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 16 

Abstract. Particulate matter (PM) pollution is a critical air quality challenge in China. This study 17 

quantifies meteorological versus anthropogenic contributions to PM variations in Beijing-Tianjin-18 

Hebei (BTH) and Yangtze River Delta (YRD) (2015-2020) using ground observations, 19 

meteorological assimilated data, emission inventories, and a LightGBM model. Observations show 20 

significant PM₂.₅ and PM₁₀ declines (e.g., BTH PM₂.₅: -0.07 ± 0.03 μg m⁻³ yr⁻¹; PM₁₀: -0.11 ± 0.04 21 

μg m⁻³ yr⁻¹). Model decomposition identifies anthropogenic emission reductions as the primary 22 

driver (PM₂.₅ decrease: 7.19–24.76 μg m⁻³; PM₁₀ decrease: 0.40–27.12 μg m⁻³). Key meteorological 23 

drivers differ: 2-m specific humidity (QV2M), sea-level pressure (SLP), 2-m temperature (T2M), 24 

and 10-m meridional (V10M) collectively explain 15% of PM₂.₅ variance; precipitation flux 25 

(PRECTOT) is critical for PM₁₀. PM₂.₅ concentrations are primarily governed by PM₁₀, CO, NO₂, 26 

and SO₂ (cumulative contribution 37.60%), while PM₁₀ variations center on PM₂.₅, interacting with 27 

NO₂, CO, and SO₂ (explaining 34% variance). PM₂.₅ shows stronger correlation with CO than PM₁₀ 28 

(regional difference +0.07–+0.08), linked to combustion/SOA. SO₂/NO₂ exhibit comparable PM 29 
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correlations but divergent mechanisms: NO₂ with traffic/nitrate, SO₂ with stationary sources/sulfate, 30 

both via "co-emission-chemical transformation-meteorological synergy". Our research support 31 

optimizing region-specific control strategies. 32 

 33 

1 Introduction 34 

Particulate matter (PM) is a significant air pollutant and is also a critical research topic in 35 

environmental science due to its diverse sources, complex chemical composition, and profound 36 

impacts on human health (Zhang et al., 2022a). Classified by aerodynamic diameter, PM₂.₅ (fine 37 

particles, ≤2.5μm) and PM₁₀ (inhalable particles, ≤10μm) exert differential impacts on ecosystems 38 

and human health owing to their distinct physicochemical properties and environmental behaviors 39 

(WHO, 2021). To address severe air pollution problem, Chinese government implemented the Air 40 

Pollution Prevention and Control Action Plan (State Council of the People’s Republic of China, 41 

2013) and the Three-Year Action Plan for Winning the Blue Sky Defense Battle (State Council of 42 

the People’s Republic of China, 2018).These initiatives led to substantial reductions in PM 43 

concentrations nationwide (Song et al., 2023). However, China's current Ambient Air Quality 44 

Standards (GB 3095-2012) stipulate Grade II annual mean limits of 35 μg m⁻³ for PM₂.₅ and 70 μg 45 

m⁻³ for PM₁₀, which significantly exceed the updated WHO guidelines (AQG 2021). As two pivotal 46 

economic engines of China, the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) 47 

regions, characterized by dense industrial clusters and populations, generate substantial industrial 48 

and transportation emissions, with high-intensity production and daily activities resulting in long-49 

standing composite air pollution dominated by PM₂.₅, PM₁₀, and ozone (Dai et al., 2021, 2023), 50 

posing persistent threats to human health and urban livability. Fine particles (PM₂.₅) penetrate deep 51 

into the lungs and cross the alveolar–blood barrier into systemic circulation, while coarser particles 52 

(PM₁₀) deposit predominantly in the upper respiratory tract (Fu et al., 2024). Chronic exposure to 53 

PM₂.₅ is linked to respiratory/cardiovascular diseases, declines in lung function, and impairment of 54 

the immune system (Franklin et al., 2008; Kioumourtzoglou et al., 2016), Whereas PM₁₀ aggravates 55 

asthma , chronic obstructive pulmonary disease (COPD), and other respiratory conditions (Seaton 56 

et al., 1995). Furthermore, PM pollution acidifies aquatic environments, disrupts ecosystem balance, 57 

degrades soils, and contributes to acid rain and terrestrial biosphere damage (Dominici et al., 2014; 58 
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Jerrett, 2015). 59 

 The dynamics of PM are shaped by anthropogenic precursor emissions—sulfur dioxide (SO₂), 60 

nitrogen oxides (NOₓ), and ammonia (NH₃)—together with meteorological factors such as 61 

temperature, humidity, precipitation, pressure, and wind (Xiao et al., 2021).PM₂.₅ originates 62 

predominantly from traffic and industrial emissions, combustion processes (e.g., cooking, biomass 63 

burning), and secondary formation via atmospheric oxidation to sulfate, nitrate, and organic aerosols 64 

(Zhang et al., 2015). PM₁₀ also includes coarse particles from fugitive dust (construction, agriculture) 65 

and secondary coarse-mode particulates (Wu and Huang, 2021). The SO2, NOx, and NH3 in the free 66 

atmosphere can be converted into secondary inorganic aerosols, which significantly regulate PM 67 

concentrations (Ding et al., 2019; Feng et al., 2021). Meteorological parameters—temperature, 68 

relative humidity, precipitation, pressure, and wind—critically influence PM generation, dispersion, 69 

and removal (Leung et al., 2018; Zhao et al., 2013). For instance, elevated temperatures accelerate 70 

