Atmospheric new particle formation in the eastern region of China: an mechanistic investigation on mechanism and influencing factors at multiple sites

Jiaqi Jin¹, Runlong Cai^{1,2,3,4}, Yiliang Liu^{1,a}, Gan Yang¹, Yueyang Li¹, Chuang Li¹, Lei Yao^{1,2,3,4}, Jingkun Jiang^{5,6}, Xiuhui Zhang⁷, Lin Wang^{1,2,3,4,8}

¹Department of Environmental Science and Engineering, Jiangwan Campus, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Fudan University, Shanghai 200438, China

²Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

³IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China

⁴National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China

⁵State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.

⁶State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China.

Tkey Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.

⁸Collaborative Innovation Center of Climate Change, Nanjing, 210023, China

^anow at Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.

Correspondence to: Lin Wang (lin_wang@fudan.edu.cn)

20 **Abstract.** As a major source of cloud condensation nuclei, atmospheric new particle formation (NPF) events exert significant influences on the global climate. Among the various nucleation mechanisms that have been identified in diverse environments, sulfuric acid-amine nucleation is unique for its high efficiency to in forming stable clusters and drivinge intense nucleation. Despite the fact that this nucleation mechanism could can explain observed NPF events at a number of megacity sites in Chinaindividual sites, its applicability to a larger regional scale remains unclear. Here, we analyzed the mechanism and 25 influencing factorscharacteristics of NPF-events and influencing factors at several three suburban-sites in the eastern region of China, based onusing measured and theoretically predicted particle formation rates and cluster concentrations. Results show that sulfuric acid and -dimethylamine can explain the observed atmospheric nucleation andis a predominant nucleation mechanism at these sites, while atmospheric conditions including precursor concentrations and temperature causes the differences in NPF characteristics among-different sites. This indicates the significance of the sulfuric acid-amine nucleation 30 mechanism over a large spatial scale in polluted and populated <u>the urban agglomerations in the eastern</u> region of Chinas. We also find that oxygenated organic molecules are likely involved in the formation of 1.7-nm new particles at these sites by contributing the initial growth of stable sulfuric acid clusters.

1 Introduction

35

10

New particle formation (NPF), an important atmospheric process involving the conversion of gaseous precursors into stable clusters via nucleation and subsequent growth, occurs frequently in diverse environments (Kerminen et al., 2018). It is a large source of the number concentration of atmospheric particles and significantly influences the budget of global cloud condensation nuclei (Gordon et al., 2017). Strong NPF events are frequently observed in polluted environments against the significant suppressing effect of background aerosols (Xiao et al., 2015; Hong et al., 2023). Among a number of recently proposed nucleation mechanisms __that were proposed recently (Kirkby et al., 2023), the elustering collision between sulfuric

acid (SA) and dimethylamine (DMA) is special for its high efficiency in forming clusters that are stable against evaporation, and has been found to be a the governing nucleation mechanism in polluted megacities for its high efficiency in forming elusters that are stable against evaporation (Yao et al., 2018; Cai et al., 2021). These findings corroborated prior studies conducted in urban Tecamac (Smith et al., 2010) and Atlanta (Hanson et al., 2011), where aminium salts were identified as a dominant constituent of sub-10 nm particles. Despite substantial suppression by background aerosols, strong NPF events were observed globally in polluted environments, though the underlying mechanisms often remain unclear (Nieminen et al., 2018). Recently, a A relevant recent model study (Zhao et al., 2024) has indicated that SA-DMA amine is stillwas the main nucleation mechanism in the polluted atmospheric boundary layers of the polluted atmosphere on across larger regional scales, such as -1M km² the population dense area in the eastern region of China (Kulmala et al., 2021). However, this regional-scale dominance requires evidence from fieldit remains to be explored through actual —measurements.

Atmospheric NPF is often a regional-scale phenomenon spanning hundreds of kilometers (Kerminen et al., 2018). Simultaneous measurements at two or more stations have demonstrated the spatial heterogeneity of regional NPF characteristics such as eventthe frequency of NPF events, the start time and, duration, and of NPF events, and the formation and growth rates of new particles (Bousiotis et al., 2021; Zhou et al., 2021; Dinoi et al., 2023; Shang et al., 2023). This heterogeneity of NPF is may be associated with the spatially heterogeneous variable distributions of diverse emission sources, complex urban morphology and meteorology, and the high strong selectivity and sensitivity of NPF to atmospheric conditions. The main causes of variations in the macroscopic characteristics of NPF remain require to be further verified verification, necessitating mechanistic investigations across. This urges a mechanistic exploration of NPF on a large large regional regionsscale, specifically, at multiple sites in the vast eastern part of China.

The influence of a number of influencing factors needs to be accounted for when resolving nucleation mechanisms in the real atmosphere. Besides the concentrations of gaseous precursors and the scavenging loss of clusters and particles characterized by the condensation sink (CS), temperature effects on also influences nucleation by altering the stability of clusters stability against evaporation (Olenius et al., 2017; Li et al., 2023). A Global global nucleation simulation study using a three dimensional model suggestsed that temperature was the second most important factor in nucleation, following the concentration of precursors (Zhao et al., 2024). Laboratory studies have provided experimental evidence for the temperature dependence of sulfuric acid-amine nucleation on temperature at atmospheric-relevant amine concentrations (Xiao et al., 2021). Previous 1-one-year measurements in urban Beijing showed that temperature governed the seasonal variations of NPF frequency and particle formation rate (Deng et al., 2020). This also indicates that the intensity and characteristics of NPF likely vary on a large spatial scale, e.g., the characteristics of NPF in temperate (Cai et al., 2021) and tropics (Sebastian et al., 2021) regions can be different, even though the NPF events were governed by the same nucleation mechanisms. It is also reasonable to expect a temperature dependence of NPF on a broad spatial scale, which remains to be addressed by observations.

The initial growth of freshly nucleated particles is important for NPF, as these smallest particles are most highly susceptible to scavenging losses. Previous studies proposed that SA and its clusters governs significantly contributed to the initial growth in Chinese megacitiesurban areas, although the contributions from of other condensable vapors, like oxygenated organic molecules (OOMs), could not be excluded (Yao et al., 2018; Deng et al., 2020). OOMs were reported as are identified as highly the most important precursors for the subsequent growth of particles. Observational evidence from remote forests has demonstrated suggested that the volatility distribution of OOMs can reasonably accounted for particle growth from 3 to 50 nm (Mohr et al., 2019). Similarly, in urban environments, a substantial proportion fraction of particle growth occurring above 3 nm has been was attributed to the condensation of OOMs (Qiao et al., 2021), indicating their ubiquitous key role in both anthropogenically influenced and natural settings. Moreover, insights from controlled chamber studies also reinforced further supported the potential role of OOMs in growth of newly-formed particles. In particular, sSome extremely low-volatility OOMs have been showncan to promote directly to the sub-3 nm initial growth of sub-3 nm particles (Tröstl Troestl et al., 2016; Stolzenburg et al., 2018). According to the results from IL aboratoriesy results indicated that, the contribution of OOMs contributions to the initial growth of new particles is are likely to be non-negligible in the real atmosphere, however, there has been insufficient ambient evidence for this process remains limited suggestion.

To deepen the understanding of NPF in polluted atmospheres, we collected data measured at three suburban-sites sites and two urban sites in the eastern part of China, including SA and DMA concentrations ([SA] and [DMA]), OOMs

concentrations ([OOMs]), cluster compositions, and particle size distribution (PSD) down to ~1 nm. The NPF_nucleation mechanisms are—were analyzed after accounting for the effects of temperature and precursor concentrations on cluster concentrations and particle formation rates. Additionally, We we also discuss investigated the initial growth of new particles and explored the roles of OOMs in the formation of 1.7 nm particles.

2 Methods

90

95

100

105

110

115

120

2.1 Measurements

We conducted field campaigns at three suburban sites, namely Wangdu (WD), Dianshan Lake (DL) and Taihu Lake (TL). WD is located in Baoding, Hebei, with farmlands, forests and two major roadshighways nearby. (Wang et al., 2020; Hu et al., 2022; Ren et al., 2022). DL is located in the southwest of Shanghai, surrounded by residential buildings, vegetation, a main traffic arteryhighway and a few industrial enterprises (Wu et al., 2023; Yang et al., 2023; Deng et al., 2025). Two campaigns were conducted at DL, one in winter (DLW) and the other in spring (DLS). TL is located in Wuxi, Jiangsu, surrounded by vegetation and a small number of settlements. The detailed information of these campaigns is given in Table 1. Furthermore, this study also involves ambient data previously reported from urban sites, namely Shanghai (SH, Yao et al., 2018) and Beijing (BJ, Cai et al., 2021; Qiao et al., 2021). The location of these five sites is shown in Figure S1.

A chemical ionization long time-of-flight mass spectrometer (CI-LToF-MS, Aerodyne Research, Inc.) was deployed to measure gaseous SA, OOMs, and molecular clusters at these three three suburban sites (Lu et al., 2020). The mass spectrometer, used-using nitrate and its clusters to ionize neutral molecules and clusters. A calibration coefficient derived from SA and a mass-to-charge-dependent transmission efficiency of the instrument were used to obtain [OOMs], assuming that they share the same kinetically controlled collision rate with reagent ions as that of SA. The transmission efficiency was calibrated using a system coupling a high-resolution differential mobility analyzer (HR-DMA) with the mass spectrometer (Heinritzi et al., 2016). The calibrations of [SA] and transmission efficiency were performed before each campaign.

A Vocus proton-transfer-reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS, Aerodyne Research Inc.) equipped with a focusing ion-molecular reactor (FIMR) was used at WD and DL, with modified instrument settings to measure DMA (Wang et al., 2020). A chemical ionization high-resolution time-of-flight mass spectrometer (CI-HToF-MS, Aerodyne Research Inc.) was used at TL₂ with protonated ethanol or its hydrated clusters as reagent ions (Yao et al., 2016), to measure DMA (Yao et al., 2016). Since mass spectrometer cannot distinguish among isomers, C₂-amine was taken as DMA. NH₃ concentration ([NH₃]) was measured using the ion chromatography (IC) method of Chinese Standard (HJ 1076-2019) at WD and DL. There was no measurement for [NH₃] at TL. The detailed measurement methods for these chemical species are given in the Supplement.

Particle size distribution (PSD) ranging from 1 to 3 nm was measured by an Airmodus A10 particle size magnifier (PSM). The PSD of 3-736 nm particles was measured by two scanning mobility particle sizers (SMPS TSI Inc, USA), namely a nano-SMPS and a long-SMPS (Yao et al., 2018). Temperature was monitored by an automatic weather station (Vaisala AWS310).

Furthermore, this study also involves ambient data previously reported at urban sites, namely Shanghai (SH, Yao et al., 2018) and Beijing (BJ, Cai et al., 2021; Qiao et al., 2021).

Table 1: The location, period and the usage of instrument at different sites.

