Diurnal Asymmetry in Nonlinear Responses of Canopy Urban Heat Island to Urban Morphology in Beijing during Heat Wave Periods

Tao Shi^{1,2,3,4}, Yuanjian Yang^{5*}, Ping Qi¹, Simone Lolli⁶

¹School of Mathematics and Computer Science, Tongling University, Tongling, 244000, China

³Anhui Engineering Research Center of Remote Sensing and Geoinformatics, Chuzhou, 239000, China

⁵State Key Laboratory of Climate System Prediction and Risk Management, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China ⁶CNR-IMAA, Contrada S. Loja, 85050 Tito Scalo (PZ), Italy

Correspondence to: Prof. Yuanjian Yang (yyj1985@nuist.edu.cn)

Table S1: The calculation and definitions of urban morphology indicators involved in this paper.

Туре	Indicato rs	Calculation	Definitions
2D	BCR	$BCR = \frac{\sum_{i} a_i}{A}$	Building coverage ratio (BCR):
		a _i : Area of individual building patches	The ratio of building base area to
		A: Total area.	buffer area.
	NEAR	$NEAR = min(\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2})$	Average adjacent building
			distance (NEAR): A lower value
		(x,y): Coordinates of building centroids.	indicates higher building density.
	NP	$NP = \sum BP$ BP: building patches.	Number of building patches (NP):
			Reflects the fragmentation degree
			of regional buildings.
	SPLIT	$SPLIT = \frac{A^2}{\sum a_i^2}$	Split index (SPLIT): A larger
			value indicates a higher degree of
			landscape fragmentation.
	AI	$AI = \left[\frac{g_{ij}}{max(g_{ij})}\right] \times 100$	Aggregation index (AI): A

²Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou University, Chuzhou, 239000, China

⁴Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou, 239000, China

gii: Number of like adjacencies between buildings.

 $L/W = \left[\frac{\text{Longest axis length}}{\text{Shortest axis length}} \right] \times 100$ L/W

 $H = \frac{\sum h_i}{NP}$ Η

hi: Height of individual buildings.

H- $max = max(h_1, h_2, ..., h_n)$ H-max

 $H\text{-std} = \sqrt{\frac{\sum (h_i - H)^2}{NP}}$ H-std

 $FAR = \frac{\sum a_i * n}{A}$ FAR

n: Number of floors in the building.

 $CI = \frac{V_{building}}{V_{total\ area}}$

V_{building}: Building volume. V_{total area}: Neighborhood volume.

 $SVF = 1 - \frac{\sum_{i} \gamma_i * \Delta\theta}{2\pi}$

γ_i: Obstruction elevation angle.

 $\Delta\theta$: Azimuth interval.

smaller value indicates weaker connectivity of landscape patches. Building length-width (L/W): Characterizes the planar morphological characteristics of buildings.

Average building height (H): The mean value of building heights within the buffer.

Maximum building height (H_max): The highest building height in the region.

Building height standard deviation (H std): Reflects the difference in building heights in the region.

Floor area ratio (FAR): The ratio of total building area to buffer area, where a higher value indicates greater development intensity per unit land.

Volume index (CI): The ratio of building volume to the total volume of the study area, where a larger value indicates a higher degree of space occupation.

Sky view factor (SVF): Ranges from 0 to 1, where a smaller value indicates more significant sky

3D

CI

SVF

obstruction.