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ED: Editor Decision, RC: Reviewers’ Comment, ~AR: Authors’ Response, [J Manuscript Text

Dear Editors and Reviewers,

We greatly appreciate your time and effort in reviewing our manuscript.

We sincerely thank the two reviewers for their positive feedback highlighting the timeliness and innovation of
our contribution, as well as for their very constructive suggestions that have helped us enhance the manuscript.
We fully agree with the reviewers that several details and clarifications on different components of the
proposed hybrid framework are needed, including a schematic presentation to better illustrate the compared
models and improve clarity for a wider audience. We also note that the paper title, abstract, and introduction
section have been significantly enhanced to clarify our unique contributions to the topic of hybrid hydrological
modeling.

Please find the revised manuscript in the attached file. Our responses to the reviewers’ comments are provided
in detail, point by point, below.

Thank you again for your careful and constructive review.

N. N. T. Huynh and P.-A. Garambois, on behalf of the authors.

Reviewer 1

Summary

The manuscript proposes a hybrid physics—Al framework for spatially distributed rainfall-runoff modeling. It
builds on a differentiable, continuous state-space GR-type hydrological core with 1D routing based on a D8
drainage scheme, augmented by two neural components: (i) a regionalization network that maps physical
descriptors to spatially varying hydrological parameters, and (ii) a flux-correction network that adjusts internal
model fluxes using meteorological inputs and prior model states. Because state evolution is governed by
ODEs, the flux-correction component is trained jointly with an implicit ODE solver in a neural-ODE fashion.
Across case studies, the hybrid configurations deliver more accurate and stable streamflow predictions than
the classical GR baseline. Overall, this is a timely and valuable contribution to robust, differentiable coupling
of process-based hydrology with machine learning.

Thank you for your positive and encouraging feedback on the timeliness and value of our contribution. We
appreciate your recognition of the proposed hybrid physics-Al rframework and its potential impact.

Major comments

Self-contained presentation and background: The current manuscript would benefit from a concise background
on rainfall-runoff modeling (empirical/black-box, conceptual, and distributed approaches; recent ML-based
advances and their limitations) to situate the contribution and clarify what is new versus prior work.

Thank you for this suggestion. We have made significant efforts to enhance the literature review in the
background section and to clarify the contribution of this work. The introduction section is now separated
into 3 subsections. It begins with an overview of the evolution of rainfall-runoff modeling approaches, and
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highlighting the motivation for employing data-driven methods, as well as the rise of Al and its applications
in hydrology: we discuss the two main ways in which ML/DL techniques have been utilized in hydrology
and outline their current limitations. Then, in the second subsection, we emphasize the need for hybrid
approaches in spatially distributed modeling—a topic that has received relatively little attention—and explain
why integrating NN directly into physical models and numerical solvers offers distinct advantages and is
critical for advancing distributed hydrological modeling. Finally, we have strengthened the last paragraphs of
the introduction to better highlight the novelty and main contributions of our study in light of this background.
The combination of the following three points makes our contributions unique: (i) the need for a hybrid
approach for spatially distributed models; (ii) integration of a state-dependent NN into the ODE system for
the correction of specific source terms which form UDEs with state-dependent NN, and (iii) resolution of the
UDE with an implicit numerical scheme. Especially, the last two points remains unexplored in hydrological
modeling, which requires the efficient computation of the Jacobian matrix for state-dependent NNs within
the UDE system for its resolution, and the derivation of a numerical adjoint of the complete hydrological
model including UDE and gridded kinematic wave (PDE) routing to enable high-dimensional parameter
optimization. These points have been clarified in the last paragraph of subsection 1.2 and the first paragraph
of subsection 1.3.

High-level system overview: Given the number of interacting components (regionalization network, flux-
correction network, ODE state evolution, PDE/routing), please add a clear schematic that shows data flow for
the different configurations listed in Table 1.

Thank you very much for this comment. A schematic view of the forward hydrological models has been
added (Fig. 3) in addition to Table 1 to provide a clearer representation of the methods compared.

Roles of the two neural networks and learned quantities: Different parts of the manuscript appear to attribute
different parameter sets to the regionalization network. Please make explicit, in one place, which parameters
each network predicts or corrects, their units and ranges, and how parameter scaling/normalization is handled
to avoid ill-conditioning due to heterogeneous magnitudes.

Thank you for this comment. The revised manuscript has clarified this concern, indicating the learned
quantities and their units, also all details on NNs architecture, normalization/scaling methods have been added
in Appendix A.

