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Abstract. This study develops a machine learning (ML)-based physics parameterization suite trained on 80-day global 

storm-resolving model (GSRM) simulation data, attempting to replace all conventional physics tendencies in a general 

circulation model (GCM). Our approach strategically selects key prognostic variables as input features, enabling an effective 

emulation of multiscale flow interactions of the GSRM by the GCM via dynamics-physics coupling. The resulting ML-

enhanced GCM achieves stable Atmospheric Model Intercomparison Project (AMIP)-type simulations over six years, 20 

surpassing its conventional counterpart with improved precipitation performance—reducing root-mean-square errors by 8% 

in boreal summer and 16% in winter, compared to observations. Moreover, the hybrid ML-GCM better captures 

precipitation frequency–intensity spectra, notably mitigating the overproduction of light tropical rainfall and improving the 

simulation of moderate rain rates. Sensitivity experiments using different neural network architectures (ResNet, CNN, DNN) 

demonstrate that all configurations can maintain long-term simulation stability, with ResNet showing superior capability in 25 

the simulation accuracy. This work presents a transferable framework that leverages km-scale GSRM data to enhance GCM 

performance via ML integration, offering a potential route to reduce the gaps between two modeling paradigms. 

1 Introduction 

Weather and climate modeling, which both embodies our understanding of the atmosphere and deepens it, currently 

operates within two distinct paradigms: (i) highly parameterized general circulation models (GCMs), which are extensively 30 

utilized in global climate change research initiatives such as the Coupled Model Intercomparison Project (Eyring et al., 

2016); and (ii) explicitly resolved global storm-resolving models (GSRMs) with kilometer-scale resolutions spacing that 

explicitly resolve convective processes (Satoh et al., 2019). These two modeling paradigms remain operationally decoupled 
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due to the lack of a unified discretization approach that enables seamless resolution transitions (Yu et al. 2019; Brunet et al. 

2023; Miura et al. 2023). A major challenge in bridging this gap lies in the representation of moist physical processes, which 35 

govern scale interactions across different modeling paradigms. GCMs rely on cumulus parameterization schemes that 

approximate the bulk effect of interactions between moist convection and large-scale circulation, a well-known source of 

climate modeling uncertainties (Arakawa 2004; Lin et al. 2022). GSRMs explicitly resolve the coupling between 

atmospheric dynamics and microphysics, and support multiscale flow, hopefully yielding more physically realistic cumulus 

convection and multiscale interactions. When incorporated into GCMs, these interactions may replace sub-grid eddy effects 40 

relative to the GCM’s grid box, alongside representations of heating and cooling effects due to phase changes, radiative 

transfer, and friction. 

Machine learning (ML) algorithms have been increasingly applied to facilitate this integration (Schneider et al., 2023; 

Eyring et al., 2024), raising the prospect of constructing hybrid ML–physics models (Krasnopolsky and Belochitski 2020). 

Ideally, such models would not only perform robustly at a specific resolution but also enable a smooth transition across 45 

multiple meteorologically significant scales, from the typical GCM resolution (100 km) to the GSRM resolution (1 km). The 

physical tendencies can be learned separately either to replace an individual scheme (e.g., Chen et al. 2023; Heuer et al. 2024; 

Morcrette et al. 2025), or to replace the entire tendency from the physics suite. This study focuses on the latter approach. 

Currently, several methods exist for constructing hybrid ML–physics models using this approach. The online learning 

strategy, which leverages differentiable numerical solvers to match model outputs with reference/observation datasets, has 50 

demonstrated promise in generating reasonably realistic climate simulations (Kochkov et al. 2024). A challenge lies in 

interpreting the nature of the learned physics in this approach. It remains unclear whether the learned tendencies stem purely 

from real physical processes (e.g., phase change, eddy effect, friction, radiative heating, etc), or if they also incorporate 

certain additional components such as the nudging tendency, which can be independently learned (Bretherton et al. 2022); or 

like state correction, which combines conventional numerical models with ML model (Arcomano et al. 2022). The physical 55 

meanings of these tendency terms are different. 

Another approach is to directly learn physical tendencies from their generating sources. These sources may include 

high-resolution process models (e.g., large-eddy simulations, cloud-resolving models) or observational datasets (Zhu et al. 

2022; Bracco et al. 2025). For instance, ML schemes trained on physical tendencies derived from super-parameterized 

GCMs (e.g., Rasp et al., 2018; Gentine et al., 2018; Han et al., 2020) have demonstrated the ability to retain the physical 60 

fidelity of super-parameterized modeling while significantly reducing the computational cost. Several operational 

implementations of such models have achieved multi-year simulation stability in realistic configurations (e.g., Han et al. 