SOₓ/NOₓ oxidation rates and fine PM formation (Chen et al., 2022). High humidity promotes 71 

particle hygroscopic growth, gas-to-particle conversion (e.g., secondary organic aerosols), and wet 72 

deposition, thereby altering PM size distribution and lifetime. These PM-meteorology interactions 73 

exhibit region- and year-specific nonlinear characteristics (Shen et al., 2017), challenging 74 

conventional linear modeling approaches (Zhang et al., 2016) . 75 

 Machine learning (ML), with its capacity to capture complex, nonlinear relationships, has 76 

emerged as a powerful tool for atmospheric pollution research (Yin et al., 2022b). ML enhances 77 

source apportionment accuracy through multi-source data integration (meteorological, emission, 78 

socioeconomic), high-dimensional pattern recognition, and real-time adaptive analysis, enabling 79 

identification of complex pollutant interactions (Peng et al., 2024). For PM₂.₅ and PM₁₀ studies, ML 80 

facilitates quantitative disentanglement of meteorological and emission contributions, elucidates 81 

source-receptor relationships, and informs targeted mitigation strategies. 82 

 This study employs the LightGBM algorithm to quantify drivers of the variability of PM2.5 and 83 

PM10 in the BTH and YRD regions during 2015 to 2020. By leveraging efficiency of LightGBM 84 

model in handling large-scale datasets and its ability to model non-linear relationships, the analysis 85 

aims to identify dominant factors shaping air quality trends across these regions, offering actionable 86 

insights for region-specific pollution mitigation strategies. We introduced the ground-based 87 
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observation dataset, meteorological fields dataset, and emissions dataset in Sections 2.1, 2.2, and 88 

2.3, respectively. The detailed introduction of the LightGBM model is presented in Section 2.4. The 89 

methodology for calculating interannual trends is described in Section 2.5. The methodology for 90 

disentangling meteorological and emission contributions is presented in Section 2.6. We analyze the 91 

interannual trends of ground-level PM₂.₅ and PM₁₀ over the BTH and YRD regions from 2015 to 92 

2020 in Section 3.1. The performance of the machine learning model and variable importance are 93 

presented in Section 3.2. The contributions of emissions and meteorology to PM₂.₅ and PM₁₀ are 94 

presented in Section 3.3. We discuss the results of this study in Section 4. The conclusion of this 95 

study is described in Section 5. 96 

2 Data and methods 97 

2.1 Observational data from national monitoring sites 98 

The ground-level air pollutant data for the YRD and BTH regions were acquired from the 99 

China National Environmental Monitoring Center (CNEMC) network (https://www.cnemc.cn/, last 100 

accessed: December 31, 2020), comprising hourly measurements of PM₂.₅, PM₁₀, SO₂, NO₂, CO, 101 

and O₃ concentrations from 2015 to 2020. Observations from multiple monitoring stations within 102 

the same city were averaged to derive city-level pollutant concentrations (site-specific details are 103 

provided in Table S1). The monitoring network includes 80 stations in the BTH, covering major 104 

cities and areas in Beijing, Tianjin, and Hebei Province, and 197 stations in the YRD region, 105 

spanning Shanghai, Jiangsu, Zhejiang, and adjacent provinces. All national monitoring stations 106 

strictly comply with the Technical Specifications for Automatic Ambient Air Quality Monitoring 107 

(HJ 93-2013), utilizing standardized configurations for pollutant measurements. The concentrations 108 

of PM₂.₅ and PM₁₀ were determined using β-attenuation and tapered element oscillating 109 

microbalance methods, with data calibration performed via filter membrane dynamic gravimetric 110 

methodology (GB/T 15264-2013). Gaseous pollutants were measured using ultraviolet fluorescence 111 

analysis for SO₂, chemiluminescence detection with ozone interference correction for NO₂, non-112 

dispersive infrared absorption with pre-concentration technology for CO, and ultraviolet 113 

photometric analysis with real-time calibration for O₃. Instrumentation adhered to standardized 114 

protocols to ensure measurement accuracy and sensitivity, with detection limits rigorously validated 115 

for each pollutant species. 116 

https://doi.org/10.5194/egusphere-2025-2786
Preprint. Discussion started: 23 July 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

2.2 GEOS-FP meteorological data 117 

Meteorological data during 2015 to2020 were obtained from the GEOS Forward Processing 118 

(GEOS-FP) product (http://geoschemdata.wustl.edu/ExtData/, last accessed: December 31, 2020) 119 

with the spatial resolution of 0.25° × 0.3125°. This high-resolution dataset enables detailed 120 

geospatial analysis, facilitating precise observation and modeling of mesoscale meteorological and 121 

environmental phenomena (Yin et al., 2021b, 2022a, b). The near-real-time data assimilation 122 

capability of GEOS-FP significantly enhances meteorological forecasting accuracy and improves 123 

understanding of dynamic atmospheric processes (Sun et al., 2021a, b; Yin et al., 2019, 2020a, 124 

2021a). The meteorological parameters, which are used in this study, include: total cloud fraction 125 

