 2022). The processing steps of the MEMO methodology are

outlined below.

A.2.1 Data pre-processing
The 10-second attenuation was calculated by taking the difference between TSL and RSL.

Then, the median value over a 1-minute period Am was taken for all minutes that had more
than four 10-second values in one minute and if less data were available, that minute was

flagged as missing data.

A.2.2 Wet-dry classification
Sub-links in the OpenMRG dataset were scrutinized to find a wet-dry classification method that

does not rely on secondary observations. The links considered were located within 500 m from
a municipal rain gauge in Gothenburg that records at 1-minute temporal resolution, resulting
in 72 links. First, dry time steps recorded by the station between 2015-05-14 to 2015-08-31
were considered. A time buffer of 30 minutes was added before and after each rain event
recorded by the rain gauge, to consider that rainfall arrives at different timesteps to the links.

The 99" percentile of Ay at dry timesteps identified by the rain gauge was considered to
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address that the links may record rainfall that was missed by the rain gauge. Then, the
empirical distribution of An at the dry timesteps was plotted and inspected for the 72 links. An
example is shown in Fig. A3. In this example, the difference between the median and 99™

percentile of the attenuation is 0.35 dB.

ECDF of Dry timesteps in Link312

;

1.0

n.a
1

0.6

Frix)

-=- Median
=== 88th percentile
Diff 0.35 (dB)

0.0

T T T
42 43 44

Aml (dB)

Figure A3. Example of empirical distribution of attenuation level (An) at dry timesteps for Link 312.

The plots showed that the difference in 4,,, between the median attenuation and the 99"
percentile was typically between 0.35-0.6 dB at dry timesteps. However, the difference for one
link with considerable fluctuations in signal attenuation was 1.7 dB. Based on these results, it
was decided to set the threshold for the wet-dry classification to the median attenuation over
the past 2 weeks plus an additional 1.7 dB (here called the ‘median buffer method’). In this
study, where only two days of data was available, the median was taken over all available

preceding time steps.

The median buffer method was compared with classifying all timesteps with attenuation above
the median of the last two weeks as wet (‘median method’) and the method presented by
Schleiss and Berne (2010) (‘Schleiss method’). The median method resulted in overestimation
of the number of wet timesteps compared with the rain gauge. The Schleiss method performed
similarly to the median buffer method in correctly identifying the number of wet timesteps but
resulted in some outliers and produced more false wet time steps. Based on these results, the

median buffer method was used for further analysis.
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A.2.3 Baseline definition
The baseline Ay, is the expected difference between TSL and RSL during dry weather. This

means that during dry periods, based on the wet-dry classification in the previous step, the
baseline is equal to the attenuation A,,;. During wet periods, the baseline is taken as the
median of the last N timesteps from the first wet timestep. A suitable reference period for N

was found to be 240 minutes.

A.2.4 Conversion of net attenuation to rain rate
By subtracting the baseline from the attenuation, the net attenuation 4,,; was found as

Ap = Ay — Ap (A1)

Following common practice in CML literature (Leijnse et al., 2007b; Messer et al., 2006),
specific attenuation (dB km) was converted to rain rate (Praw) using link length (L, km) and the

power-law relationship:

Anl _ a
T - kPraw (A2)

The parameters k and a depend on link frequency, the polarization state, and the elevation
angle of the signal path and was found by applying the equations derived by ITU-R (2005). For
the link in this paper, k = 0.13 and a = 0.96 (23.1 GHz, vertical polarization). In contrast to
radar scatter, the sensitivity to DSD (Eq.1) is very limited around 30 GHz because a is
approximately 1 in this range, suggesting a nearly linear relation between net attenuation and
rain rate (Chwala and Kunstmann, 2019). At frequencies further from 30 GHz, DSD will play a
larger role and biases can occur. Most links in Sweden operate near 30 GHz (Andersson et
al., 2022).

A.2.5 Bias correction based on link length
The derived rain rate was analyzed for the 72 links situated within 500 m range from the 11

rain gauges in the OpenMRG dataset for July 2015. When plotting the residuals of the rain rate
at the closest gauge against 15-min accumulated net attenuation of the link, a linear
relationship was found, indicating potential for bias correction. The slope of the residuals was
derived by linear regression for each link and plotted against the link frequency, link length and
the parameters k and a in Eq. A2. The most distinct relationship was found for link length,
suggesting that the shorter the length, the higher the slope of the residuals. One probable
reason for the relationship is the wet-antenna effect, which is stronger over shorter distances
(Chwala and Kunstmann, 2019).

It was found that the slope of the regression line of the residuals could be estimated from link

length by applying a simple inverse equation:
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1
Slope = f X L_9+ h (A3)

where L is the link length. The parameters f, g, and h were optimized by minimizing the Mean
Absolute Error for the 72 links, arriving at 2.85214, 1.672 and 0.1615, respectively. The bias
corrected rain rate for the CML in Bastad was then found by calculating the correction factor:

CF, = 2.85214 * (1/L172) + 0.1615 (Ad)

where L is 4.8 km in this case. Then, applying the factor to the derived rain rate:

Pemr = PBraw — (Any * CFy) (A5)

A.3 PWS quality control 2022
Figure A4 shows Faulty Zero (FZ) flags for the eight PWS in the area of interest for the full
year 2022.
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833 Figure A4. Faulty Zero (FZ) flags 2022. 1 = FZ flag, 0 = no FZ-flag, -1 = FZ-filter could not be applied.
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834  Figure A5 shows Station Outlier (SO) flags for the eight PWS in the area of interest for the
835  full year 2022.
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Data availability
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