2023; Mooers et al., 2021; Wang et al., 2022). In contrast, GSRMs do not impose artificial scale separation, and learning 

physics tendencies from GSRMs presents a unique advantage by allowing for more physically consistent multiscale flow 

interactions that closely align with real-world atmosphere. Brenowitz and Bretherton (2018) used neural network-based 65 

parameterizations using coarse-grained GSRM data, demonstrating multi-year simulation stability in low-resolution aqua-

planet scenarios. Yuval and O’Gorman (2020) employed random forests trained on three-dimensional cloud-resolving model 
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outputs to emulate fine-scale processes in coarse-grid systems. Yuval et al. (2021) refined this approach by leveraging neural 

networks, achieving comparable predictive accuracy while reducing memory requirements by a factor of 1,900. These 

advancements have primarily been tested in idealized aqua-planet configurations, raising critical questions about their 70 

applicability to realistic climate modeling. Watt-Meyer et al. (2024) developed a GCM physics parameterization suite trained 

on coarse-grained GSRM data under realistic surface boundary conditions, enabling stable 35-day simulations while 

significantly reducing mean-state precipitation and temperature errors. While this approach has not demonstrated very 

significant advantages in real-world modeling with respect to certain utilitarian metrics (e.g., mean state error), it has the 

potential to reconcile scale disparities from a physically orientated training way. 75 

In this study, we develop a ML-based Physics parameterization Suite (MPS) designed to generate temperature and 

humidity tendencies for GCMs. We propose a refined training strategy. We have experimented with several neural network 

architectures, including Residual Neural Networks (ResNet), convolutional and deep neural network (CNN, DNN). A 

sensitivity analysis uncovers that different network architectures produce divergent equilibrium climate states despite 

identical training data and hyperparameter configurations are used. The optimal outcome from this work achieved long-term 80 

stable Atmospheric Model Intercomparison Project (AMIP)-type climate simulations more than six years, and produces 

simulation results comparable or better than those produced by a conventional physics suite (CPS). 

The remainder of this paper is organized as follows. Section 2 presents the data and methods. Section 3 presents the 

simulation results and discusses sensitivity of neural networks. Section 4 gives a summary and outlook. 

2 Model, Data and Methods 85 

2.1 Model description and high-resolution GSRM data 

The hybrid modeling framework is based on the Global-Regional Integrated Forecast System (GRIST). The features of 

dynamical core framework of GRIST are detailed in Zhang et al. (2019), Zhang et al. (2020) and Zhang et al. (2024). The 

baseline physics suite is described in Li et al. (2023), with some improved schemes given by e.g., Li et al. (2022), and Li et 

al. (2024). For this study, we adopt the PhysW suite. 90 

GRIST is employed in two configurations: (i) a high-resolution (5 km) GSRM-style setup for generating training data 

for the MPS, and (ii) a coarse-resolution (120 km) GCM-style setup for applying and evaluating the MPS. Both 

configurations feature 30 vertical layers. The GSRM setup uses the nonhydrostatic dynamical core with explicit convection 

(i.e., the cumulus scheme is disabled), following the approach of Zhang et al. (2022). Obviously, the quality of the GSRM 

data is critical for the effective development of the MPS. In Zhang et al. (2022), the model successfully captured the 95 

multiscale interactions between moist convection and large-scale circulation. Their simulations demonstrated that the time-

averaged characteristics of these interactions are comparable to those produced by the GRIST-GCM configuration with 

conventional cumulus parameterization, but supports better transient features (e.g., extreme rainfall intensity). While the 

GRIST-GSRM configuration exhibits slightly higher mean-state precipitation biases, it shows superior skill in reducing 

https://doi.org/10.5194/egusphere-2025-2790
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

systematic errors, such as the excessive frequency of light tropical rainfall. This underscores the importance of replicating 100 

the GSRM-resolved multiscale interactions for developing an effective MPS applicable to GCMs. 

The GCM configuration follows the setup described in Zhang et al. (2021), using the hydrostatic dynamical core 

coupled with the conventional PhysW suite (CPS), where the cumulus parameterization is enabled. All other physics 

schemes—including microphysics, boundary layer, radiation, surface layer, and land surface model—are identical between 

the GSRM and GCM configurations, thereby ensuring maximum consistency. Some other details of the two configurations 105 

are provided in Table 1. 

To enhance the representativeness of the training data, we select four 20-day periods that span different seasons and 

capture key phases of the El Niño–Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO), as summarized in 

Table 2. These periods collectively ensure comprehensive seasonal coverage—January (boreal winter), April (boreal spring), 

July (boreal summer), and October (boreal autumn)—and systematically represent the dominant ENSO–MJO interaction 110 

regimes that drive climate variability. The current choice of 80 days reflects a practical limitation due to computational and 

resource constraints, but it already allows essential atmospheric physical processes to be effectively sampled using a limited 

set of time windows. That said, increasing the number of training samples may further enhance the performance of the MPS. 