(CLDTOT), precipitation flux (PRECTOT), 2-m specific humidity (QV2M), 2-m maximum air 126 

temperature (T2M), sea-level pressure (SLP), surface downward shortwave flux (SWGDN),10-m 127 

zonal (U10M) and meridional (V10M) wind components. 128 

2.3 CEDS emission inventory 129 

Anthropogenic emission data for 2015–2020 were derived from the Community Emissions 130 

Data System (CEDS), a global inventory providing temporally resolved sector-specific emissions. 131 

The CEDS framework supports climate change projections and quantifies human-driven 132 

interactions between air pollutants and climate systems, critical for assessing health and ecosystem 133 

impacts. Emissions of CO₂, CH₂O, CO, NH₃, NO, BC (black carbon), SO₂, OC (organic carbon), 134 

and PRPE (paraffinic reactive primary emissions) were categorized into eight sectors: non-135 

combustion agricultural sector, energy transformation and extraction, industrial combustion and 136 

processes, surface transportation,(residential, commercial, and other), solvents, waste disposal and 137 

handling, international shipping. 138 

2.4 LightGBM methodology 139 

LightGBM (Light Gradient Boosting Machine) is a highly efficient and flexible 140 

implementation of gradient boosting, widely adopted for classification, regression, and ranking 141 

problems (Yin et al., 2021c). By using a histogram-based decision-tree algorithm, the LightGBM 142 

model drastically reduces both computation time and memory usage compared to traditional 143 

gradient-boosting methods such as XGBoost and Random Forest (Bian et al., 2023; Zhang et al., 144 

2017). It supports direct handling of categorical features without one-hot encoding, which is 145 
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particularly efficient when processing datasets with numerous categorical variables. During the 146 

training process, LightGBM grows trees leaf-wise (best-first), producing deeper splits where they 147 

yield the greatest loss reduction. In contrast, XGBoost and GBDT (Gradient Boosting Decision 148 

Trees) typically use a level-wise growth strategy, which ensures model stability but becomes 149 

computationally slower for large datasets. Additionally, LightGBM also offers extensive 150 

hyperparameter controls—such as maximum tree depth, minimum data in leaf, and feature 151 

fraction—to guard against overfitting and to fine-tune generalization (Ke et al., 2017). Owing to its 152 

high predictive performance in handling high-dimensional features and large-scale data, efficient 153 

splitting strategy, and robust computational capacity, LightGBM has become a preferred model for 154 

numerous machine learning applications (Liu et al., 2023; Wang et al., 2022; Zhang et al., 2022b). 155 

The validation of the LightGBM model predictions was evaluated using widely recognized 156 

regression metrics: the correlation coefficient (R) and root mean square error (RMSE). 157 

The R measures the linear relationship between predicted and observed values, ranging from 158 

−1 to 1. A value closer to 1 indicates a stronger linear correlation. 159 

𝑅 =
∑(𝑦𝑖 − 𝑦̅)(𝑦𝑖̂ − 𝑦̅̂)

√∑(𝑦𝑖 − 𝑦̅)2∑(𝑦𝑖̂ − 𝑦̅̂)
2

(1)
 160 

where 𝑦𝑖 is the observed value, 𝑦̂𝑖 is the predicted value, and 𝑦̅/𝑦̅̂ are the means of observed 161 

and predicted values, respectively. 162 

The RMSE quantifies the average magnitude of prediction errors, with larger errors exerting 163 

greater influence on the result. A smaller RMSE indicates lower prediction errors. 164 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2
𝑛

𝑖=1

(2) 165 

where 𝑦𝑖 is the observed value, 𝑦𝑖̂ is the predicted value, and 𝑛 is the sample size. 166 

2.5 Interannual trend analysis method 167 

 To quantify the interannual trends of PM₂.₅ and PM₁₀ concentrations from 2015 to 2020, a linear 168 

regression model was employed in this study. For each city, the relationship between annual mean 169 

concentration 𝑦 and year 𝑥 was modeled as: 170 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 (3) 171 

where 𝛽0 represents the intercept (baseline concentration), and 𝜖 denotes the error term. The 172 
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slope 𝛽1, reflecting the annual rate of concentration change, was estimated via the ordinary least 173 

squares (OLS) method. Specifically, the parameters were optimized by minimizing the residual sum 174 

of squares (RSS): 175 

arg min
𝛽0,𝛽1

∑(𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖))
2

𝑛

𝑖=1

(4) 176 

where 𝑛 is the sample size (e.g., 𝑛=6 for the period 2015–2020), 𝑥𝑖 denotes the year, and 𝑦𝑖 177 

represents the corresponding annual mean concentration. 178 

The slope 𝛽1 was derived as: 179 

𝛽1 =
Cov(𝑥, 𝑦)

Var(𝑥)
(5) 180 

The sign of 𝛽1  indicates the direction of concentration trends (negative for decreasing, 181 

positive for increasing), while its absolute value quantifies the magnitude of change. 182 

2.6 Methodology for disentangling meteorological and emission contributions 183 

In our study, we utilized datasets from 2015 to 2020 for model training, incorporating 88 184 

parameters categorized as meteorological (8 variables), emission (72 variables), pollutant (6 185 

variables), and temporal (2 variables) factors (detailed parameter descriptions are provided in Table 186 

