10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Managed aquifer recharge and extraction effects on groundwater level and quality
dynamics in a typical temperate semi-arid fissured karst system: A multi-method
quantitative study

Han Cao'?, Jinlong Qian'?, Huanliang Chen*, Chunwei Liu >*, Shuai Gao**, Minghui Lyu** Weihong

Dong!>*, Caiping Hu**"

! Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University,

Changchun, People’s Republic of China

2 Institute of Water Resources and Environment, Jilin University, Changchun, People’s Republic of China

3801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology &

Mineral Resources, Jinan, China

4 Shandong Engineering Research Center for Environmental Protection and Remediation on

Groundwater, Jinan, China

Corresponding Author: dongweihong@jlu.edu.cn, caipinghul26@126.com

Abstract

Managed Aquifer Recharge (MAR) is an effective approach to mitigate groundwater decline and

spring depletion in karst systems impacted by excessive exploitation. However, the hydrogeological

complexity of karst aquifers makes groundwater quantity and quality highly sensitive to human activities,

posing challenges for MAR implementation. This study develops an integrated multi-method

framework—combining isotopic analysis, flow monitoring, tracer tests, and numerical modeling—to

evaluate the effects of MAR and groundwater extraction on karst aquifer dynamics, with a case study in

the Baotu Spring system (Jinan, China). To enhance the accuracy of recharge rate quantification, an
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enhanced isotope mixing model that reduces uncertainties in estimating groundwater recharge ratios from

multiple sources was developed, and the MAR rate settings were refined by establishing a quantitative

relationship between effective MAR rates and water release rates through river flow monitoring. To

improve the solute transport simulations reliability, we conducted field tracer tests to constrain the

effective porosity of the karst aquifer - a parameter typically poorly constrained in such systems.

Furthermore, we validated the applicability of the equivalent porous media (EPM) model through

rigorous hydrodynamic analysis, using field-measured fracture apertures to calculate Reynolds numbers

and verify laminar flow conditions. The results demonstrate that surface water contributes >80% of

recharge near MAR implementation zones, with MAR efficiency decreasing beyond critical river

discharge thresholds. The karst aquifer exhibits laminar flow (effective porosity = 1.08x107*), confirming

the validity of the EPM approach. Modeling reveals that MAR significantly raises water tables, though

efficiency varies by different MAR sources, and MAR-induced sulfate concentrations must be

maintained below 56.5, 197.8, and 339.1 mg/L to meet China's Class I, I, and III groundwater standards,

respectively. These findings provide practical guidelines for MAR implementation in temperate semi-

arid fissured karst systems.

Keywords: Managed aquifer recharge (MAR); Temperate semi-arid region; Fissured karst; Multi-

methods.

1. Introduction

Managed aquifer recharge (MAR) (Sherif et al., 2023), refers to the intentional recharge of aquifers

to address the ecological and environmental geological issues caused by excessive groundwater

exploitation (Aeschbach-Hertig & Gleeson, 2012; Foley et al., 2011). It has been demonstrated that

appropriate recharge can effectively elevate groundwater levels and improve groundwater quality to
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some extent (Ajjur & Baalousha, 2021; Alam et al., 2021; Standen et al., 2020).

Karst groundwater constitutes a vital water resource (Hartmann et al., 2014; Medici et al., 2021),

with managed aquifer recharge (MAR) in karst systems emerging as a key research focus (Zhang & Wang,

2021). Unlike pore water, karst groundwater is stored in dissolution conduits and fissures, exhibiting high

heterogeneity, rapid flow velocities, and concentrated discharge. These properties increase the

susceptibility of karst aquifers to anthropogenic impacts on both quantity and quality (Allocca et al.,

2014; Lorenzi et al., 2024), complicating MAR implementation. The extreme heterogeneity of karst

systems results in spatially variable MAR effectiveness (Daher et al., 2011), with recharge impacts on

groundwater levels and quality differing by water source. Rapid flow dynamics (Bakalowicz, 2005) lead

to extensive well catchment areas, where over-exploitation can induce large-scale drawdown cones and

associated geological risks (Jiang et al., 2019). Furthermore, MAR using contaminated source water may

accelerate pollutant transport (H. Cao et al., 2023), jeopardizing groundwater quality (Xanke et al., 2017).

Thus, quantitative assessment of MAR and extraction effects on karst groundwater is critical for ensuring

sustainable and safe aquifer management.

From a global perspective, significant differences exist in karst development and groundwater flow

characteristics among different countries and regions. The Baotu Spring karst aquifer in Jinan, China,

representing the fissured karst system in the temperate semi-arid region, exhibits remarkable

hydrogeological representativeness worldwide (Liang et al., 2018). In these areas, karst aquifers typically

develop in Cambrian-Ordovician carbonate formations, with their hydrogeological features being

strongly controlled by geological structures. The primary aquifer medium consists of karst fissures

formed by well-developed tectonic fissures, ultimately giving rise to a groundwater system dominated

by an extensive network of karst fissures (Aliouache & Jourde, 2024; Jiang et al., 2022). In temperate
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semi-arid regions, the persistent development of dissolution is constrained by the low permeability of

soluble rocks (dominated by fracture flow) and limited hydrothermal conditions, resulting in the

prolonged stagnation of underground karst systems at the fracture network stage and hindering their

evolution into large-scale cave or conduit systems. Moreover, such regions often feature large karst

springs as concentrated discharge points of groundwater (Criss, 2010). Due to seasonal recharge

fluctuations (primarily from precipitation) (Bhering et al., 2021), these springs exhibit significant

discharge variations. Therefore, scientifically adjusting recharge strategies based on precipitation

variability to maintain spring flow constitutes a key research issue.

