Response to Review Comments of the First Reviewer

Dear Reviewer and Editors:

We are sincerely grateful to the editor and reviewer for their valuable time for
reviewing our manuscript. The comments are very helpful and valuable, and we have
addressed the issues raised by the reviewer in the revised manuscript. Please find our
point-by-point response (in blue text) to the comments (in black text) raised by the
reviewer. We have revised the paper according to your comments (highlighted in red

text of the revised manuscript).

Sincerely yours,

Dr. Yuanjian Yang, representing all co-authors

Major comments:

1. Section 2.2.2: Six 2D and 3D indicators are selected as predictor variables for
CUHI, but there can be more indicators. Could authors justify why these
indicators are used? A review on morphology variables used in previous
regression/ML methods is needed.

Response: We apologize for the vague description. As requested, we have
supplemented a review of morphology variables used in previous study. Please refer
to Lines 96-116 for the revised content:

“From a spatial perspective, urban spatial morphology can be divided into urban
2D/3D morphology. At the 2D level, academic circles have systematically explored
the association between urban morphology and local thermal environments (Tysa et
al., 2019; Yu et al., 2020). For instance, the proportion of building area has a
significant warming effect (Wang et al., 2017; Liu et al., 2021), and studies have
shown that when the building area is fixed, there is a significant positive correlation

between temperature and the building patch index (Shi et al., 2015). In addition to 2D



morphology, the regulatory role of 3D urban morphology in thermal environments has
attracted much attention in recent years (Yin et al., 2018; Tian et al., 2019; Zhou et al.,
2022; Xu et al., 2024; Bansal & Quan, 2024). Although 3D morphology is based on
2D pattern parameters with the addition of height information, its characterization is
not limited to height but also includes other features derived from height. Taking the
sky view factor (SVF) as an example, this indicator refers to the ratio of the visible
sky range to the total visible range at a fixed point on the ground. It is an important
parameter for characterizing the geometric characteristics, density, and thermal
balance of urban areas, and also a key factor affecting the generation and intensity of
the heat island effect (Scarano & Mancini, 2017). Relevant studies have shown that
surface temperature in summer is significantly correlated with building height (Cai &
Xu, 2017); regulating SVF may serve as a potential means to mitigate the urban local
thermal environment in high-density urban areas (Xu et al., 2024). We obtained
building data from Baidu Maps (https://map.baidu.com), including building base
projection boundaries and total floor information. The building base projection
boundaries can be used to characterize the horizontal distribution of urban buildings.
We calculate the height of the building by multiplying the number of floors by 3
meters. This method has been verified to have an overall accuracy of 86.78% (Liu et
al., 2021), and the conversion results are reliable based on the regular characteristics
of the floor heights of urban buildings (Alavipanah et al., 2018). The specific
definitions and calculations of the 2D/3D indicators are as follows in Table S1. Finally,
we selected a 500m buffer zone (Oke, 2004) and used the six two-dimensional
indicators and six three-dimensional indicators to describe the morphological
characteristics of buildings. ”

Table S1: The calculation and definitions of urban morphology indicators involved in this

paper.
Type Indicators Calculation Definitions
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vi: Obstruction elevation angle.

AO: Azimuth interval.

Floor area ratio (FAR): The ratio
of total building area to buffer
area, where a higher value
indicates greater development
intensity per unit land.

Volume index (CI): The ratio of
building volume to the total
volume of the study area, where
a larger value indicates a higher
degree of space occupation.

Sky view factor (SVF): Ranges
from 0 to 1, where a smaller
value indicates more significant

sky obstruction.

Reference:

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban

heat island using explainable machine learning: A case of Seoul, Building and Environment,
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temperature, Sustainability, 9(10), https://doi.org/10.3390/su9101862, 2017.
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Journal of  Geophysical Research: Atmospheres, 124(13), 7064-7079,
https://doi.org/10.1029/2019JD030948, 2019.

Wang, J., Tett, S. F. B., & Yan, Z.: Correcting urban bias in large-scale temperature records in
China, 1980-2009, Geophysical Research Letters, 44(1), 401-408,
https://doi.org/10.1002/2016GL071524, 2017.

Xu, Y., Yang, J., Zheng, Y., Liu, W.: Impacts of two-dimensional and three-dimensional urban
morphology on urban thermal environments in high-density cities: A case study of Hong
Kong, Building and Environment, 252, 111249,
https://doi.org/10.1016/j.buildenv.2024.111249, 2024.

Yu, Z., Chen, S., Wong, N., Ignatius, M., Deng, J., He, Y., & Hii, D. J. C.: Dependence between
urban morphology and outdoor air temperature: A tropical campus study using random
forests algorithm, Sustainable Cities and Society, 61, 102200,
https://doi.org/10.1016/j.s¢s.2020.102200, 2020.

Zhou, R., Xu, H., Zhang, H., Zhang, J., Liu, M., He, T., Gao, J., Li, C.: Quantifying the
Relationship between 2D/3D Building Patterns and Land Surface Temperature: Study on the
Metropolitan Shanghai, Remote Sensing, 14(16), 4098, https://doi.org/10.3390/rs14164098,

2022.

2. Section 2.3.1: How many HW days are found based on the criteria used in this
study? This information can be put in Figure 2 to better illustrate the length of
HWs.

Response: Thank you for your excellent suggestion. We have added the annual
duration of HW periods to Figure 2 as recommended. In addition, we have attached a
table showing the monthly duration of HW periods for each year in this response.

Thank you again for your valuable input.
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Figure 2: Diurnal variations of the CUHII during the NHW and HW periods. (a)-(e)
Year-specific patterns; (f) Multi-year average. Left panels: CUHII diurnal cycles (solid lines)
with shaded areas showing standard deviations. Right panels: Violin plots of CUHII

distributions during the day (08:00-19:00) and at night (00:00-07:00, 20:00-24:00).

Tab. R1 The duration of HW periods by year.

HWs period
2018 2019 2020 2021 2022
duration (day)

Jun 10 0 3 5 10
Jul 6 13 3 3 4
Aug 5 0 3 2 3
Sum 21 13 9 8 17

3. Section 2.3.3: The training process of XGBoost model requires more details.
What data is used as training, validation, and test set, respectively? How is the

model performance evaluated? This is the major flaw because the results in Fig.



5 and Fig. 6 will be significantly affected by the model performance.