2.2 Coarse graining and data preprocessing 

We extract multiscale flow interactions in the GSRM using a thermodynamic framework following Yanai et al. (1973), 115 

in which the apparent heat source (𝑄!) and apparent moisture sink (𝑄") serve as mathematical representations of these 

interactions. These quantities are derived from coarse-grained GSRM data (at 0.25° resolution) using the residual method 

(e.g., Zhang and Chen 2016), with the governing equations shown in Figure 1 (the middle section of the left panel). 

Although the present study coarse-grains GSRM data to a fixed resolution, the residual method allows efficient transitions 

from arbitrarily high-resolution models to GCM target scales, thereby enabling the MPS to be inherently scale-aware. 120 

Establishing a robust physical correspondence between GSRMs and GCMs opens the door to unified simulations of 

atmospheric processes within a single modeling framework—enhancing both theoretical understanding and predictive skill 

across multiple timescales. This architecture-agnostic framework offers two advantages: (i) resolution adaptability, 

preserving essential subgrid-scale variability across different GSRM configurations, and (ii) interoperability with the broader 

modeling community using standard atmospheric variables, which are typically available in the standard outputs.  Several 125 

key design choices are further highlighted below. 

Choice of Large-Scale Variables. Some preliminary tests identified the optimal set of input features to include 

temperature (𝑇), specific humidity or mixing ratio (𝑞), horizontal wind components (𝑈 and 𝑉), and surface pressure (𝑃). 

Although the inclusion of vertical velocity (𝜔) is theoretically advantageous, it was found to introduce numerical instabilities 

in regions with complex topography—a result consistent with previous studies (Clark et al. 2022, Rasp et al. 2018 and Watt-130 

Meyer et al. 2024). All prognostic variables were normalized using min–max scaling, based on their extrema within the 80-

day training dataset. 
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Vertical coordinate alignment. In the residual method, advection tendencies are preferably computed on pressure 

levels to ensure dynamical consistency. However, for machine learning training, it is more desirable to use the model’s 

native hybrid coordinate, which avoids topographic distortion during runtime. Directly computing advection tendencies 135 

offline on the hybrid coordinate are inaccurate, as the generalized vertical velocity cannot be reliably estimated from coarse-

grained data. To reconcile this discrepancy, we implement a two-step procedure. In Step I, GSRM variables on the hybrid 

coordinate are interpolated to pressure levels for the sole purpose of computing advection tendencies. In Step II, the resulting 

advection tendencies are interpolated back to the model’s hybrid coordinate, where 𝑄! and 𝑄" are then derived. Ultimately, 

all training inputs (𝑈, 𝑉, 𝑇, 𝑞, 𝑃) and outputs (𝑄! and 𝑄") are defined on the model’s hybrid vertical coordinate, ensuring 140 

compatibility with the runtime model structure while preserving physical accuracy in the derivation process. 

Temporal refinement. To enhance temporal resolution, we applied linear interpolation to convert hourly model outputs 

into 20-minute interval data, effectively tripling the temporal sampling frequency. This refinement is crucial for improving 

stability and accuracy of online model integration, as it better aligns the temporal characteristics of the training data with the 

time step of the target GCM (see Section 2.4). 145 

2.3 Training the MPS 

The MPS leverages residual neural network architecture by default, with tailored modifications for atmospheric column 

physics. Central to the design are one-dimensional convolutional layers that explicitly resolve vertical couplings in 

temperature and humidity profiles, particularly during deep convective events where multi-level interactions dominate 

subgrid energy transfer. To balance representational capacity with computational efficiency, the network employs five 150 

optimized residual units (ResNet5, Figure 1)—a depth empirically determined to preserve most validation accuracy of 

deeper architectures while saving a lot of training time and resources. Hyperparameter optimization converged on an initial 

learning rate of 3×10⁻⁴ with exponential decay (decaying rate=10-6 per epoch), minimizing mean absolute error (MAE) 

across training runs. 

To optimize computational efficiency while maintaining global representativeness, we implemented a stratified 155 

spatiotemporal sampling strategy. Each temporal snapshot (20-minute interval) extracts 86,400 grid columns distributed 

across key climate regimes: 50% from tropical latitudes (30°S–30°N) where convective processes dominate, 30% from mid-

latitudes (60°S–30°S and 30°N–60°N) capturing baroclinic eddy activity, and 20% from polar regions (90°S–60°S and 

60°N–90°N) resolving radiative-polar amplification feedbacks. This geographic weighting generates 497,664,000 training 

samples (80 days × 24 hours × 3 samples/hour × 86,400 columns). The network underwent 100 training epochs with early 160 

stopping (patience=5 epochs, 𝛿𝑣𝑎𝑙_𝑙𝑜𝑠𝑠<0.5%) to ensure full data utilization without overfitting. 

Rigorous offline evaluation is important for transitioning ML physics into an operational tool. We quantify emulation 

fidelity through two complementary metrics: (i) domain-averaged mean squared error (MSE < 1×10⁻⁴) and (ii) vertical-

latitude cross-sections of the coefficient of determination (R² > 0.3 across most of tropical and midlatitude tropospheric grid 

points; Figure 2), which collectively verify process-level skill in moisture-convection coupling. Networks satisfying both 165 
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thresholds proceeded to online testing. This dual-criterion screening prevents numerically stable but physically implausible 

models from entering computationally intensive integration phases. 