In China, temperate semi-arid fissured karst groundwater systems similar to the Baotu Spring are

predominantly distributed across several northern provinces, including Shandong (Liu et al., 2021),

Shanxi (Zhang et al., 2018), Hebei (M. Gao et al., 2023), Henan (Yin et al., 2023) and Shaanxi (Li et al.,

2020). Globally, systems exhibiting varying degrees of similarity can be observed in certain regions,

notably in the U.K (Agbotui et al., 2020), France (Ballesteros et al., 2020), Germany (Knoll & Scheytt,

2017), Italy (Pagnozzi et al., 2020), the U.S (Criss, 2010) and Canada (Perrin et al., 2011). These regions

all face similar challenges related to seasonal drought and karst groundwater pollution. The research on

karst groundwater at Baotu Spring and its artificial recharge practices can provide valuable insights for

these areas.

Existing research on the effects of managed aquifer recharge (MAR) and extraction on groundwater

level and quality has established relatively mature methodologies (Ringleb et al., 2016). However, most

approaches remain qualitative or semi-quantitative. Hydrogeochemical and isotopic techniques are

widely employed in MAR studies (Akurugu et al., 2022; M. Li et al., 2023). Isotopic tracers are

frequently used to identify recharge sources, and the integration of multiple hydrochemical and isotopic
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indicators (Guo et al., 2019) allows estimation of source contributions (Deng et al., 2022). Nevertheless,

this method faces challenges, including the inherent non-uniqueness of solutions and uncertainty in

determining precise isotopic signatures for individual recharge source, which may compromise accuracy.

Additionally, the scarcity of long-term isotopic monitoring data restricts the applicability of this approach

for analyzing temporal variations in MAR effects.

Numerical simulation serves as an effective method for MAR quantitative analysis (Medici et al.,

2021; Ostad-Ali-Askari & Shayannejad, 2021; Zafarmomen et al., 2024). The selection of simulation

programs depends on karst aquifer characteristics. While conduit flow process (CFP) models are suitable

for well-developed karst systems (Chang et al., 2015), their application is constrained by the requirement

for detailed conduit dimension data, particularly in regional-scale modeling (Jourde & Wang, 2023).

Previous studies have demonstrated the feasibility of employing a simplified equivalent porous medium

(EPM) model without embedded karst conduits for regional groundwater numerical simulations in

temperate semi-arid fissured karst systems with limited karst development (Kang et al., 2011; Luo et al.,

2020; Scanlon et al., 2003). However, these studies often lack field investigations to verify whether

groundwater flow regimes satisfy the laminar flow assumption inherent to EPM models (Agbotui et al.,

2020; Medici et al., 2024).

Studies indicate that accurate estimation of effective porosity in karst aquifers is critical when

simulating solute transport using the equivalent porous medium (EPM) model (Kidmose et al., 2023;

Ren et al., 2018). Overestimation of effective porosity often leads to underestimated groundwater flow

velocities, introducing significant errors in pollution control strategies (Medici & West, 2021; Medici et

al., 2019). To improve EPM model reliability, effective porosity should be derived from regional-scale

hydraulic tests (e.g., tracer test) (Medici & West, 2021; Worthington et al., 2019; Zhu et al., 2020).
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Similarly, in MAR studies using numerical simulations, precise determination of groundwater

recharge rates is essential for result accuracy (Hartmann et al., 2015). For MAR driven by riverbed

infiltration, methods such as infiltration tests (Xi et al., 2015) and riverflow monitoring can quantify

recharge rates via hydrodynamics and water-balance principles. Cross-validation of these methods in

field studies reduces uncertainty from data limitations, enhancing MAR -related quantitative assessments

(Mudarra et al., 2019).

This study proposes an integrated multi-method analytical approach to quantitatively assess the

effects of managed aquifer recharge (MAR) and extraction on groundwater levels and quality in

temperate semi-arid fractured karst systems. The approach combines coupled numerical modeling of

groundwater flow and solute transport with supplementary techniques—isotope analysis, infiltration tests,

flow monitoring, and tracer tests—to improve simulation accuracy. Using Jinan’s Baotu Spring karst

aquifer as a case study, we evaluate how MAR and extraction influence karst groundwater dynamics,

aiming to ensure stable regional water levels, long-term water quality security, and sustainable

groundwater resource utilization. The specific objectives of this research are as follow: (1) To

determine the sources of groundwater recharge and quantify the mixing ratios and spatial distribution of

recharge using multi-source data. (2) To quantify the effective infiltration recharge of the MAR segments

under varying water release rates for groundwater flow modeling inputs. (3) To estimate the effective

porosity of aquifers as a key parameter for groundwater solute transport modeling. (4) To establish a

groundwater flow-solute transport model for the study area based on the validated the EPM model’s

applicability, and to quantitatively evaluate the impacts of MAR and extraction on groundwater level and

quality dynamics.

2. Material and Methods
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2.1. Study area

The study area of this paper is the Baotu Spring area, located in Jinan City, Shandong Province,

China, covering about 1,654 km? (Niu et al., 2021) (Fig. 1). The terrain of Baotu Spring area is higher in

the south and lower in the north, featuring rolling steep mountains and deep canyons in the south, low

mountains and hills in the middle, and Piedmont inclined plains and alluvial plains in the north. The

Baotu Spring area is located in the mid-latitude inland area with a warm temperate continental climate.

The average annual precipitation from 1951 to 2024 is 690.4 mm, mostly falling between June and

September (accounting for 77% of the total).
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Fig. 1 Geological map and hydrogeological cross-section of Baotu Spring area

The main rivers in this region are the Yellow River, Yufu River, Xingji River, and North Dasha River

(Fig. 1). The Yellow River forms the study area's northwestern boundary and is mainly used for

agricultural irrigation and groundwater recharge. The Yufu River is a seasonal tributary of the Yellow

River, and the segments between Zhaiertou and Cuima Villages has excellent permeability, making it an

ideal river for MAR (Guo et al., 2019) (Fig. 5(b)). Additionally, the Xingji River in the northeast, though

small, also has a permeable riverbed making it suitable for MAR (Fig. 5(b)).