OOMs WD 38°39' N, 115°11' E Dec. 2018-Jan. 2019 CI-LToF- MS Vocus PTR-ToF- MS CI DL 31°05' N, Dec. 2022-Jan. 2023 & MS MS PTR-ToF- MS CI		Location	Period	Instrument				
OOMs WD 38°39' N, 115°11' E Dec. 2018-Jan. 2019 CI-LToF- MS Vocus PTR-ToF- MS CI DL 31°05' N, Dec. 2022-Jan. 2023 & MS MS PTR-ToF- MS CI	Site			SA &	DMA	NH_3	PSD	
WD 115°11' E Dec. 2018-Jan. 2019 Vocus 115°11' E CI-LToF- DL 31°05' N, Dec. 2022-Jan. 2023 & MS PTR-ToF- DL MS long				OOMs	21121			
115°11' E	WD	38°39' N,	Dec. 2018-Jan. 2019		PTR-ToF-	CI	nano-	
31°05' N, Dec. 2022-Jan. 2023 & MS long DL MS		115°11' E					SMPS+	
	DL	31°05' N,	Dec. 2022-Jan. 2023 &				long-	
120 39 E Apr. 2023-Juli. 2023		120°59' E	Apr. 2023-Jun. 2023				SMPS+	

TL	31°25' N,	Jul. 2023-Sep. 2023	HToF-	Not	PSM
	120°13' E		CIMS	available	

125 2.2 Models

130

135

140

150

155

160

A cluster dynamics-multicomponent sectional model was applied to simulate SA-DMA nucleation process (Li et al., 2023). The model is composed of one cluster dynamics module and one sectional module. The detailed description of these two modules is given in the Supplement. SA tetramers were treated as nucleated particles for simulating particle formation rate at 1.4 nm diameter, $J_{1.4}$ (Larriba et al., 2011; Cai et al., 2021), and entered the sectional module as the smallest particles. Particle formation rate at 1.7 nm diameter, $J_{1.7}$, was simulated by incorporating the initial growth on the basis of $J_{1.4}$. However, in certain cases, this process could not be directly implemented in the model, because of data overflow. (Figure \$152). Therefore, a survival probability approach was adopted as an alternative for the calculation (Cai et al., 2022a):

$$\frac{J_{p_1}(t)}{J_{p_2}(t)} = \exp \int_{d_{p_2}}^{d_{p_1}} -\frac{\text{CoagS}(d_p)}{\text{GR}(d_p)} dd_p$$
 (1)

where d_{p1} is 1.7 nm, and d_{p2} is 1.4 nm, the corresponding particle size in calculating particle formation rates. The ratio $J_{1.4}/J_{1.7}$ is defined as the survival probability from 1.4 nm to 1.7 nm. GR is herein the simulated size-dependent growth rate, which is contributed by condensable vapors through the change of particle mass over time:

$$\frac{\mathrm{d}m_{\mathrm{p}}}{\mathrm{d}t} = \sum_{i} m_{i} \left(\alpha \beta_{i} N_{i} - \beta_{i} N_{i, \mathrm{sat}} \exp\left(\frac{4 v_{i} \sigma}{d_{\mathrm{p}} k_{\mathrm{B}} T}\right) f_{i} \right) \tag{2}$$

where m_p is the mass of particle; i represents each condensable species; m_i is the mass of molecules or clusters; α is the accommodation coefficient, β_i is the collision constant between species i and the particle; $N_{i,\text{sat}}$ is the saturation concentration; v_i is the molecular volume, σ is the surface tension of the particle; k_B is the Boltzmann constant; and f_i is the molar fraction in the particle. In calculations, (SA)_{1.4}(DMA)_{0.4} was treated as non-evaporative, meaning that they do not return to the gas phase after condensing on the particle, the fragmentation of SA-DMA clusters from particles was taken to be negligible, i.e., clusters did not return to the gas phase after coagulating onto a particle.

2.3 Uncertainty analysis

145 The uncertainty of SA monomer concentration ([SA₁]) was estimated to be +100%/-50% (Cai et al., 2021). The uncertainty of [DMA] was +150%/-60% taking into account systematic and calibration uncertainties among campaigns (Freshour et al., 2014). The uncertainty of [OOMs] was expected to be greater than that of [SA₁], because it was quantified by the calibration factor of SA. Li et al. (2023) reported that [OOMs] with a scaling factor of 1.35-4 could explain the measured new particle growth. Hence, the uncertainty of OOMs was estimated to be +200%/-66%. In terms of the volatility estimation of OOMs, the logarithm of saturation mass concentration ($\log C^*$) had an uncertainty of ± 1 (Stolzenburg et al., 2018). The uncertainty-uncertainties of CS and measured -particle formation rate were ± 10 -% and ± 100 %/-50%, respectively (Cai et al., 2021). All uncertainties of these parameters are listed in Table S1.

The uncertainties of simulated values, like the SA dimer concentration ([SA₂]) and the particle formation rate were obtained by inputting the extreme values of the uncertainty ranges of measured data into the model. For example, the measured value of [SA₁], [DMA] and CS were scaled by factors of 2, 2.5, and 1.1 (according to their uncertainty) were input to calculate the upper boundary of the uncertainty range of simulated $[SA_2]$ ($[SA_2]_{sim}$) and simulated $J_{1.4}$ ($J_{1.4,sim}$) and the lower boundary of simulated value was calculated in a similar way to the upper boundary, except that scale factors of 2, 2.5 and 1.1 were replaced by 0.5, 0.4 and 0.9, respectively.

2.4 Scaling processing

To quantitatively characterize the effects In order to better visualize the effects of $[SA_1]$ and temperature on $[SA_2]$ SA dimer concentration and particle formation rate, we normalized accounted the effects of CS and [DMA] by scaling the measured values to consistent conditions a same level based on simulation. Here, the scaling of measured $[SA_2]$ ($[SA_2]_{meas}$) is given-defined as an example follows:

$$[SA2]scaled = [SA2]meas · C(CSmedian, [DMA]median)$$
(3)

where $[SA_2]_{scaled}$ refers to the scaled $[SA_2]_{meas}$; $C(CS_{median}, [DMA]_{median})$ is the scaling coefficient for $[SA_2]_{meas}$, and was calculated by:

$$C(CS_{median}, [DMA]_{median}) = \frac{[SA_2]_{sim, median}}{[SA_2]_{sim}}$$
(4)

where [SA₂]_{sim} isdenotes the simulated SA₂ concentration_, which was calculated by inputting measured [SA₁], [DMA], CS and temperature into the cluster dynamics-multicomponent sectional model; [SA₂]_{sim,median} iswas calculated using measured [SA₁] and temperature, combined withby inputting measured [SA₁], measured temperature, the median [DMA] (2.3 pptv) and the median CS (0.017 s⁻¹) ofin all NPF events. [SA₂]_{sim,median} can be regarded as the theoretical [SA₂]_{meas} when measured [DMA] and CS attainreach their event median valuess. [DMA] was unavailable not measured simultaneously with [SA] at SH. Considering high [DMA] (0.7-54.3 pptv) in other campaigns in urban Shanghai (Yao et al., 2016; Chang et al., 2021), a fixed [DMA] at SH (5 pptv) was uniformly set at 5 pptv infor scaling, at which [SA₂] almost reachinged the nucleation limit under the atmospheric [SA₁] (Almeida et al., 2013). The analogous scaling methodology for the particle formation rates is given in-detailed in the Supplement.

3 Results and discussion

170

175

180

185

190

195

200

3.1 SA-DMA nucleation for all the campaigns

SA and DMA can explain the atmospheric nucleation observed at all sites. This finding is supported by the correlation between [SA₁] and particle formation rates, the composition of detected clusters, the alignment of simulated and measured nucleation intensity ([SA₂] and particle formation rates), and the dependences of NPF on temperature and [DMA]. The first two points are addressed in this section, while the remaining evidence will be discussed in Sect. 3.2 and Sect. 3.3.

Figure 1 shows the measured particle formation rates at 1.7 nm diameter $(J_{1.7,meas})$ as a function of $[SA_1]$ and compares them with—those in other studies measured results of other campaigns. All measured particle formation rates are much higher than SA-NH₃ at corresponding temperatures of Cosmics Leaving Outdoor Droplets (CLOUD) experiments, which suggests the existence of precursors with higher basicity, like amines (Kirkby et al., 2011; Almeida et al., 2013). Our data (, except for that at TL₇ is in accordance with SA-DMA-NH₃(-OOMs) nucleation at 293 K of Cosmics Leaving Outdoor Droplets (CLOUD, even though the median temperature in our campaigns was 287 K) experiments. Data at-from TL follows the simulated lines for SA-DMA nucleation at 303 K. Furthermore, our observed results align closely withare also close to those at SH and BJ, where SA and DMA have been suggested to be key nucleating precursors proved to play key roles in nucleation (Yao et al., 2018; Cai et al., 2021), indicating a potentially consistent meaning that nucleation mechanisms across these locations among them are very likely to be consistent. Compared with CLOUD experimental conditions (Table 2), ou Our campaigns exhibited had higher CS and lower [DMA] than the, bexperimental conditions of CLOUD (Table 2), both of which are were unfavorable for J_{1.7}NPF. This explains provides an explanation for the generally lower particle formation rates J_{1.7,meas}-observed in our measurements relative to those from CLOUDeompared to those from CLOUD under varying temperature conditions. Particle formation rates under SA DMA nucleation remain almost unchanged after adding certain [NH₃] and [OOMs] in CLOUD (Kürten et al., 2018; Xiao et al., 2021), and our observations show a close level of [NH₃] and relatively low [OOMs] compared with CLOUD experiments (Table 2). It is difficult to determine whether NH₃ and OOMs participate in nucleation based on particle formation rate solely. Therefore, the observed nucleation is likely driven by SA and enhanced by strong stabilizing precursors such as DMA. Other nucleation mechanisms are unlikely to dominate under these conditions, the dominate NPF mechanism in our campaigns was identified as SA DMA.

