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Abstract. Empirical models are among the earliest hydrological models and have evolved from the unit hydrograph to deep

learning models. Despite their success, purely data-driven methods often lack interpretability and are highly sensitive to data

quality, limiting their generalizability in data-scarce regions or under changing environmental conditions. Conceptual models,

traditionally relying on simplified representations of physical processes governed by conservation laws of mass, momentum,

and energy, remain widely used in operational hydrology due to their explainability and practical applicability. However, these5

process-based models inherently face structural uncertainties and a lack of scale-relevant theories—challenges that emerging

artificial intelligence (AI) techniques may help address. Moreover, high-resolution models are crucial for predicting extreme

events characterized by strong variability and short duration, making spatially distributed hybrid modeling critical in the current

context. We introduce a hybrid physics-AI approach that integrates neural ordinary differential equations (ODEs), solved by

an implicit numerical scheme, into a spatialized, regionalizable, and differentiable process-based model. The hydrological10

module is built on a continuous state-space system and an integrated process-parameterization neural network. This hybrid

system solves the ODEs governing reservoir dynamics, while embedding a neural network to refine internal water fluxes,

all without relying on an analytical solution, instead computing the model states simultaneously. This work also presents an

upgraded version of the smash platform following its initial release, featuring a more comprehensive evaluation of hybrid

models at relatively fine resolutions of kilometric spatial and hourly temporal scales. The results show that hybrid approaches15

demonstrate consistently strong and stable performance in calibration and various validation scenarios. Additionally, the neural

ODE structure exhibits a hybridization effect that modifies state dynamics and runoff flow, achieving more reliable streamflow

simulations for flood modeling.

1 Introduction

With the explosion of big data and artificial intelligence (AI), research on innovative approaches that leverage the power of AI20

for flood forecasting and hydrological modeling has demonstrated significant efficiency and advantages in terms of accuracy

and computational cost compared to traditional rainfall-runoff models (Sit et al., 2020). The use of AI in hydrology is moti-

vated by the recognition that conceptual hydrological models often lack scale-relevant laws, which can potentially be addressed

through data-driven modeling approaches (Reichstein et al., 2019). In general, there are two main approaches for integration of
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machine learning (ML) and deep learning (DL) techniques in hydrological modeling. The first approach involves using a full25

black-box model that replaces traditional rainfall-runoff models. These purely data-driven models have been applied success-

fully to hydrological prediction, achieving state-of-the-art performance in various applications using long short-term memory

(LSTM) network (Kratzert et al., 2018; Feng et al., 2020; Cho and Kim, 2022) and their variants like LSTM-based Seq2Seq

model (Xiang et al., 2020). A second approach is the hybrid method, which seamlessly integrates neural networks into process-

based numerical models, adhering to the principle of “learning under physical constraints.” This strategy aims to harness the30

predictive power of AI while maintaining the physical consistency and interpretability of hydrological processes within the

context of differentiable modeling (Shen et al., 2023). For example, recent advancements in hybrid modeling include lever-

aging neural networks for regionalizing differentiable hydrological models (Feng et al., 2022; Huynh et al., 2024), generating

more plausible potential evapotranspiration estimates (Wang et al., 2024), and refining the internal fluxes of rainfall-runoff

models (Huynh et al., 2025b). Additionally, merging process-based differential equations with ML can be highly advanta-35

geous. This has been recently demonstrated with physics-informed neural networks (PINNs) in Raissi et al. (2019), where the

process-based model serves as a weak constraint in the training cost function and is well-suited to assimilate observations (e.g.,

He et al., 2020). This advantage is also evident in universal differential equations that incorporate a universal approximator

(Chen et al., 2019; Rackauckas et al., 2021; Yin et al., 2021).

Despite the success of both pure and hybrid ML models, each approach faces several limitations and challenges. First, pure40

ML models are generally highly sensitive to large and high-quality training datasets, making them less reliable than process-

based models in data-scarce regions (Shen, 2018; Reichstein et al., 2019; Beven, 2020; Sit et al., 2020). Unlike physics-based

models, which rely on governing equations, ML models do not inherently impose physical constraints, resulting in reduced

generalizability under extreme or unseen hydrological conditions (Beven, 2020). Hybrid modeling is a promising approach to

address these limitations by objectively integrating ML/DL components into physically based models, rather than replacing45

them. However, hybrid approaches also face their own set of challenges. A primary limitation is maintaining physical con-

sistency throughout the hybrid framework while leveraging the flexibility of data-driven approaches (Reichstein et al., 2019).

Moreover, the integration of ML components with physical models may introduce complexities in model coupling and error

propagation across different components (Frame et al., 2021). Recent research suggests that ensuring numerical stability and

physical process consistency, particularly when embedding neural networks into differential equation-based hydrological mod-50

els, may help address some of these key challenges (Rackauckas et al., 2021; Höge et al., 2022; Song et al., 2024). For instance,

Höge et al. (2022) proposed an approach based on neural ODEs, where neural networks are implemented within an implicit

numerical scheme. Neural ODEs provide a mathematically grounded approach to hybrid modeling that not only reduces nu-

merical errors but also enhances the stability of hydrological simulations under varying conditions. Such hybrid approaches

would be particularly promising if implemented within a variational data assimilation (VDA) framework for spatially dis-55

tributed hydrological modeling (Jay-Allemand et al., 2020; Colleoni et al., 2022; Huynh et al., 2023). Indeed, high-resolution

hydrological modeling accounts for spatially distributed information and fine temporal scales, both of which are crucial for

predicting extreme events characterized by strong variability and short duration. However, current hybrid approaches are often

employed for lumped models and hybrid modeling at high spatio-temporal resolution has received little attention. Although
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the gap is beginning to narrow with recent studies of hybrid modeling for fully distributed models such as Huynh et al. (2025b)60

for algebraic resolution of ODEs, the generalization of resolution approaches for spatialized neural ODEs remains unexplored,

considering that previous work (Song et al., 2024) has implemented a discretized numerical method into hybrid lumped models.