Geologically, the study area is characterized by a northward-dipping monocline predominantly

composed of Paleozoic carbonate rock layers. Several large-scale NNW-trending faults are

developed within this area. Except for the Dongwu Fault and Mashan Fault forming the eastern and

western boundaries of the study area, respectively, the other faults are generally permeable. The

stratigraphic units exposed in the study area from south to north, listed from oldest to youngest, are as

follows: Archaean Taishan Group metamorphic rocks, Cambrian limestone, Ordovician limestone, and

Quaternary loose sediments (Fig. 1).

Exploitable karst groundwater is stored in the Zhangxia Formation of the middle Cambrian, the

Chaomidian Formation of the upper Cambrian, and the Majiagou Formation of the Ordovician. In the
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northern mountainous and hilly areas, karst groundwater is recharged by precipitation and surface water,

flowing northward along strata dips (Zhu et al., 2020). In the northern piedmont alluvial plain, the karst

aquifer is buried under Quaternary sediments. Late Mesozoic large gabbro intrusions block northward

flow, causing water to rise along fissures and form springs (Niu et al., 2021; Wang et al., 2022), with

Baotu Spring being the most popular of them (Guo et al., 2019).

As a crucial water supply source for Jinan, decades of increasing demand for groundwater have led

to over-exploitation, causing water level decline and spring drying (S. Gao et al., 2023). To balance water

supply and spring protection, Jinan City has implemented the MAR projects using the diverted water

from the Yellow River (Kang et al., 2011) and the Yangtze River from the South-to-North Water Transfer

Project (Liu et al., 2020) in recent years. Most MAR occurs along segments of the Yufu and Xingji Rivers,

with minor MAR through dedicated wells in urban areas (which are no longer used for extraction) (Wang

et al., 2017). Notably, excessive flow in the Yufu River may bypass recharge zones, and some diverted

water components (e.g., hydrochemical concentrations) may exceed local karst groundwater standards

(X.Caoetal.,2023; J. Lietal., 2023; Zheng et al., 2020), posing risks of long-term quality deterioration

(J. Li et al., 2023; Zhang & Wang, 2021). Currently, few groundwater exploiting wells remain active,

categorized into three groups by location: western suburbs, western Jinan, and eastern suburbs wells. All

exploiting wells, MAR wells, and MAR river segments are mapped in Fig. 5(b).

2.2. Groundwater sampling and recharge percentage quantification

In the study area, surface water is the primary source of MAR. To understand the current water

quality status of karst groundwater and surface water in the study area, identifying the hydrochemical

components in surface water that may influence groundwater quality, estimate the percentage

contribution of surface water and precipitation recharge to karst groundwater, and provide a basis for the
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groundwater flow and solute transport model setup, sampling and analysis of groundwater and surface

water in the study area were conducted in June 2022. The analyzed indicators included total dissolved

solids (TDS), sulphate concentration, nitrate concentration, chloride concentration, 8*H%o, and 8'¥0%o.

The locations of the sampling points are shown in Fig. 5(b).

After the analysis of groundwater and surface water samples, the origin and recharge sources of

karst groundwater were determined by utilizing the §?H%o and 3'%0%o scatter plot of groundwater and

surface water. The analysis of 2H and '®0 requires referencing the Global Meteoric Water Line (GMWL)

and the Local Meteoric Water Line (LMWL). The GMWL is given as (Craig, 1961):

FH=85"80+10 ()

Using the China Meteoric Water Line (CMWL) as the LMWL for the study area, which is:

5?H =7.7680+7 ©)

Then, to quantitatively analyze the effect of MAR from surface water on karst groundwater, *H%o

and 8'80%o values were used to determine the proportion of groundwater recharge from surface water.

Groundwater in the study area has two main recharge sources: surface water and precipitation (Liu et al.,

2021). An improved two-end-member mixing model was employed to calculate the mixing ratios of

surface water and precipitation in groundwater samples. Assuming 6*H%o and §'80%o values for surface

water are x, and y;, for precipitation are x, and y,, and for groundwater are x, and yg, the mixing ratios

from surface water (7)5) and precipitation (#,,) were calculated. The traditional two-end-member mixing

model uses either §?H%o or 5'30%o data to calculate these ratios with the Equation:

N = X9~ *p

S xg—xp
_ Xs—Xg (3)

My = Xs—Xp

10
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Due to the complexity of hydrogeological conditions (there may be unknown recharge sources
affecting groundwater isotope values) and the limitations in endmembers selection (isotopic values of
precipitation and surface water also vary across different regions), groundwater samples do not
completely fall on the mixing line between two end-members in the $2H%0—5'*0%o diagram. For certain
samples located far from the mixing line (such as Point A in Fig. 2), calculating the mixing ratio using
Eq. 3 or 4 essentially involves projecting sample Point A along the X- or Y-axis to Points Ay or A,
respectively, which may lead to significantly different results. To address this issue, this study proposes
a method for computing the mixing ratio by projecting groundwater sample points onto the two-
endmember mixing line in the 3*°H%0—6'%0%o diagram (it is reasonable to assume that using the closest
point on the mixing line, i.e., the orthogonal projection of the sample point As), yields a more reliable
mixing ratio). The derived Equation for calculating the mixing ratio is as follows:
— (xg=xp) (xs=xp) +(¥g=¥p) (¥s—¥p)