Superior offline performance alone does not guarantee online stability, as the effects of physics-dynamics coupling 

cannot be purely grasped through offline training. To address this, the shortlist of networks that meet our predefined offline 

criteria was the first step, then we subject them to online testing. The final selection of our optimal MPS is based on a dual 170 

evaluation: satisfying offline performance benchmarks and demonstrating stability in online integration. 

2.4 Importance of using balanced spatiotemporal sample and temporal resolution alignment 

During model development, we identified two key factors that significantly improve the stability and accuracy of the 

MPS. The first is achieving a more balanced spatiotemporal sample. Initial experiments using the full spatial samples (1440 

x 720 grid columns per timestep) combined with coarse temporal sampling (hourly data) led to numerical instabilities during 175 

online integration. This instability stemmed from an extreme space–time sampling ratio, which caused the neural network to 

overfit spatial patterns while failing to adequately learn temporal evolution. To address this issue, we adopted a stratified 

spatiotemporal subsampling approach: at each timestep, only 86,400 geographically distributed columns were randomly 

selected, and the temporal resolution was increased to 20-minute intervals via linear interpolation. This strategy balanced 

spatial and temporal dimensionality while effectively increasing the number of training samples, encouraging the network to 180 

focus on both the time evolution of atmospheric processes and static spatial features. This optimized sampling method 

reduces the training cost and enhances the stability of online integration, highlighting that careful data curation alone, 

without changes to model architecture, can overcome key challenges in machine learning–physics integration. 

The second key aspect is aligning the temporal resolution of the data with the model’s integration time step. As noted 

earlier, we refined the temporal resolution of the large-scale variables by linearly interpolating hourly data to 20-minute 185 

intervals prior to computing 𝑄! and 𝑄" tendencies. This refinement offers two primary benefits. First, it effectively triples the 

number of training samples, thereby improving the representation of fast convective adjustment processes that are critical for 

accurately predicting subgrid tendencies. Second, the use of linear interpolation is justified for large-scale state variables, 

which typically evolve quasi-linearly over sub-hourly timescales (𝛥𝑡 < 1 hr). However, this assumption does not hold as well 

for 𝑄!  and 𝑄" , which exhibit stronger spatiotemporal nonlinearity. As such, performing interpolation only on the input 190 

variables—rather than generating full 20-minute GSRM outputs—achieves a 2/3 data compression ratio compared to storing 

the full-resolution dataset. 

The systematic evaluation of training strategies (Table 3) highlights the critical role of spatiotemporal data optimization 

in governing model performance. In the baseline experiment (EXP1), which employed neither spatial subsampling nor 

temporal refinement, the model-maintained stability for only three years. Introducing spatial subsampling alone (EXP2) 195 

extended stable integration to six years. Further incorporating 20-minute temporal interpolation in EXP3—i.e., full 

spatiotemporal optimization—maintained six-year stability while substantially reducing the tropical precipitation RMSE by 

42% (2.78 mm/day vs. 4.81 mm/day in EXP1). Compared to EXP2, EXP3 yielded a 10% reduction in six-year mean 
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precipitation RMSE (2.81 mm/day vs. 3.12 mm/day), demonstrating the additive benefit of temporal refinement beyond 

spatial subsampling alone. 200 

2.5 Online GCM simulation workflow with the MPS 

The ML-physics-hybrid GCM builds upon the GRIST framework, with the control experiment (CPS) replicating the 

configuration described in  Zhang et al. (2021) (Table 1, GRIST-CPS). To interface the Fortran-based GRIST model code 

with the PyTorch-formatted MPS, we implemented bidirectional coupling through the Ftorch library—a framework enabling 

real-time tensor exchange between the dynamical core and pretrained neural networks while maintaining operational 205 

efficiency. 

The online implementation (Figure 1, right panel) adopts a modular architecture, in which the GRIST-GCM dynamical 

core iteratively transfers atmospheric state tensors to the MPS. The MPS, interfaced via Ftorch, returns 𝑄! and 𝑄" tendencies, 

while legacy CPS diagnostic modules—such as radiation and land-surface coupling—remain unmodified. By restricting 

replacements to the physical tendency generation components and preserving the native diagnostic workflow, the framework 210 

mirrors the CPS substitutions and ensures full backward compatibility. The replaced CPS components include tendencies 

from the cumulus parameterization, cloud microphysics, boundary layer scheme, and radiative transfer. The radiation 

module—the most computationally expensive element in the CPS—is still activated to generate surface fluxes for the land 

surface and may require a special training in future. The surface layer and land surface models are also retained in their 

original form, consistent with standard CPS configurations. Surface precipitation is diagnosed by the MPS via vertically 215 

integrated moisture tendency equation, using the relation: Prec = − !
#
∫ (𝑄")𝑑𝑝. Whether to exclude surface evaporation rate 

is used as an optional procedure for tuning. 