S2). To validate the performance of model and ensure model robustness, a 5-fold cross-validation 187 

framework was implemented: the full training dataset was randomly partitioned into five mutually 188 

exclusive subsets. During each iteration, one subset served as the validation set while the remaining 189 

four were used for training, with this process repeated across five cycles to achieve comprehensive 190 

validation. For incomplete temporal records at monitoring stations, a pre-filtering mechanism 191 

removed data from time nodes with missing values to ensure dataset integrity. 192 

The trained LightGBM model was employed to quantify meteorological and emission 193 

contributions. Specifically, parallel predictions were conducted for 2016–2020 by fixing annual 194 

emission conditions to 2015 levels while retaining contemporaneous non-emission variables. This 195 

yielded pollutant concentrations driven solely by meteorological variations (denoted as 𝑀𝐿2020met 196 

for 2020). The contribution metrics related to 2015 were calculated as follows: 197 

Meteorological contribution (𝑀𝐿2020met): 198 

𝑀𝐿2020met = 𝑀𝐿15−20 −𝑀𝐿2015 (6) 199 

𝑀𝐿15−20is the non-emission condition unchanged, the emission condition is fixed as the model 200 
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prediction result in 2015, and 𝑀𝐿2015is the model prediction result with unchanged meteorological 201 

and emission conditions. 202 

Emission contribution (𝑀𝐿2020emis): 203 

𝑀𝐿2020emis = (𝑂𝑏𝑠2020 − 𝑂𝑏𝑠2015) − 𝑀𝐿2020met (7) 204 

𝑂𝑏𝑠2020and𝑂𝑏𝑠2015: Observed concentrations in 2020 and 2015, respectively. 205 

3 Results 206 

3.1 Interannual trends of ground-level PM₂.₅ and PM₁₀ 207 

Fig. 1 illustrates interannual trends of ground-level PM₂.₅ and PM₁₀ concentrations across both 208 

the BTH and YRD regions from 2015 to 2020 (see Fig.S1 and S2 for annual concentration 209 

distributions). Both regions exhibited significant downward trends, reflecting the effectiveness of 210 

recent air quality improvement policies. Statistical analysis shows that for PM₂.₅, the mean annual 211 

reduction rate of -0.07 ± 0.03 μg m⁻³ yr⁻¹ in 13 cities over BTH region was significantly greater than 212 

-0.04 ± 0.01 μg m⁻³ yr⁻¹ in 26 cities over YRD region. Baoding (-0.11 μg m⁻³ yr⁻¹) and Hengshui (-213 

0.10 μg m⁻³ yr⁻¹) achieved the most pronounced reductions, while Zhangjiakou (-0.02 μg m⁻³ yr⁻¹) 214 

and Chengde (-0.03 μg m⁻³ yr⁻¹) showed relatively slower progress. In the YRD region, Chuzhou (-215 

0.06 μg m⁻³ yr⁻¹) and Hefei (-0.05 μg m⁻³ yr⁻¹) exhibited substantial annual PM₂.₅ reductions, 216 

whereas Chizhou's improvement rate (-1.00×10⁻³ μg m⁻³ yr⁻¹) accounted for less than 1.5% of the 217 

BTH regional average. This limited progress stems from Chizhou's inherently low pollution baseline, 218 

with its 2015 PM₂.₅ concentration recorded at 33.83 μg m⁻³ - significantly lower than the concurrent 219 

levels in BTH core cities (e.g., Beijing at 77.58 μg m⁻³). For PM₁₀, BTH surpassed YRD region, 220 

with mean annual reduction rate of -0.11 ± 0.04 μg m⁻³ yr⁻¹ over BTH versus -0.06 ± 0.02 μg m⁻³ 221 

yr⁻¹ over YRD. Hengshui (-0.18 μg m⁻³ yr⁻¹) and Baoding (-0.17 μg m⁻³ yr⁻¹) achieved reduction 222 

rates 3.7 times higher than Zhangjiakou (-0.05 μg m⁻³ yr⁻¹). Within YRD, Taizhou (-0.09 μg m⁻³ 223 

yr⁻¹) and Hefei (-0.07 μg m⁻³ yr⁻¹) are top performers, contrasting with limited progress in Chizhou 224 

(-0.01 μg m⁻³ yr⁻¹) and Zhoushan (-0.03 μg m⁻³ yr⁻¹) (means calculated using arithmetic averaging; 225 

standard deviations derived from sample SD formula). 226 

Overall, the PM₂.₅ and PM₁₀ reduction rates over BTH region exceeded these over YRD region 227 

by 65.0% and 84.2%, respectively. In both regions, the concentrations of PM₁₀ decreased more 228 

rapidly than PM₂.₅, yielding PM₁₀-to-PM₂.₅ reduction ratios of 1.59 (BTH) and 1.43 (YRD). 229 
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Although 92.3% of YRD cities achieved the regional PM₂.₅ reduction targets, four cities, including 230 

Chizhou and Xuancheng, showed PM₁₀ reductions below 70% of the regional average. These 231 

geographical contrasts likely originate from divergent regional emission inventories, localized 232 

meteorological conditions, and variations in policy implementation effectiveness, highlighting the 233 

necessity for region-specific pollution control strategies.  234 

 235 

Fig. 1. Interannual variation trends of PM2.5 (a) and PM10 (b) in each city during 2015-2020. 236 