(xs=xp)2+(YVs—Vp)?
_ Crs=xg) (rs=2p) + (v5=79) 5=2p)

N

)

e (xs=xp)2+(Vs—¥p)?
—50 -
8 55
jan
&
A: Sample point
—60 - “ A ) Projection point of 4 onto the mixing
line along the x-axis direction (Eq. 3)
A, Projection point of 4 onto the mixing
line along the y-axis direction (Eq. 4)
A_s): Vertical projection point of A onto the
mixing line (Eq. 5)
—65 T T T T T T T
-9 =8 — —6
3'%0%o

Fig. 2 Schematic diagram illustrating the method for calculating two-endmember mixing proportions
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In this research, the minimum 8*H%o and §'%0%o values of karst groundwater samples are considered
as the values of precipitation recharge endmembers, which are -64.56 and -9.30, respectively. The
average 8*H%o and 5'®0%o values of surface water samples are considered as the values of surface water
recharge endmembers, which are -50.53 and -6.815, respectively. Using Eq. 5, the mixing ratio for all
karst groundwater samples could be calculated. It should be noted that although unauthorized sewage
discharge might influence groundwater isotopic values, strict pollution controls in the study area (given
Baotu Spring's significance) make this factor negligible for this study.

2.3. Flow monitoring and infiltration test

Based on field surveys, a large volume of released water in the Yufu River results in some flow
escaping downstream and failing to infiltrate and recharge karst groundwater, thereby reducing the
effective MAR rate. To verify this and investigate the infiltration capacity of MAR river segments, the
flow monitoring data from multiple segments of the Yufu River and Xingji River from 2014 to 2016 were
collected (Fig. 1). According to the principle of water balance, the difference in flow between the cross-
sections of the MAR river segment is considered as the effective MAR rate. For Yufu River, the water is
released in section #1, and the effective MAR rate equals the difference between the flow rate at section
#1 and section #5 (Eq. 6). For Xingji River, the water is released in section #6, and the effective MAR
rate equals the difference between the flow rate at section #6 and section #7 (Eq. 6). Then, based on the
statistical data of the water release rate, the quantitative relationship between the water release rate and

the effective MAR rate is analyzed.

{ Qerroyuy = Q1 — Qs ©)

QEff(Xing) =06 — Q7

In the equation, Qgpy and Qrpxing denote the effective MAR rates of the Yufu River and the Xingji

River, respectively, while Q; through Q; represent the flow rates of section #l to section #7,

12
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correspondingly.

It should be noted that although the 2014~2016 flow monitoring data from two hydrological years

are sufficiently representative (reflecting the stable infiltration capacity of the river channels, as no large-

scale construction occurred after 2016), it remains necessary to calculate the maximum infiltration

capacity to account for scenarios requiring high water release rates during extreme dry years or months.

Therefore, we selected five sites along the MAR segment of Yufu River and measured the permeability

coefficient of the riverbed based on in-situ double-ring infiltration test (Li et al., 2019) (Fig. 1). The

infiltration test was performed at the riverbed edges (the river still maintains a small flow during the dry

season). Then, the infiltration coefficient of the Yufu River MAR segments were calculated using the

double-ring infiltration test results. The theoretical maximum recharge capacity was finally determined

based on the river's area.

2.4. Estimation of effective porosity from tracer tests

Effective porosity is a crucial parameter for simulating groundwater solute transport. The actual

groundwater velocity determined by tracer tests can be used to calculate the effective porosity of karst

fissured aquifers (Zuber & Motyka, 1994), using the following Equation:

KI
nf=—

(7

vt

This Equation is derived from Darcy's Law. In the equation, “K” represents the hydraulic
conductivity (m/d), “I” is the hydraulic gradient, and “v,” is the actual groundwater velocity (referring to
the advective flow velocities governing the transport). Two large-scale tracer tests were conducted at
Cuima village in year 1989 and in Xingji River in year 2016 (Zhu et al., 2020). To determine the

parameters required in the groundwater solute transport model, the actual groundwater flow velocity and

the effective porosity of the karst aquifer were calculated based on the data from the two tracer tests (Fig.

13
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First, three groundwater flow lines were extracted from the groundwater flow field, and several
calculation points for groundwater flow velocity and effective porosity were selected at equal intervals.
Flow lines #1 and #2 represent the diffusion direction of the tracers from Cuima Village, while flow line
#3 represents the diffusion direction of the tracers from Xingji River. Using the isochrone map of tracer
peak concentration diffusion, the actual groundwater flow velocity was calculated based on the horizontal
distance between adjacent isochrones at each calculation point. The hydraulic gradient at the calculation
points on flow lines #1 and #2 was calculated using 1989 groundwater level monitoring data, and the
hydraulic gradient on flow line #3 was calculated using 2016 data. The permeability coefficient (K) for
each calculation point was determined using the groundwater flow model established in this research.

Finally, the effective porosity at each calculation point was calculated using Eq. 7.

N
#3.6
A Q
0 05 1 1:
(:)#3-5
{134
(e
i
!
1433
O
b
i #3-2
L Q

%
4.

g
=
E © Tracer drop-off sites
= O Calculation points (Name/Flow velocity)
11 >-- Groundwater flow direction
— Boundary of Baotu Spring area
== Rivers
Travel time of tracers (d)
. 0-10 £ 60~70
. 10~20 [0 70~80
B 20~30 5 80~90
£ 30~40 . 90~100
140~50 . 100~120
L 150~60

Fig. 3 Tracer tests conducted in Cuima Village and Xingji River
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2.5. Groundwater flow-solute transport simulation

Numerical simulation is used to predict groundwater level and quality in this research. As mentioned

in the introduction, the EPM model without inserting embedded karst-conduits is capable for

groundwater flow simulation in karst regions with low development like the northern China karst areas.