Due to the MPS’s coarser vertical resolution in the lower troposphere (𝛥𝑧 exceeding 200 m below 850 hPa), we retain 

CPS-derived temperature tendencies (𝑄!) in the lowest four model levels and moisture tendencies (𝑄") in the lowest two 

model levels. This selective preservation, validated through sensitivity experiments, serves as a stability-enhancing 220 

mechanism. Meanwhile, as in prior studies (Brenowitz and Bretherton, 2019; Clark et al., 2022; Watt-Meyer et al., 2024), we 

apply vertical truncation of the MPS-predicted 𝑄!/𝑄" tendencies above 300 hPa, effectively excluding the top 12 model 

layers from machine-learned physics. This hybrid replacement strategy demonstrates that partial physics–ML integration can 

achieve climate fidelity comparable to a full replacement, while reducing computational costs and mitigating numerical 

instability. 225 
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3 Results 

3.1 Real-world climate simulations 

Two six-year AMIP-style simulations were conducted at 120 km horizontal resolution: a control experiment with the 

CPS and an ML-enhanced counterpart with the MPS. We evaluate the zonal mean vertical structures of long-term mean 

temperature (𝑇), specific humidity (𝑞), and zonal wind (𝑈) represent direct prognostic targets of the MPS (through 𝑄! and 230 

𝑄"  tendencies), while 𝑈  emerges as a dynamically constrained diagnostic variable reflecting momentum redistribution. 

ERA5 reanalysis data (Hersbach et al., 2020) serve as the observational benchmark, with all model outputs regrided to 1°×1° 

resolution using conservative remapping. 

Figure 3 demonstrates close alignment between GRIST-MPS and GRIST-CPS in simulating zonal-mean vertical 

structures. Both models exhibit temperature deviations (shading) within ±5 K of ERA5 reanalysis, demonstrating consistent 235 

cold biases in the polar lower stratosphere and warm biases in the tropical upper troposphere. Specific humidity profiles 

(black contours) display nearly identical vertical distributions between configurations. The structure of the zonal wind (𝑈) 

form a wedge-like structure with the humidity, showing little differences in midlatitude jet core positions. 

Precipitation is evaluated against the Global Precipitation Measurement (GPM) Product (Huffman et al., 2019). Both 

configurations realistically capture the boreal summer (JJA) precipitation dipole—the Intertropical Convergence Zone (ITCZ, 240 

5°N–10°N) and South Pacific Convergence Zone (SPCZ, 5°S–15°S) with maximum rates exceeding 12 mm/day over the 

Bay of Bengal and western Pacific warm pool (Figures 4a-c). GRIST-MPS reduces global precipitation RMSE by 8% (3.46 

mm/day versus 3.75 mm/day) relative to GRIST-CPS, primarily through improved ITCZ localization: the MPS better 

constrains the ITCZ core position relative to GPM observations, whereas the CPS produces a wider rainfall band. 

Extratropical performance remains comparable, with both models capturing most of observed midlatitude storm-track 245 

variance (55°N–65°N). The MPS slightly underestimates precipitation over southern oceans (30°S–50°S), while the CPS 

shows some overestimations extending to 70°S. 

During boreal winter (DJF), GPM observations reveal a meridionally contracted state of tropical rainbands and 

intensified midlatitude storm-track precipitation (45°N–60°N, Figure 4d). Both configurations capture this seasonal 

transition (Figure 4e, f), with GRIST-MPS demonstrating enhanced fidelity through a 16% RMSE reduction (3.16 mm/day 250 

versus 3.76 mm/day) achieved by narrowing the width of ITCZ rain band. 

Meanwhile, residual biases persist in GRIST-MPS: a 15%–20% overestimation of summer tropical Indian ocean 

rainfall (10°S–10°N, 65°E–95°E) and a systematic 1-3 mm/day underestimation of Southern Ocean (50°S–60°S) and 

Maritime Continent (5°S–5°N, 95°E–150°E) precipitation across seasons. 

Both configurations accurately reproduce the observed seasonal migration of tropical precipitation maxima (Figure 5), 255 

with boreal summer peaks centered near 10°N aligned with the northward-migrating ITCZ. However, systematic 

discrepancies emerge in the meridional range of precipitation representation: GRIST-CPS overestimates the ITCZ's 

meridional extent, generating broadened rainfall distributions characteristic of overactive convective initiation in cumulus 
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parameterizations. GRIST-MPS demonstrates superior constraint of ITCZ width but exhibits a little underestimation over 0-