This study proposes a hybrid physics-AI approach that integrates neural ODEs, solved using an implicit numerical scheme,

into a differentiable, regionalizable, and spatially distributed hydrological model within a VDA framework. The hydrological

model is based on GR4 operators (Perrin et al., 2003), with a continuous state-space structure (Santos et al., 2018) and an in-65

tegrated process-parameterization neural network. The approach implements a mathematically rigorous method for computing

the Jacobian matrices required by the implicit scheme when incorporating neural network components. While we initially focus

on simpler neural network architectures to ensure numerical stability and physical interpretability, the hybrid numerical solver

is designed to be compatible with PyTorch’s automatic differentiation (Paszke et al., 2019) and could employ more complex

architectures or deeper networks for process-parameterization. Additionally, the regionalization neural network from Huynh70

et al. (2024) is extended to explore alternative neural network architectures, such as convolutional neural networks (CNNs) in

addition to multilayer perceptrons (MLPs), to improve the adaptability and scalability of parameter estimation. These devel-

opments aim to bridge the gap between ML flexibility and physical model interpretability, uncovering hydrological behaviors

and scale-relevant theories inferred with AI techniques. It enables the addressing of several open research questions by pro-

viding a robust and powerful tool for enhancing flood modeling, mitigating structural uncertainty in modeling, optimizing data75

efficiency, and enabling more effective multi-scale information extraction through hybrid flux correction.

This paper also introduces smash v1.1, an upgraded version of the smash platform, following its initial release v1.0 in

Colleoni et al. (2025). The new version includes various hybrid physics-AI hydrological solvers and provides a more com-

prehensive user guide, along with detailed mathematical descriptions of the implemented models (see smash 1.1.0 Release

Notes1 for details). As the core solver for the French flash flood forecasting system (Piotte et al., 2020), smash is positioned80

to improve real-world flood simulation and hydrological forecasting, facilitating the integration of AI-enhanced physics-based

modeling into operational hydrology.

2 Method

This study employs three key components. First, we implement the continuous state-space GR4 structure presented in Santos

et al. (2018) into smash, in addition to the classical GR4 model without an explicitly formulated water balance in Perrin et al.85

(2003). This state-space model solves the water balance differential equations continuously using numerical schemes, instead

of splitting the equations to compute the solutions analytically. Second, the seamless regionalization method using neural

networks, HDA-PR (Hybrid Data Assimilation and Parameter Regionalization), proposed in Huynh et al. (2024), enabling the

estimation of conceptual hydrological parameters from physical descriptors, is extended to incorporate CNNs in addition to

MLPs. Finally, the process-parameterization neural network previously used for the analytical resolution of a discrete state-90

space model in Huynh et al. (2025b)—which relied on an algebraic structure—is now directly embedded into the ODEs. These

1https://smash.recover.inrae.fr/release/1.1.0-notes.html
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ODEs are solved using the Newton-Raphson method within an implicit Euler scheme, which mitigates numerical errors that

arise when using simple explicit schemes with sequential computations and split operators.

2.1 Hybrid continuous state-space structure for a regionalizable and gridded hydrological model

The hydrological modelM is constructed by partially composing two operators: (i) a learnable, neural network-based operator95

ϕ, predicting parameters and fluxes corrections of (ii) a dynamic and spatially distributed rainfall-runoff model with simplified

hydraulic routing, consisting in a set of chained differential equation and denoted as Mrr−hy , resulting in Equation 1.

M=Mrr−hy ( . ; ϕ( . )) (1)

Let Ω⊂ R2 represent a two-dimensional spatial domain, with x ∈ Ω as the spatial coordinate and t ∈ ]0,T ] as the physical

time. The surface flow path is a 8-direction (D8) drainage network, DΩ. The rainfall-runoff model Mrr−hy dynamically maps100

atmospheric forcings I to surface discharge Q, internal states h, and internal fluxes q, as expressed in Equation 2.

U(x,t) = [Q,h,q] (x,t) =Mrr−hy

(
DΩ,I(x,t);f q(x,t), [θ,h0] (x)

)
(2)

with U(x,t) the modeled state-flux variables, f q the vector of spatially distributed corrections applied to internal fluxes q

(details will be explained later), θ and h0 the spatially distributed parameters and initial states of the hydrological model.

A neural network-based estimator ϕ, consisting of a pair of neural networks, takes as input (i) neutralized (by interception105

reservoir) atmospheric inputs In = (Pn,En)(x,t), along with the model states at previous time step h(x,t− 1), to correct

spatio-temporal internal fluxes q(x,t) (process-parameterization pipeline) and (ii) physical descriptors D(x) to estimate spa-

tialized hydrological parameters θ(x) (regionalization pipeline), as shown in Equation 3.

ϕ :





f q(x,t) = ϕ1 (In(x,t),h(x,t− 1);ρ1)

θ(x) = ϕ2 (D(x);ρ2)
(3)

with ρ = (ρ1,ρ2) the vector of trainable parameters, invariant to the spatial coordinate x over Ω, of the neural network(s) ϕ.110

In this study, the neural networks considered are two MLPs, or an MLP for water flux corrections and a CNN for regional

parameter estimation.