Notation and naming: Since the two networks serve distinct purposes, consider replacing generic labels
(¢1, ¢2) with intuitive names.

Thank you for this remark. We agree and have replaced the notations (¢1, ¢o) with more intuitive names such
as (¢flmc; Qbregio)-

Numerical solver choices and stability: You motivate the implicit ODE solver, which in turn needs Jacobians
calculations. Please compare against an explicit solver (e.g., RK methods) in terms of accuracy, stability,
computational cost, and training convergence, at least on a representative subset. Also, please report typical
Newton—Raphson iteration counts, convergence criteria, and any damping/line-search strategies used to ensure
robustness.

Thank you for this insightful comment on the method. In fact, an explicit ODE solver was initially coded and
tested in smash. We did not include this solver in the experiments and results for the following reasons:

1. Initial experiments on a simple case study showed significant errors and reduced numerical stability
with the explicit solver applied to this GR-like hybrid model. This finding is consistent with previous
studies (e.g., Santos et al. (2018), which employed a lumped state-space GR model—very similar to
our GR-like operator distributed model—and Song et al. (2024)). It also aligns with the demonstrations
in Clark and Kavetski (2010), which showed that among 8 time stepping methods for 6 hydrological
model structures, the implicit Euler method provides a good solution (with a fixed time step in their
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study and adaptive time steps in Santos’ lumped GR model, as we also implement). We have clarified
this point in the introduction section.

2. For model comparison, we already evaluated 9 configurations. Adding explicit solvers would introduce
6 additional configurations (3 explicit ODE solvers and 3 explicit UDE solvers corresponding to the 3
regionalization mappings), which would make the comparison too heavy and distract from the main
focus of the paper.

For these reasons, we prefer to keep the focus on the implicit solver, but we agree that other details such as
Newton-Raphson iterations, convergence criteria, etc. are important and have been clearly reported in Sect.
2.2 of the revised version.

PDE and differentiability: If the routing/finite-difference step (Eq. 7) is part of the training graph, please
clarify whether gradients are backpropagated through the routing solver in addition to the ODE solver, and
outline how this is implemented.

Thank you for pointing this out. The routing is chained after the production module, and this complete
forward modeling chain is differentiated to obtain the adjoint model enabling to compute cost gradient with
respect to high dimensional control parameters (either hydrological ones and/or neural network ones). This
is one of the original aspects and strength of the proposed spatially distributed modeling framework, which
explicitly includes spatialized routing model (here the kinematic wave model which is a hydraulic-based PDE)
and hybridization possibility with neural networks adapted to predicting quantities of a spatilized dynamic
model. We hope that the added schematic view of the forward model (Fig. 3) and the added explanation in
Sect. 2.1 and 2.3 have clarified this point.

Definition of "neutralized” inputs: Please define precisely what is meant by "neutralized" inputs and where
this is applied in the pipeline.

Neutralized rainfall or evapotranspiration, corresponds to the neutralization of original rainfall or evapotran-
spiration by the interception reservoir. This terminology is specific to GR models, as referenced in Perrin
et al. (2003) and Santos et al. (2018). This point has been clarified in the revised manuscript.

Closure and derivations: Provide a short derivation or a clear reference for the closure relation in Eq. (6).

Thank you for this comment. The closure relation in Eq. 6 follows a simple flux summation under our
GR-like hypothesis at each pixel (detailed algebraic model statement in Colleoni et al. (2025). We have
clarified this in Eq. (2) and in Sect. 2.1 of the revised manuscript.

The closure relation in Equation 2 follows a simple flux summation under the GR-like hypothesis at
each pixel (for a detailed algebraic formulation, see Colleoni et al. (2025) and Huynh et al. (2025)).

Model capacity and regularization: Specify the architecture sizes (layers, hidden units, activations) for both
networks, parameter counts, and any regularization used.

Thank you for this comment. A new appendix including all details related the NN architecture has been added
in the revised manuscript.

Training strategy: During the pre-calibration phase, have you considered training the regionalization network
with the original conceptual model (i.e., without the flux-correction)? Also, how crucial was the pre-calibration
to the overall training performance?

Yes, during the pre-calibration phase, we train only the regionalization network (i.e., without the flux-
correction). This phase is important to ensure the physical consistency of the model (i.e., meaningful
parameter values) before training the flux-correction network. This has been already explained in Sect. 2.3 of
the manuscript but we have also detailed in Appendix A in this revised version.
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The authors embed a small neural network inside a physically based, gridded rainfall-runoff model and solve
the resulting neural ODEs using an implicit Euler/Newton—Raphson scheme. They also learn spatially varying
parameters from physical descriptors via MLPs/CNNs. In the Aude basin (France), hybrid models generally
calibrate better than classical GR4 variants, and the neural-ODE approach moderates extreme runoff more
plausibly during floods.