10°N during July–September. 260 

To systematically assess the performance of GRIST-MPS in characterizing complex atmospheric systems, we employ 

the East Asian Monsoon as our case study. Our analysis utilizes established East Asian monsoon index (EAMI) from prior 

studies as benchmark metrics (Zhu et al. 2005). The EAMI takes the influence of the annual cycle of the meridional and 

zonal sea-land thermal differences into account in the East Asia-Pacific region and reasonably describes the characteristics of 

the annual cycle of the transition between the East Asian winter and summer monsoons, which is defined as: 265 
𝐸𝐴𝑀𝐼 = (𝑈$%&'() −𝑈"&&'()) ∗(!&&+!,&∘-,&+!&∘/)

+(𝑆𝐿𝑃!1&∘- − 𝑆𝐿𝑃!!&∘-) ∗(!&+%&∘/)
                                                           (1) 

where 𝑈 represents area-averaged (100 − 130∘𝐸, 0 − 10∘𝑁) monthly mean zonal winds (dimensionless), 𝑆𝐿𝑃 denotes 

averaged monthly sea level pressure ( 10 − 50∘𝑁 ) (dimensionless), and the asterisk (*) operator indicates variable 

standardization through mean removal and unit-variance scaling (𝑋	 = 	 (𝑋	 − 	𝜇)/𝜎). This enables a quantitative assessment 

of the model's ability to capture both the seasonal evolution and interannual variability characteristics of monsoon dynamics. 270 

We computed the East Asian Monsoon Index (EAMI) for monthly variables and derived its climatological seasonal 

cycle across a six-year period (Figure 6). Both GRIST-CPS and GRIST-MPS successfully replicate the observed seasonal 

monsoon phase, capturing the July maximum and February minimum. While GRIST-CPS simulations align closely with 

observations, GRIST-MPS exhibits a systematic bias: it overestimates monsoon intensity prior to July and underestimates it 

post-July. This indicates that GRIST-MPS could simulate the annual cycle of the East Asian monsoon, even though the 275 

training data only includes 80 days. This outcome strongly motivates a further refinement of MPS for extended climate 

applications. 

To more comprehensively reveal the ability to simulate precipitations of the two configurations, we analyze tropical 

precipitation frequency distributions (30°S–30°N; 2001–2006). Precipitation is classified into four intensity categories: light 

(0.1–10 mm/day), moderate (10–25 mm/day), heavy (25–50 mm/day), and extreme (>50 mm/day). Besides GPM 280 

observations, the ensemble means values of 11 CMIP6 models (CESM2, CESM2-WACCM, CMCC-CM2-SR5, E3SM-2-0, 

E3SM-2-0-NARRM, EC-Earth3, EC-Earth3-AerChem, GFDL-CM4, MRI-ESM2-0, SAM0-UNICON, TaiESM1; hereafter 

CMIP6-ENS) are included. In relative to GPM data, both CMIP6-ENS and GRIST-CPS overestimate total precipitation 

occurrence by 45% and 51%, respectively (Figure 7)—consistent with earlier documented biases (Fu et al., 2024). The MPS 

reduces this discrepancy to 22%. Specifically, it reduces light and moderate rain overprediction by 23% and 16%, 285 

respectively, while preserving observed heavy/extreme precipitation frequencies. This demonstrates that MPS effectively 

mitigates persistent precipitation distribution errors without compromising extreme event statistics. 

3.2 A sensitivity analysis of different neural networks 

Besides ResNet, we have also integrated two alternative neural network architectures—Convolutional Neural Networks 

(CNN) and Deep Neural Networks (DNN)—to examine the sensitivity of online simulations to neural networks. The three 290 
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networks are trained by identical datasets and preprocessing procedures. The switch of each network during the GRIST-MPS 

runtime only needs to change the weight file. 

Comparative analysis of neural architecture reveals distinct thermodynamic fidelity characteristics (Figure 8). ResNet 

architecture demonstrates superior temperature profile reconstruction, maintaining deviations < 5 K from ERA5 reanalysis 

throughout the troposphere. In contrast, CNN and DNN architectures exhibit systematic warm biases (5-10 K) between 300–295 

600 hPa,while DNN exhibit warm biases at both North and South pole. Humidity simulations further highlight architectural 

divergence: while CNN/DNN architectures compress moisture profiles toward lower altitudes (peaking at 850 hPa with 

about 50% faster moisture decay rates above 500 hPa), ResNet and DNN preserves physically consistent specific humidity 

gradients up to 300 hPa, a capability enabling enhanced representation of upper-tropospheric moist processes. Wind field 

simulations demonstrate architectural invariance, indicating dynamical core constraints predominantly govern momentum 300 

balance regardless of physics parameterization. These findings indicate that neural network selection significantly influences 

thermodynamic fidelity which is a critical design consideration for developing ML-based parameterizations. 

Neural architecture selection induces substantial discrepancy in precipitation simulations, particularly in tropical 

convective organization (Figure 9). During boreal summer, the CNN architecture overestimates western Pacific and tropical 

Indian Ocean precipitation relative to observations, generating an excessively broad ITCZ with spurious drizzle artifacts 305 

across subtropical highs. The DNN exhibits systematic 15%–20% underestimation globally while maintaining comparable 

spatial RMSE to observations (3.08 versus CNN's 3.67 mm/day). 