3.2 Machine learning model performance and variable importance 237 

 Fig. 2 compares observed and predicted PM₂.₅ and PM₁₀ concentrations, demonstrating the 238 

model’s strong performance across diverse environments. Panels (a) and (c) show density 239 

scatterplots for the combined BTH and YRD regions, yielding correlation coefficients of 0.94 for 240 

PM₂.₅ (RMSE = 15 µg m⁻³) and 0.91 for PM₁₀ (RMSE = 28.85 µg m⁻³). These results significantly 241 

outperform traditional linear models (Lu et al., 2019; Zhai et al., 2019), confirming the robust 242 

predictive capability of LightGBM model for both PM species. Panels (b) and (d) further 243 

demonstrate the adaptability of LightGBM model across heterogeneous regional environments. 244 

Table S3 reveals that PM₂.₅/PM₁₀ prediction R values for the BTH and YRD city clusters consistently 245 

range between 0.76 and 0.97. While BTH exhibits marginally higher PM₂.₅ accuracy (R: 0.94 vs. 246 

0.93 for YRD), it shows greater error variability (RMSE std: 3.62 μg m⁻³ vs. 3.05 μg m⁻³). For PM₁₀, 247 

regional accuracy disparities narrow (R: 0.88 for BTH vs. 0.90 for YRD), with YRD achieving more 248 

stable error control, likely attributable to its homogeneous emission profiles and stable boundary 249 

layer meteorology. This cross-regional consistency underscores the model’s capacity to resolve 250 

complex nonlinear interactions between particles, meteorological conditions, precursor gases, and 251 
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emissions, providing reliable technical support for air pollution forecasting. 252 

 The analysis of variable importance reveals regional divergence in key drivers of PM₂.₅ and 253 

PM₁₀ concentrations (Fig. 3). For PM₂.₅ predictions, meteorological factors— QV2M, SLP, T2M, 254 

and V10M—collectively account for 15% of explanatory power. In PM₁₀ predictions, PRECTOT 255 

replaces T2M among the top four meteorological drivers, highlighting the importance of wet 256 

scavenging in coarse‐mode dynamics. Pollutant interactions reveal PM₂.₅ concentrations are 257 

predominantly influenced by PM₁₀, CO, NO₂, and SO₂ (cumulative contribution: 37.60%), whereas 258 

PM₁₀ variations are governed by aerosol mixing mechanisms centered on PM₂.₅, synergistically 259 

interacting with NO₂, CO, and SO₂ to explain 34% of variance. 260 

 Notably, refined regional comparisons (Fig. S3) uncover spatial heterogeneity. While BTH 261 

aligns with overall trends, O₃ supersedes SO₂ as a top four pollutant factor in YRD’s PM₂.₅ 262 

predictions, likely associated with heightened regional photochemical activity. For YRD’s PM₁₀ 263 

predictions, synergistic effects between O₃ (5% contribution) and SO₂ (6%) emerge, suggesting 264 

region-specific secondary aerosol formation pathways. These latitudinal differences in 265 

meteorology-chemistry coupling mechanisms provide critical insights for designing spatially 266 

tailored pollution control strategies. 267 
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 268 

Fig. 2. The density scatter plots of PM2.5 (a) and PM10 (c) concentrations observed and predicted, 269 

respectively. The correlation of PM2.5 (b) and PM10 (c) in each city over BTH and YRD regions, 270 

respectively. 271 

 272 

Fig. 3. The feature importance of rankings of PM2.5 (a) and PM10 (b) in ML model prediction, 273 

respectively. 274 

3.3 Contributions of emissions and meteorology 275 

As illustrated in Fig. 5, anthropogenic emissions exerted substantially greater influence on PM 276 

concentration variations compared to meteorological factors. Relative to 2015 baseline levels (Fig. 277 

5), emission-driven changes reduced PM₂.₅ concentrations by −7.19 to −24.76 μg m⁻³ and PM₁₀ 278 
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concentrations by −0.40 to −27.12 μg m⁻³ during 2016–2020. Futhermore, meteorological effects 279 

exhibited species-dependent variability: PM₁₀ showed larger fluctuations (−4.23 to +10.57 μg m⁻³) 280 

than PM₂.₅ (−1.99 to +2.21 μg m⁻³). Emission controls dominated PM₂.₅ reductions, accounting for 281 

83.6–97.2% of total changes, far exceeding meteorological contributions (0.80–16.40%). Notably, 282 

emission-induced PM₂.₅ reductions accelerated to −18.75–−24.76 μg m⁻³ during 2019–2020, 283 

temporally coinciding with stringent implementation of the Three-Year Action Plan for Winning the 284 

Blue Sky Defense Battle. For PM₁₀, while emissions remained the primary driver (62.4–83.7%), 285 

meteorological contributions (16.3–37.6%) were 17.6-fold higher than those for PM₂.₅ (Fig. 6), 286 

likely attributable to interannual variability in dust transport pathways and precipitation scavenging 287 

efficiency (Fan et al., 2025). 288 

Fig. S4 and S5 detail regional and interannual meteorological versus emission contributions. 289 