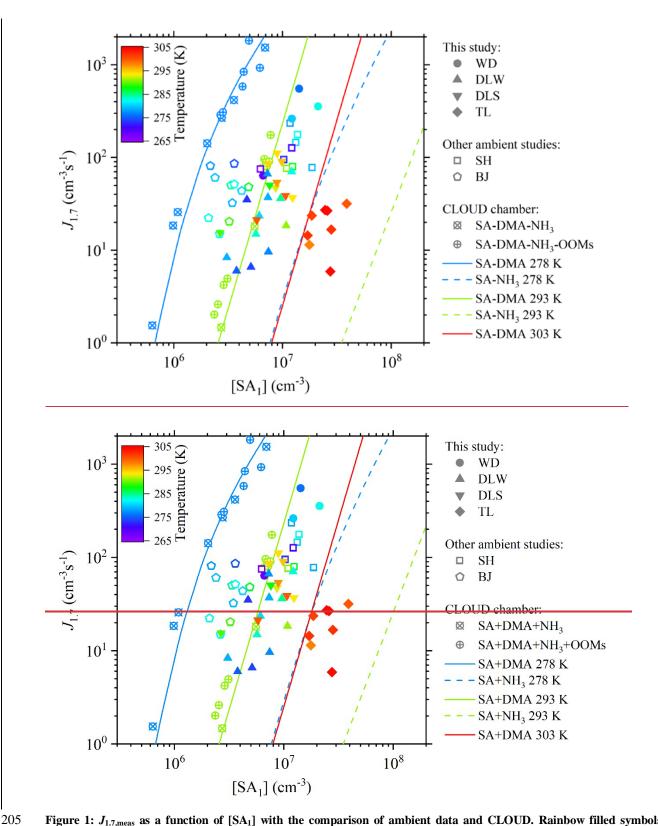


Figure 1: $J_{1.7,meas}$ as a function of [SA₁] with the comparison of ambient data and CLOUD. Rainbow filled symbols represent measured data in this study, indicating one NPF events with the time resolution of 30 min, which were selected when $J_{1.7,meas}$ reaches maximum. Rainbow open symbols represent data from published studies (Yao et al., 2018; Cai et al., 2021). Symbols with crosses indicate CLOUD data in the temperature of 278 K and 293 K, respectively. Lines represent the fitting result of CLOUD (Xiao et al., 2021), except for the SA-DMA fitting at 303 K that is derived from the CLOUD fitting line of SA+DMA 293 K by the cluster dynamics-multicomponent sectional model.

Table 2: Comparison of NPF characteristics in different campaigns.

220

225

230

Dada <u>Data</u> source		Temperature	CS	[DMA]	[OOMs]	[NH ₃]
		(K)	(s^{-1})	(pptv)	(cm ⁻³)	(ppbv)
This stade.	median	290	0.017	2.3	1.8×10^{8}	2.1
This study	range	268-307	0.008-0.060	0.6-18.3	$2.0 \times 10^7 - 9.7 \times 10^8$	0.4-7
CLOUD (Xiao et al., 2021)		278, 293	0.002- 0.008	4	up to 8.8×10 ⁹	1-2.5
Shanghai (Yao et al., 2018)		267-291	0.017- 0.039	not available -	2.3×10 ⁷ -2.1×10 ⁸	not available -
Beijin (Cai et al. Qiao et al.	, 2021;	275-289	0.005- 0.021	0.7-3.5	1.2×10 ⁷ -6.4×10 ⁷	0.3-2.3

The composition of the measured cluster composition provides observational further evidence for the involvement of DMA in the formation of SA clusters, while other base molecules were not detected (Figure 2). A number of neutral clusters, including SA and SA-DMA clusters, along with S-O based ions, were observed at WD, DL and TL. These clusters are described as SA monomer (SA₁), dimer (SA₂), trimers (SA₃DMA₀₋₂) and tetramers (SA₄DMA₁₋₂), contributing to NPF. The absence of DMA in pure SA monomer and dimer clusters can be attributed to in-situ fragmentation withare caused by their loss in the mass spectrometer (Alfaouri et al., 2022Cai et al., 2022b), suggesting more DMA molecules were expected to be existed in clusters. Similar patterns of SA-DMA clusters were also measured by CI-TOF-MS in other urban sites at SH (Yao et al., 2018) and BJ (; Yin et al., 2021). Besides, the normalized signal of SA trimer and tetramer show good correlations ($r^2 = 0.44-0.76$) with the number concentration of sub-3 nm particles (Figure S3). Such correlations between clusters and newly formed particles were reported in other atmospheric observations (Bianchi et al., 2016; Yan et al., 2021), indicating that these clusters typically signified the molecular clustering processes in NPF events. Other molecules that may clusters related to nucleation, like SA OOMs and SA NH₃, were not observed, but the possibility that NH₃ and OOMs-participate in nucleation-cannot be ruled out,, such as OOMs and NH₃, were not detected in clusters, as they are generally in the form of as they are generally present in the detection of ion clusters, rather than neutral clusters (Bianchi et al., 2016; Yin et al., 2021; Cai et al., 2024). The accordant comparison of simulated and measured [SA₂], and the temperature dependence of nucleation also give further support for that SA DMA nucleation, which is described specifically in the Sect. 3.2.

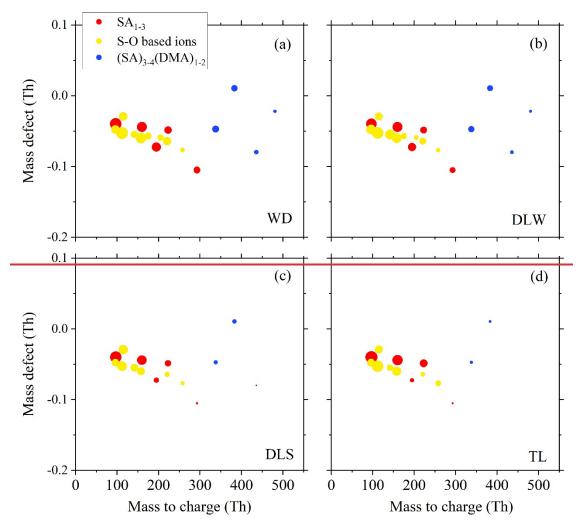
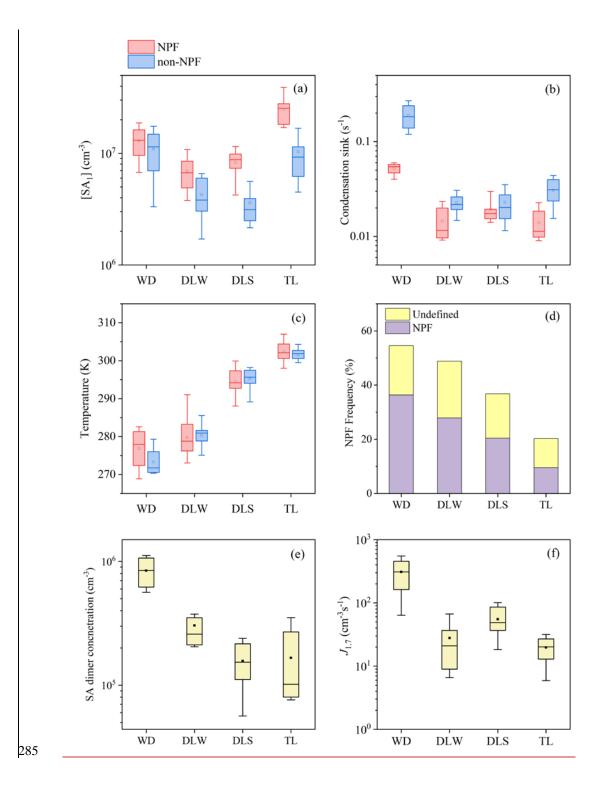


Figure 2: The mass defect of SA molecules and, its clusters, and S-O based ions during four NPF events on (a) January 20th, 2019 in at WD (temperature = 275 K; $[SA_1] = 1.4 \times 10^7$ cm⁻³; CS = 0.055 s⁻¹; [DMA] = 3.4 pptv); (b) January 27th, 2023 in at DLW (temperature = 277 K; $[SA_1] = 7.3 \times 10^6$ cm⁻³; CS = 0.012 s⁻¹; [DMA] = 1.5 pptv); (c) May 2nd, 2023 in at DLS (temperature = 295 K; $[SA_1] = 9.5 \times 10^6$ cm⁻³; CS = 0.014 s⁻¹; [DMA] = 2.9 pptv); (d) August 7th, 2023 in at TL (temperature = 304 K; $[SA_1] = 2.6 \times 10^7$ cm⁻³; CS = 0.023 s⁻¹; [DMA] = 1.8 pptv). Other species detected by CI-LToF-MS were not shown, because they are not directly related to atmospheric nucleation. The area of symbol size is proportional to the logarithm of the normalized signal intensity. (multiplied by a factor of 1× 10⁶ before taking the logarithm). The logarithm of values is annotated for larger clusters.


3.2 The influencing factors of NPF

We further analyzed the factors determining the occurrence of NPF events in different campaigns by contrasting NPF and non-NPF events (Figure 3). [SA₁] during NPF periods was 0.5-2 times higher than that during non-NPF periods atis key to determining the occurrence of NPF at DL and TL, suggesting [SA₁] was key to determining the occurrence of NPF at these sites with the median values of [SA₁] being 1-2 times higher in NPF periods compared to those in non NPF periods (Figure 3a). This pattern resembles that observed in Barcelona (Brean et al., 2020) but differs from that observed in Beijing (Deng et al., 2020; Yan et al., 2021), where low CS was related to the occurrence of NPF without evident variations in [SA₁]. Similarly, CS during NPF periods is was generally lower than that during non-NPF days periods in all campaigns, except DLS, further confirming that high preexisting aerosols are able to suppressed the occurrence of NPF (Figure 3b). However, NPF events were not significantly dependent on the teontrasts with patterns in Po Valley, where CS in Po Valley, remained at similar levels regardless of whether NPF occurs indicating other influencing factors govern the occurrence of NPF in less polluted atmospheres (Cai et al., 2024). Therefore, both the strength of precursor sources and pre-existing sink were important to the occurrence of NPF at our sites.

Besides SA, other Other potential precursors related to NPF in polluted regions nucleation, including DMA, NH₃ and OOMs-and NH₃ seem to have no notable influence on the occurrence of NPF in all campaigns, (Figure S4). These species are known to enhance SA-driven nucleation (Kirkby et al., 2011; Almeida et al., 2013; Riccobono et al., 2014) and promote particle growth (Tröstl et al., 2016). Increasing [DMA] considerably enhances SA₂ formation under fixed temperature ranges (Figure S5), and this effect diminishes as [DMA] approaches nucleation saturation (Almeida et al., 2013). This phenomenon supports the contribution of DMA to atmospheric nucleation and is consistent with the results from a flow reactor (Jen et al., 2014). In CLOUD studies, the contributions of OOMs and NH₃ to cluster formation were almost negligible in the presence of DMA (Kürten et al., 2018; Xiao et al., 2021). Given that our field measurements exhibited similar [NH₃] and relatively low [OOMs] compared to those in CLOUD experiments (Table 2), it follows that their effects are also minor under our ambient conditions. Despite the potential participation of other precursors, the observation-simulation agreement suggests DMA is a major base that stabilizes SA clusters (Figure S5). However, [DMA] and [NH₃] were not markedly elevated during NPF periods (Figure S4). The likely reason is that the suppression of NPF by high CS masked the enhancing effect of DMA and NH₃, as they were positively correlated with CS (r²=0.31 and 0.39, respectively, Figure S6). since their concentrations during NPF periods were not obviously higher than those during non NPF periods (Figure S2).