This research highlights the significance of physics-based deep learning, specifically developing a neural
network to estimate fluxes and localized parameters in ODEs. It is innovative enough to be relevant to this
journey. In the Al for science field, physics-guided Al is becoming increasingly important because it can
be more interpretable and reliable. Additionally, it can significantly enhance the performance of traditional
models based solely on physics rules.

To be honest, I am not an expert in the field of river runoff, although I have some knowledge of hybrid
modeling. Therefore, for readers like myself, despite an understanding of the overall methodology, I still find
it challenging to fully grasp your methods. Additionally, I would find it difficult to accept that calibrating
and validating your advanced model solely within limited areas of the Aude Basin is sufficient. It would
be preferable to present results from a different location to demonstrate the model’s generalizability, unless
one-area testing is a standard procedure in runoff modeling. Consequently, I recommend a major revision
prior to the acceptance of this paper. The authors should enhance the clarity of their wording, improve the
presentation of results, and include additional validation and calibration tests.

Thank you very much for your positive review and constructive suggestions. We have used them to improve
the clarity of our wording and presentation so that the methodology can be more easily understood by a wider
audience. We understand your concern on large sample validation of the hybrid physics-Al hydrological
model presented, which as already been done in Huynh et al. (2025) on a large catchment sample for the
algebraic solver version while the present research focuses on its formulation with a fully equivalent UDE
and its implicit resolution. This UDE solver is clearly validated on the original algebraic one on several
cases addressing a wide range of states and forcing conditions which is sufficient for validating a UDE solver
against its reference algebraic version.

Regarding the study area (Aude river basin), we understand your concern about relying on a medium-sized
basin (=~ 5,000km?) to demonstrate our approach. We would like to highlight, however, that our previous
studies have already tested related hybrid methods on large datasets: for example, the hybrid regionalization
method, HDA-PR, in Huynh et al. (2024) over a study zone covering one-quarter of France and in Colleoni
et al. (2025) on the CONUS dataset across the US, and the hybrid flux-correction method for the algebraic GR
model structure in Huynh et al. (2025) over 235 French catchments. This research paper focuses on model
development, where the main novelty lies in a solver adapted to ODE including neural networks depending
on the model states, in the generalizability of the numerical scheme. Therefore, we chose to illustrate the
approach on the Aude basin, a medium-sized basin with a multi-catchment setup including 25 catchments, as
a representative case study.

We also note that extensive benchmarking of the different hybrid configurations against large-sample datasets
requires significant computational effort, especially when integrating into a coupled 1D hydrologic—hydraulic
modeling chain. Such benchmarking studies, including comparisons with purely physics-based and purely
ML approaches, are already planned and will be carried out in the near future.

Major comments

As a paper on hybrid modeling, the authors should first present the general problem with a clear governing
equation. Then, explicitly show what the neural networks are doing, using clear subscripts for terms predicted
by NN, such as “QNN1” and “QNN2” in this study. Next, clearly demonstrate how the NN-predicted terms
are used in the governing equations. Afterwards, show the optimization process and iterations. The authors
may reorganize section 2.1 to focus their system on equations (3) and (5), removing the redundant ones, and
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can follow examples like Brenowitz and Bretherton (2019), Yuval and O’Gorman (2020), and Yuval et al.
(2021). The goal is to make this section easier for readers to understand quickly.

Thank you for this comment. The methodology section has been fully rewritten following your advices and we
believe that it is now clearer to present governing hydrological equations first and then the NN hybridization,
highlighting the originality of having a grid based hydrological-hydraulic chain with regionalization and
sate-dependent NN, its numerical differentiability and parameters learning capabilities.

Our presentation flow is as follows: Sect. 2.1 introduces the general problem (forward model and governing
equations, including NN components), and Sect. 2.2 details the numerical scheme used in Sect. 2.1, with the
Jacobian matrix combining NN backpropagation for the Newton—Raphson method, which is one of the key
novelties of this work. The flow is organized from a view of physics and hydrological modeling, but we agree
that some details on the NN components are not sufficiently reported, as also noted by Reviewer 1. Thus, we
have made significant efforts to enhance the clarity of the method representation in the revised manuscript by
adding details on NN architectures, learned outputs, their physical ranges/units (Appendix A), and schematic
view of the evaluated hydrological model (Fig. 3). However, we prefer to keep the notations of the outputs as
f, and 6, since they explicitly represent physical quantities that we aim to learn.