For PM₂.₅ variations in the BTH region: In Baoding and Hengshui (Fig. 4a), rapid improvements 290 

stemmed predominantly from aggressive emission reductions (−40.47 μg m⁻³ and −39.25 μg m⁻³, 291 

contributing 89.20% and 84.70%, respectively). However, Baoding experienced slight 292 

meteorological deterioration (+4.90 μg m⁻³) associated with increasing specific humidity (QV2M: 293 

−6.44×10⁻⁶ kg kg⁻¹ yr⁻¹; Fig. 6a) and localized cooling (T2M: −0.09°C yr⁻¹;Fig. 6c), whereas 294 

Hengshui saw marginal meteorological benefits (+7.08 μg m⁻³; Fig. 4c). Zhangjiakou's slower 295 

decline resulted from low baseline concentrations (58% of the 2015 regional mean), modest 296 

emission-driven reductions (−3.47 μg m⁻³;Fig. 4a), and worsened dispersion conditions due to 297 

intensified zonal winds (V10M: +0.02 m s⁻¹ yr⁻¹;Fig. 6d). In the YRD region: In Changzhou and 298 

Hefei (Fig. 4a), PM₂.₅ improvements were emission-dominated (−25.07 μg m⁻³ and −16.54 μg m⁻³, 299 

contributing 70.30% and 96.50%, respectively). Changzhou faced meteorological degradation 300 

(+10.60 μg m⁻³) linked to rising sea-level pressure (SLP: +0.01 hPa yr⁻¹;Fig. 6b), demonstrating 301 

how emission controls counteracted adverse meteorology. PM₂.₅ concentrations increases (+3.42 μg 302 

m⁻³ from emissions and +9.57 μg m⁻³ from meteorology; Fig. 4a,c) reflected governance 303 

inadequacies and baseline air quality advantages in Chizhou. 304 

For PM₁₀ variations in the BTH region: Tianjin and Hengshui achieved rapid reductions 305 

through combined emission (−15.48 μg m⁻³ and −40.35 μg m⁻³;Fig. 4b) and meteorological(−14.17 306 

μg m⁻³ and −21.88 μg m⁻³;Fig. 4d) effects. In Tianjin, weakened zonal winds (V10M: −0.12 m s⁻¹ 307 
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yr⁻¹; Fig. 7c) enhanced coarse PM dispersion, while Hengshui benefited from rising SLP (+0.05 hPa 308 

yr⁻¹;Fig. 7b) promoting wet deposition. Despite exceeding emission limits (+8.78 μg m⁻³;Fig. 4b), 309 

Zhangjiakou’s PM₁₀ retention was mitigated by meteorological contributions (−14.51 μg m⁻³; Fig. 310 

4d). Chengde’s PM₁₀ reductions (−13.03 μg m⁻³; Fig. 4b), driven by emission controls, were 311 

constrained by its low baseline (62% of the 2015 regional mean), yielding a slow decline rate (−0.06 312 

μg m⁻³ yr⁻¹). In the YRD region: Taizhou and Nanjing (Fig. 4b,d) exhibited significant PM₁₀ 313 

reductions, predominantly from meteorology (−21.62 μg m⁻³, 82.40%) and emission-meteorology 314 

synergies (−12.56/−9.47 μg m⁻³), respectively. Taizhou’s improvements correlated with sharply 315 

rising SLP (+0.14 hPa yr⁻¹; Fig. 7b) suppressing dust resuspension, while Nanjing benefited from 316 

industrial emission reductions and enhanced precipitation scavenging (PRECTOT: −2.13×10⁻⁶ mm 317 

s⁻¹ yr⁻¹;Fig. 7d). Zhoushan’s minimal PM₁₀ decline (−0.03 μg m⁻³ yr⁻¹) reflected baseline air quality 318 

advantages and diminishing marginal returns of governance measures. 319 

In summary, important cities (e.g., Baoding, Changzhou) achieved the most dramatic PM 320 

improvements through stringent emission cuts, while peripheral and cleaner-baseline cities (e.g., 321 

Chizhou, Zhangjiakou) remained sensitive to weather variability—underscoring the need for 322 

tailored, region-specific mitigation strategies.  323 
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 324 

Fig. 4. The average contributions of emissions and meteorological variables to PM2.5 (for (a) and 325 

(c)) and PM10
 (for (b) and (d)), respectively. 326 

 327 

Fig. 5. The averaging the emission or meteorological contributions to PM2.5 (a) and PM10 (b) of 328 

each year relative to 2015. 329 

https://doi.org/10.5194/egusphere-2025-2786
Preprint. Discussion started: 23 July 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

 330 

Fig. 6. The annual trend of the top four meteorological variables (QV2M (a), SLP (b), T2M (c), and 331 

V10M (d)) that have the greatest impact on PM2.5. 332 
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 333 

Fig. 7. The annual trend of the top four meteorological variables (QV2M (a), SLP (b), V10M (c), 334 

and PRECTOT (d)) that have the greatest impact on PM10. 335 

4 Discussions 336 

The effects of meteorological factors on PM₂.₅ and PM₁₀ exhibited significant particle size 337 

differences (Fig. 3). SLP emerges as a dominant driver for both PM₂.₅ (importance = 3.96 %) and 338 

