## Response to RC1

We thank reviewer 1 for providing valuable comments and constructive suggestions on our manuscript. We have responded to the reviewer's comments point by point. The comments are pasted below in regular font and our responses are in bold.

RC1: This paper deals with applied problem of subseasonal prediction of Antarctic sea ice concentration/extent/volume. It looks in detail at two reforecast experiments, one with and one without data assimliation, and compares this to an observational sea ice record (plus a few other reference datasets). Results are discussed in terms of seasons and sectors of the Southern Ocean. A comparison to similar existing studies for the Arctic show a few interesting differences. For example, that sea ice predictability as a function of initialization season is not the same in the Antarctic as it is in the Arctic.

I don't know enough about the immediately adjacent literature to comment on the novelty or need for this study, but the paper seems solid. With a few exceptions (my comments below), the paper is organized well, the writing is easy to follow, the figures are clear, and the length seems appropriate.

#### Detailed comments:

1. Defining the two main datasets. This paper is focused on SPEAR vs SICDA, but this isn't made explicit early enough. It only started to become clear as I made my way through Section 2. The last paragraph of Section 1 hints at this comparison being important. And the end of Section 2.3 reiterates it a bit. But I'd suggest being more explicit. One option would be to move a couple of sentences from end of Sections 1 and 2.3 to the start of Section 2 (before Section 2.1 even). Make it very clear in one place. Another option would be to add a Table or Figure that summarizes Section 2 (what models will be used, what quantities will be compared, etc). Although it wouldn't add anything new, this Table/Figure would be a quick way for the reader to refer back and check the details quickly.

Thanks for the suggestion. We agree that having a table that lists the components and configurations of the two experiments will make it clearer to readers. We have added a table (Table 1 in the manuscript) per your suggestion.

- 2. Add sector lines to all map figures. Figures 2, 3, 4, 6, 7, 11, and 12 would benefit from having five lines radiating out from the south pole that separate the maps into the five sectors defined in Section 2.6. To make sense of Section 3, I found that I had to draw these lines on myself (at least onto the top left map in each figure). Consider labeling the sectors in Figure 2a, then just repeating the lines thereafter.
  - Thank you for the thoughtful suggestion. While adding lines in each plot may be virtually overshelming, we agree that providing a spatial map showing the definitions of all regions would be helpful for readers. We have therefore added Figure 1, which illustrates the boundaries of all regions referenced in the paper.

3. The paper uses a small number of acronyms, but uses them a lot. I'm not sure it's a problem that has a good solution, but it does make a lot of the sentences stilted. A couple of egregious cases are the definition of EAFK on L97 (which is never subsequently used) and DART on L67 and L96 (which is only used twice, but defined in full both times). Also, avoid acronyms in headings (subsections of 3.1). Just write out each phrase in full.

We thank the reviewer for pointing out the errors we made in the text. We've deleted the acronyms that are not used later and written out names in full in the headings.

4. Vague quantification in the Abstract: There is an overuse of vague adjectives in this part, rather than concrete numbers. Examples include 'significantly' (L5), 'considerable' (L6), 'mostly' (L6), 'improved the most' vs 'minor differences' (L11), 'more significant' (L12). Since many readers only interact with papers via the abstract, make sure to include at least some key metrics.

Thanks for the comments. We edited the abstract to include the key metrics used in the paper and replaced a few words to make the language more clear.

This study evaluates the impact of sea ice concentration (SIC) data assimilation (DA) on subseasonal forecasts of Antarctic sea ice by comparing reforecast experiment suites initialized with and without SIC DA. The two initial conditions (ICs) are evaluated against NSIDC SIC observations from 1992 to 2017. Assimilating SIC reduces mean biases and root-mean-square-errors (RMSE) and enhances anomaly correlation coefficients (ACC) of SIC. The improvement in sea ice ICs is greater in the Antarctic than in the Arctic. After SIC DA, the sea ice thickness (SIT) field becomes mostly thinner except in the interior Weddell and Ross sectors. Results from reforecast experiments show that SIC DA improves the subseasonal forecast skill of Antarctic SIC, as indicated by enhanced detrended ACC, in nearly all initialization months except December and January, when the initial improvement is quickly overtaken by a bias likely linked to the thin SIT bias. SIC DA also improves the probabilistic prediction of the sea ice edge position, as measured by the Spatial Probability Score (SPS) at subseasonal time scales. The forecast skill improvement is largest in spring, followed by winter and summer, and shows minor differences in autumn. Consistent with the IC improvement, the reforecast skill gain associated with SIC DA is more pronounced in the Antarctic than the Arctic. Our study demonstrates the critical role of SIC DA in improving subseasonal prediction of Antarctic sea ice.

- 5. There is also some vague quantification in other parts as well:
  - 'skillful predictions' at L48 (how skillful?)
  - "Skillful" meaning the model predictions exceed referenced statistical predictions, which is an anomaly persistent forecast in the study of Bushuk et al. (2021).
  - 'improved' at L49 (by how much?)