Now, the mathematical details of the hybrid hydrological model operators can be summarized as follows. For a given cell

x ∈ Ω and time step t > 0, P (x,t) and E(x,t) represent the local precipitation and potential evapotranspiration. First, an

interception reservoir with a capacity of ci, automatically computed using the flux matching technique (Ficchì et al., 2019),115

allows for the computation of the neutralized rainfall Pn and neutralized evapotranspiration En.

Next, the model states h are computed by solving a neural ODE system, generally expressed as:

dh

dt
= fphys ( . ,h,ϕ( . ,h;ρ)) (4)

where fphys is the set of physically-based equations. This neural ODE system employs the following two key components:
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– The neural network ϕ takes the model states as part of its inputs, thus affecting the model dynamics and state gradient120

information. It is expected to learn the model behavior by leveraging memory effects through state updates.

– The set of physical equations fphys integrates the network ϕ1 as a complementary component, which refines the internal

water fluxes that describe the state dynamics. This differs from partly replacing internal fluxes as dh
dt = fphys◦ϕ(.,h;ρ),

or fully replacing them as dh
dt = ϕ(.,h;ρ) (e.g., Höge et al. (2022)). The approach allows the neural ODEs to preserve

an original structure driven purely by physical equations, rather than directly relying on neural network outputs, and125

enables learning under stronger physical constraints.

In this study, we consider fphys in Equation 4 to be a set of GR production and transfer operators. The GR production state

hp and transfer state ht are computed by solving Equation 5. The numerical resolution of this neural ODE system, ensuring

both accurate resolution and numerical differentiability with respect to model parameters for optimization, will be explained

in Section 2.2.130

dh

dt
=




dhp

dt

dht

dt


=




(
1−

(
hp

cp

)α1
)

Pn(1 + fq,1)− hp

cp

(
2− hp

cp

)
En(1 + fq,2)

0.9
(

hp

cp

)α1

Pn(1 + fq,1) + kexc

(
ht

ct

)α3

(1 + fq,3)− ct

α2−1

(
ht

ct

)α2

(1 + fq,4)


 (5)

where α1 = 2 , α2 = 5,α3 = 3.5 are classical GR constants (cf. Perrin et al. (2003); Santos et al. (2018)); fq,i=1..4 are the

corrections applied to internal fluxes and predicted by the process-parametrerization neural network ϕ1; cp, ct, and kexc repre-

sent the capacities of the production and transfer reservoirs, and the exchange coefficient, which are the conceptual production

parameters predicted by the regionalization neural network ϕ2. Then, hydrological runoff flux (lateral discharge feeding the135

routing module) produced at the pixel scale is computed by the closure equation of the ODE system as follows:

Qlat = 0.1
(

hp

cp

)α1

Pn(1 + fq,1) + kexc

(
ht

ct

)α3

(1 + fq,3) +
ct

α2− 1

(
ht

ct

)α2

(1 + fq,4) (6)

It is important to note that the values of fq,i=1..4 are constrained within the range of -1 to 1 due to the TanH activation function

in the output layer of ϕ1. Consequently, the transformation functions applied to these internal flux corrections (e.g., 1 + fq,1,

1+fq,2, etc.) preserve the structure of the original conceptual model when f q ≡ 0, as all transformations result in a value of 1140

in that case. These terms were defined according to the specific fluxes being corrected and relevant mathematical constraints.

Finally, the routing module utilized here is based on a conceptual 1D kinematic wave model, which is numerically solved

using a linearized implicit numerical scheme (Te Chow et al., 1988). Typically, the discharge routing problem is simplified

to a 1D problem by adopting a “D8” drainage scheme DΩ (x), derived from processing a digital elevation model (DEM) of

the terrain, with the assumption that a single pixel exhibits the largest drained area. The kinematic wave model is a partial145

differential equation (PDE) obtained by simplifying the 1D Saint-Venant equations, assuming the momentum is reduced to the

flow friction slope, which equals the bottom slope. This is done by employing a conceptual parameterization for the momentum,

A = akwQbkw , where A represents the flow’s cross-sectional area, Q is the discharge, and akw and bkw are parameters to be

estimated by the regionalization neural network ϕ2. This expression is inserted into the mass equation ∂xQ+∂tA = λQlat, with

Qlat being the lateral discharge (total runoff generated at a pixel from the GR operators described above), and λ representing150
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the conversion factor. The result is a single-equation discharge propagation model:

∂xQ + akwbkwQ(bkw−1)∂tQ = λQlat (7)

This kinematic wave model is numerically solved with a classical finite differences approach (cf. Te Chow et al. (1988)).

The following section will detail the numerical method used to solve the ODEs in 5, which includes the neural network ϕ1

that depends on the ODE state h, hence called a neural ODE.155

2.2 Resolution of neural ODEs within an implicit Euler scheme

To solve Equation 5, we employ an implicit Euler scheme. For a small time step dt, by defining ḣ = dh
dt , we have:

h(t + dt) = h(t) + dt · ḣ(h(t + dt)) (8)

Now, define:

g (h(t + dt)) = h(t + dt)−h(t)− dt · ḣ(h(t + dt)) (9)160

Approximating the sought state h(t + dt) thus reduces to numerically solving the equation:

g(y) = y− c− dt · ḣ(y) = 0 (10)

where y = h(t + dt) and c = h(t). Then, the solution of Equation 10 is approximated using the Newton-Raphson method as

follows:




y0 = c,

yn+1 = yn + ∆y, where ∆y is the solution of ∇g(yn) ·∆y + g(yn) = 0
(11)165

The Jacobian matrix ∇g is given by:

∇g =


 1− dt

∂ḣp

∂hp

∂hp

∂ht
− dt

∂ḣp

∂ht

∂ht

∂hp
− dt ∂ḣt

∂hp
1− dt∂ḣt

∂ht


≈


 1− dt

∂ḣp

∂hp
−dt

∂ḣp

∂ht

−dt ∂ḣt

∂hp
1− dt∂ḣt

∂ht


 (12)

This simplification holds because ∂hp

∂ht
= 0 since production does not depend on transfer. Additionally, we assume that ht

depends on hp only through its time derivative rather than instantaneously. Thus, ht evolves as an accumulated effect of hp,

meaning its dependence on hp is indirect and primarily through its time derivative, justifying the approximation ∂ht

∂hp
≈ 0.170

The remaining terms, which are ∂ḣp

∂hp
, ∂ḣp

∂ht
, ∂ḣt

∂hp
and ∂ḣt

∂ht
, can be derived analytically with distinct formulations depending on

whether the process-parameterization neural network ϕ1 is included, as follows.