Response: We have supplemented these important details in the text, including
specific information on the data used for the training set, validation set, and test set, as
well as the methods for evaluating model performance. In addition, we have added a
performance graph of the XGBoost model in predicting CUHII in the supplementary.
Please refer to Lines 143-150 and 259-261for the revised content:

“In this study, we first performed iterative calculations on 7 commonly used
hyperparameters  (eta, gamma, max depth, min child weight, subsample,
colsample bytree, and nrounds) within a preset hyperparameter tuning space, and
selected the optimal hyperparameter combination that minimizes model error using a
5-fold cross-validation method (Yang et al., 2020; Lin et al., 2024). After completing
hyperparameter optimization, we randomly split the sample points in the Yangtze
River Basin at a 7:3 ratio to obtain training samples (70%) and validation samples
(30%), which were used for training and validating the XGBoost model, respectively.
Meanwhile, the coefficient of determination (R?) and root mean square error (RMSE)
were chosen as evaluation metrics for simulation accuracy.

“Fig. S1 illustrates the performance of the XGBoost model in predicting CUHII. For
the test dataset, the R? values all exceed 0.45, while the RMSE values are all within
0.05. These results indicate that the XGBoost model can be regarded as a reliable tool
for fitting the relationship between CUHII and urban morphology (He et al., 2024;
Lin et al., 2024).”
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Figure S1: The performance graph of the XGBoost model in predicting CUHII.

Reference:

He, J., Shi, Y., Xu, L., Lu, Z., Feng, M., Tang, J., & Guo, X.: Exploring the scale effect of urban

thermal environment through XGBoost model, Sustainable Cities and Society, 114, 105763,

https://doi.org/10.1016/j.s¢cs.2024.105763, 2024.

Lin, Z., Xu, H., Han, L., et al.: Day and night: Impact of 2D/3D urban features on land surface

temperature and their spatiotemporal non-stationary relationships in urban building spaces,

Sustainable Cities and Society, 108, 105507, https://doi.org/10.1016/j.s¢s.2024.105507,

2024.

Yang, L., Xu, H., & Yu, S.: Estimating PM2.5 concentrations in Yangtze River Delta region of

China using random forest model and the Top-of-Atmosphere reflectance, J. Environ.

Manag., 272, 111061, 2020.




4. Section 2.3.4: How did authors select study areas for ENVI-met simulations?
And what are the values used for various thermal properties in the model setup?
Response: Thank you for your insightful comments. We apologize for the lack of
clarity regarding the selection of study areas and thermal property parameters in the
ENVI-met model setup. We have supplemented relevant details in Section 2.3.4, and
the revised content is as follows:

“ENVI-met has been widely applied in cooling effect assessment (Di Giuseppe et al.,
2021), temperature field prediction (Forouzandeh, 2021), and thermal comfort
research (Berardi et al., 2020). The selection of ENVI-met simulation areas in this
study was based on two core principles: () Urban morphological representativeness:
Typical functional zones in Beijing were selected, covering dominant urban forms
such as high-density high-rises and low-density low-rises, which can reflect the
representative spatial characteristics of Beijing’s urban area; 2 Data support: These
zones are equipped with long-term AWS operated by the China Meteorological
Administration, which provide continuous air temperature data at a height of 1.5
meters, serving as a reliable benchmark for model validation.

The model integrates high-resolution Google Earth imagery and field survey data to
accurately construct the three-dimensional spatial configuration of buildings,
vegetation, and soil, with vegetation parameters derived from ENVI-met’s 3D plant
database. The horizontal extent of the model was set to 1x1 km (200x200 grids, 5 m
resolution), with 65 grid layers in the vertical direction. The setting of thermal
property parameters for surface materials integrated field sampling analysis and
calibration results from existing literature (Meng et al., 2024): (U Impervious surfaces:
Dominated by asphalt, with parameters set with reference to the heat conduction and
radiation characteristics of typical urban asphalt pavements; @ Pervious surfaces:
Mainly composed of loam, with parameters determined based on the heat capacity
and thermal conductivity of soil samples from the study area; (3) Vegetation
parameters: Set in combination with the leaf radiation characteristics and transpiration
parameters of common tree species in Beijing, which affect the surrounding thermal
environment through transpiration and shading. To reduce boundary effects, a
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10-layer nested grid technique was used (Kong et al., 2016), with surface materials set
as a mixture of loam and asphalt. The model’s boundary meteorological parameters
(temperature, humidity, wind speed, wind direction) were updated every 30 minutes
using a complete forcing method, with data obtained from meteorological station
measurements. For model validation, the R? and RMSE were adopted, with a focus on
the simulation accuracy of air temperature at a height of 1.5 meters. Typical urban
meteorological stations in Beijing were selected, multi-scenario simulation schemes
were designed, and emphasis was placed on analyzing the mechanisms by which
morphological indicators act on CUHII, canopy ventilation, and radiation exchange.”

Reference:

Di Giuseppe, E., Ulpiani, G., Cancellieri, C., Di Perna, C., D’Orazio, M., & Zinzi, M.: Numerical
modelling and experimental validation of the microclimatic impacts of water mist cooling in
urban areas, Energy and Buildings, 231, 110638,
https://doi.org/10.1016/j.enbuild.2020.110638, 2021.

Forouzandeh, A.: Prediction of surface temperature of building surrounding envelopes using
holistic microclimate ENVI-met model, Sustainable Cities and Society, 70, 102878,
https://doi.org/10.1016/j.s¢cs.2021.102878, 2021.

Berardi, U., Jandaghian, Z., & Graham, J.: Effects of greenery enhancements for the resilience to
heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale
(Envi-met) modeling, Science of the Total Environment, 747, 141300,
https://doi.org/10.1016/j.scitotenv.2020.141300, 2020.