Although the occurrence of NPF is not strongly dependent on ambient temperature in individual campaigns (Figure 3c), the intercomparison across campaigns indicates a general negative correlation between NPF frequency and temperature, reflecting seasonal characteristics (Figure 3d). This trend is consistent with long-term measurements in Chacaltaya (Rose et al., 2015), Beijing (Deng et al., 2020) and Gwangju (Lee et al., 2024), where NPF was most frequent in winter and least frequent in summer. The intercomparison of campaigns further shows that temperature played a key role in determining the intensity of NPF indicated by $[SA_2]$ and $J_{1.7,meas}$ (Figure 3e-f). Temperature even exerted more dominant influence than [SA1] and CS. For example. Similarly, temperature does not appear to be a decisive factor determining the occurrence of NPF (Figure 3e), but it exerts a considerable influence on the intensity of NPF among campaigns, as elaborated in the next paragraph.

The comparison among different campaigns indicates that $[SA_1]$ and temperature played key roles in determining the intensity of NPF indicated by $J_{1.7,\text{meas}}$ (Figure 3d). Althoughdespite the highest $[SA_1]$ at TL is the highest at all sites, high its elevated temperatures (298-306 K) at TL resulted in lower median values of $[SA_2]_{\text{meas}}$ and $J_{1.7,\text{meas}}$ than those in all campaigns other sites. Conversely In contrast, WD has had the lowest temperature (281-268 K) and relatively high $[SA_1]$ (7×10⁶-1.8×10⁷ cm⁻³) in all campaigns, the intensity of NPF at WD was the highest, Even even under strong coagulation scavenging effect (median $CS = \sim 0.05 \text{ s}^{-1}$), $J_{1.7,\text{meas}}$ at WD are the highest (~310 cm⁻³s⁻¹). A more detailed discussion regarding the influence of temperature on NPF is provided in Sect. 3.3. The effect of temperature on NPF was also considerable in the analysis of other observations in Beijing in different seasons (Deng et al., 2020).

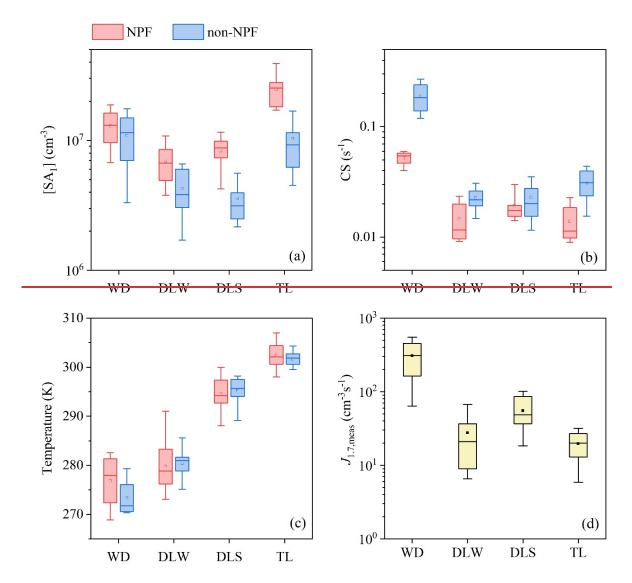
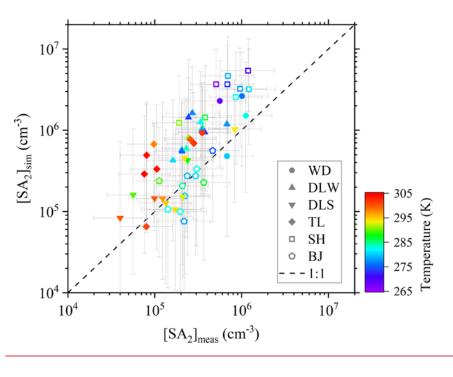


Figure 3: Parameters related to NPF. (a) $[SA_1]$, (b) CS, (c) temperature during NPF periods and non-NPF periods, and (d) NPF frequency in each campaign, and (e) $[SA_2]$ and (f) $J_{1.7,meas}$ during NPF periods. The NPF period is defined as the period with the maximum value of $J_{1.7}$ in each NPF event, and the non-NPF period is defined as the median range of all NPF periods (9:00-11:00) in non-NPF days. In order to eliminate the influence of precipitation, only sunny and cloudy days are selected for non-NPF. The transverse lines and square markers inside the boxes indicate mean values and median values, respectively. The bottom and top edges of the whisker lines outside of the boxes indicate the 10^{th} and 90^{th} percentiles, respectively.

3.2-3 The Temperature dependence of nucleation on temperature

290


295

300

To focus on the influence of [SA₁] and temperature on nucleation, and minimize the influence of other influencing factors, namely [DMA] and CS, on nucleation, we scaled the measured data to the median [DMA] and CS (see Methods). Figure 4 shows that the comparison between [SA₂]_{sim} and [SA₂]_{meas}; is in accordance with [SA₂]_{sim} when considering the uncertainties, indicating SA and DMA could explain the formation of SA₂, in which [SA₂]_{meas} is in an agreement with the corresponding [SA₂]_{sim}, considering the uncertainty range in its measurement. To be specific, the [SA₂]_{meas} is slightly lower than [SA₂]_{sim} overall, the simulated value, Similar discrepancies between measured and simulated cluster concentrations have also been reported in CLOUD experiments (Kürten et al., 2014). This systematic underestimation is likely attributable to measurement errors, because not all SA₂ is fully detected, as some may dissociate within the mass spectrometer (Alfaouri et al., 2022). and this systematic discrepancy is likely due to measurement errors. It is possible that not all SA₂ is fully detected, as some of them

315

may have dissociated within the mass spectrometer (Zapadinsky et al., 2019). The observation-simulation comparison of $J_{1.4}$ is shown in Figure S7, where simulation results fall within acceptable ranges upon uncertainty analysis. The consistency between measured and simulated parameters ([SA₂] and J_{1.4}) supports the significance of SA-DMA collision in NPF. The comparison of measured and simulated $J_{1,4}$ is shown in Figure S3, and the simulation results are acceptable through uncertainty analysis. In addition to supporting our argument that SA-DMA clustering can explain the formation of stable SA dimers, this agreement between [SA2]sim and [SA2]meas, also provides supports for the feasibility to use simulation for of data scaling.

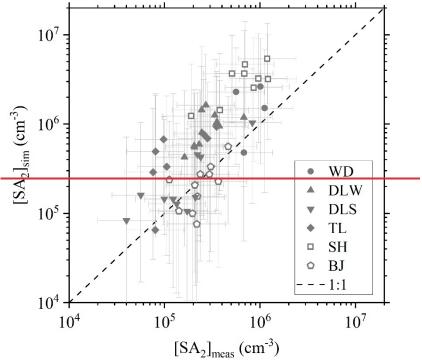
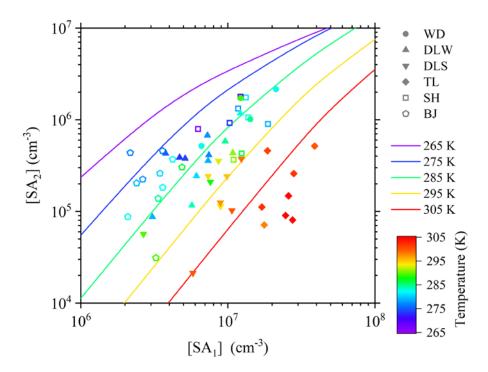


Figure 4: The comparison between [SA2]_{meas} and [SA2]_{sim}. Horizontal and vertical error bars connected with each symbol indicate the uncertainties of x-axis and y-axis, respectively.

The consistency between measured and simulated parameters also validates the applicability of the model for data scaling. After accounting for the influences of CS and [DMA], we find that [SA2]_{scaled} show exhibits a significant decreasing trend with an increarjising temperature, which is in a decent consistencyshowing agreement with the simulated results (Figure 5). For every 20 K increase in temperature, the [SA2]_{scaled} descends by approximately one order of magnitude. This trend underscores the dominant influenceeffect of temperature in governing the stability and abundance of clusters in nucleation pathways. The temperature dependence of the ratio of [SA2] to [SA1] is also corroborated by previous studies focusing on SA DMA nucleation. (Almeida et al., 2013; Yao et al., 2018). OnAt the molecular level, it is proposed that SA and DMA form DMA acts as a kind of stable nucleating agent. Most of SA firstly converts into-SA1DMA1 clusters, which subsequently contributes to SA2 formation, during nucleationand then forms SA dimer subsequently (Cai et al., 2022b). SA1DMA1 has relatively low thermal stability (Olenius et al., 2017; Myllys et al., 2019). While SA2 with one or two DMA molecules has been demonstrated to already be stable against evaporation (Jen et al., 2014), the formation of SA1DMA1 is a temperature-sensitive process that acts as the major rate-limiting step in clustering (Cai et al., 2022b). Kürten et al. (2016) and Brean et al. (2020) observed relatively low ratios of [SA2] to [SA1] (~0.01) at an urban site and a rural site, respectively, and speculated that they were related to higher temperatures (298-308 K)., which explains the temperature effect on [SA2] mechanistically.

320

325


330

335

340

345

An intercomparison of the panels in Figure 2 shows that the abundance and variety of larger SA-DMA clusters (SA trimers and tetramers) decline with increasing temperature, despite variations in precursor concentrations and CS across sites. For instance, The effect of temperature can also be reflected in larger clusters, like SA trimer and tetramer (Figure 2). although TL exhibited higher [SA₁] ($\sim 2.6 \times 10^7$ cm⁻³) during high-temperature (~ 303 K) NPF periods, the abundance and diversity of measured clusters were lower than those at low-temperature sites (WD and DLW). Theoretically, the evaporation rates of SA trimers and tetramers show limited sensitivity to temperature (Olenius et al., 2017), and their variation can be even neglected in some cluster dynamics models (Cai et al., 2021). Thus, the observed reduction in larger clusters at elevated temperatures is likely constrained by the formation of SA₂. The proportion of base molecules in clusters also decreased with increasing temperature in the four selected NPF events, which was also reported in CLOUD experiments (Schobesberger et al., 2015). Furthermore, with the increase of cluster size, NH₃ tends to gradually replace DMA in ion clusters (Schobesberger et al., 2015; Yin et al., 2021), enhancing the stability of SA-base clusters (Bzdek et al., 2017), which helps them resist evaporation. Even though the high-temperature (303 K) NPF period at TL had the higher [SA₁] (~2.6×10⁷ cm⁻³), the abundance and variety of measured cluster were lower than those on low temperatures (275 K and 277 K) at WD and DLW. In addition to temperature, the effect of [DMA] on [SA2] was also described in Figure S4. The rise in [DMA] considerably promotes the generation of SA₂, the promotion efficiency is gradually not obvious meanwhile, because [DMA] is close to nucleation saturation (Almeida et al., 2013).