First, we introduce a variable change: h̃ =
(
h̃p; h̃t

)T

=
(

hp

cp
; ht

ct

)T

. Since the conceptual parameters cp and ct remain

constant over time, their derivatives vanish, leading to: dh̃p

dt = 1
cp

dhp

dt and dh̃t

dt = 1
ct

dht

dt . Then, the Jacobian matrix ∇g in

Equation 12 can be computed as follows in two different cases:175
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– For classical continuous state-space structure (ODE): The process-parameterization neural network is absent, we set

f q ≡ 0 in Equation 5. The resulting Jacobian components are:

∂ḣp

∂h̃p

=−α1Pnh̃p
α1−1− 2En(1− h̃p)

∂ḣp

∂h̃t

= 0

∂ḣt

∂h̃p

= 0.9α1Pnh̃p
α1−1

∂ḣt

∂h̃t

= α3kexch̃t
α3−1− α2

α2− 1
cth̃t

α2−1 (13)

– For hybrid continuous state-space structure (neural ODE): When incorporating the process-parameterization neural net-

work ϕ1(.,h), which depends on the ODE state and predicts the model flux corrections f q , one obtains a set of so-called180

neural ODEs (Equation 5). The resulting Jacobian components become:

∂ḣp

∂h̃p

= Pn

((
1− h̃p

α1

) ∂fq,1

∂h̃p

−α1h̃p
α1−1 (1 + fq,1)

)
−En

(
h̃p

(
2− h̃p

) ∂fq,2

∂h̃p

+ 2
(
1− h̃p

)
(1 + fq,2)

)

∂ḣp

∂h̃t

= Pn

(
1− h̃p

α1

) ∂fq,1

∂h̃t

−En

(
2− h̃p

)
h̃p

∂fq,2

∂h̃t

∂ḣt

∂h̃p

= 0.9Pnh̃p
α1−1

(
α1 (1 + fq,1) + h̃p

∂fq,1

∂h̃p

)
+ kexch̃t

α3
∂fq,3

∂h̃p

− cth̃t
α2

α2− 1
∂fq,4

∂h̃p

∂ḣt

∂h̃t

= 0.9Pnh̃p
α1

∂fq,1

∂h̃t

+ kexch̃t
α3−1

(
α3(1 + fq,3) + h̃t

∂fq,3

∂h̃t

)
− cth̃t

α2−1

α2− 1

(
α2(1 + fq,4) + h̃t

∂fq,4

∂h̃t

)
(14)

where the neural network Jacobian ∂fq

∂h is computed explicitly using the backpropagation method, which determines the

gradient of its outputs with respect to its inputs. We note that all components of the Jacobian matrix, including those

from the neural network, are computed directly from the analytical mathematical formulations, which significantly re-185

duces the computational cost compared to calling a numerical adjoint during the resolution of the ODEs with an implicit

scheme. Alternative methods, which do not directly rely on mathematical formulations but could be more computation-

ally intensive, include using linear tangents or, more recently, the “discretize-then-optimize” adjoint method proposed in

Song et al. (2024), which aims to reduce the time consumption associated with adjoint calls in a differentiable implicit

numerical scheme.190

2.3 Model training

Considering the observed and simulated discharge time series Q∗ = (Q∗g=1..NG
)T and Q = (Qg=1..NG

)T , where NG is the

number of gauges across the study domain Ω, the discrepancy between the model and multi-catchment observations is evaluated
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using a cost function J as follows:

J(Q∗,Q) =
NG∑

g=1

wgj(Q∗g,Qg) (15)195

Here,
∑NG

g=1 wg = 1 (with wg = 1/NG in this study), and j(Q∗g,Qg) = 1−NSE(Q∗g,Qg) for each gauge, where NSE denotes

the quadratic Nash-Sutcliffe efficiency. Thus, J is a convex and differentiable function that relies on the output Q of the

forward model M, and consequently depends on the conceptual parameters θ and the flux corrections f q , and therefore on

the parameters ρ of the ANNs (cf. Equation 3). The VDA optimization problem is defined as shown in Equation 16, which

involves optimizing the weights and biases of the neural network(s) ϕ.200

ρ̂ = argmin
ρ

J (Q∗,Mrr−hy ( . ;ϕ( . ;ρ))) (16)

The neural network(s) are trained as follows:

– Pre-calibration of conceptual parameters: In the first step, we pre-train only the regionalization neural network ϕ2 to

find a spatially distributed first guess for the conceptual parameters. The weights of the process-parameterization neural

network ϕ1, which is embedded in the ODE solver, are initialized using a normal distribution centered at zero with a205

small variance. This ensures that, while the non-zero initialization allows for proper flow of gradients in the network, the

outputs of ϕ1 being close to zero result in minimal corrections, thus preserving the original hydrological model structure.