Meng, Q., Gao, J., Zhang, L., et al.: Coupled cooling effects between urban parks and surrounding
building morphologies based on the microclimate evaluation framework integrating remote
sensing data, Sustainable Cities and Society, 102, 105235,
https://doi.org/10.1016/j.scs.2024.105235, 2024

Kong, F., Sun, C. F., Liu, F. F,, Yin, H. W, Jiang, F., Pu, Y. X, et al.: Energy saving potential of
fragmented green spaces due to their temperature regulating ecosystem services in the
summer, Applied Energy, 183, 1428-1440, https://doi.org/10.1016/j.apenergy.2016.09.070,

2016.
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S. Line 177: the larger nighttime CUHI than daytime CUHI shall be better
explained. there have been many studies in the literature, and it will be good to
have at least some comparisons against CUHI during HW at different cities.
Response: Thank you for your valuable suggestion. We have strengthened the
explanation of the causes for the diurnal differences in CUHII in the manuscript and
added comparisons with the diurnal variation characteristics of CUHII in cities such
as Shanghai and Athens. The revised content can be found in lines 199-211:
“It should be noted that during both NHW and HW periods, nighttime CUHII is
generally significantly higher than daytime CUHIIL. This can be explained by the
urban-rural differences in energy budgets: during the daytime, cities are heated by
solar radiation, with surface heat transferred to the atmosphere through turbulence and
regulated by ventilation conditions; at nighttime, urban buildings and impervious
surfaces release stored heat, while suburbs form radiative cooling due to vegetation
cover, further widening the urban-rural temperature difference (Zhou et al., 2019;
Shen et al., 2024). Furthermore, the diurnal variation characteristics of CUHII are not
absolute, as their intensity and timing distribution vary with the geographical
environment of cities. For example, the CUHII in Shanghai during HW periods and
its difference from that in non-heatwave periods are strongest around noon (Ao et al.,
2019; Tan et al., 2010), and this pattern has also been verified in Athens, Greece
(Founda et al., 2017). Such differences from Beijing (where nighttime CUHII is
stronger) mainly stem from variations in local circulation: coastal cities like Shanghai
and Athens are significantly affected by sea-land breeze advective cooling, and the
large heat capacity of seawater weakens the nighttime urban-rural temperature
difference; in contrast, nighttime CUHII in Beijing, an inland city, is mainly
dominated by surface radiation budgets (Ao et al., 2019).”
Reference:
Founda, D., Santamouris, M.: Synergies between urban heat island and heat waves in Athens
(Greece), during an extremely hot summer (2012), Scientific Reports, 7(1), 10973, 2017.

10.1038/s41598-017-11407-6
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Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., F Li:
The urban heat island and its impact on heat waves and human health in Shanghai,
International Journal of Biometeorology, 54, 75-84, 2010. 10.1007/S00484-009-0256-X

Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D.: Observed synergies between urban heat
islands and heat waves and their controlling factors in Shanghai, China, Journal of Applied
Meteorology and Climatology, https://doi.org/10.1175/jamc-d-19-0073.1, 2019.

Zhou, D., J Xiao, S Bonafoni, C Berger, Deilami, Kaveh, Zhou, Yuyu, Frolking, Steve, Yao,
Rui, Qiao, Zhi, Sobrino, José: Satellite remote sensing of surface urban heat islands: Progress,
challenges, and perspectives, Remote Sens., 11, 48, 2019. 10.3390/rs11010048

Shen, P., Zhao, S., Zhou, D., Lu, B., Han, Z., Ma, Y., Wang, Y., Zhang, C., Shi, C., Song, L.
Surface and canopy urban heat island disparities across 2064 urban clusters in China, Science

of the Total Environment, 955, https://doi.org/10.1016/j.scitotenv.2024.177035, 2024.

6. Line 189-196: The explanation here relies on visual interpretation of Figs. 3
and 4. I think this part can be removed as Fig.5 shows more reliable statistical
analyses.

Response: We apologize for the unclear description. As you correctly pointed out, this
part does rely too much on visual interpretation, especially the analysis of Fig. 4. The
reason we introduced urban morphology in Section 3.1 was to conduct a preliminary
analysis here, laying the groundwork for the in-depth analysis in the following
sections. In response to your comment, we have reorganized the relevant content to
reduce reliance on visual interpretation and better connect it with the more reliable
statistical analyses in Fig. 5. The revised content is shown in Lines 218-229:

“ Spatial analysis of daytime CUHII (Figure 3a) reveals that the Second Ring Road
exhibits the highest CUHII values across all metrics: 0.27°C during NHW periods,
0.65°C during HW periods, and a difference of 0.38°C between the two. Analysis of
urban configuration structures (Figure 4a) shows that the Second Ring has the highest
proportion of dense buildings, and the compact layout leads to the accumulation of
solar radiation heat in dense building clusters during the day, which is difficult to
diffuse (Ge et al., 2016). This may be an important reason for the increase in daytime
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CUHII during the HW periods. The nighttime CUHII differs (Figure 3b), with the
Fourth Ring having the highest CUHII (1.80°C during NHW periods, 2.52°C during
HW periods, and a difference of 0.72°C between the two). The Fourth Ring exhibits
the highest proportion of high-rise buildings (Figure 4b). The concentrated emission
of anthropogenic heat sources, such as air conditioners, in these high-rise zones (Yin
& Zhao, 2024) could potentially contribute to the intensification of nighttime CUHII
during heatwave events. Thus, urban morphology may be an important factor for the
formation of diurnal patterns of CUHIL In the following sections, this study will
conduct more reliable analyses using machine learning and numerical simulation

methods.”

7. Fig.5: Are these results from XGBoost model? How is the model evaluated?
For daytime results, the correlation value is small for all indicators except for
BCR, which is only about 0.3; This seems to suggest that model performance is
bad, or no single indicator is powerful enough to explain the CUHI. For
nighttime results, many 3D indicators have coefficients very closed to SVF, and
thus it is hard to argue that SVF is the dominant factor. The results can be
changed with slight modifications of the data or training processes. Without
rigorous model validation, the SHAP results in Fig.6 are less meaningful.
Response: We apologize for the unclear description. Figure 5 presents statistical
results based on the linear Pearson correlation model, which was used to conduct a
preliminary analysis of the relationship between urban morphological indicators and
CUHII before machine learning analysis. We have supplemented this explanation in
the figure caption and the main text. As you pointed out, there were inappropriate
descriptions of SVF. We have revised the relevant content accordingly.

In addition, as you emphasized, rigorous model validation is crucial for subsequent
SHAP analysis. Regarding the evaluation of the XGBoost model, we have provided a
detailed response and supplementary information in Comment 3, and here we will
give a brief summary. In this study, the coefficient of determination (R?) and root
mean square error (RMSE) were selected as evaluation metrics for simulation
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accuracy. We have added content related to the performance of the XGBoost model in
predicting CUHII: for the test dataset (Fig. S1), the R? values all exceed 0.45, while
the RMSE values are all within 0.05. These results indicate that the XGBoost model
can be regarded as a reliable tool for fitting the relationship between CUHII and urban

morphology.