360

365

370

375

Figure 5: $[SA_2]_{scaled}$ as a function of $[SA_1]$ under a temperature gradient. Each symbol indicates one NPF event with a time resolution of 30 min, which was selected when $J_{1.7,meas}$ reaches maximum. [DMA] and CS for the simulated lines calculated by the discrete-sectional model are their median values in all NPF events, i.e., 0.017 s⁻¹ and 2.3 pptv, respectively. To visualize the effect of temperature, the color of the simulated lines corresponds to the color bar.

As shown in Figure 6, the particle formation rate exhibits a negative correlation with temperature. Notably, for a fixed [SA₁], the formation rate varies by The significant effect of temperature on cluster stability further causes large differences in $J_{1.4}$ (Figure 6). Specifically, the values of scaled $J_{1.4}$ ($J_{1.4\text{-scaled}}$) span approximately 3-three orders of magnitude for the same [SA₁] over a 30 K temperature range, and this extent of variation is comparable to that reported in chamber experiments simulating the conditions of polluted environments (Xiao et al., 2021) and atmospheric observations in urban area (Yu et al., 2016) of about 30 K. This highlights the critical role of temperature in modulating nucleation, suggesting that temperature fluctuations alone can induce majorlead to substantial variability in NPF without the change in the species and concentrations major nucleation precursors. In other words, SA and DMA can still explain the wide range of $J_{1.4,\text{scaled}}$ at these sites. The significant effect of temperature on cluster stability seems to further lead to substantial variations in $J_{1.4}$, since In terms of trends, J_{1-4 sepled} exhibits a negative correlation with temperature, which is consistent with published atmospheric investigations (Yu et al., 2016; Deng et al., 2020). Similar to [SA₂], the evaporation rate of SA₁DMA₁ can be considered as is a key factor influencing the temperature dependence of particle formation rate on temperature (Deng et al., 2020; Cai et al., 2022b). It is evident that the temperature dependence of $J_{1,4}$ was not as pronounced as that of SA_2 , particularly data points at DL, which are clustered together with the temperature range of ~20 K. Some of them also correspond worse to the simulated results, compared with data points in other campaigns. The temperature dependence of $J_{1,4}$ at DL was obvious in the intercomparison of each campaign (Figure S5), when all campaigns collectively analyzed, the presentation of temperature dependence is subject to systematic uncertainties across different campaigns.

In the analyses presented above, temperature is regarded as a dominant factor determining the intensity of NPF over large regional scales. The direct effect of temperature on NPF is negative, through altering the evaporation rates of clusters (Olenius et al., 2017; Myllys et al., 2019). This has been consistently demonstrated in well-controlled chamber experiments with different nucleation mechanisms (Kirkby et al., 2011; Simon et al., 2020; Xiao et al., 2021; He et al., 2023). When temperature differences are substantial, its inhibitory effect on NPF becomes evident in complex ambient environments. For example, Baalbaki et al. (2021) reported the particle formation rate in warmer months was actually lower than that in cooler months with comparable [SA₁] levels in the Eastern Mediterranean. Inter-site comparisons in India showed a negative correlation

between particle formation rate and temperature, although precursor concentrations were not measured (Kanawade et al., 2022). However, under conditions of limited temperature variability, the effect of temperature is less directly observable, and higher temperatures may even appear to favor NPF (Größ et al., 2018; Brean et al., 2020; Yan et al., 2021; Victor et al., 2024). This may stem from other temperature-related factors. For example, in atmospheric observations, temperature is often correlated positively with solar radiation, which directly promotes the formation of nucleation precursors (Kürten et al., 2016; Brean et al., 2020). Additionally, temperature is typically negatively correlated with relative humidity, and high humidity suppresses NPF via hygroscopic growth of pre-existing particles (Määttänen et al., 2018).

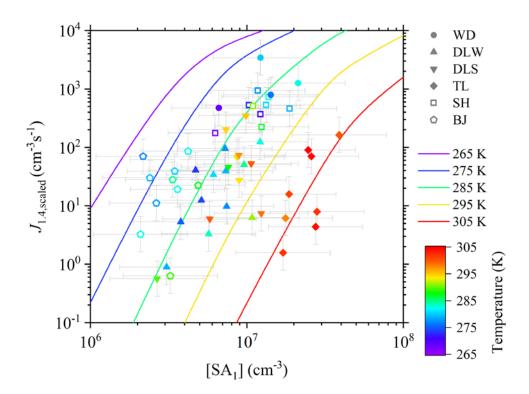


Figure 6: $J_{1.4,\text{scaled}}$ as a function of [SA₁] under the temperature gradient. Each symbol indicates one NPF events with a time resolution of 30 min, which were selected when $J_{1.7,\text{meas}}$ reaches maximum. [DMA] and CS for the simulated lines by the discrete-sectional model are their median values in all NPF events, i.e., 0.017 s^{-1} and 2.3 pptv, respectively. Horizontal and vertical error bars connected with each symbol indicate the uncertainties of x-axis and y-axis, respectively. To visualize the effect of temperature, the color of the simulated lines corresponds to the color bar.

3.3-4 Initial growth of nucleated particles

The discussions analyze above have has shown that SA-and DMA can explain atmospheric nucleation-could explain predominant nucleation mechanism at five sites. Here, we investigate the contribution of particle initial growth of nucleated particles is investigated to J_{1.7}. Figure 7a presents compares the comparison of simulated growth rate of 1.4-1.7 nm particles (GR_{1.4-1.7}) with two groups sets of condensable vapors at BJ and DLS. When only SA and its clusters are included, the simulated the contribution of sulfuric acid is considered, the GR_{1.4-1.7} values ranges at the two sites range approximately from 0.3 to 3.4 nm/h. If GR_{1.4-1.7} could be roughly approximated to growth rate of under 3 nm particles, these values of simulated GR_{1.4-1.7} are in accordance with the measured range (0.5-14.3 nm/h) in previous reports from the eastern region of China (Xiao et al., 2015; Dai et al., 2017; Yao et al., 2018; Hong et al., 2023). The simulated GR_{1.4-1.7} is enhanced when OOMs are also considered as condensable vapors on the basis of the contribution of SA and its clusters, ranging approximately from 1.2 to 22.6 nm/h. Assuming GR_{1.4-1.7} is roughly approximated to the growth rate of sub-3 nm particles, these simulated values are

generally in accordance with the measured range (0.5-20.4 nm/h) in previous reports from the eastern region of China (Xiao et al., 2015; Dai et al., 2017; Yao et al., 2018; Hong et al., 2023). The corresponding simulation results from the other four campaigns are generally consistent with those at BJ and DLS, differing mainly in the extent of growth rate enhancement (Figure S8a). The same comparison in other four campaigns is shown in Figure S6a. The volatility distribution of observed OOMs for simulating is shown in Figure S7. Here, it is assumed that only SA, its clusters and OOMs contribute to GR_{1.4-1.7}; because they can largely explain the growth of particles in urban areas (Qiao et al., 2021).

410

415

420

425

430

435

The comparison between $J_{1.7,\text{meas}}$ and simulated $J_{1.7}$ ($J_{1.7,\text{sim}}$) provides support for the contribution of OOMs to the growth of nucleated particles (Figure 7b). The simulation of $J_{1.7}$ is improved by considering the contribution of OOMs to the initial growth of new particles. The comparison between $J_{1.7,\text{meas}}$ and the simulated $J_{1.7}$ ($J_{1.7,\text{sim}}$) at BJ and DLS is shown in Figure 7b. When merely only considering the contribution of SA and its clusters are considered, a substantial deviation, sometimes more than three orders of magnitude, is observed to GR, there is a significant deviation between the values of $J_{1.7,\rm meas}$ and $J_{1.7,\rm sim}$ generally, and some of them even deviated by more than 3 orders of magnitude. Compared to the simulation of $J_{1.4}$ (Figure S2S7), $J_{1.7,sim}$ shows a noticeable decline the values of $J_{1.7,sim}$ at DLS and BJ. The inclusion of OOM-induced growth markedly increases J_{1.7,sin}, leading to better agreements with measurements, which can also be supported by observations in CLOUD experiments (Tröstl et al., 2016). also reveal an evident decline. After incorporating the contribution of OOMs to GR_{1.4-1.7}, the values of $J_{1,7,\text{sim}}$ are greatly elevated. The corresponding results of improvement are limited poor at WD, DLW, TL and SH, where the contribution of SA and its clusters seems sufficient to explain GR_{1.4-1.7} (Figure S8b), and the contribution of SA and its clusters seems sufficient to explain GR_{1.4-1.7} in these campaigns (Figure S6b). In fact, OOMs may also be involved in clustering, especially at DL and TL with high concentrations of some ultralow volatile organic compounds within OOMs may be involved in (Figure S7), which are capable of nucleating (Simon et al., 2020). Nevertheless, even without considering their contribution in this stage, the condensation of OOMs exerts a considerable influence on initial growth, as reflected in $J_{1.7}$. Moreover, $J_{1.7}$ exhibits strong temperature dependence, similar to $J_{1.4}$ (Figure S9). regardless of their contribution to nucleation, their effects on condensation were also considerable to J_{1.7}, which also demonstrates strong temperature dependence like J_{1.4} (Figure S8).

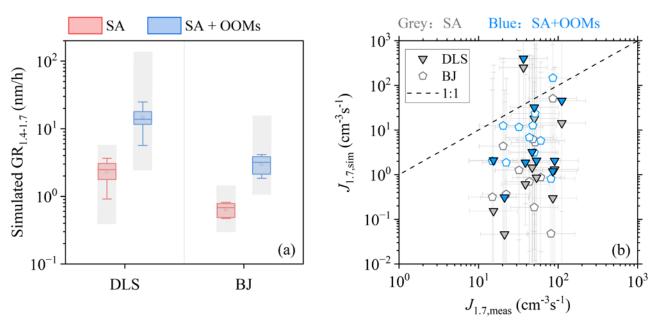


Figure 7: The simulation of $GR_{1.4-1.7}$ and $J_{1.7}$. (a) The comparison of simulated $GR_{1.4-1.7}$ contributed by SA and its clusters (i.e. SA in the legend), as well as SA and its clusters plus OOMs in campaigns. The transverse lines and square markers inside the boxes indicate mean values and median values, respectively. The bottom and top edges of the box indicate the 25^{th} and 75^{th} percentiles, respectively. The bottom and top edges of the whisker lines outside of the boxes indicate the 10^{th} and 90^{th} percentiles, respectively. The shade boxes indicate the ranges of uncertainties. (b)The comparison between $J_{1.7,meas}$ and $J_{1.7,sim}$. Horizontal and vertical error bars connected with each symbol indicate the uncertainties of x-axis and y-axis, respectively.

450

455

460

465

470

475

4 Conclusions

We studied the mechanism and influencing factors of NPF on a large spatial scale by using observational data at multiple sites in the eastern region of China, We analyze the governing mechanism SA DMA in the eastern region of China using observation data at three sites, including the concentrations of key chemical species, meteorological parameters temperature and PSD.