In other words, ϕ1 has very limited impact during this phase. The pre-training uses a relatively high learning rate of 0.004

for faster gradient descent over 40 iterations. In the case of lumped parameters (i.e., ρ = θ̄ and ϕ2 ≡ idϕ2 ), we simply

use a heuristic optimization algorithm to provide a spatially uniform first guess.210

– Main training: In this phase, both neural networks are trained simultaneously (or ϕ1 and the conceptual parameters in the

case of lumped parameters). The training uses a smaller learning rate of 0.003 to ensure stability over 240 iterations. The

gradients of ϕ2 are computed using a chained gradient approach described in Huynh et al. (2024), while the gradients of

ϕ1, which is embedded in the differentiable Fortran code, are computed using the adjoint model.

It is worth noting that the embedded network ϕ1 must be twice differentiable mathematically (once for solving the ODEs215

and once for the calibration process). While many activation functions in neural networks are not differentiable at zero (e.g.,

ReLU), stochastic optimization can often bypass this problem since the network generally produces non-zero (or non-close-to-

zero) values. However, as we aim to preserve the original structure by producing outputs close to zero during pre-calibration,

numerical errors can arise. To mitigate this issue, we use the SiLU (Sigmoid Linear Unit) activation function, which is twice

differentiable everywhere and provides smooth gradients.220
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3 Case study and results

3.1 Study area and experimental design

The models are run at a spatial resolution of 1 km and an hourly time step. The methods are evaluated using a national database

covering Metropolitan France with multi-source data. The study area is the Aude River basin, located in southern France, the

same as in Colleoni et al. (2025), but with a coarser spatial resolution of 1 km instead of 500 m. This area comprises 25225

catchments, including 12 upstream gauges and 13 downstream gauges (Figure 1). The study period spans 9 years, from August

Figure 1. The Aude River basin, located in southern France, consists of 25 sub-catchments, including 12 upstream catchments (red-shaded

regions) and 13 downstream catchments (gray-shaded regions).

2014 to July 2023, divided into two sub-periods: P1 (2015-2019) and P2 (2019-2023). We use additional one-year warm-up

periods (2014-2015 for P1 and 2018-2019 for P2) to calibrate or validate the models. Period P1 is used for calibration, while

P2 is used for validation.

We perform calibration across multiple catchments using upstream gauges and evaluate regionalization performance by230

transferring parameters to downstream gauges, which represents a more challenging regionalization case compared to trans-

ferring parameters from downstream to upstream gauges. A set of seven descriptors with a spatial resolution of 0.01◦ in the

WGS 84 projection, similar to Huynh et al. (2024), is used as inputs for the regionalization mapping ϕ2 (Figure 2).
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Figure 2. Maps of seven physical descriptors in the Aude River basin, where µ and σ represent the spatial average and standard deviation

for each descriptor. d1: the local slope (in degrees); d2: the drainage density; d3: the percentage of basin area in karst zone; d4: the forest

cover rate; d5: the urban cover rate; d6: the potential available water reserve (in mm); and d7: the high storage capacity basin rate. Before the

optimization process, all descriptors are standardized between 0 and 1 using min-max scaling.

We evaluate the models based on two criteria: model structure flexibility and regionalization ability. Model structure flex-

ibility is assessed by the model’s capacity to produce interpretable water flux dynamics, both with and without the process-235

parameterization network ϕ1. Regionalization ability is evaluated based on the capability of the neural networks ϕ2, which

can be either an MLP or a CNN, to regionalize the conceptual parameters using physical descriptors. Table 1 summarizes the

evaluated models and indicates the version of smash in which each was first introduced.

Table 1. Summary of evaluated models and their corresponding smash version. The notation consists of two parts, separated by a dot.

The first part describes the model structure: GR denotes the GR4 structure (Perrin et al., 2003), which uses an algebraic formulation for

state updates; ODE denotes the continuous GR4-like state-space model (Santos et al., 2018); and NODE denotes the neural ODE structure

that incorporates a neural network into the ODEs. The second part indicates the mapping used to constrain the conceptual parameters: U

represents lumped parameters without constraints; while MLP or CNN represent regionalization mappings based on MLP or CNN to map

physical descriptors to spatially distributed conceptual parameters. All models include a kinematic wave routing over a flow direction grid.

Notation Model Version Description

GR.U Algebraic (lumped parameters) v1.0 GR4 model with lumped parameters

GR.MLP Algebraic + MLP v1.0 Grid-based GR4 model using an MLP for regionalization

GR.CNN Algebraic + CNN v1.1 Grid-based GR4 model using a CNN for regionalization

ODE.U ODE (lumped parameters) v1.1 Continuous state space GR4-like model with lumped parameters

ODE.MLP ODE + MLP v1.1 Continuous state-space GR4-like model with MLP-based regionalization

ODE.CNN ODE + CNN v1.1 Continuous state space GR4-like model with CNN-based regionalization

NODE.U Neural ODE (lumped parameters) v1.1 Neural ODE-integrated GR4-like model with lumped parameters

NODE.MLP Neural ODE + MLP v1.1 Neural ODE-integrated GR4-like model with MLP-based regionalization

NODE.CNN Neural ODE + CNN v1.1 Neural ODE-integrated GR4-like model with CNN-based regionalization
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3.2 Validation of the ODE solver

A major advantage of numerically solving ODEs, as opposed to algebraic resolution methods, lies in their generalizability.240

While an analytical solution derived through an algebraic approach is exact, it can only be obtained under specific assumptions

about the ODE system (e.g., certain fixed values of the coefficients (αi)i=1..3 in Equation 5). In contrast, numerical methods

can solve ODEs without requiring such assumptions, albeit with approximate solutions. It is thus necessary to validate the

ODE solver (ODE solutions obtained by numerical scheme) against the algebraic approach before performing any numerical

experiments based on this solver. This is particularly important as this work presents the first implementation of both classical245

and hybrid ODE solvers into a fully distributed hydrological modeling and VDA framework.