8. Fig.8: the derivation and meaning of PDP plots shall be elaborated for general
readers not familiar with this method. Current discussions related to Figure 8
are hard to understand.

Response: Thank you for your valuable suggestion. We apologize for the insufficient
explanation of the Partial Dependence Plot (PDP) method, which may have caused
difficulties in understanding. Explainable machine learning techniques can help
understand the prediction process of "black-box models", as well as how the
relationships between variables change within their value ranges (Bansal & Quan,
2024). Such post-hoc explanation techniques can probe into the model to reveal the
relationships between variables. Partial Dependence Plot (PDP) is a commonly used
technique that can present the marginal effects of independent variables (Friedman,
2001). The generated plots show partial dependence function values, which are the
average marginal effects on the prediction results (Molnar, 2020). The partial
dependence function is defined as follows:

Jx)=E [fxsx )= f(xx)dP(xe) (1)

Wherex,is the target feature whose effects are to be studied, x, are other marginalized
features, and P represents the marginal probability density. The function f, can be

estimated using the Monte Carlo approximation method, with the formula as follows:
1 ¥ ]
fe)=r Lif(xsx?) (@)
where x(é) denotes the value of x. in the dataset, and # is the sample size.

Due to the model-agnostic nature of the above PDP specification, it can be applied to
both traditional linear regression models and machine learning models such as

XGBoost. For linear models, PDP can present marginal effects when other
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independent variables take their mean values; for machine learning models, PDP can

present the relationships between variables based on the tree structure of the model

(Bansal & Quan, 2024).

To address this, we have supplemented the derivation and core meaning of PDP plots

at the beginning of the discussion on Figure 8, aiming to help general readers grasp

the method first. Additionally, we have adjusted the expression of results related to

Figure 8 to enhance readability. The revised content is shown in Lines 287-291.

Reference:

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban
heat island using explainable machine learning: A case of Seoul, Building and Environment,
247, 1.1-1.20, https://doi.org/10.1016/j.buildenv.2023.110957, 2024.

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Annals of

Statistics, 29(5), 1189-1232, https://doi.org/10.2307/2699986, 2001.

9. Fig.9: How did the authors modify the physical domain to have different SVFs,
increase building height or reduce road width? Is such increment or decrement
uniform across the entire domain?

Response: Thank you for your inquiry. We apologize for not clarifying the specific
method of SVF adjustment. To address this, we have supplemented details on the
modification of the physical domain: SVF in different scenarios was adjusted only by
changing building heights (without altering street width, building area, or other spatial
parameters), and the adjustment was applied uniformly across the entire simulation
domain. The revised description is as follows:

“This section selected a 500-meter radius area around Station 651061 on the North
Fourth Ring Road as the simulation region, where the BCR was 0.225 and the SVF
was 0.76. Three scenarios were set up by adjusting building heights (with street width,
building footprint, and BCR kept unchanged to isolate the independent effect of SVF):
(D Scenario I: Used the original building heights in the study area, corresponding to
the real SVF (0.76, Figure 9a); (2 Scenario II: Based on the PDP analysis results of
the machine learning model, building heights were adjusted to reduce SVF to 0.735
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(the critical point of positive/negative effects, Figure 9b); (3 Scenario III: Building
heights were further adjusted to reduce SVF to 0.685 (the rapid growth stage of
negative effects, Figure 9c). Notably, building height modifications were applied
uniformly across the entire simulation domain to ensure consistent spatial conditions

except for SVF differences.”

10. Figs. 10 and 11: After changing SVF in the ENVI-met domain, authors only
analyze the temperature at the central point of the domain, this is too simple. In
fact, using ENVI-MET at 1 neighborhood with different SVFs to demonstrate
that temperature will change differently from NHW to HW does not sound
convincing or necessary.

Response: Thank you for your critical insight. We agree that analyzing only the
central point temperature is insufficient to reflect spatial variations, and we apologize
for the oversimplified interpretation. To address this, we have supplemented spatial
heterogeneity analysis of temperature responses across the entire domain, rather than
focusing solely on the central point. In addition, we have merged Figures 10 and 11 to
facilitate the comparison of diurnal and nocturnal characteristics under different
simulation scenarios. The revised content is as follows:

“The figure above shows the simulated AT spatial distribution under different
scenarios during daytime (Figure 10a). Spatial patterns reveal that during NHW
periods, Scenario II shows a 0.2—0.7°C temperature rise across the study region. The
central point confirms this trend, with AT increasing from 30.68°C in Scenario I to
31.09°C in Scenario II. Meanwhile, Scenario III exhibits a 0.3—-0.8°C cooling in these
areas, driven by building shadows, with the central point AT in Scenario III decreasing
to 30.33°C. During HW periods, these effects intensify. Scenario II sees a 0.5-1.1°C
warming across these zones, with the central point air temperature in Scenario II
increasing from 35.01°C to 35.76°C. Scenario III shows a 0.6—1.4°C cooling in study
region, with the central point AT in Scenario III dropping to 34.39°C. As SVF
decreased, the obstruction of building clusters to air flow intensified, reducing the
heat dissipation capacity. Meanwhile, blocking of long wave radiation was
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exacerbated, promoting heat accumulation and leading to temperature increases. It
should be noted that the temperature change patterns in Scenario III, like the drop in
central point AT, are related to excessively low SVF significantly increasing building
shadow areas, enhancing the shading effect on solar radiation, thus reducing surface
heat absorption and inhibiting temperature rise (Perini & Magliocco, 2014). Figure
10b shows the spatial distribution of the simulated AT indifferent scenarios at night.
During NHW periods, the central point AT in Scenario I was 24.86°C, increasing to
25.10°C in Scenario II with a relatively small variation, while that in Scenario III
increased significantly to 25.90°C. During HW periods, the central point AT in
Scenario I was 26.25°C, increasing to 26.83°C in Scenario II and increased
significantly to 27.93°C in Scenario III. Notably, this pattern of temperature variation
(moderate rise in Scenario II, sharp increase in Scenario III) is consistent across the
entire simulation domain. The increase in building height hinders the convective heat
dissipation of nighttime air, making heat dissipation difficult and thus promoting a
significant temperature rise (Mo et al, 2024). Furthermore, the temperature
differences between the scenarios during the HW periods were more significant than
during the NHW periods, indicating that changes in building height have a more
pronounced impact on air temperature during the HW periods, further amplifying the

non-linear modulation of the building SVF in AT.”