By Comparing with previous studies that investigated atmospheric nucleation mechanism in individual sites, we have showed the applicability of a similar mechanism over a large geographic region. Based on the correlation between [SA₁] and particle formation rate, the identification of key clusters, and comparisons between simulations and measurements, we concluded that nucleating processes Both the nucleating clusters, mainly exemplified by SA2, and the nucleation rates, represented by $J_{1.4}$, can could be largely attributed to the collisions between SA and DMA collision a large extent, although other precursors, such as NH₃ and OOMs, might also participated. However, SA and its clusters are were insufficient, at least at DSL and BJ, to explain the initial growth of freshly nucleated particles, while OOMs make great contribution to this process, thereby affecting $J_{1.7}$, which was derived from model-observation comparisons. While previous understanding of the contribution of OOMs to initial particle growth was reflected by chamber studies, our study provides supporting evidence from atmospheric observations. Given the considerable spatial separation among the five sites, it is thus we inferred that within this extensive urban agglomerationgeographical scope, SA and DMA are capable of describing atmospheric nucleation up to 1.4 nm, whereas OOMs are potentially involved in in subsequent growth GR_{1.4.1.7}, thereby improving the simulation performance of $J_{1,7}$, which is derived from model observation comparisons, and direct experimental evidence remains to be substantiated. This may also apply to other populated and polluted regions, where the NPF mechanism warrants investigation. Besides, the effect of temperature on SA-DMA nucleation was illustrated quantitatively through scaling, and the differences in nucleation intensity among campaigns could also be demonstrated by variations in temperature under the same mechanism. With the notable reduction in [SO₂] and [amines] in recent years (Liu et al., 2023; Du et al., 2025), and the strong dependence of [SO₂] on [SA₁] production (Lu et al., 2019), the applicability of SA DMA mechanism to atmospheric nucleation over a wide spatial scale in the eastern region of China, as well as other densely populated and polluted regions may continually evolve, which warrants further investigation in the future.

As for influencing factors, the occurrence of NPF was governed by [SA₁] and CS, whereas the frequency and intensity of NPF were mainly determined by temperature, which generally exhibited a negative correlation with NPF over a wide temperature range. Compared with previous studies investigating NPF dependence on temperature from a temporal perspective, dependences of cluster concentrations and particle formation rates on temperature were illustrated quantitatively through scaling at five sites, suggesting the differences in nucleation intensity across this region could be explained by variations in temperature under the comparable mechanism. We expect that this finding holds for similar polluted atmospheric environments on large spatial scales worldwide, particularly where significant temperature gradients exist.

The case for SA-DMA nucleation presented in this study remains indirect, as it relies on precursors, limited clusters and modeling rather than comprehensive identification of nucleation process. To better resolve atmospheric nucleation mechanisms, future studies are warranted to advance beyond current methods of cluster detection, for instance, by enabling direct measurements of all basic molecules within SA clusters. In the complex urban atmosphere, the potential involvement of other pollutants will require novel direct measurements and analytical techniques, along with more comprehensive modeling, to clarify the roles of additional precursors.

References

Alfaouri, D., Passananti, M., Zanca, T., Ahonen, L., Kangasluoma, J., Kubečka, J., Myllys, N., and Vehkamäki, H.: A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass

- spectrometer, Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, 2022.
- Almeida, J., Schobesberger, S., Kuerten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S.,
- Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Troestl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y.,
- Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013.
- Baalbaki, R., Pikridas, M., Jokinen, T., Laurila, T., Dada, L., Bezantakos, S., Ahonen, L., Neitola, K., Maisser, A.,
 Bimenyimana, E., Christodoulou, A., Unga, F., Savvides, C., Lehtipalo, K., Kangasluoma, J., Biskos, G., Petäjä, T., Kerminen,
 V.-M., Sciare, J., and Kulmala, M.: Towards understanding the characteristics of new particle formation in the Eastern
 Mediterranean, Atmos. Chem. Phys., 21, 9223–9251, https://doi.org/10.5194/acp-21-9223-2021, 2021.
 - Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A., Manninen, H. E., Münch, S.,
- Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle formation in the free troposphere: A question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
 - Bousiotis, D., Pope, F. D., Beddows, D. C. S., Dall'Osto, M., Massling, A., Nojgaard, J. K., Nordstrom, C., Niemi, J. V., Portin, H., Petaja, T., Perez, N., Alastuey, A., Querol, X., Kouvarakis, G., Mihalopoulos, N., Vratolis, S., Eleftheriadis, K.,
- 505 Wiedensohler, A., Weinhold, K., Merkel, M., Tuch, T., and Harrison, R. M.: A phenomenology of new particle formation (NPF) at 13 European sites, Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, 2021.
 - Brean, J., Beddows, D. C. S., Shi, Z., Temime-Roussel, B., Marchand, N., Querol, X., Alastuey, A., Minguillon, M. C., and Harrison, R. M.: Molecular insights into new particle formation in Barcelona, Spain, Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, 2020.
- Bzdek, B. R., DePalma, J. W., and Johnston, M. V.: Mechanisms of atmospherically relevant cluster growth, Acc. Chem. Res., 50, 1965–1975, https://doi.org/10.1021/acs.accounts.7b00213, 2017.
 - Cai, J., Sulo, J., Gu, Y., Holm, S., Cai, R., Thomas, S., Neuberger, A., Mattsson, F., Paglione, M., Decesari, S., Rinaldi, M., Yin, R., Aliaga, D., Huang, W., Li, Y., Gramlich, Y., Ciarelli, G., Quéléver, L., Sarnela, N., Lehtipalo, K., Zannoni, N., Wu, C., Nie, W., Kangasluoma, J., Mohr, C., Kulmala, M., Zha, Q., Stolzenburg, D., and Bianchi, F.: Elucidating the mechanisms of
- atmospheric new particle formation in the highly polluted Po Valley, Italy, Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, 2024.
 - Cai, R., Yan, C., Yang, D., Yin, R., Lu, Y., Deng, C., Fu, Y., Ruan, J., Li, X., Kontkanen, J., Zhang, Q., Kangasluoma, J., Ma, Y., Hao, J., Worsnop, D. R., Bianchi, F., Paasonen, P., Kerminen, V.-M., Liu, Y., Wang, L., Zheng, J., Kulmala, M., and Jiang, J.: Sulfuric acid-amine nucleation in urban Beijing, Atmos. Chem. Phys., 21, 2457–2468, https://doi.org/10.5194/acp-21-2457-
- 520 2021, 2021.
 - Cai, R., Deng, C., Stolzenburg, D., Li, C., Guo, J., Kerminen, V.-M., Jiang, J., Kulmala, M., and Kangasluoma, J.: Survival probability of new atmospheric particles: closure between theory and measurements from 1.4 to 100 nm, Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, 2022a.
 - Cai, R., Yin, R., Yan, C., Yang, D., Deng, C., Dada, L., Kangasluoma, J., Kontkanen, J., Halonen, R., Ma, Y., Zhang, X.,
- Paasonen, P., Petaja, T., Kerminen, V.-M., Liu, Y., Bianchi, F., Zheng, J., Wang, L., Hao, J., Smith, J. N., Donahue, N. M., Kulmala, M., Worsnop, D. R., and Jiang, J.: The missing base molecules in atmospheric acid-base nucleation, Natl. Sci. Rev., 9, nwac137, https://doi.org/10.1093/nsr/nwac137, 2022b.
 - Chang, Y., Gao, Y., Lu, Y., Qiao, L., Kuang, Y., Cheng, K., Wu, Y., Lou, S., Jing, S., Wang, H., and Huang, C.: Discovery of a

- potent source of gaseous amines in urban China, Environ. Sci. Technol. Lett., 8, 725–731,
- 530 https://doi.org/10.1021/acs.estlett.1c00229, 2021.
 - Dai, L., Wang, H., Zhou, L., An, J., Tang, L., Lu, C., Yan, W., Liu, R., Kong, S., Chen, M., Lee, S., and Yu, H.: Regional and local new particle formation events observed in the Yangtze River Delta region, China, J. Geophys. Res.-Atmos., 122, 2389–2402, https://doi.org/10.1002/2016JD026030, 2017.
 - Deng, C., Fu, Y., Dada, L., Yan, C., Cai, R., Yang, D., Zhou, Y., Yin, R., Lu, Y., Li, X., Qiao, X., Fan, X., Nie, W., Kontkanen,
- J., Kangasluoma, J., Chu, B., Ding, A., Kerminen, V.-M., Paasonen, P., Worsnop, D. R., Bianchi, F., Liu, Y., Zheng, J., Wang, L., Kulmala, M., and Jiang, J.: Seasonal characteristics of new particle formation and growth in urban Beijing, Environ. Sci. Technol., 54, 8547–8557, https://doi.org/10.1021/acs.est.0c00808, 2020.
 - Deng, K., Huo, J., Wang, Y., Wang, L., Yin, S., Li, C., Li, Y., Yang, G., Yao, L., Fu, Q., and Wang, L.: Characteristics of atmospheric reduced sulfur compounds at a suburban site of Shanghai, J. Environ. Sci., 156, 671 683,
- 540 https://doi.org/10.1016/j.jes.2024.06.030, 2025.
 - Dinoi, A., Gulli, D., Weinhold, K., Ammoscato, I., Calidonna, C. R., Wiedensohler, A., and Contini, D.: Characterization of ultrafine particles and the occurrence of new particle_formation events in an urban and coastal site of the Mediterranean area, Atmos. Chem. Phys., 23, 2167–2181, https://doi.org/10.5194/acp-23-2167-2023, 2023.
- Du, W., Jiang, S., Fu, N., Song, J., Lin, X., Mao, K., Shi, J., Chen, Y., Liu, J., and Tao, S.: Ammonia and amines emissions from residential biomass combustion in China from 2014 to 2030, J. Hazard. Mater., 488, 137476, https://doi.org/10.1016/j.jhazmat.2025.137476, 2025.
 - Freshour, N. A., Carlson, K. K., Melka, Y. A., Hinz, S., Panta, B., and Hanson, D. R.: Amine permeation sources characterized with acid neutralization and sensitivities of an amine mass spectrometer, Atmos. Meas. Tech., 7, 3611–3621, https://doi.org/10.5194/amt-7-3611-2014, 2014.
- Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M.,
 Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kurten, A.,
 Lehtipalo, K., Makhmutov, V., Molteni, U., Rissanen, M. P., Stozkhov, Y., Trostl, J., Tsagkogeorgas, G., Wagner, R.,
 Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.: Causes and importance of new particle formation in
 the present-day and preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
- https://doi.org/10.1002/2017JD026844, 2017.
 Größ, J., Hamed, A., Sonntag, A., Spindler, G., Manninen, H. E., Nieminen, T., Kulmala, M., Hõrrak, U., Plass-Dülmer, C., Wiedensohler, A., and Birmili, W.: Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters, Atmos. Chem. Phys., 18, 1835–1861, https://doi.org/10.5194/acp-18-1835-2018, 2018.
- Hanson, D. R., McMurry, P. H., Jiang, J., Tanner, D., and Huey, L. G.: Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia, Environ. Sci. Technol., 45, 8881–8888, https://doi.org/10.1021/es201819a, 2011.
 - He, X.-C., Simon, M., Iyer, S., Xie, H.-B., Roerup, B., Shen, J., Finkenzeller, H., Stolzenburg, D., Zhang, R., Baccarini, A., Tham, Y. J., Wang, M., Amanatidis, S., Piedehierro, A. A., Amorim, A., Baalbaki, R., Brasseur, Z., Caudillo, L., Chu, B., Dada, L., Duplissy, J., El Haddad, I., Flagan, R. C., Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Jokinen, T., Kemppainen,
- D., Kong, W., Krechmer, J., Kuerten, A., Lamkaddam, H., Lopez, B., Ma, F., Mahfouz, N. G. A., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Massabo, D., Mauldin, R. L., Mentler, B., Onnela, A., Petaejae, T., Pfeifer, J., Philippov, M., Ranjithkumar, A., Rissanen, M. P., Schobesberger, S., Scholz, W., Schulze, B., Surdu, M., Thakur, R. C., Tome, A., Wagner, A. C., Wang, D., Wang, Y., Weber, S. K., Welti, A., Winkler, P. M., Zauner-Wieczorek, M., Baltensperger, U., Curtius, J., Kurten, T., Worsnop, D. R., Volkamer, R., Lehtipalo, K., Kirkby, J., Donahue, N. M., Sipilae, M., and Kulmala, M.: Iodine
- 570 oxoacids enhance nucleation of sulfuric acid particles in the atmosphere, Science, 382, 1308–1314 https://doi.org/10.1126/science.adh2526, 2023.
 - Heinritzi, M., Simon, M., Steiner, G., Wagner, A. C., Kürten, A., Hansel, A., and Curtius, J.: Characterization of the mass-dependent transmission efficiency of a CIMS, Atmos. Meas. Tech., 9, 1449–1460, https://doi.org/10.5194/amt-9-1449-2016, 2016.
- 575 Hong, J., Tang, M., Wang, Q., Ma, N., Zhu, S., Zhang, S., Pan, X., Xie, L., Li, G., Kuhn, U., Yan, C., Tao, J., Kuang, Y., He,