From lines 84 to 91, what are the differences between GR4 and ODE? In their first appearance, it seems
like GR4 functions like the host model. But later, it is all about NODE. However, the author also replaces
many processes and parameterizations in GR with neural networks, resulting in GR.MLP and GR.CNN. The
authors should be more straightforward about why they introduce both GR4 and ODE simultaneously—are
they trying to show that one is better? What implications does that have? The authors should also explain
GR4 and ODE more from a physics perspective at the beginning, clearly stating their purposes rather than just
referencing them. It would be helpful to include a diagram to illustrate the workflow of GR.NN, NODE.NN,
and their variants.

Thank you for this comment. We confirm that all models evaluated in this work are fundamentally based
on the hydrological operators of the classical GR4 model. The difference between models labeled “GR”
and those labeled “ODE” lies in the method used to resolve the ODEs of the state update (Eq. 5). While
the original GR4 model proposes an algebraic approach (an explicit solution that only exists under specific
assumptions), these ODEs can also be solved more generally with a numerical scheme (Santos et al., 2018),
which we denote as “ODE” in our notations. When NNs are incorporated into this solver, we obtain a neural
ODE, denoted “NODE.” We have changed this from "NODE" to "UDE" in this revised version for clarify that
the NN in the ODE is a state-dependent NN and used to approximate or correct several source terms in the
physical ODE system (in addition, the system is solved using an implicit numerical scheme). This is one of
the key novelty of our work and has been clarified in the subsections 1.2 and 1.3 of the introduction section.
The notation after the dot specifies the type of regionalization mapping used to estimate model parameters,
for example, “MLP” in “ODE.MLP.” We have explained this point in Sect. 3.1 and added a schematic view of
the methods (Fig. 3) in addition to Table 1 for clarification.

Include at least one subsection about neural networks, such as MLPs or CNNs. Most importantly, I still do not
know what the input variables are for both NNs. Even though they are not complex neural networks, please
write about their basic architecture and hyperparameters. I know some information is already in section 2.3.
Please refine it and make it easier to see, such as by adding a small table, rather than hiding it within lines.

Yes, we totally agree with this remark, all details on NN components have been added in Appendix A now.

Although this paper focuses on hybrid models, comparing them to a pure-ML baseline would be beneficial. If
it requires too much work, including references to give readers a concept of the accuracy of pure-ML models
in simulating river runoffs would also be valuable.

Thank you for this suggestion. We would first like to emphasize that the scope of this paper is the development
of a new and more generic hybrid modeling approach (enabling to solve ODE embedding neural networks
depending on states), building upon approaches that we have already rigorously tested on large-sample



RC:

AR:

RC:

AR:

RC:

AR:

datasets. Our primary focus here is on resolving mathematical and numerical challenges in hybrid modeling,
as well as ensuring physical interpretability, rather than on performance benchmarking. We agree that a more
comprehensive evaluation of model performance, including comparisons with pure ML approaches on larger
datasets, is important. We greatly appreciate this suggestion and have already planned such a study, which
will be carried out shortly.

Beyond the current evaluation, future work will include explicit benchmarking of the proposed hybrid
physics—Al methods against classical conceptual hydrological models as well as pure DL models, such
as LSTM-based rainfall-runoff models (e.g., Kratzert et al., 2018). Such comparisons will help quantify
the relative benefits of embedding physical constraints versus fully data-driven learning.

Finally, we agree that at least including references to give readers a concept of the accuracy of pure-ML
models in simulating river runoffs is valuable.

These purely data-driven models have been applied successfully to hydrological prediction, achieving
state-of-the-art performance in various applications using long short-term memory (LSTM) network
(Kratzert et al., 2018; Feng et al., 2020; Cho and Kim, 2022) and their variants like LSTM-based
Seq2Seq model (Xiang et al., 2020). For example, Kratzert et al. (2018) reported that across 241
catchments in the U.S., their LSTM model achieved a mean Nash-Sutcliffe efficiency (NSE) of 0.63 in
temporal validation, with over 50% of catchments reaching NSE values above 0.65.

The authors have shown the horizontal resolution is 500m or 1km, and a time step of 1 hour. Could they also
state how many grid cells are in the region for calibration? Also how much of the GPU/CPU time are used for
GRs and NODEs? Will adding the neural net components significantly add to the computational burden of
the host model? In Newton iterations, please show the convergence tolerances and the usual iteration steps.