17



Figure 10: Spatial distributions of simulated AT across scenarios during daytime (a) and nighttime
(b). NHW-SI represents Scenario I during NHW periods, HW-SI represents Scenario I during HW
periods, and so forth. The intersection of the two gray crosshairs in each subplot indicates the

location of the meteorological station.

11. Section 4: the discussion section focuses on analyzing the impact of wind on
CUHI. However, the correlation is very weak. In addition, this part seems to
deviate from previous correlation and SHAP results. From my perspective,
authors seem to combine too many methods (XGBoost, ENVI-met, and
correlation with wind) to explain CUHI change under HW, and this paper lacks
a good organization and logic flow. After reading the paper, I am not sure what

authors aim to address, and what are the key findings.
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Response: Thank you very much for your valuable comments, which have helped us
identify critical issues in our discussion. We sincerely apologize for the unclear
presentation in Section 4. We have carefully revised this section to address these
concerns, and the key explanations are as follows:

“Figure 12a shows that during the daytime, the correlation coefficients (r) between
WS and CUHII were -0.14 during NHW periods and -0.18 during HW periods,
indicating a weak negative correlation that was slightly stronger during HW periods.
Deng et al. (2025) simulated that a 10% increase in WS could reduce the CUHII by
0.16°C during summer days. Stronger solar radiation during HW periods makes the
heat dissipation effect of wind more significant for CUHIIL. During night (Figure 12b),
the r was -0.19 during NHW periods and -0.27 during HW periods, with enhanced
negative correlations compared to daytime, especially during HW periods. This may
be related to the heat dissipation characteristics of the underlying urban surface during
nighttime (Liu et al., 2022), where slower heat release makes the modulation of WS in
CUHII more pronounced. Notably, compared with research findings from other cities
(Yang et al., 2023; Rajagopal et al., 2023; Deng et al., 2025), the CUHII in Beijing
exhibits a unique characteristic—it is insensitive to WS variations both during the
daytime and nighttime. This phenomenon may be explained by the regulatory role of
local geographical environments: existing studies have confirmed that local
circulations formed under different geographical backgrounds can significantly
reshape the spatiotemporal distribution of urban extreme high temperatures (Zhang et
al., 2011; Zhou et al., 2020; Chen et al., 2022). Specifically for Beijing, the
mountainous terrain in its western and northern regions gives rise to a typical
mountain-valley wind circulation, which exerts a strong regulatory effect on the urban
near-surface thermal dynamic field (Miao et al., 2013). Observations show that wind
directions in Beijing’s urban area display a regular diurnal variation: northerly winds
(mountain breeze) dominate from 05:00 to 10:00 Beijing Time; there is an obvious
reversal around 11:00, shifting to southerly winds (valley breeze) which persist until
04:00 the next day. Additionally, the average wind speed of mountain breeze is
significantly lower than that of valley breeze (Zheng et al., 2018b). Such distinct

19



periodic characteristics make mountain-valley breeze a key local factor influencing
Beijing’s thermal environment (Dou et al., 2014). Based on this, we speculate that the
“insensitivity of CUHII to WS variations” observed in this study may be the result of
interactions between the mountain-valley breeze cycle and the inherent diurnal cycle
of CUHII—the superposition of these two periodic processes may weaken the
regulatory effect of WS variations on CUHIIL. ”

In short, the coupling mechanism between mountain-valley breezes and the diurnal
cycle of CUHII (Fig. R1) may hold the key to explaining how WS acts on CUHIIL. We
will further quantify this mechanism through refined numerical simulations in future

research.

(a) Mountain breeze phase (b) Valley breeze phase
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Figure R1: Schematic diagram illustrating the modulation of CUHII by mountain-valley breeze (self-draw).

Reference:

Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., Gao, Z.: A high-resolution monitoring
approach of canopy urban heat island using a random forest model and multi-platform
observations, Atmospheric Measurement Techniques, 15, 735-756,

https://doi.org/10.5194/amt-15-735-2022, 2022.
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Dou, J., Wang, Y., Miao, S.: Fine spatial and temporal characteristics of humidity and wind in
Beijing urban area, Journal of Applied Meteorological Science, 25, 5, 559-569,
https://doi.org/10.11898/1001-7313.20140505, 2014.

Miao, Y., Liu, S., Chen, B., Zhang, B., Wang, S., Li, S.: Simulating urban flow and dispersion in
Beijing by coupling a CFD model with the WRF model, Advances in Atmospheric Sciences,
30, 6, 1663—1678, https://doi.org/10.1007/s00376-013-2234-9, 2013.

Rajagopal, P., Priya, R. S., & Senthil, R.: A review of recent developments in the impact of
environmental measures on urban heat island, Sustainable Cities and Society, 88, 104279,
https://doi.org/10.1016/j.s¢s.2022.104279, 2023.

Zhang, N., Zhu, L. F., Zhu, Y.: Urban heat island and boundary layer structures under hot weather
synoptic conditions: A case study of Suzhou City, China, Advances in Atmospheric Sciences,
28, 4, 855-865, https://doi.org/10.1007/s00376-010-0040-1, 201 1.

Zheng, Z., Ren, G., Gao, H.: Analysis of the local circulation in Beijing area, Meteorological
Monthly, 44, 3, 425-433, https://doi.org/10.7519/j.issn.1000-0526.2018.03.009, 2018.

Zhou, X., Okaze, T., Ren, C., Cai, M., Mochida, A.: Evaluation of urban heat islands using local
climate zones under the influences of sea-Land breeze, Sustainable Cities and Society, 55,

102060, https://doi.org/10.1016/j. scs.2020.102060, 2020.