To verify this, we identified some typical karst fissure outcrops in the Ordovician limestone

exposure area (Fig. 4) and measured the mechanical apertures of the fissures. The measurements show

that the maximum mechanical aperture of the karst fissures is approximately 6 mm, while the minimum

is less than 1 mm. For natural karst fissures, the hydraulic aperture used for flow calculations is typically

much smaller than the mechanical aperture, with their ratio (generally less than 0.15 for karst fissures)

determined by the fissure geometry and filling characteristics (Zhang & Nemcik, 2013; Zimmerman &

Bodvarsson, 1996). For conservatism, we set the mechanical aperture at 6 mm and the ratio of hydraulic

aperture to mechanical aperture at 0.15 to determine the maximum Reynolds number (Re). Based on the

findings in Section 3.3 (Tab.l provided in the Supplement), the maximum actual groundwater flow

velocity in the study area's runoff zone is approximately 216 m/d (0.0025 m/s). Using these data, Eq. 8

yields a rough estimate indicating that the Re of karst groundwater flow in the study area (<2.24) is

significantly lower than the critical Re (2000). Therefore, the flow regime in the karst fissures is laminar,

justifying the use of the EPM model for simulation.

Consequently, the GMS software was used to establish a karst groundwater flow and solute transport

model for the Baotu Spring area. The MODFLOW 2005 and MT3DMS packages were employed to solve

the groundwater flow and solute transport equations using the finite difference method.

15



0G 6r o Lv

n
(=)

w
o

—
S

4
£
&
g
2
o
:
2
2
14
8
g
2
g
:
20
a3
3
:
:
i
2
3
2
2
g
2
8

0

298

299

300 Fig. 4 Outcrop of karst fissures in the study area

301 Re — pvL < 998 x 0.0025 x 0.006 x 0.15 — 294 @)
¢=T = 1.002 x 103 =

302 Where, Re: Reynolds number (dimensionless);

303 p: Fluid density (kg/m3);

304 v: Characteristic flow velocity (m/s);
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L: Characteristic length (m), defined here as the hydraulic aperture of the fissures;

w: Fluid dynamic viscosity (kg/(m.s)).

The numerical model encompasses the Baotu Spring area, simplifying the stratigraphy into four

units: Quaternary porous phreatic aquifer, intrusive rock aquitard, Ordovician-Cambrian karst aquifer,

and the aquitard below the Mantou Formation (Fig. 5(a)). The Ordovician-Cambrian karst aquifer is the

main aquifer and the target aquifer for MAR and groundwater extraction. In Fig. 5(a), the vertical (Z-

axis) scale is exaggerated fivefold to enhance the visualization of topographic undulations and

stratigraphic profile variations. The boundaries of the Ordovician-Cambrian karst aquifer are delineated

in Fig. 5(b). Additionally, the boundaries of other strata are all impervious.

The model's source and sink terms include precipitation recharge, MAR from rivers and wells,

groundwater extraction, spring discharge, agricultural irrigation extraction, and agricultural irrigation re-

infiltration. Precipitation recharge is calculated based on precipitation quantity, infiltration recharge

coefficient, and recharge zone area. The infiltration recharge coefficient accounts for surface lithology,

urbanization, and agricultural development. The MAR from rivers mainly occur through the Yufu and

Xingji Rivers, and the effective MAR rate is discussed in Section 3.2. The locations of MAR wells,

groundwater extracting wells and MAR river segments are displayed in Fig. 5(b).

The hydraulic conductivity K consists of horizontal hydraulic conductivity K, and vertical hydraulic

conductivity K,. The zoning and values of K, are mainly based on the hydrogeological tests, and then

identified and verified using groundwater level monitoring well data. K, is uniformly set to 0.1 times K.

The remaining hydrogeological parameters (specific yield, storativity, and dispersivity) are taken as

empirical values. The determination of effective porosity has been discussed in Section 2.4. The

simulation period spans from January 1, 2020, to December 31, 2022, with each stress period lasting one
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month.

Next, the effect of MAR and groundwater extraction on the dynamics of karst groundwater levels

was quantitatively analyzed using a groundwater flow model, with Baotu Spring's water level serving as

a representative indicator. The considered MAR are from Yufu River, Xingji River, and MAR wells. For

the simulation period of 2020-2022, the net variations of Baotu Spring water level caused by MAR and

groundwater extraction were calculated.

Finally, to quantitatively compare the effects of various MAR and groundwater extraction on the

dynamics of Baotu Spring water level, the water level net variation after 1, 2, and 3 years of continuous

recharge and extraction at a constant flow rate was calculated and compared.

Quaternary aquifers [ Gushan Formation aquiclude | —
Intrusive rock aquiclude _ Zhangxia Formation aquifers _
Majiagou to Chaomidian Formation aquifers :| Aquicludes below Zhangxia Formation :\

(a) Geological model
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= 0.01
0.08
0.2
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045

(b) Settings of groundwater flow model

Fig. 5 Geological model and groundwater flow model

For the solute transport simulation, sulphate is selected as the representative solute because its

concentration in the surface water used for MAR is higher than in the groundwater, while the

concentrations of other solute components are either similar to or lower than those in the groundwater.

The simulation is based on the groundwater flow model spanning 2020 to 2022, with all

recharge/discharge values averaged over this period to mitigate seasonal flow variations. The initial

sulphate concentration in karst groundwater is uniformly set at 50 mg/L, reflecting the average

concentration in high-quality water from the wells in western suburbs. The model then simulates the

dynamics of sulphate concentration in karst groundwater after 2, 6, and 18 months of continuous recharge

with sulphate concentrations of 150 mg/L, 250 mg/L, and 350 mg/L in the MAR water.