- 'outperformed' at L64 (by how much?)
- 'reasonably represent' at L122

We thank the reviewer for this helpful comment. The above statements noted as vague were in the Introduction, where our goal was to provide general context rather than detailed quantitative results. Because many of the cited studies do not report directly comparable metrics or regional values, we have revised the text to improve clarity and precision while keeping the discussion at an appropriate level of generality. Specifically, we rephrased several sentences to better reflect the key findings of previous work without implying unavailable quantitative detail.

- 'underestimate' at L124 (by how much)

Due to the lack of SIT observations in the Antarctic, these studies compared GIOMAS with different observation-based datasets, each having their own uncertainties and biases. The comparison also varies with season and space. So it is hard to provide a single number of how much bias it has. For example, Shi et al. (2021) evaluated four reanalysis datasets including GIOMAS in the Weddell Sea and found that GIOMAS has an average negative bias of -0.75m in autumn compared to IceSat-1, but didn't mention the mean bias in other seasons. Liao et al. (2022) showed that GIOMAS can have a significant negative bias of -1.99m at the upward-looking sonar (ULS) site 206, but didn't provide statistics for other sites. So we decide not to give a single number but refer the readers to read their papers in detail if they are interested in a specific region and time of year.

- 'noticeably' at L164

We deleted the vague word.

6. 15. 'Steady increase' is not the correct description of Antarctic sea ice from late 70s to 2015. It didn't decrease over this period, but it wasn't clearly increasing, and it certainly wasn't doing so steadily.

Thanks for the comment. We have changed "steady increase" to "an overall increasing trend".

7. 26, 30. Unclear what 'perfect' means here.

A "perfect model study" assumes models are free of biases and initial errors. It's a method commonly used in predictability studies to examine the upper bound of the predictability of a variable. We understand that the term might be unfamiliar outside of the community, hence we added some explanation when it first appears in the paper. The following sentence is added in Line 26.

"The value of initialization in Antarctic sea ice predictability has been assessed by previous studies using a perfect model approach, which assumes that the models and initializations are bias free."

8. 161. Define the months for each season earlier in Section 3. You do define these later (at L169), but at least for L161-167, I was left wondering exactly what, say, 'summer' corresponded to.

The four seasons are defined in Section 3.1, Line 164. The text is copied below.

"The twelve months are grouped into 4 seasons, defined as summer (January–March), aurum (April–June), winter (July–September), and spring (October–December)."

9. 194. Section 3.1.2 seems just as much about Thickness as it is about Volume. Perhaps this should be reflected in the heading.

We thank the reviewer for pointing out the confusion. We understand the two terms may be confusing to some readers. Sea ice thickness is the averaged thickness over the ice covered area, and sea ice volume is the averaged thickness per grid cell (defined in L132). So the two terms are used interchangeably sometimes, but we made sure to refer to the correct term for corresponding datasets. For example, both GIOMAS and BSOSE provide the averaged thickness per grid cell, i.e., SIV. Since we are comparing the two ICs with GIOMAS and BSOSE, we use the term "SIV" in Section 3.1.2 instead.

10. 197. 'thickest' seems like a weird adjective for describing sea ice volume.

It's rephrased to "largest".

11. 215. Replace 'from the West Weddell Sea to the East Weddell Sea' with just 'across the Weddell sector'?

Thanks for the edit. We rephrased the sentence in Line 221 to the following.

"As sea ice grows, a thick sea ice band extending from the west to east across the Weddell Sector emerges in all datasets."

12. 243. 'first month' seems a weird description. To me, 5–10 days would be a more appropriate description. Yes, some cases extend beyond 10 days, but a month is too much of an upper bound to be relevant for this sentence, right?

Thanks for pointing it out. We agree that "a month" is an understatement of the model skills compared to the reference reforecasts. We rephrased this sentence to reflect that both model predictions beat the reference within the first week in the annual-mean plot. Please see the text copied below.

"Both reforecast experiments lose to the DP in the beginning but are able to beat the DP within the first week annually (Figure 9e)"

13. 261. If I'm reading this sentence right, you're inferring that SICDA has the 'most considerable skill improvement' because it is better than SPEAR. But you're only comparing two cases. If so, the word 'most' is inappropriate as it should be reserved for comparing three or more cases.

Thanks for the comment. We meant SICDA has the "most considerable skill improvement" in the two seasons (winter and spring) when SPEAR doesn't show better skill than the reference forecasts.

14. 282. Not clear what 'This' refers to. Is it the underprediction in Dec–Jan? Or is it referring to the merging of skill values (from an earlier sentence).

The degradation refers to SICDA's worse skill than SPEAR after about 20 days. We've edited the text in Line 289 to clarify it. Please see the text copied below.

"The skill degradation of SICDA relative to SPEAR is not seen in the Arctic"

15. 303. Unclear how Figure 12j has 'no noticeable bias'. Are you implying that, say, the 0.07 average value is ≈0?