- Y., Xu, W., Cai, R., Zhou, Y., Wang, Z., Zhou, G., Yuan, B., Cheng, Y., and Su, H.: Measurement report: Wintertime new particle formation in the rural area of the North China Plain influencing factors and possible formation mechanism, Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, 2023.
- Hu, X., Yang, G., Liu, Y., Lu, Y., Wang, Y., Chen, H., Chen, J., and Wang, L.: Atmospheric gaseous organic acids in winter in a rural site of the North China Plain, J. Environ. Sci., 113, 190–203, https://doi.org/10.1016/j.jes.2021.05.035, 2022.Jen, C. N., McMurry, P. H., and Hanson, D. R.: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine, J. Geophys. Res.-Atmos, 119, 7502–7514, https://doi.org/10.1002/2014JD021592, 2014.

 Kanawade, V. P., Sebastian, M., Hooda, R. K., and Hyvärinen, A.-P.: Atmospheric new particle formation in India: Current
- Kerminen, V.-M., Chen, X., Vakkari, V., Petaja, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle formation and growth: review of field observations, Environ. Res. Lett., 13, 103003, https://doi.org/10.1088/1748-9326/aadf3c, 2018.

understanding and knowledge gaps, Atmos. Environ., 270, 118894, https://doi.org/10.1016/j.atmosenv.2021.118894, 2022.

- Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagne, S., Ickes, L., Kuerten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W.,
- Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer, R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429-433, https://doi.org/10.1038/nature10343, 2011.
- Kirkby, J., Amorim, A., Baltensperger, U., Carslaw, K. S., Christoudias, T., Curtius, J., Donahue, N. M., Haddad, I. E., Flagan, R. C., Gordon, H., Hansel, A., Harder, H., Junninen, H., Kulmala, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Lelieveld, J., Möhler, O., Riipinen, I., Stratmann, F., Tomé, A., Virtanen, A., Volkamer, R., Winkler, P. M., and Worsnop, D. R.: Atmospheric new particle formation from the CERN CLOUD experiment, Nat. Geosci., 16, 948–957, https://doi.org/10.1038/s41561-023-01305-0. 2023.
- Kulmala, M., Kokkonen, T., Pekkanen, J., Paatero, S., Petaja, T., Kerminen, V. M., and Ding, A.: Opinion: Gigacity—a source of problems or the new way to sustainable development, Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021, 2021.
 - Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen, H., Adamov, A., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Hutterli, M., Kangasluoma, J., Kirkby, J., Laaksonen, A., Lehtipalo, K., Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Praplan, A. P., Riccobono, F., Rissanen, M. P., Rondo, L., Schobesberger, S., Seinfeld, J. H., Steiner,
 - G., Tomé, A., Tröstl, J., Winkler, P. M., Williamson, C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S., Kulmala, M., Worsnop, D. R., and Curtius, J.: Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions, Proc. Natl. Acad. Sci. U. S. A., 111, 15019–15024, https://doi.org/10.1073/pnas.1404853111,
- 610 **2014**.

605

- Kürten, A., Bergen, A., Heinritzi, M., Leiminger, M., Lorenz, V., Piel, F., Simon, M., Sitals, R., Wagner, A. C., and Curtius, J.: Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany, Atmos. Chem. Phys., 16, 12793–12813, https://doi.org/10.5194/acp-16-12793-2016, 2016.
- Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, 2018.
- Larriba, C., Hogan Jr., C. J., Attoui, M., Borrajo, R., Garcia, J. F., and de la Mora, J. F.: The mobility–volume relationship below 3.0 nm examined by tandem mobility–mass measurement, Aerosol Sci. Tech., 45, 453–467, https://doi.org/10.1080/02786826.2010.546820, 2011.

- Lee, H., Cho, H., Yoon, Y. J., Kim, J., Lee, B. Y., and Park, K.: Comparison of new particle formation events in urban, agricultural, and arctic environments, Atmos. Environ., 333, 120634, https://doi.org/10.1016/j.atmosenv.2024.120634, 2024.
- Li, C., Li, Y., Li, X., Cai, R., Fan, Y., Qiao, X., Yin, R., Yan, C., Guo, Y., Liu, Y., Zheng, J., Kerminen, V.-M., Kulmala, M., Xiao, H., and Jiang, J.: Comprehensive simulations of new particle formation events in Beijing with a cluster dynamics-multicomponent sectional model, Atmos. Chem. Phys., 23, 6879–6896, https://doi.org/10.5194/acp-23-6879-2023, 2023.
 Liu, C., Lyu, W., Zhao, W., Zheng, F., and Lu, J.: Exploratory research on influential factors of China's sulfur dioxide emission based on symbolic regression, Environ. Monit. Assess., 195, 41, https://doi.org/10.1007/s10661-022-10595-7, 2023.
- Lu, Y., Yan, C., Fu, Y., Chen, Y., Liu, Y., Yang, G., Wang, Y., Bianchi, F., Chu, B., Zhou, Y., Yin, R., Baalbaki, R., Garmash, O., Deng, C., Wang, W., Liu, Y., Petaja, T., Kerminen, V.-M., Jiang, J., Kulmala, M., and Wang, L.: A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing, Atmos. Chem. Phys., 19, 1971–1983, https://doi.org/10.5194/acp-19-1971-2019, 2019.
- Lu, Y., Liu, L., Ning, A., Yang, G., Liu, Y., Kurten, T., Vehkamaki, H., Zhang, X., and Wang, L.: Atmospheric sulfuric acid-dimethylamine nucleation enhanced by trifluoroacetic acid, Geophys. Res. Lett., 47, e2019GL085627, https://doi.org/10.1029/2019GL085627, 2020.
 - Määttänen, A., Merikanto, J., Henschel, H., Duplissy, J., Makkonen, R., Ortega, I. K., and Vehkamaki, H.: New Parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes, J. Geophys. Res.-Atmos., 123, 1269–1296, https://doi.org/10.1002/2017JD027429, 2018.
- Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A., Riipinen, I., Hong, J., Donahue, N. M., Hallquist, M., Petäjä, T., Kulmala, M., and Yli-Juuti, T.: Molecular identification of organic vapors driving atmospheric nanoparticle growth, Nat. Commun., 10, 4442, https://doi.org/10.1038/s41467-019-12473-2, 2019.
 - Myllys, N., Kubečka, J., Besel, V., Alfaouri, D., Olenius, T., Smith, J. N., and Passananti, M.: Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation, Atmos. Chem. Phys., 19, 9753–9768, https://doi.org/10.5194/acp-19-9753-2019, 2019.
- Nieminen, T., Kerminen, V.-M., Petäjä, T., Aalto, P. P., Arshinov, M., Asmi, E., Baltensperger, U., Beddows, D. C. S., Beukes, J. P., Collins, D., Ding, A., Harrison, R. M., Henzing, B., Hooda, R., Hu, M., Hõrrak, U., Kivekäs, N., Komsaare, K., Krejci, R., Kristensson, A., Laakso, L., Laaksonen, A., Leaitch, W. R., Lihavainen, H., Mihalopoulos, N., Németh, Z., Nie, W., O'Dowd, C., Salma, I., Sellegri, K., Svenningsson, B., Swietlicki, E., Tunved, P., Ulevicius, V., Vakkari, V., Vana, M.,

- Wiedensohler, A., Wu, Z., Virtanen, A., and Kulmala, M.: Global analysis of continental boundary layer new particle formation based on long-term measurements, Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, 2018.
 Olenius, T., Halonen, R., Kurten, T., Henschel, H., Kupiainen-Maata, O., Ortega, I. K., Jen, C. N., Vehkamaki, H., and Riipinen, I.: New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and trimethylamine, J. Geophys. Res.-Atmos., 122, 7103–7118, https://doi.org/10.1002/2017JD026501, 2017.
- Ortega, I. K., Kupiainen, O., Kurtén, T., Olenius, T., Wilkman, O., McGrath, M. J., Loukonen, V., and Vehkamäki, H.: From quantum chemical formation free energies to evaporation rates, Atmos. Chem. Phys., 12, 225–235, https://doi.org/10.5194/acp-12-225-2012, 2012.
- Qiao, X., Yan, C., Li, X., Guo, Y., Yin, R., Deng, C., Li, C., Nie, W., Wang, M., Cai, R., Huang, D., Wang, Z., Yao, L., Worsnop, D. R., Bianchi, F., Liu, Y., Donahue, N. M., Kulmala, M., and Jiang, J.: Contribution of atmospheric oxygenated organic compounds to particle growth in an urban environment, Environ. Sci. Technol., 55, 13646–13656, https://doi.org/10.1021/acs.est.1c02095, 2021.
 - Ren, S., Yao, L., Wang, Y., Yang, G., Liu, Y., Li, Y., Lu, Y., Wang, L., and Wang, L.: Volatility parameterization of ambient organic aerosols a a rural site of the North China Plain, Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, 2022.
- 665 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kürten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petäjä, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipilä, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tomé, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner,

```
P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Baltensperger, U.: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles, Science, 344, 717–721, https://doi.org/10.1126/science.1243527, 2014.
```