PM₁₀ (4.56 %), reflecting pollutant buildup under stagnant synoptic conditions and especially the 339 

sensitivity of fine particles to boundary‐layer compression (Zeng et al., 2020). PRECTOT, by 340 

contrast, plays a larger role in removing coarse PM₁₀ (3.23 %) than fine PM₂.₅ (2.58 %), 341 

underscoring the greater efficacy of wet scavenging for larger particles (Liu et al., 2020). 342 

Correlation analyses (Table 1) indicate that CO exhibits the strongest association with PM₂.₅ 343 

(R = 0.71), significantly exceeding correlations with NO₂ (R = 0.58) and SO₂ (R = 0.48), suggesting 344 

higher potential efficiency of CO reduction in fine particle control. Specifically (Fig. S6), in the 345 

BTH region, PM₂.₅-CO correlations (regional mean R = 0.73) remain markedly stronger than those 346 

with NO₂ (R = 0.64) and SO₂ (R = 0.52). Industrial cities like Baoding (0.85) and Shijiazhuang 347 

(0.85) exhibit extreme values due to co-emission of CO and fine particles from iron-steel coking 348 
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processes. Lower SO₂ correlations (e.g., Beijing 0.52, Tianjin 0.53) reflect effective desulfurization 349 

measures in recent years (Shao et al., 2018; Zheng et al., 2018), though medium correlations persist 350 

in heavy-industrial cities like Tangshan (0.54), indicating residual impacts from traditional industrial 351 

sources. In the YRD region, PM₂.₅-CO correlations (regional mean R = 0.70) show spatial 352 

heterogeneity: northern industrial clusters (Shanghai 0.82, Hefei 0.78) exceed southern coastal areas 353 

(Wenzhou 0.61, Zhoushan 0.69), aligning with clean energy transition progress. Notably, 354 

comparable contributions from NO₂ (R = 0.58) and SO₂ (R = 0.50) to PM₂.₅ in cities like Nanjing 355 

(0.52/0.50) and Hangzhou (0.60/0.60) reveal combined effects of traffic and industrial pollution. 356 

For PM₁₀ (Fig. S7), BTH maintains dominant PM₁₀-CO correlations (regional mean R = 0.66), 357 

albeit with a 9.6% reduction compared to PM₂.₅. High values in Baoding (0.76) and Hengshui (0.73) 358 

confirm coal-dust mixed pollution, while Zhangjiakou (0.30) shows weakened combustion-source 359 

linkages due to dust transport influences. SO₂ effects on PM₁₀ display polarization: effective 360 

desulfurization in core cities (Beijing 0.45, Tianjin 0.52) contrasts with sustained higher values in 361 

industrial hubs (Tangshan 0.54, Shijiazhuang 0.54), highlighting regional governance disparities. 362 

The correlations of PM₁₀-COover YRD region (regional mean R = 0.62) are lower than BTH, with 363 

port cities like Ningbo (0.75) and Taizhou (0.74) showing elevated CO contributions from ship 364 

diesel emissions, while inland cities (Shaoxing 0.63, Huzhou 0.70) experience construction dust 365 

interference. Unlike PM₂.₅, The correlations of PM₁₀-SO₂ (R = 0.43) over YRD region trail BTH (R 366 

= 0.49), particularly in coastal cities (Zhoushan 0.37, Taizhou 0.39), reflecting energy transition 367 

impacts on coarse-particle precursors. 368 

Both economic zones exhibit stronger PM₂.₅-CO correlations than PM₁₀ (BTH difference +0.07; 369 

YRD +0.08), attributable to shared combustion-source emission mechanisms and synergistic 370 

formation pathways. As a marker of incomplete combustion, CO co-emits with PM₂.₅ carbonaceous 371 

components (e.g., black/organic carbon) from vehicles and industrial processes (Zheng et al., 2018), 372 

maintaining synchronicity through micron-scale dispersion. PM₁₀’s mechanical dust and soil 373 

particles lack direct combustion linkages with CO. Table 1 shows comparable SO₂/NO₂ correlations 374 

with both PM₂.₅ and PM₁₀. NO₂-PM associations derive from traffic-source homology, nitrate 375 

formation, and stagnant meteorology, while SO₂ links reflect fixed-source synchronization, sulfate 376 

conversion, and regional transport (Yin et al., 2020b), both governed by "co-emission sources + 377 
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secondary chemistry + meteorological synergy" mechanisms. 378 

To enhance air quality, prioritized strategies should strengthen integrated control of incomplete 379 

combustion sources (e.g., vehicles and industrial boilers) and develop precision emission reduction 380 

measures, particularly targeting CO and NO₂. Concurrently, accelerating societal transition to low-381 

carbon and clean energy systems will fundamentally mitigate PM₂.₅/PM₁₀ generation, fostering 382 

healthier and more sustainable urban environments. 383 

 384 

Fig. 8. The average concentrations of SO2 (a), NO2 (b), CO (c), respectively, during 2015 to 2020 385 

over BTH and YRD regions. 386 

Table 1 The correlation values among SO2, NO2, CO and PM2.5 / PM10, respectively. 387 

 SO2 NO2 CO 

PM2.5 0.48 0.58 0.71 

PM10 0.48 0.58 0.63 

5 Conclusions 388 

This study integrates surface observations, assimilated meteorological data, and anthropogenic 389 

emission inventories to quantify meteorological and emission contributions to the variations of 390 