Winter simulations of CNN reveal pronounced biases: precipitation over SPCZ exhibits large (about 20%) 

overestimation relative to observations. The DNN's underestimation persists at 8%–10% magnitude but shows improved 

spatial pattern alignment with ResNet. The ResNet architecture consistently outperforms other configurations in maintaining 310 

a small deviation across seasons. These systematic discrepancies highlight how architectural inductive biases—specifically, 

the CNN’s excessive sensitivity to localized features compared to the DNN’s global feature integration—substantially 

influence precipitation simulations. This underscores the critical need for architecture-specific uncertainty quantification in 

machine learning-driven climate modelling, as model design disparities directly shape predictive outcomes. 

Seasonal precipitation migration patterns reveal distinct architectural sensitivities (Figure 10). While all architectures 315 

capture fundamental north–south displacement of tropical precipitation maxima, CNN simulations exhibit 30% greater 

meridional spread, consistent with documented overestimation of tropical precipitation (Figure9 b, e). Conversely, DNN 

systematically underestimates peak monsoon intensities by 38%, a deficiency attributable to its limited capacity in resolving 

nonlinear moisture-convection feedback inherent to fully connected architectures. ResNet maintains the closest fidelity to 

observed seasonal progression (<5% phase error in ITCZ migration timing). 320 

The frequency-intensity spectra of precipitation (Figure 11) reveal neural architectural influences on precipitation 

distribution characteristics: CNN amplifies nearly double of the conventional GCM bias through over simulation of light 

precipitation. Conversely, the DNN achieves the closest alignment with observed frequency distributions despite 

systematically underestimating heavy precipitation (>50 mm/day). This apparent paradox originates from DNN's inherent 
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regularization properties, its fully connected architecture preferentially attenuates extreme convective events while better 325 

constraining pervasive light precipitation (1–10 mm/day) that dominates tropical rainfall occurrence (accounting for >78% of 

events).  ResNet demonstrates intermediate performance, replicating the spectra of CPS (Figure 6: pink/blue curves). 

4 Summary and outlook 

This study establishes a new ML-physics hybrid modeling framework through seamless integration of neural networks 

trained on high-resolution GSRM data into the GCM model, achieving stable six-year climate simulations with enhanced 330 

process-level fidelity. The major conclusions are given below. 

Major achievement. The GRIST-MPS exhibits strong thermodynamic consistency, closely replicating ERA5 vertical 

profiles of temperature (𝑇 bias < 5 K) and specific humidity (𝑞 bias < 1.5 g/kg), while reducing tropical precipitation RMSE 

by 8% in boreal summer and up to 16% in boreal winter—primarily through improved representation of convective–diabatic 

processes. Key improvements include more accurate ITCZ positioning, phase-aligned midlatitude storm tracks, and 335 

enhanced precipitation frequency-intensity spectra, particularly the improved light to moderate range (0.1–25 mm/day). 

Crucially, the framework maintains long-term numerical stability and accuracy via architectural innovations and optimized 

spatiotemporal data sampling. These results demonstrate that ML–physics integration can overcome long-standing trade-offs 

in traditional parameterizations, offering a transformative pathway for next-generation climate modeling. Leveraging 

GSRM-driven learning to construct ML–physics hybrid GCMs offers distinct advantages: GSRMs inherently capture 340 

multiscale atmospheric interactions without imposing artificial scale separation, while allowing flexible resolution 

specifications—essential for developing scale-aware parameterization schemes. Furthermore, community-standardized 

GSRM datasets based on common state variables promote reproducibility and interoperability. We contend that this 

modeling paradigm paves the way toward unifying GSRM and GCM scales by harnessing the synergy of ML and high-

fidelity data, offering a scalable and physically grounded foundation for future Earth system modeling. 345 

Remaining challenges. The current training is limited to an 80-day only GSRM dataset, future extensions are expected 

to enhance model generalization and fidelity. One limitation of the present framework is the absence of momentum feedback 

in the ML architecture, which may lead to systematic biases in upper-tropospheric jet stream positioning (e.g., 𝑈 bias > 5 m/s 

at 200 hPa). Additionally, raw GSRM-derived multiscale interactions may require constraints, to fully align with GCM-scale 

applications. Despite these limitations, our results demonstrate that GSRM-trained ML–physics suites can achieve 350 

simulation stability (over six years) and high physical fidelity (e.g., ITCZ positional refinement within 1° latitude). This may 

establish a strong foundation for scalable and physically consistent next-generation climate modeling paradigms. 