3. Results and Discussion

3.1. Mixing percentages of groundwater recharge sources

A scatter plot of the §?H%o and §'80%o of groundwater and surface water is generated in Fig. 6. It
19



353

354

355

356

357

358

359
360

361

362

363

364

365

366

shows that karst groundwater samples are distributed near the LMWL, indicating that the karst

groundwater in the study area originates from precipitation (Liu et al., 2021). The isotopic enrichment of

?H and 'O in surface water samples is significantly higher than that in karst groundwater samples,

exhibiting a typical evaporation effect. Additionally, the karst groundwater samples gradually deviate

from the LMWL with the enrichment of 2H and '30, indicating the mixing of precipitation and surface

water. This suggests that the karst groundwater is significantly recharged by surface water.

5*H %o

-46 - $\)
48 -

] e DB’
=50 —
=59

| Regression Line:
=34~ &H%0 = 5.13 x 5'%0%o - 16.18

i (R*=0.922)
-56 -

) 128 sHeihu Spring
-58 1 Huar/ngQY ‘ Zhenzhu Spr;ng

| Wulong Spring
-60 YR40 Baotu Spring

AoEC\. -
-62 4 QinsY g e ® Karst springs
DewdQ -~ ® Karst groundwater
[ .' —CX46
-64 | YRi1g/ @@ 2 ® Surface water
KA3->® (CX59 .
T r T ' T . T
-9 -8 -7 -6

5'30%o

Fig. 6 Scatter plot of 3*H%o and 5'80%o in water samples

Previous studies have quantitatively calculated the contribution rates of groundwater flow from

different strata to the four major springs in the Baotu Spring area of Jinan City, demonstrating

varying groundwater circulation depths among these springs (Zhu et al., 2020). However, despite

originating from different stratigraphic layers, the ultimate source of groundwater flow remains

precipitation and surface water (Guo et al., 2019). To better evaluate MAR effects primarily

conducted through river channels, it is essential to determine the proportion and spatiotemporal
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distribution characteristics of surface water recharge in groundwater—an aspect not addressed in

prior research.

In this study, the mixing percentage of surface water recharge in groundwater is calculated with

Eq. 5 and exhibited in Fig. 7. According to the result, the closer the distance to the MAR segments of

Yufu River and Xingji River is, the higher the mixing percentage of surface water recharge in

groundwater. In the southern metamorphic rock and Cambrian Zhangxia Formation limestone outcrop

areas, as well as the northwestern Yellow River alluvial plain, the mixing percentage of surface water

recharge is generally less than 20%. In contrast, in the middle and lower segments of the Yufu River and

North Dasha River basins, as well as the Xingji River basin, the mixing percentage of surface water

recharge is relatively high. The highest mixing percentage is near the MAR segments of the Yufu River

and Xingji River. For example, in the villages along the MAR segment of the Yufu River, the mixing

percentage of surface water recharge in wells ZhaiET, Cuil, and J97 exceeds 80%, while in wells A2-

30 and Jil near the Xingji River MAR segment, and the Springs downstream, it exceeds 50%. These

results highlight that the MAR from the Yufu River and Xingji River is a significant component of karst

groundwater resources, emphasizing the importance of MAR projects in ensuring groundwater resources

and raising regional groundwater levels.
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384 Fig. 7 Mixing percentage of surface water recharge in groundwater

385  3.2. Infiltration efficiency of MAR river segments

386 Firstly, in order to investigate the relationship between effective MAR rates and water release rates,
387 we analyzed flow data from 2014 to 2016 (Fig. 8). Since the MAR segment of the Yufu River is divided
388 into four segments by five flow monitoring sections, whereas Xingji River has only one MAR segment
389 due to a single upstream and downstream section, the upstream and downstream flow rates were analyzed
390 separately for each segment to assess groundwater infiltration capacity. Based on the data in Fig. 8, we
391 plotted the flow relationships between upstream and downstream sections for each segment (Fig. 9, where

392 Qi~Q; represent the flow rates of section #1~section #7, in units of 10* m3/d).
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Fig. 9 Graphical representation of the flow rate relationship between upstream and downstream
sections in MAR river segments
In Fig. 9(a), the single blue data point shows Q- significantly exceeds Qi, indicating higher
downstream flow than upstream flow, which suggests an additional recharge source between section #1
and section #2. Thus, this point was excluded from the fitting function. Similarly, four blue points in Fig.
9(b) that deviate markedly from the fitted line were also excluded. Furthermore, Figures 9(b)-9(e) show
that when upstream flow is low, downstream flow is nearly zero, suggesting complete infiltration of river
water into groundwater below a certain threshold of flow, defined as the "critical flow rate." Data analysis
reveals that when flow exceeds this critical flow rate (Eq. 9), upstream and downstream flows generally

follow a linear relationship (Eq. 9), with Pearson R? all exceeding 0.810.
(1. Q, =0.7961 x Q, (Q; =0, R?* = 0.962)
(2). Q3 = 0.6223 X Q, — 4.424 (Q, > 7.109, R* = 0.810)
(3). Q, = 0.6032 x Q; — 1.487 (Q3 > 2.465, R? = 0.954) 9)
(4). Qs = 0.8678 X Q, — 1.694 (Q, > 1.952, R? = 0.952)
(5). Q; =0.7863 X Qg — 1.572 (Qg > 2, R* = 1)

Then, by combining Eq. 9 with Eq.6, the following relationships are established: the effective MAR
rate in the Yufu River is quantitatively related to Q; (Eq. 10), while that of the Xingji River correlates

with Qs (Eq. 11).