Thank you for this comment. We have added all details about the size of the study zone, computational time,
convergence criterion, etc. in the revised manuscript (see Sect. 3.1, 2.2 and Appendix B).

It is better to add multi-basin tests (at least one contrasting basin) to demonstrate the generalization capability
and robustness of the NN parameters and the NODE (now denoted UDE) system.

Thank you for this suggestion. While we agree that testing on multiple contrasting basins can further
demonstrate the generalization capability of our methods, we emphasize that the Aude basin test case is
already a medium-sized, multi-catchment setup (25 catchments) representing diverse hydrological conditions.
We believe that this area provides a sufficiently complex and realistic scenario to demonstrate the proposed
algorithms and their methodological innovations, particularly for a software-focused journal like GMD.

As highlighted in previous responses, the primary goal of this paper is the development and rigorous testing
of the hybrid modeling framework, including the implicit solver for neural ODE and NN integration, rather
than comprehensive performance benchmarking. Extensive generalization tests across multiple basins and
comparisons with pure ML and hybrid approaches are planned and will be addressed in a dedicated follow-up
study, which will require significant computational effort, especially when incorporating a coupled 1D
hydrologic—hydraulic modeling chain.

Are the physical budgets constrained? For example, water conservation. In the runoff scenario, it would be
storage = rainfall — ET — runoff. So, plot the cumulative rainfall — ET — storage — runoff closure and show
how the NNs affect them.

Thank you for this remark. The physical constraints are ensured by the ODE system underlying the hydro-
logical model (with reservoir storage), which could be replaced by other physical laws within the proposed
framework. Mass conservation using the same model structure—except for the ODE solver, which is one of
the key novelties presented here—has been investigated in detail in Huynh et al. (2025) over a large sample.
We have clarified this in Sect. 2.1 and the conclusions of the revised manuscript.
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The physical constraints are enforced by the UDE system that underlies the hydrological state-space
model and can be flexibly replaced by alternative physical laws within the proposed framework. Note
that mass conservation and non-conservative exchange fluxes have been further investigated and
analyzed over a large sample using an algebraic resolution of the ODE system in Huynh et al. (2025).
The closure relation in Equation 2 follows a simple flux summation under the GR-like hypothesis at
each pixel (for a detailed algebraic formulation, see Colleoni et al. (2025) and Huynh et al. (2025)).

(...) future analyses will explore water budget assessments using satellite-derived products to evaluate
the realism of the learned flux corrections.

Minor comments

Line 14: Check the font style of "smash." Should it be capitalized or enclosed in quotation marks?

Thank you for pointing this out. We have checked the formatting and now consistently use smash throughout
the manuscript.

Line 116: What does “neutralized” mean here for precipitation and evaporation?

We refer to net rainfall or evapotranspiration, which is neutralized by the interception reservoir. This
terminology is specific to GR models, as referenced in Perrin et al. (2003) and Santos et al. (2018). We have
added this clarification to the revised manuscript.

Line 120: “The neural network ¢ takes the model states as part of its inputs, thus affecting the model dynamics
and state gradient information. It is expected to learn the model behavior by leveraging memory effects
through state updates.” I do not know how the memory effects is learned by the neural network? Please
explain.

Thank you for this comment. The memory effects arise because the neural network ¢ takes as input the model
states and is embedded in the ODE system to refine internal water fluxes (corrections of source terms in the
right-hand side of the ODEs), forming a UDE. These UDEs with state-dependent neural networks implicitly
encode the system’s memory of past forcings and responses; the dependence becomes more explicit during
numerical resolution, where the previous state is used as the initial value for each time step. This have been
clarified in the introduction, methodology, and conclusion sections of the revised manuscript.

Figure 2. Please use the specific field names in the caption instead of

Thank you for this comment. We have revised the figure to include notation and descriptor name with their
description given in the caption.

Figure 6. Please flip the histogram of precipitation. An inverted view is difficult to interpret. Additionally, it
would be better to combine the left three panels into one, increase their heights, and do the same for the right
panels. This will make it easier to compare different models.

Thank you for this comment. The figure is corrected as suggested.

Section 4. This section is not appropriate for this paper, which is neither a review nor an opinion piece on
physics-guided Al It should be condensed into a paragraph and added to the conclusion section.

Thank you for this comment. While the paper is not intended as a review, we chose to keep Section 4 to share
a broader perspective on pure Al and hydrology. As our work stands at the interface of these two domains,
we believe this mixed understanding is valuable and not commonly represented. The section aims to situate
our contribution in a wider context and to encourage cross-disciplinary dialogue.
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