In addition, We apologize for the unclear organization and vague presentation of the
research objectives and key findings in the original manuscript, which may have
caused confusion about how we integrated the methods (XGBoost, ENVI-met, and
wind correlation analysis) and the core logic. To fix this, we have revised the abstract
and conclusion. We now clarify that the methods work together (rather than being
simply combined) and clearly present the central research objective and key findings.
Specifically:

Revised abstract: Currently, the diurnal asymmetric and nonlinear mechanisms by
which urban morphology modulates the canopy urban heat island (CUHI) during heat
wave (HW) periods remain underexplored. This study aims to fill this gap by focusing
on the area within the Fifth Ring Road of Beijing, integrating three complementary
methods: XGBoost (to identify key morphological drivers), ENVI-met (to reveal
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nonlinear regulatory processes), and wind environment analysis (to supplement
dynamic modulation). The results show that: (1) HW periods significantly enhance
CUHI intensity (CUHII) compared to non-heat wave (NHW) periods, with a 91.3%
increase in daytime and 52.7% at night; (2) XGBoost identifies building coverage
ratio (BCR) as the core daytime driver of CUHII, while sky view factor (SVF)
dominates at night, and both 2D and 3D morphological indicators exert stronger
effects during HW periods; (3) ENVI-met simulations reveal nonlinear mechanisms
of building height/SVF: daytime thermal environments are co-driven by short-wave
radiation shading and ventilation resistance (as SVF decreases), while nighttime
environments are dominated by long-wave radiation accumulation by buildings; (4)
Wind environment analysis further shows diurnal differences in wind’s role: nighttime
ventilation corridors mitigate CUHII by 33.91-42.09%, while daytime prevailing
winds may exacerbate downstream CUHII via thermal advection. These findings
clarify the diurnal asymmetric mechanisms of CUHI and provide scientific support
for urban morphological optimization under extreme heat.

Revised conclusions: By integrating ground observations, XGBoost, and ENVI-met
simulations, this study systematically unravels the diurnal asymmetric and nonlinear
response of canopy urban heat island (CUHI) to urban morphology during heat wave
(HW) periods in Beijing. The results show that compared with non-heat wave (NHW)
periods, CUHI intensity (CUHII) during HW periods is significantly enhanced, with a
91.3% increase in daytime and 52.7% at night, and its diurnal variation presents a
U-shaped fluctuation with distinct spatial patterns (strongest within the Second Ring
Road in daytime and most prominent around the Fourth Ring Road at night). Machine
learning analysis indicates that building coverage ratio (BCR) is the most critical
driver of daytime CUHII, while sky view factor (SVF) dominates at night; the mean
importance of 2D/3D morphological indicators increases by 16.2%-36.7% during
HW periods, with significant interactions between BCR and SVF. ENVI-met
simulations further confirm the nonlinear modulation mechanism of urban
morphology: when SVF decreases from 0.735 to 0.685, daytime temperature
regulation is jointly affected by short-wave radiation shading and ventilation
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resistance, showing a "first warming then cooling" pattern, while nighttime
temperature changes are dominated by the reflection and accumulation of long-wave
radiation by buildings, exhibiting accelerated warming characteristics. Additionally,
the study identifies diurnal differences in the impact of wind fields on CUHIL:
ventilation corridors can reduce nighttime CUHII by 33.91%-42.09% to mitigate heat
islands effectively, whereas daytime prevailing winds may intensify CUHII in
downstream regions through thermal advection rather than simply acting as a cooling
factor. These findings clarify the diurnal asymmetric formation mechanism of CUHI
during HW periods and provide quantitative references for optimizing urban
morphology and planning ventilation corridors, offering precise scientific guidance

for mitigating urban thermal risks.

Minor comments:

1. Fig.1 caption: "Overview of study area" is repeated.

Response: Thank you for your comment. We apologize for the repetition of
"Overview of study area" in the caption of Fig. 1. This issue has been corrected.
Additionally, we have carefully checked the entire manuscript to avoid similar writing

problems.

2. Line 167: remove "the next day" as this is a averaged diurnal cycle
Response: Thank you for your reminder. We have removed "the next day" from Line

167, as it is indeed inappropriate in the context of an averaged diurnal cycle.

3. Fig.3 caption: only (a) and (b) sub-figures; and I suggest authors to add the
different in CUHI between HW and NHW to better illustrate the distribution of
CUHI change

Response: Thank you for your professional suggestion. As you recommended, we
have added the difference in CUHI between HW and NHW to Fig. 3 and conducted

relevant analyses in the text.
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Figure: 3 Diurnal spatial patterns of CUHII during NHW & HW. Panel (a) for daytime, (b) for
nighttime. In each panel, left: NHW CUHII stats & distribution; middle: HW CUHII stats &

distribution; right: HW-NHW CUHII difference.
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Response to Review Comments of the Second

Reviewer

Dear Reviewer and Editors:

We are sincerely grateful to the editor and reviewer for their valuable time for
reviewing our manuscript. The comments are very helpful and valuable, and we have
addressed the issues raised by the reviewer in the revised manuscript. Please find our
point-by-point response (in blue text) to the comments (in black text) raised by the
reviewer. We have revised the paper according to your comments (highlighted in red

text of the revised manuscript).

Sincerely yours,

Dr. Yuanjian Yang, representing all co-authors

Major comments:

1. Section 2.3.1: The HW definition requires stronger justification. Specifically,
why did the authors decide to use reference stations to define HW and why was
the threshold set to “more than two reference stations”?

Response: We apologize for the unclear in the original manuscript regarding the HW
events definition. We have supplemented relevant details in the revised version to
address this issue.

Reference stations (primarily rural stations) provide a baseline of regional climatic
conditions unaffected by urbanization, ensuring that the defined HWs reflect true
regional extreme HW events rather than local CUHI effects. As highlighted in
previous studies (Cheng et al., 2020; Stewart & Oke, 2012), rural reference stations,
with minimal impervious surfaces and anthropogenic heat emissions, capture the
natural climatic background.

Heat waves, by nature, are large-scale extreme weather events (Perkins et al., 2012;
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Rajulapati et al., 2022), and a single reference station’s abnormal high temperatures
may result from local factors (e.g., microtopography, temporary human activities)
rather than a true regional HW. Requiring confirmation from multiple reference
stations reduces the risk of misclassification due to individual station errors or local
anomalies, improving the robustness of the definition. This aligns with the statistical
logic in our study, where HW were counted independently at each station but required

spatial consistency to be recognized as a regional event (Xue et al., 2023).

In summary, using reference stations ensures the HW definition is rooted in regional

climatic anomalies, while the multi-station threshold guarantees the spatial generality

of the identified heat waves, making the results more reliable for analyzing CUHI and

HW.

References:

Cheng, X., Lan, T., Mao, R., Gong, D., Han, H., Liu, X.: Reducing air pollution increases the local
diurnal temperature range: a case study of Lanzhou, China, Meteorological Applications, 27,
https://doi.org/10.1002/met.1939, 2020.