We meant there is no noticeable bias in the Ross and Weddell Sectors, following the sentence just before talking about the positive biases developed in these two Sectors. We've changed the sentence to make it clear. The Figure number is updated to Figure 13. "where no noticeable SIC biases existed on the first day (Figure 13j) or in its IC in these two Sectors".

16. 310-317. The last paragraph before the Conclusion only cites results that are shown in the Supplementary material. Why? One would think the last paragraph of a 'Results and Discussion' section is a good place for a key result. But relegating it to the Supplementary gives the opposite impression. Is there a 12-figure limit for this journal, so you decided putting the figure in the Supplementary was a good workaround? If so, it isn't.

Thank you for the suggestion. We respectfully disagree with the reviewer's concern about the potential negative impression. The "Results and Discussion" section begins with improvements in prediction skills we found in our experiment, and then explores in detail when and where these improvements occur, while also acknowledging the associated limitations. We believe that identifying these issues provides valuable context and opens avenues for future research. As this aspect is not a central focus of the paper, we have chosen to keep Figure S8 in the Supplementary Material. We also emphasize the main positive findings again in the Conclusion section to maintain the overall balance of the paper.

17. 377-379. Remove the last three sentences. They're a repetitive and weak way to finish the paper. Finish with what you showed, not what didn't work.

Thanks for the suggestion. We agree that it's already mentioned in the previous paragraph and it's better to leave them out by the end of the paper.

**Figures** 

-----

18. Figures 1 and 5: set the bottom axis at exactly zero

Thanks for reviewing the plots carefully. We did not set the y-axis to zero at the bottom because the standard deviation bars sometimes go beyond zero. So we decided to keep the axes as they are.

- 19. Figures 5 and 6: what is sea ice volume measured in? Is it actually a thickness?

  The sea ice volume in Figure 5 (Figure 6 in the updated manuscript) is the sea ice area times ice thickness over ice covered area (or total area times ice thickness per gridcell). Figure 6 (Figure 7 in the updated manuscript) shows the ice thickness per grid cell. We have it clarified in Line 140.
- 20. Figures 1 and 5: remove redundant decimal places in y axes (e.g., 6.00, 4.00, 2.00 → 6, 4, 2) Thanks for the suggestion. We have changed the label precision in y axes for Figures 1 and 5 (Figures 2 and 6 in the updated manuscript)

# 21. Figure 3:

- Why is the colormap so saturated? Increase color limit to 0.5, say?
- Redefine the acronym ACC here, since it isn't an intuitive acronym.

Thank you for the suggestions. We have changed the color bar for Figure 3 (Figure 4 in the updated manuscript; as well as Figure S6 for Arctic). We also redefined ACC in the figure captions.

### 22. Figure 8:

- Add x label ('Time (days)'?) directly to panel e, rather than just stating it in the caption. **Label for the x axis is added.**
- Make the 'DP' line for the Arctic a black dashed line. This would follow the pattern of the red and blue lines.

We chose to keep the DP line solid for both Arctic and Antarctic, as the dashed lines are meant for the reforecast experiment that's not initialized from SIC DA.

- Then consider making the legend two columns by three rows to make it really explicit how the line color/style system works.

We have changed the legend to two columns to make it clearer for the readers.

- Consider replacing 'red dot' and 'red circle' with 'filled red circle' and 'open red circle'? since the open circles aren't obvious. I couldn't initially figure out how a 'dot' was different to a 'circle'. **We've changed the caption as the reviewer suggested**
- Remove the '(red dashed lines)', '(red solid lines)' etc from the caption, which aren't necessary since these details are in the legend already.

Thanks for the suggestion. We think it's better to keep them in the caption for clarification.

23. Figure 9: Same as for Figure 8

We have edited Figure 9 (Figure 10 in the updated manuscript) as well.

24. Figure 5 error bars:

The error bars for this figure aren't appropriate. Each error bar is derived from five values. You've chosen to use ±2 standard deviations. But datasets of five are awfully small for standard deviation to be meaningful. Further, ±2 standard deviations is typically taken to be approximately equal to a 95% confidence interval (1.96 standard deviations). Of course, with only five values, you can't estimate a confidence interval that well. Could you solve all this by just using the minima and maxima of the five cases for the error bars?

Thank you for making a good point. We agree that using standard deviation values here does not serve the purpose. We have changed it to the range of values (from minimum to maximum) across the 5 years.

### 25. Figure 10:

- Different colored lines are unnecessary here since it's obvious which months are relevant from where the lines begin.

We thank the reviewer for the suggestion. We chose to keep the current color selections as they make better distinctions between each other.

- The caption is incorrect and appears to have been copy/pasted from a different figure. Thanks for catching the mistake. We have corrected the caption.
- 26. Figure S7: Same as for first comment for Figure 10.

The same edit has been done for Figure S7.

27. Typos:

330: 'from' is repeated

Captions of Figures 7 and S6: 'forcast'

Thank you for catching the typos. We have corrected them.