To carry out this validation, we compare the GR algebraic model with lumped parameters (GR.U), which solves an analytical

solution of the time-integrated ODEs, and the continuous state-space model also with lumped parameters (ODE.U), which

solves the ODEs using an implicit numerical scheme. For both models, we set identical conceptual parameters and initial states,

which are non-calibrated. Figure 3 shows similar simulated hydrological responses for GR.U and ODE.U obtained at the most250

downstream gauge. Although slight differences are found in the production state (often higher state for ODE.U) at certain

Figure 3. Comparison of normalized production state (top), normalized transfer state (middle), and simulated streamflow (bottom) at the

most downstream gauge, obtained by algebraic resolution (GR.U) and numerical resolution (ODE.U) using the same lumped conceptual

parameters and initial states.
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periods, the transfer state for both models remains nearly identical, while streamflow simulation shows minor differences at

several peak flows.

In addition to similar temporal hydrological responses, Figure 4 demonstrates nearly identical spatial patterns and values

of the final model states obtained for both methods. The bias map between ODE.U and GR.U for the production state shows

Figure 4. Maps of the normalized production state (hp/cp, top) and transfer state (ht/ct, bottom) at the final time step, as simulated by

GR.U (left), ODE.U (middle), and the corresponding bias (right) computed as the difference between the ODE.U and GR.U states. For each

map, µ and σ denote the spatial average and standard deviation.

small deviations centered around zero, while the bias for the transfer state is nearly negligible, aligning with the earlier temporal255

observations. These minor discrepancies between the two approaches can be attributed primarily to the fundamental difference

in their solution methodology—namely, the simultaneous numerical resolution of the ODEs for both state variables (hp and

ht) versus the exact analytical solution obtained through sequential algebraic resolution—and the convergence criteria of the

Newton-Raphson method.

While both methods initially produce similar hydrological responses, it will be particularly interesting to observe in the next260

section how the model dynamics evolve during calibration, and whether differences in the numerical formulation influence

model behavior and performance.
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3.3 Model performance and interpretation

Figure 5 provides a global view of model performance across calibration and various validation scenarios. Results demonstrate

Figure 5. Comparison of model performance for different methods. The NSE scores are computed to evaluate: (i) calibration performance

(scores computed over P1 for the 12 upstream gauges), (ii) spatial validation (scores computed over P1 for 13 downstream gauges), (iii)

temporal validation (scores computed over P2 for 12 upstream gauges), and (iv) spatio-temporal validation (scores computed over P2 for

downstream gauges).

that model scores in calibration increase with the complexity of regionalization mappings (from uniform to MLP and CNN).265

For each regionalization approach, we observe improved scores progressing from classical GR structure to ODE and NODE

structures, exemplified by a median NSE over 0.85 for NODE.CNN compared to 0.82 for ODE.CNN and 0.8 for GR.CNN.
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Moreover, models with ODE and NODE structures show improved interquartile ranges and whiskers when using CNN or MLP

regionalization compared to GR, while NODE.U exhibits larger variance despite maintaining higher median scores than GR.U.

For temporal validation, ODE.MLP and NODE.MLP yield similar high median scores of 0.71 compared to 0.59 for GR.MLP.270

Additionally, NODE.MLP demonstrates a superior interquartile range, with a 0.25-quantile of 0.65 compared to 0.57 for

ODE.MLP and 0.42 for GR.MLP. Models with the same regionalization approaches (uniform or CNN) show similar perfor-

mance across different structures (GR, ODE, NODE), with only slight differences in median and distribution.

Spatial validation shows comparable performance across structures for each mapping, except for ODE.CNN which performs

relatively worse than GR.CNN and NODE.CNN. While all models struggle with spatial validation, spatio-temporal validation275

yields generally good performance overall. Although ODE.CNN maintains lower performance compared to GR.CNN and

NODE.CNN, the MLP-based models exhibit a more stable performance across validation scenarios. For instance, ODE.MLP

achieves the best median scores among the three MLP-based models for spatio-temporal validation, while NODE.MLP yields

the best interquartile range. Interestingly, GR.CNN exhibits promising performance in spatio-temporal validation with a median

score of 0.71.280

Overall, GR.CNN and NODE.MLP demonstrate consistently strong and stable performance across all calibration and vali-

dation scenarios. While GR.CNN generally outperforms its MLP counterpart in validation scenarios, NODE.MLP shows stable

performance with good scores and favorable interquartile ranges across all validation scenarios.

To illustrate the models’ flood simulation capabilities, Figure 6 presents two representative flood events during the validation

period, as observed at an upstream and a downstream gauge. At both locations, all models using uniform mapping significantly285

underestimate the flood magnitudes, resulting in the poorest simulation performance. This result highlights the importance of

regionalization approaches in accurately simulating floods, particularly in ungauged basins, where traditional methods that use

lumped parameters often fail to capture real hydrological dynamics.

For the upstream gauge example, regionalization approaches using MLP and CNN produce relatively similar discharge

simulations for each model structure (GR, ODE, NODE). The ODE and NODE structures with MLP show slightly better290

performance, with RMSE values of 4.27 and 4.06, compared to 6.09 for GR.MLP. Both CNN and MLP mappings applied to the

GR structure accurately simulate the peak flow, whereas the regionalization methods for the ODE and NODE structures tend to

slightly overestimate peak flow, particularly in the case of ODE.CNN. Despite this, the timing of flood events remains accurate

across all regionalization methods, with the rising limbs of the simulated hydrographs closely aligning with observations. Note

that in this upstream catchment characterized by a quick hydrological response, the start of the flood event occurs nearly at the295

same time as the moment of heavy rainfall.