QEff(Yu) =Q; (0, =2044) 10
Qspror = 0.74490; + 5214 (Q > 20.44) (10)
Qefrixing) = Q6 (Q < 2) (1)

In the equation, the units of Q; to Q7, as well as Qggwy and Orpxing, are all 10*m/d.

According to Eq. 10, when the water release rate does not exceed 20.44x10*m>/d, the effective MAR

rate for Yufu River equals the water release rate, indicating full infiltration of surface water before section

#5. However, when the water release rate exceeds 20.44x10*m?/d, the effective MAR rate is less than the

water release rate, as some surface water flows past section #5 without complete infiltration. Similarly,
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Eq. 11 demonstrates that the Xingji River follows a similar pattern to the Yufu River.

According to the test results of in situ double-ring infiltration test, the streambed permeability
coefficient of the Yufu River MAR segment ranges from 1.96 to 2.76 m/d, with an average of 2.30 m/d
across five sites. According to high-resolution satellite images, the Yufu River MAR segments (Fig. 1),
from section #1 to section #5, approximately covers an area of 0.5 km?. Assuming a vertical infiltration
hydraulic gradient of 1, the theoretical maximum MAR rate for the Yufu River MAR segments, calculated
using Darcy's Law, is approximately 114.9x10*m%/d. It should be noted that during the monitoring period
(2014-2016), the maximum flow rate of the Yufu River was 34.73x10* m*/d, much less than this value.
This indicates that although a water release rate exceeding 20.44 x10* m3/d may lead to partial waste of
recharge water, further increasing the water release rate can still enhance groundwater recharge.

Finally, the effective MAR rates of the Yufu River and Xingji River from 2020 to 2022 were
calculated, as shown in Fig. 10. These calculations were used as surface water recharge inputs for the

groundwater flow model.
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Fig. 10 Water release rate VS. Effective MAR rate in Yufu River and Xingji River

3.3. Effective porosity of karst aquifers estimated from tracer tests

As discussed in Section 2.4, the effective porosity at each calculation point was calculated using Eq.
7, with the process and results shown in Tab.1 (provided in the Supplement). According to Tab.1, the
groundwater flow velocity in the study area ranges from 52.4 to 216 m/d, and the effective porosity of
the aquifer varies widely, with the maximum, minimum, and average values being 4.39 x10*, 1.28x10"
5, and 1.08x 10, respectively. Consistent with these findings, the effective porosity of Cretaceous Chalk
in northeastern England's Yorkshire ranges from 3.7x107* to 4.1x1073 (Agbotui et al., 2020), while
Jurassic Limestone and Magnesian Limestone exhibit values of 1x10~* (Foley et al., 2012) and 3x10~*
(Medici et al., 2019), respectively. Studies have indicated that the effective porosity of karst systems
exhibits significant scale effects, primarily attributed to the heterogeneity of groundwater flow velocities
caused by the non-uniform development of karst conduits and fissures. For regional groundwater studies,
large-scale tracer tests and dilution tests should be employed to determine the effective porosity, which

typically ranges between 10~ and 10*—considerably lower than previously recommended values (0.1—
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0.01) (Medici & West, 2021). In this paper, the average effective porosity (1.08x10#) from all calculated

points on three flow lines from the Cuima Village and Xingji River tracer tests was used to represent the

karst aquifer's effective porosity for groundwater solute transport modeling.

3.4. Effects of MAR and extraction on groundwater level

According to the identification and verification of the groundwater flow model, the horizontal

hydraulic conductivity of karst aquifers is shown in Fig. 11(a). The calculated and observed

groundwater flow field as of December 31, 2022, are shown in Fig. 11(b), and the calculated and

observed groundwater levels for the representative monitoring wells are shown in Fig. 11(c) to 11(f)

(provided in the Supplement).

(a) Horizontal hydraulic conductivity of karst aquifers (Unit: m/d)
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Fig. 11 Identification and verification result of the groundwater flow model

The net variations of Baotu Spring water level caused by MAR and groundwater extraction

were simulated and are displayed in Fig. 12. The "net variations in the Baotu Spring water level" in

Fig. 12 refers to the portion of groundwater level fluctuation in Baotu Spring caused by MAR and

groundwater extraction. These variations are calculated using a numerical model based on actual MAR

and groundwater extraction data. It shows that the water level of Baotu Spring rises with MAR and drops

with groundwater extraction. There is also a lag in the effect of these factors on the water level.
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Fig. 12 Net variations in the Baotu Spring water level caused by MAR and groundwater extraction

(based on data in 2020-2022)

The water level net variation following continuous recharge and extraction at a constant flow rate

over 1, 2, and 3 years was computed and compared, with results presented in Tab.2. Due to maximum

recharge capacity limitations, scenarios exceeding 5x10* m?/d for Xingji River and MAR wells were

excluded. Tab.2(a) demonstrates the impact of MAR on Baotu Spring's water level, revealing that well-

based MAR yields the greatest effect, followed by Xingji River, while Yufu River exhibits the least

influence despite its substantially higher maximum recharge capacity. Notably, well-based MAR induces

minimal water level variation beyond the first year, attributable to their proximity to Baotu Spring (0.75

km, 0.81 km, and 0.35 km) and the high permeability (k=150 m/d) of the shared karst aquifer. Optimal

MAR source selection should consider operational strategies: well-based MAR, despite limited capacity,

is most effective for rapid short-term water level elevation; Xingji River MAR, with moderate efficacy
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and capacity, suits sustained minor water level augmentation when combined with well-based MAR;

whereas Yufu River MAR, though least efficient, offers substantial capacity and should serve as the

primary source for significant long-term water level increases in conjunction with other sources.