Rose, C., Sellegri, K., Velarde, F., Moreno, I., Ramonet, M., Weinhold, K., Krejci, R., Ginot, P., Andrade, M., Wiedensohler, A., and Laj, P.: Frequent nucleation events at the high altitude station of Chacaltaya (5240 m a.s.l.), Bolivia, Atmos. Environ.,

- 675 <u>102</u>, 18–29, https://doi.org/10.1016/j.atmosenv.2014.11.015, 2015.
 - Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., Ortega, I. K., Metzger, A., Schnitzhofer, R., Almeida, J., Amorim, A., Dommen, J., Dunne, E. M., Ehn, M., Gagné, S., Ickes, L., Junninen, H., Hansel, A., Kerminen, V.-M., Kirkby, J., Kupc, A., Laaksonen, A., Lehtipalo, K., Mathot, S., Onnela, A., Petäjä, T., Riccobono, F., Santos, F. D., Sipilä, M., Tomé, A., Tsagkogeorgas, G., Viisanen, Y., Wagner, P. E., Wimmer, D., Curtius, J., Donahue, N. M., Baltensperger, U.,
- Kulmala, M., and Worsnop, D. R.: On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation, Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015, 2015.
 - Sebastian, M., Kanawade, V. P., and Pierce, J. R.: Observation of sub-3nm particles and new particle formation at an urban location in India, Atmos. Environ., 256, 118460, https://doi.org/10.1016/j.atmosenv.2021.118460, 2021.
 - Shang, D., Hu, M., Wang, X., Tang, L., Clusius, P. S., Qiu, Y., Yu, X., Chen, Z., Zhang, Z., Sun, J., Dao, X., Zeng, L., Guo, S., Wu, Z., and Boy, M.: Spatial inhomogeneity of new particle formation in the urban and mountainous atmospheres of the North
- Wu, Z., and Boy, M.: Spatial inhomogeneity of new particle formation in the urban and mountainous atmospheres of the North China Plain during the 2022 Winter Olympics, Atmosphere, 14, 1395, https://doi.org/10.3390/atmos14091395, 2023.
 - Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kuerten, A., Rorup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P. S., Beck, L., Bergen, A., Bianchi, F., Brakling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D. C., Duplissy, J., El-Haddad, I., Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L.,
- Gordon, H., Granzin, M., Hakala, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kong, W., Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Manninen, H. E., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Partoll, E., Petaja, T., Pfeifer, J., Philippov, M., Quelever, L. L. J., Ranjithkumar, A., Rissanen, M. P., Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipila, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tome, A. R., Vazquez-Pufleau, M., Vogel, A. L., Wagner, R., Wang, M., Wang, D. S., Wang, Y., Weber, S. K., Wu, Y., Xiao, M., Yan, C., Ye,
- P., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Baltensperger, U., Dommen, J., Flagan, R. C., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular understanding of new-particle formation from α-pinene between -50 and +25°C, Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, 2020.
- Smith, J. N., Barsanti, K. C., Friedli, H. R., Ehn, M., Kulmala, M., Collins, D. R., Scheckman, J. H., Williams, B. J., and
 McMurry, P. H.: Observations of aminium salts in atmospheric nanoparticles and possible climatic implications, Proc. Natl. Acad. Sci. U. S. A., 107, 6634–6639, https://doi.org/10.1073/pnas.0912127107, 2010.
 - Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M., Simon, M., Wagner, A. C., Dada, L., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A., Bianchi, F., Breitenlechner, M., Brilke, S., Mazon, S. B., Chen, D., Dias, A., Draper, D. C., Duplissy, J., El Haddad, I., Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H.,
- He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kirkby, J., Kontkanen, J., Kuerten, A., Lampilahti, J., Lawler, M., Lehtipalo, K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U., Nie, W., Nieminen, T., Nowak, J. B., Ojdanic, A., Onnela, A., Passananti, M., Petaja, T., Quelever, L. L. J., Rissanen, M. P., Sarnela, N., Schallhart, S., Tauber, C., Tome, A., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Baltensperger, U., Curtius, J., Dommen, J., Flagan, R. C., Kulmala, M., Smith, J. N., Worsnop, D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growth of
- organic aerosol nanoparticles over a wide tropospheric temperature range, Proc. Natl. Acad. Sci. U. S. A., 115, 9122–9127, https://doi.org/10.1073/pnas.1807604115, 2018.
 - Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R.,
- Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kuerten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Moehler, O., Nieminen, T., Onnela, A., Petaejae, T., Piel, F. M., Miettinen, P., Rissanen, M. P.,

- Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipila, M., Smith, J. N., Steiner, G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature, 533, 527–531, https://doi.org/10.1038/nature18271, 2016.
- Victor, J. N., Buchunde, P., Sebastian, M., Kanawade, V. P., Siingh, D., Mukherjee, S., Potdar, S. S., Dharmaraj, T., and Pandithurai, G.: Characteristics of new particle formation events in a mountain semi-rural location in India, Atmos. Environ., 324, 120414, https://doi.org/10.1016/j.atmosenv.2024.120414, 2024.
- Wang, Y., Yang, G., Lu, Y., Liu, Y., Chen, J., and Wang, L.: Detection of gaseous dimethylamine using vocus proton-transferreaction time-of-flight mass spectrometry, Atmos. Environ., 243, 117875, https://doi.org/10.1016/j.atmosenv.2020.117875, 2020.
 - Wu, Y., Huo, J., Yang, G., Wang, Y., Wang, L., Wu, S., Yao, L., Fu, Q., and Wang, L.: Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime, Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, 2023.
- Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kuerten, A., Wang, M., Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon, M., He, X.-C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S., Beck, L., Bell, D., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Duplissy, J., Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig, T. K., Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll, E., Petaja, T., Pfeifer, J., Pospisilova, V., Quelever, L. L. J., Rissanen, M., Schobesberger, S., Schuchmann,
- S., Stozhkov, Y., Tauber, C., Tham, Y. J., Tome, A., Vazquez-Pufleau, M., Wagner, A. C., Wagner, R., Wang, Y., Weitz, L., Wimmer, D., Wu, Y., Yan, C., Ye, P., Ye, Q., Zha, Q., Zhou, X., Amorim, A., Carslaw, K., Curtius, J., Hansel, A., Volkamer, R., Winkler, P. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Kirkby, J., Donahue, N. M., Baltensperger, U., El Haddad, I., and Dommen, J.: The driving factors of new particle formation and growth in the polluted boundary layer, Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, 2021.
- Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y., Worsnop, D. R., and Wang, L.: Strong atmospheric new particle formation in winter in urban Shanghai, China, Atmos. Chem. Phys., 15, 1769–1781, https://doi.org/10.5194/acp-15-1769-2015, 2015.
 - Yan, C., Yin, R., Lu, Y., Dada, L., Yang, D., Fu, Y., Kontkanen, J., Deng, C., Garmash, O., Ruan, J., Baalbaki, R., Schervish, M., Cai, R., Bloss, M., Chan, T., Chen, T., Chen, Q., Chen, X., Chen, Y., Chu, B., Dällenbach, K., Foreback, B., He, X.,
- Heikkinen, L., Jokinen, T., Junninen, H., Kangasluoma, J., Kokkonen, T., Kurppa, M., Lehtipalo, K., Li, H., Li, H., Li, X., Liu, Y., Ma, Q., Paasonen, P., Rantala, P., Pileci, R. E., Rusanen, A., Sarnela, N., Simonen, P., Wang, S., Wang, W., Wang, Y., Xue, M., Yang, G., Yao, L., Zhou, Y., Kujansuu, J., Petäjä, T., Nie, W., Ma, Y., Ge, M., He, H., Donahue, N. M., Worsnop, D. R., Kerminen, V.-M., Wang, L., Liu, Y., Zheng, J., Kulmala, M., Jiang, J., and Bianchi, F.: The synergistic role of sulfuric acid, bases, and oxidized organics governing new-particle formation in Beijing, Geophys. Res. Lett., 48, e2020GL091944,
- 750 <u>https://doi.org/10.1029/2020GL091944, 2021.</u>
 - Yao, L., Wang, M.-Y., Wang, X.-K., Liu, Y.-J., Chen, H.-F., Zheng, J., Nie, W., Ding, A.-J., Geng, F.-H., Wang, D.-F., Chen, J.-M., Worsnop, D. R., and Wang, L.: Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions, Atmos. Chem. Phys., 16, 14527–14543, https://doi.org/10.5194/acp-16-14527-2016, 2016.
- Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petaja, T., Worsnop, D. R., Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278–281, https://doi.org/10.1126/science.aao4839, 2018.
 Yin, R., Yan, C., Cai, R., Li, X., Shen, J., Lu, Y., Schobesberger, S., Fu, Y., Deng, C., Wang, L., Liu, Y., Zheng, J., Xie, H.,
- Bianchi, F., Worsnop, D. R., Kulmala, M., and Jiang, J.: Acid-base clusters during atmospheric new particle formation in urban Beijing, Environ. Sci. Technol., 55, 10994–11005, https://doi.org/10.1021/acs.est.1c02701, 2021.
 - Yu, H., Zhou, L., Dai, L., Shen, W., Dai, W., Zheng, J., Ma, Y., and Chen, M.: Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China, Atmos. Chem. Phys., 16, 2641–2657, https://doi.org/10.5194/acp-16-

2641-2016, 2016.

770

Zapadinsky, E., Passananti, M., Myllys, N., Kurtén, T., and Vehkamäki, H.: Modeling on fragmentation of clusters inside a mass spectrometer, J. Phys. Chem. A, 123, 611–624, https://doi.org/10.1021/acs.jpca.8b10744, 2019.

Zhao, B., Donahue, N. M., Zhang, K., Mao, L., Shrivastava, M., Ma, P.-L., Shen, J., Wang, S., Sun, J., Gordon, H., Tang, S., Fast, J., Wang, M., Gao, Y., Yan, C., Singh, B., Li, Z., Huang, L., Lou, S., Lin, G., Wang, H., Jiang, J., Ding, A., Nie, W., Qi, X., Chi, X., and Wang, L.: Global variability in atmospheric new particle formation mechanisms, Nature, 631, 98–105, https://doi.org/10.1038/s41586-024-07547-1, 2024.

Zhou, Y., Hakala, S., Yan, C., Gao, Y., Yao, X., Chu, B., Chan, T., Kangasluoma, J., Gani, S., Kontkanen, J., Paasonen, P., Liu, Y., Petaja, T., Kulmala, M., and Dada, L.: Measurement report: New particle formation characteristics at an urban and a mountain station in northern China, Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, 2021.