Perkins, S. E., Alexander, L. V., & Nairn, J. R.: Increasing frequency, intensity and duration of
observed global heatwaves and warm spells, Geophysical Research Letters, 39,
https://doi.org/10.1029/2012GL053361, 2012.

Rajulapati, C. R., Gaddam, R. K., Nerantzaki, S. D., Papalexiou, S. M., Cannon, A. J., Clark, M. P.:
Exacerbated heat in large Canadian cities, Urban Climate, 42, 101097,
https://doi.org/10.1016/j.uclim.2022.101097, 2022.

Stewart, I. D., & Oke, T. R.: Local climate zones for urban temperature studies, Bulletin of the
American Meteorological Society, 93, 1879—-1900, https://doi.org/10.1175/BAMS-D-11-00019.1,
2012.

Xue, J., Zong, L., Yang, Y., Bi, X., Zhang, Y., Zhao, M.: Diurnal and interannual variations of canopy
urban heat island (CUHI) effects over a mountain—valley city with a semi-arid climate, Urban

Climate, 48, 101425, https://doi.org/10.1016/j.uclim.2023.101425, 2023.

2. Section 2.3.3: More details on the training/validation processes of XGBoost
are needed. How were the collinearity among morphological indicators (e.g.,
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https://doi.org/10.1002/met.1939,
https://doi.org/10.1029/2012GL053361,
https://doi.org/10.1016/j.uclim.2022.101097,
https://doi.org/10.1175/BAMS-D-11-00019.1,
https://doi.org/10.1016/j.uclim.2023.101425,

FAR and BCR) treated in the ML models? More detailed explanations of SHAP
and PDP methods would improve reader comprehension of the results in Figure
6-8.

Response: Thank you for your constructive comments. We appreciate the opportunity

to clarify the methodological details, and we have supplemented Section 2.3.3 with

additional explanations as follows:

(1) Details on the training/validation processes of XGBoost:

The XGBoost model training and validation processes were designed to ensure

robustness:

“In this study, we first performed iterative calculations on 7 commonly used

hyperparameters (eta, gamma, max depth, min child weight, subsample,

colsample bytree, and nrounds) within a preset hyperparameter tuning space, and

selected the optimal hyperparameter combination that minimizes model error using a

5-fold cross-validation method (Yang et al., 2020; Lin et al., 2024). After completing

hyperparameter optimization, we randomly split the sample points in the Yangtze

River Basin at a 7:3 ratio to obtain training samples (70%) and validation samples

(30%), which were used for training and validating the XGBoost model, respectively.

Meanwhile, the coefficient of determination (R?) and root mean square error (RMSE)

were chosen as evaluation metrics for simulation accuracy. ”

Reference:

Lin, Z., Xu, H., Han, L., et al.: Day and night: Impact of 2D/3D urban features on land surface
temperature and their spatiotemporal non-stationary relationships in urban building spaces,
Sustainable Cities and Society, 108, 105507, https://doi.org/10.1016/j.scs.2024.105507, 2024.

Yang, L., Xu, H., & Yu, S.: Estimating PM2.5 concentrations in Yangtze River Delta region of China
using random forest model and the Top-of-Atmosphere reflectance, J. Environ. Manag., 272,
111061, 2020.

(2) Treatment of collinearity among morphological indicators:

To address collinearity among morphological indicators in the XGBoost model, we

first conducted a correlation analysis for feature screening, following established

methodologies in similar studies (Harrell, 2015). Specifically, pairwise Pearson
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correlation coefficients were calculated for all indicators, with a threshold of 0.8 set to
identify highly collinear features. Features exceeding this threshold were evaluated
for retention based on their physical significance and relevance to CUHII. For FAR
(Floor Area Ratio) and BCR (Building Coverage Ratio), their correlation coefficient
was 0.56, well below the 0.8 threshold, indicating moderate correlation without severe
collinearity. Thus, both indicators were retained in the model.

Notably, the correlation coefficient between H (average building height) and H-std
(building height standard deviation) exceeded 0.8. Both are critical urban
morphological parameters influencing the local thermal environment (Tian et al.,
2019), yet their regulatory mechanisms differ substantially. On one hand, taller
buildings reduce daytime surface temperatures by increasing shading and reducing
solar radiation input at the surface (Zhang et al., 2016; Krayenhoff & Voogt, 2016;
Taleghani et al., 2016; Cai, 2017). Conversely, high-rise buildings have higher heat
capacity, enabling heat storage and slow nighttime release, which delays cooling and
intensifies nocturnal heat island effects (Unger, 2004). Additionally, ventilation
resistance increases with H: taller buildings strongly block air flow, potentially
causing stagnant air in the urban canopy and localized heat accumulation (Hang et al.,
2011).  In contrast, H-std (building height standard deviation) captures height
variation, reflecting spatial heterogeneity of urban morphology with distinct thermal
regulatory roles. By day, greater H-std enhances urban canopy turbulence, promoting
air circulation and heat dissipation to reduce LST. For instance, studies in Shenzhen
show significant cooling when In(H-std) > 0.5, as increased height variation
strengthens surface roughness and airflow disturbance (Wan et al., 2025). Similarly,
Fuzhou’s BH std (building height standard deviation) correlates negatively with
daytime LST, indicating ventilation-driven cooling (Lin et al., 2024).  Given their
distinct roles in regulating thermal environments, H and H-std are irreplaceable.
Therefore, this study retained both indicators.

Reference:
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Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and
Ordinal Regression, and Survival Analysis (2nd ed.), Springer,
https://doi.org/10.1007/978-3-319-19425-7, 2015.

Tian, Y., Zhou, W., Qian, Y., Zheng, Z., & Yan, J.: The effect of urban 2D and 3D morphology on air
temperature in residential neighborhoods, Landscape Ecology, 34(5), 1161-1178,
https://doi.org/10.1007/s10980-019-00834-7, 2019.

Unger, J.: Intra-urban relationship between surface geometry and urban heat island: review and new
approach, Climate Research, 27, 253-264, https://doi.org/10.3354/cr0272532004, 2004.

Zhang, H., Zhu, S., Gao, Y., Zhang, G.: The relationship between urban spatial morphology parameters
and urban heat island intensity under fine weather condition, Journal of Applied Meteorological
Science, 27, 2, 249-256. https://doi.org/10.11898/1001-7313.20160213, 2016.

Krayenhoff, E. S., Voogt, J. A.: Daytime thermal anisotropy of urban neighbourhoods: Morphological
causation, Remote Sensing, 8, 2, https://doi.org/10.3390/rs8020108, 2016.