Tab.2(b) delineates groundwater extraction effects on Baotu Spring's water level, indicating that

eastern suburbs wells exert the strongest influence, followed by western suburbs wells, with western

Jinan wells showing minimal impact. Given recorded extraction rates (2020-2022) of 5,339 m*/d

(western suburbs), 70,852 m3/d (western Jinan), and 46,487 m3/d (eastern suburbs), strategic

redistribution of extraction from eastern to western suburbs wells could mitigate Baotu Spring's water

level decline while meeting regional groundwater demand. This approach capitalizes on the underutilized

extraction potential of western suburbs wells.

Tab. 2 The effect on groundwater level net variation at Baotu Spring resulting from a constant rate of

continuous MAR and groundwater extraction over 1 year, 2 years, and 3 years

(a). The effect on groundwater level rise resulting from MAR

Duration of groundwater recharge

MAR rate (x10*m?/d)

1 year 2 years 3 years
2 19 mm 31 mm 36 mm
5 49 mm 76 mm 90 mm
Yufu River 10 97 mm 152 mm 179 mm
20 194 mm 300 mm 353 mm
30 266 mm 409 mm 480 mm
2 23 mm 60 mm 89 mm

Xingji River
5 38 mm 100 mm 148 mm
2 85 mm 86 mm 86 mm

MAR wells
5 212 mm 214 mm 216 mm

(b). The effect on groundwater level drop resulting from groundwater extraction

Groundwater extraction rate Duration of groundwater extraction
(x10*m%/d) 1 year 2 years 3 years
115 mm 138 mm 142 mm
Western suburbs wells
10 230 mm 283 mm 293 mm
Western Jinan wells 5 87 mm 106 mm 107 mm
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10 175 mm 218 mm 221 mm
5 199 mm 322 mm 382 mm
10 397 mm 643 mm 765 mm

Eastern suburbs wells

3.5. Effects of MAR on groundwater quality

Based on the groundwater solute transport model established in this paper, simulations were

conducted to monitor the dynamics of sulphate concentration in karst groundwater after continuous

recharge of water with sulphate concentrations of 150 mg/L, 250 mg/L, and 350 mg/L over periods of 2

months, 6 months, and 18 months. As shown in Fig. 13 (The other subfigures of Fig. 13 are provided in

the Supplement), with prolonged recharge duration and deteriorating recharge water quality, the sulphate

concentrations in karst groundwater increase and the affected area of karst groundwater quality expands

continuously, indicating an increasing effect of MAR on karst groundwater quality over time. Therefore,

deteriorating water quality from MAR poses risks to groundwater, and strict control and monitoring of

recharge water quality are necessary.

Additionally, sulphate concentrations in karst groundwater reach stability after 12-18 months of

continuous recharge, and a linear regression established a quantitative relationship between the sulphate

concentrations in karst groundwater and in MAR water (Fig. 14). In practice, target values for sulphate

concentrations in karst groundwater should be preset, and the minimum control standards for sulphate

concentrations in MAR water could be calculated using the relationship shown in Fig. 14. For example,

according to China's Groundwater Quality Standards, the sulfate concentrations in Class I, II, and III

groundwater must not exceed 50, 150 and 250 mg/L, respectively. Thus, it can be calculated that to ensure

karst groundwater meets Class I, II, and III standards, the sulfate concentration in the MAR water source

must not exceed 56.5, 197.8 and 339.1 mg/L, respectively.
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4. Conclusions

This study focuses on temperate semi-arid fissured karst systems, proposing an integrated multi-

method quantitative approach combining isotopic analysis, flow monitoring, tracer tests, and numerical

modeling. The methodology was developed to investigate the impacts of managed aquifer recharge

(MAR) and extraction on karst groundwater level and quality dynamics, with a case study conducted in

the Baotu Spring karst system, Jinan, China.

The main conclusions are summarized as follows: (1) The conventional two-endmember mixing

model for recharge estimation was enhanced by integrating 6*°H (%o) and 6'*0 (%o) data from both surface

water and groundwater, which reduced uncertainties in estimating groundwater recharge ratios from

multiple sources. The calculated mixing ratios of groundwater recharge indicate that surface water

accounts for over 80% and 50% of groundwater recharge near the MAR segments of Yufu River and

Xingji River, respectively. (2) The relationship between effective MAR rates and water release rates was

quantified through flow monitoring and infiltration tests, thereby improving recharge rate quantification

accuracy. Results indicate that when water release rates surpass a critical threshold (20.44x10* m3/d for

Yufu River and 2x10* m3/d for Xingji River), partial surface water flows downstream, diminishing the

effective MAR rate. (3) Based on large-scale regional tracer tests, the effective porosity of the

investigated karst aquifer was estimated to be approximately 1.08x107#, which enhances the reliability

of solute transport simulations. This value is comparable to results reported from similar karst terrains in

Europe. (4) Using image data from exposed fissures to measure apertures, a maximum Reynolds number

(Re=2.24) for karst groundwater flow was calculated, confirming laminar flow conditions and validating

the EPM model’s applicability for the studied karst system. (5) Groundwater flow and solute transport

modeling was employed to assess the effects of MAR and extraction on groundwater levels and quality.
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The results indicate that MAR significantly raises karst groundwater levels, though efficiency varies by

different MAR sources. Prolonged recharge with poor-quality MAR water may degrade groundwater

quality, and the maximum allowable sulfate concentrations in MAR water to meet China's Class I, II, and

IIT groundwater standards are 56.5 mg/L, 197.8 mg/L, and 339.1 mg/L, respectively.

Overall, the methodology proposed in this study effectively analyzes the impacts of MAR and

extraction on groundwater level and quality. The integrated approach leverages multi-source data to

achieve quantitative results. These findings provide a reference for MAR implementation in temperate

semi-arid fissured karst systems with hydrogeological conditions similar to the Baotu Spring area.
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