In contrast, the downstream gauge event shows an approximately 8-hour delay between heavy rainfall and flood response.

Most models struggle to predict the lag time correctly. This emphasizes the need to improve model realism by accounting for

rainfall intensity and studying its impact in triggering non-linear flash flood responses, improving river network hydraulics,

which presents a promising avenue for future research. Returning to flood simulation at the downstream, while the majority of300

models yield poor performance in predicting the event’s beginning, generating flood responses earlier than observed, GR.CNN
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Figure 6. Comparison of flood simulation performance across different methods for an upstream gauge (left) and a downstream gauge (right).

demonstrates impressive timing accuracy with simulations very close to observations. However, GR structure models, including

GR.CNN, still underestimate flood magnitude, whereas ODE.CNN, NODE.MLP, and NODE.CNN perform more accurately.

Figure 7 shows the maps of spatially distributed conceptual parameters calibrated using CNN and MLP regionalization

approaches. Overall, CNN-based models produce smoother parameter maps compared to MLP-based models, as evidenced305

in the maps of cp and ct for GR.CNN (compared to GR.MLP), kexc for all CNN-based structures, akw for all CNN-based

structures, and bkw for GR.CNN. This smoothing effect results from the convolution operations applied to physical descriptor

maps. Furthermore, we observe spatial patterns from physical descriptors (Figure 2) reflected in the parameter maps, such

as the pattern at the top of the forest cover map (d4) or the pattern at the bottom left of the slope (d1). For each state-space

structure, different regionalization mappings produce distinct parameter distributions (e.g., different patterns of GR.MLP com-310
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Figure 7. Estimated conceptual parameters across different regionalization methods. The calibrated parameters are θ(x) =

(cp(x), ct(x),kexc(x),akw(x), bkw(x))T with µ and σ denoting their spatial average and standard deviation.

pared to GR.CNN, ODE.MLP compared to ODE.CNN, and NODE.MLP compared to NODE.CNN). Additionally, notable

differences in parameter patterns emerge across model structures, with major differences for GR-based models, while ODE

and NODE structures yield relatively similar parameter maps (ODE.MLP compared to NODE.MLP, and ODE.CNN compared

to NODE.CNN). This pattern divergence is expected since classical GR models have different state dynamics compared to

continuous state-space models, even when employing the same regionalization mapping.315
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Figure 8 examines model dynamics through the spatial average of normalized states (production state hp and transfer state

ht). The two continuous state-space models (ODE.MLP and NODE.MLP) demonstrate similar behavior in production state,

Figure 8. Comparison of the spatial average of the normalized production state hp(t)/cp(t)
x

and transfer state ht(t)/ct(t)
x

during the

validation period P2, across the three model structures (GR, ODE, NODE), each employing an MLP-based regionalization mapping.

showing higher values and lower variability compared to GR.MLP. However, for the transfer state, the hybrid NODE.MLP

model produces higher values and greater variability compared to the ODE.MLP and GR.MLP models. This likely results

from the hybridization effect of the process-parameterization neural network ϕ1, which incorporates neutralized rainfall to320

refine the physical equations in the ODE system. This creates a rainfall sensitivity in the transfer state, which is not accounted

for in the classical GR and ODE structures.

Nevertheless, Figure 9 reveals that all three model structures exhibit relatively similar patterns in time-averaged transfer state

maps, though with higher mean values (0.18 compared to 0.16 for ODE.MLP and 0.17 for GR.MLP) in the case of NODE.MLP.

The maps of time-averaged production state for NODE.MLP and ODE.MLP display different patterns from those of GR.MLP.325

However, no evident differences emerge between ODE.MLP and NODE.MLP for both hp and ht. This is unsurprising as

spatial hybridization effects are not expected since the process-parameterization neural network employs a simple MLP (MLP
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Figure 9. Maps of the time-averaged normalized production state hp(x)/cp(x)
t

and transfer state ht(x)/ct(x)
t

over the validation period

P2, for the three model structures (GR, ODE, NODE), each employing an MLP-based regionalization mapping. For each map, µ and σ

denote the spatial average and standard deviation.

of ϕ1 and not MLP of the regionalization mapping ϕ2) that does not account for or accounts less for spatial information. Future

work could employ other types of ϕ1 to explore this aspect.

Finally, Figure 10 illustrates the hybridization effect on runoff flow (lateral discharge for routing operator) by examining330

high-pass filtered lateral discharge from the most downstream gauge during the validation period. A 3-day cutoff frequency

high-pass filter removes seasonal and long-term patterns to focus on flood event behavior. During major events, GR.MLP

consistently produces lower lateral discharge compared to ODE.MLP. In certain situations, this results in an overestimation of

flood magnitude with the ODE structure and an underestimation with the GR structure. The hybrid NODE structure effectively

addresses this issue by refining internal water fluxes in the ODE system, resulting in moderate lateral discharge values that335

fall between those of ODE.MLP and GR.MLP. This effect is consistent with previously observed flood simulation results,

demonstrating the improved hydrological response representation achieved through neural ODE integration.
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Figure 10. High-pass filtered lateral discharge from the most downstream gauge, using a 3-day cutoff frequency, to emphasize flood events

during the validation period P2. The results are shown for three model structures (GR, ODE, NODE), each employing an MLP-based

regionalization mapping.