Further implications. The ML–physics model introduces a novel computational framework that has interdisciplinary 

implications. The MPS relies heavily on matrix multiplication, a computational pattern well-suited for optimization 

techniques (e.g., reduced precision) that align with recent advances in high-performance computing (Chen et al. 2024). In 355 

terms of computational efficiency, the current unoptimized GRIST-MPS shows limited advantage over GRIST-CPS, 
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primarily due to the activation of diagnostic modules (which can be optimized), and lower-resolution CPS does not present 

significant overhead. However, targeted optimizations reveal its inherent scalability advantages on the new Sunway 

architecture: Duan et al. (2025) successfully deployed an earlier version of the MPS suite on the new Sunway supercomputer, 

significantly accelerating global 1km GRIST-GSRM. This demonstrates that while the baseline MPS performance is 360 

constrained by auxiliary computational overhead, its architectural design enables superior acceleration potential when 

leveraging platform-specific optimizations. Finally, the software framework presented in this study can serve as a general 

platform for testing AI-trained physics suites within hybrid AI-Physics GCMs. 
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Figure 1. The workflow of offline training of MPS (Machine-Learning Physics Suite; Section 2.1-2.3) and online simulation of the 520 
GCM with ML-physics (Section 2.5). In the equations, 𝑻  represents temperature, 𝒒  specific humidity, 𝑽  horizontal wind 
components (zonal 𝒖 and meridional 𝒗), 𝝎 vertical velocity, 𝑹 the gas constant for dry air, 𝑷 the atmospheric pressure at all 
vertical levels, 𝒄𝒑  the specific heat at constant pressure, and 𝑳 latent heat of evaporation or condensation. The notation (∙)... 
represents the horizontally coarse graining operator, from 5 km to 30 km in this study. The subscript 𝑷_𝒕𝒐_𝑴 represents the 
conversion from pressure coordinate to the model level, after the calculation of advection terms on the pressure level. 525 
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Figure 2. Offline skill of the coefficient of determination (𝑹𝟐) for 𝑸𝟏 and 𝑸𝟐, as functions of latitude and model level. 
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Figure 3. (a) Latitude–pressure cross section of the time averaged zonal mean temperature differences (contour), climatology 530 
specific humidity (black lines) and climatology zonal winds (gray lines) with GRIST-CPS. (b) as in (a) but for GRIST-MPS 

simulation. The simulation period for all of the models was from 2001 to 2006. 
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Figure 4. The mean precipitation rate (mm/day) averaged from 2001 to 2006 for June–July–August (a, b, c) and December–535 
January–February (d, e, f)  by (a, d) GPM, (b, e) GRIST-CPS, and (c, f) GRIST-MPS. 
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Figure 5. Seasonal evolution of tropical precipitation from 2001-2009 for observation from (a) GPM, (b) GRIST-CPS, and (c) 
GRIST-MPS (units: mm/day).  
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 540 
Figure 6: The East Asian Monsoon Index (EAMI) of GPM (black line), GRIST-CPS (blue line) and GRIST-MPS (red line).  
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Figure 7. The frequency probability distributions of tropical daily precipitation from 2001-2006 obtained from GPM (gray boxes), 
11 CMIP6 models ensemble mean (CMIP6-ENS; pink boxes), GRIST-CPS (blue boxes) and GRIST-MPS (orange boxes).  
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Figure 8. As in Figure 3 but for (a) ResNet, (b) CNN and (c) DNN.  
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Figure 9. As in Figure 3, but for (a) ResNet, (b) CNN, (c) DNN in JJA, (d)-(f) in DJF.  
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Figure 10. Same as in Figure 5, but for (a) ResNet, (b) CNN, (c) DNN. 550 
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Figure 11. As in Figure 7 but with CNN (yellow bins) and DNN (blue bins) added. 
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Table 1 The GSRM and GCM configurations of GRIST for this study. 

Set up Dynamics Horizontal 

resolution 

Dycore/Tracer/Fast 

Physics time steps(s) 

Square of 

Smagorinsky 

Coefficient(𝑪𝒔𝟐) 

Hyperdiffusion 

coefficient 

(𝒎𝟒 ∕ 𝒔) 

GSRM Nonhydrostatic G9B3(5km) 6/30/60 0.005 1x1010 

GCM Hydrostatic G6(120km) 300/600/1200 0.015 2x1014 

 

Table 2 Selected time periods and climate characteristics. 

Experiments Time period Oceanic Niño Index Real-time Multivariate MJO index 

1 1-20, Jan, 1998 2.2(El Niño) 0.69 to 1.98 

2 1-20, Apr, 2005 0.4(neutral) 2.72 to 3.71 

3 10-29, Jul, 2015 -0.4(neutral) 0.17 to 1.05 

4 1-20, Oct, 1988 -1.5(La Niña) 0.67 to 2.98 

 

Table 3 The optimal MPS experimental results of each setup. 560 

Experiments Random 

points 

selection 

Linear time 

interpolation 

Running time The RMSE of time-

averaged precipitation 

EXP1 × × 3yr 4.81 

EXP2 √ × 6yr 3.12(3yr)/3.12(6yr) 

EXP3 √ √ 6yr 2.78(3yr)/2.81(6yr) 
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