PM2.5 and PM10 over BTH and YRD regions during 2015-2020 using the LightGBM machine 391 

learning model. Ground-based monitoring data demonstrate significant PM₂.₅ and PM₁₀ reductions 392 

across both regions, with BTH exhibiting faster decline rates (−0.07 ± 0.03/−0.11 ± 0.04 μg m⁻³ yr⁻¹ 393 

for PM₂.₅/PM₁₀, respectively). The greater PM₁₀ reductions reflect superior direct control efficacy 394 

of coal management and dust suppression on coarse particles, whereas sustained PM₂.₅ 395 

improvements require enhanced synergistic reduction of secondary aerosol precursors. The 396 

LightGBM model quantifies emission-driven reductions of 7.19–24.76 μg m⁻³ for PM₂.₅ and 0.40–397 

27.12 μg m⁻³ for PM₁₀ during 2016-2020 relative to 2015 baselines. Meteorological impacts show 398 

particle-size dependence: PM₁₀ exhibits greater sensitivity (−4.23 to 10.57 μg m⁻³) than PM₂.₅ (−1.99 399 
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to 2.21 μg m⁻³), potentially linked to dust transport pathway modifications and precipitation 400 

scavenging efficiency fluctuations. 401 

The analysis of variable importance reveals distinct drivers: PM₂.₅ predictions are dominated 402 

by meteorological factors including QV2M, SLP, T2M, and V10M, collectively contributing 15%. 403 

For PM₁₀, PRECTOT replaces T2M among top meteorological drivers, highlighting liquid-phase 404 

processes' critical role in coarse particle dynamics. Pollutant interactions show PM₂.₅ concentrations 405 

primarily influenced by PM₁₀, CO, NO₂, and SO₂ (cumulative contribution rate 37.6%), while PM₁₀ 406 

variations center on aerosol mixing with PM₂.₅, combined with NO₂, CO, and SO₂ (34% variance 407 

explained). 408 

The study identifies significantly stronger PM₂.₅-CO correlations than PM₁₀-CO in both regions 409 

(BTH +0.07; YRD +0.08), mechanistically rooted in their shared combustion-source emissions and 410 

co-formation pathways. As an incomplete combustion tracer, CO is emitted simultaneously with 411 

carbonaceous components of PM₂.₅ (e.g. black carbon/organic carbon) from vehicles and industries 412 

and is dispersed synchronously via a micron-scale particle size distribution. There is weaker 413 

correlation between PM₁₀ and CO, which reflect non-combustion sources like fugitive dust. The 414 

secondary oxidation of CO further promotes organic aerosol formation, establishing dual "primary 415 

emission-secondary transformation" binding mechanisms. Comparatively, SO₂ and NO₂ exhibit 416 

similar correlations with particulates but divergent drivers: NO₂ links through traffic-source 417 

homology and nitrate formation, whereas SO₂ associates via stationary-source emissions and sulfate 418 

conversion, both governed by "co-emission sources + chemical transformation + meteorological 419 

synergy" principles. 420 

These findings systematically characterize distinct near-surface particulate evolution patterns 421 

in the BTH and YRD regions of China during 2015-2020, quantifying the respective contributions 422 

of emission conditions and meteorological factors during 2016-2020 relative to the 2015 baseline.  423 

Compared to analyses using traditional statistical methods such as linear regression, the LightGBM 424 

model quantifies a relatively lower contribution (15%) of core meteorological variables (QV2M, 425 

SLP, T2M, V10M) to PM₂.₅ variations (Gong et al., 2022). This discrepancy may be attributed to 426 

the enhanced capability of LightGBM in capturing the nonlinear relationships among 427 

meteorological conditions, emission factors, and air pollutant concentrations. Furthermore, its 428 
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utilization of gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB) 429 

enables effective handling of multicollinearity among predictors, thereby overcoming the inherent 430 

limitations of conventional linear models. The detailed mechanistic interpretation of PM₂.₅/PM₁₀ 431 

correlations with CO, SO₂, and NO₂, explicitly linking correlation strength to co-emission sources, 432 

secondary transformation pathways, and meteorological synergy, not only deepens understanding 433 

of pollution formation and evolution mechanisms but also forms an important complement to 434 

receptor models (e.g., PMF, CMB) primarily based on static source profiles, by introducing dynamic 435 

linkage and synergistic perspectives. 436 

The results provide a scientific foundation for optimizing region-specific control strategies, 437 

emphasizing the need to address secondary aerosol formation mechanisms in northern industrial 438 

zones and complex pollution characteristics in southern regions through multi-scale coordinated 439 

control frameworks. Several limitations warrant consideration: while LightGBM effectively 440 

captures complex nonlinear relationships, its attribution remains inherently statistical and does not 441 

explicitly resolve underlying physicochemical processes; additionally, although the 2015-2020 442 

analysis period captures rapid emission changes, incorporating longer time series with greater 443 

meteorological variability would enhance the robustness of meteorological contribution 444 

assessments. Finally, incorporating detailed chemical composition data of particulate matter into 445 

our analytical framework could yield further scientifically meaningful insights. Furthermore, future 446 

studies should integrate atmospheric chemistry models with machine learning approaches to better 447 

elucidate underlying chemical mechanisms, while leveraging multi-dimensional observational 448 

datasets and refined emission inventories to strengthen the scientific basis for air quality 449 

management policies.  450 
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