4 General discussion on pure AI and hybrid modeling approaches

It has been nearly 80 years since Alan Turing first introduced the concept of a Turing machine, paving the way for the realization

of thinking machines (Turing, 1950). Since then, scientists have made impressive efforts to simulate biological brain functions340

based on mathematical principles and the understanding of natural learning processes. AI models, with their generalization

ability to learn multi-level abstractions from large datasets through backpropagation algorithms, have dramatically helped

automate various tasks in scientific and engineering applications (LeCun et al., 2015).

By 2025, AI has become ubiquitous, often perceived as a “magical” tool capable of addressing numerous challenges. Al-

though the results of its applications seem remarkable, the evolution of AI is deeply rooted in the advancement of computational345

power and the application of well-established mathematical principles. The foundational concepts of modern AI are grounded

in linear algebra, probability (e.g., Bayesian inference), and control theory (Lions, 1971) (see Goodfellow et al. (2016) for

fundamental concepts of modern AI). Many of the key algorithms and model architectures that form the core of modern AI

were developed much earlier in the 20th century but did not achieve the widespread success we see today. The primary reason

for this was the lack of high-quality, extensive data and sufficient computational power to train these models effectively at that350

time (LeCun et al., 2015).

The intelligence we commonly reference in modern AI systems is, indeed, primarily the ability to learn patterns provided

by humans through data. In other words, current AI models do not possess the capability to explore patterns beyond the

given data, or even when they do, such explorations are not considered significant discoveries if researchers cannot interpret

them (LeCun, 2018). Physics, on the other hand, focuses on decoding phenomena using systems of mathematical equations,355

discovered through human intelligence and continually validated in pursuit of a unified theory of the universe.
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The question then arises: should we focus on employing complex AI models to partially or fully replace process-based

models, or should we prioritize understanding the physical interpretability of hybrid approaches, starting with simpler AI

architectures? There is no straightforward answer to this question. However, based on our knowledge of both disciplines,

current AI models are not capable of fully replacing process-based models, given the inherent complexity of hydrological360

processes and uncertainties in modeling from limited observations. Full replacement might become feasible if at least the

following two conditions are met:

– AI models become more intelligent, producing more interpretable results and demonstrating a comprehensive under-

standing of physics. However, this is not currently the case, as highlighted by LeCun (2022);

– We obtain nearly perfect and complete hydrological data, accounting for all uncertainties. This requires significant effort365

and remains a distant goal (Beven, 2019).

Given current advancements in both hydrological modeling and AI, we believe that a comprehensive understanding of com-

plex hydrological processes through a stand-alone AI model is not yet feasible. Even as datasets become more extensive, they

remain insufficient to fully capture all relevant physical processes due to observational limitations, biases, and the inherent

complexity of hydrological systems (Beven, 2019). Researchers can easily fall into the trap of optimizing for impressive per-370

formance metrics on local datasets while failing to develop models that accurately represent underlying physical mechanisms

(Reichstein et al., 2019). Instead, we should focus on hybrid approaches that seamlessly integrate AI models into hydrological

processes to leverage AI capabilities while maintaining physical consistency and process understanding.

5 Conclusions

This study proposed a framework for integrating neural networks into ODEs of a process-based hydrological model. The hybrid375

ODE system, referred to as neural ODEs, incorporates a neural network that refines internal water fluxes and is governed by

physical equations to describe the model’s state dynamics. Moreover, the hydrological model includes a kinematic wave routing

and a regionalization mapping. This mapping enables learning the transfer function between physical descriptors and spatially

distributed conceptual parameters, as introduced in Huynh et al. (2024), which is now further enhanced by employing a CNN

in addition to an MLP.380

The proposed methods were tested on multiple catchments in the Aude River basin, demonstrating that increased complexity

in model structures (from classical GR to ODE and neural ODE structures) and regionalization mapping (from uniform to

MLP and CNN) leads to improved model calibration scores. Furthermore, models using CNN-based regionalization mapping

generally exhibited smoother estimated parameter maps. This smoothness is a result of the convolution operation, which applies

a relatively fine filter to the input descriptors. Evaluation scores from various validation scenarios suggest that the classical GR385

model using CNN (GR.CNN) and the neural ODE structure using MLP (NODE.MLP) demonstrated consistently strong and

stable performance compared to other models. Analysis of state dynamics and runoff flow revealed the hybridization effect of

the neural ODE structure, which modifies internal water fluxes to achieve more reliable streamflow simulations during flood
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events. This preliminary analysis examines recently proposed hybrid solvers for spatially distributed modeling, which could be

further explored under a broader range of hydrological conditions, experimental hypotheses, and state-parameter analyses.390

By leveraging AI capabilities within physically-based frameworks, we aim to develop more robust, interpretable, and gen-

eralizable models for hydrological processes. This approach not only enhances the accuracy of streamflow predictions but also

provides deeper insights into the underlying physical mechanisms. Additionally, it employs AI capabilities to handle massive

data within a fully distributed approach for flood modeling, thereby representing a significant advancement toward a robust

hybrid AI approach that emphasizes physical understanding and interpretability.395

Code and data availability. The source code of smash, Version 1.1, is available and preserved on multiple platforms: GitHub at https://

github.com/DassHydro/smash/tree/v1.1.0, PyPI at https://pypi.org/project/hydro-smash/1.1.0, and Zenodo at https://doi.org/10.5281/zenodo.

15498851 (Huynh et al., 2025a). The dataset supporting this study comprises preprocessed data sourced from SCHAPI-DGPR and Météo-

France, and are available at https://doi.org/10.5281/zenodo.15315600 (Huynh, 2025). smash is released under the GPL-3 license and devel-

oped openly at https://github.com/DassHydro/smash. The documentation is accessible at https://smash.recover.inrae.fr.400
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