Taleghani, M., Sailor, D., Ban-Weiss, G. A.: Micrometeorological simulations to predict the impacts of
heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood,
Environmental Research Letters, 11, 2, https://doi.org/10.1088/1748-9326/11/2/024003, 2016.

Cai, H., Xu, X.: Impacts of built-up area expansion in 2D and 3D on regional surface temperature,
Sustainability, 9, 10, https://doi.org/10.3390/su9101862, 2017.

Hang, J., Li, Y., Sandberg, M.: Experimental and numerical studies of flows through and within
high-rise building arrays and their link to ventilation strategy, Journal of Wind Engineering &
Industrial, 99, 1036-1055, https://doi.org/10.1016/j.envsoft.2016.06.021, 2011.

Wan, Y., Du, H,, Yuan, L., Xu, X., Tang, H., & Zhang, J.: Exploring the influence of block
environmental characteristics on land surface temperature and its spatial heterogeneity for a
high-density city, Sustainable Cities and Society, 118, 105973,
https://doi.org/10.1016/j.s¢s.2024.105973, 2025.

Lin, Z., Xu, H., Yao, X., Yang, C., & Ye, D.: How does urban thermal environmental factors impact
diurnal cycle of land surface temperature? A multi-dimensional and multi-granularity perspective,
Sustainable Cities and Society, 101, 105190, https://doi.org/10.1016/j.s¢s.2024.105190, 2024.

(3) Detailed explanations of SHAP and PDP methods :

Explainable machine learning techniques can help understand the prediction process
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https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1016/j.scs.2024.105973
https://doi.org/10.1016/j.scs.2024.105190,

of "black-box models", as well as how the relationships between variables change
within their value ranges (Bansal & Quan, 2024). Such post-hoc explanation
techniques can probe into the model to reveal the relationships between variables. We
have expanded the descriptions of SHAP to enhance clarity:
"SHAP (SHapley Additive exPlanations): This method quantifies each feature’s
contribution to individual predictions based on Shapley values from game theory
(Park et al., 2023). For each sample, SHAP values decompose the prediction into
feature-specific ~ contributions,  with  positive/negative  values  indicating
promotion/inhibition of CUHIL. "
In addition, Partial Dependence Plot (PDP) is a commonly used technique that can
present the marginal effects of independent variables (Friedman, 2001). The generated
plots show partial dependence function values, which are the average marginal effects
on the prediction results. The partial dependence function is defined as follows:
Ji)=E, [Mxgx)l= f(xx)dP(xe) (1)
Wherex,is the target feature whose effects are to be studied, x, are other marginalized
features, and P represents the marginal probability density. The function f, can be

estimated using the Monte Carlo approximation method, with the formula as follows:
| .
L= L (xsxd) @)
where x(ci) denotes the value of x. in the dataset, and » is the sample size.

Due to the model-agnostic nature of the above PDP specification, it can be applied to
both traditional linear regression models and machine learning models such as
XGBoost. For linear models, PDP can present marginal effects when other
independent variables take their mean values; for machine learning models, PDP can
present the relationships between variables based on the tree structure of the model
(Bansal & Quan, 2024).

To address this, we have supplemented the derivation and core meaning of PDP to
enhance clarity:

"Partial dependency plots (PDP) are a common explainable machine learning

technique that reveals the marginal effect of a target feature (e.g., urban
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morphological indicators) on prediction outcomes (CUHII) by holding other features

at their average levels or marginalizing their effects (Friedman, 2001; Bansal & Quan,

2024). Specifically, PDP illustrates the average trend of change in CUHII as a single

indicator (or a combination of two indicators) varies, while other indicators remain

stable—thereby isolating the independent impact of the target indicator. By leveraging

PDP to visualize the functional relationship between feature variables and model

outputs, we clarify the marginal effects of urban morphological indicators on CUHII,

which supports the identification of key driving factors and their threshold
characteristics. "

These supplementary ensure the methodological rigor of the ML-based analyses and

improve the interpretability of results in Figures 6—8. We appreciate your guidance in

strengthening the methodological transparency of our study.

Reference:

Park, S., Park, J., Lee, S.: Unpacking the nonlinear relationships and interaction effects between urban
environment factors and the urban night heat index. Journal of cleaner production, 428,
https://doi.org/10.1016/j.jclepro.2023.139407, 2023.

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban heat
island using explainable machine learning: A case of Seoul, Building and Environment, 247,
1.1-1.20, https://doi.org/10.1016/j.buildenv.2023.110957, 2024.

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Annals of Statistics,

29(5), 1189—-1232, https://doi.org/10.2307/2699986, 2001.

3. Section 3.2: Before presenting the analysis of Figures 6-8, there should be at
least one figure showing the model performance of XGBoost, as the validity of
these results strongly depend on the model’s predictability of CUHII.

Response: Thank you for this valuable suggestion. We fully agree that verifying the
predictive performance of the XGBoost model is critical to supporting the validity of
subsequent analyses (Figures 6-8).

To address this, we have added a new figure (now Figure X, placed at the beginning
of Section 3.2) that demonstrates the model’s performance. This figure includes: (1) a
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scatter plot of observed vs. predicted CUHII values, with a fitted regression line; (2)
statistical metrics such as R?, RMSE, and MAE to quantify prediction accuracy. These
results confirm that the XGBoost model achieves robust predictability, providing a
reliable basis for the subsequent SHAP and partial dependency analyses.

We appreciate your insight, which has enhanced the rigor of our methodological

validation.
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Figure S1: The performance graph of the XGBoost model in predicting CUHII.

4. Line 255-257: This summary largely repeats content in line 236-239. The
authors should streamline the conclusion from figure 8, e.g., focus more on the
nonlinear modulation.

Response: We apologize for the redundant in the previous version. We have deleted
the content in lines 236-239 to avoid repetition. Based on the findings from Figure 8,
we have streamlined the conclusion regarding nonlinear modulation. The revised
description is as follows:

“In summary, the regulation of urban morphology on CUHII exhibits significant
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diurnal asymmetry: 2D indicators predominate during the daytime, while 3D
indicators play a dominant role at night. Furthermore, urban morphology exerts
nonlinear modulation on CUHII, characterized by threshold effects and dual roles
(e.g., SVF showing both negative and positive impacts), with these nonlinear effects

being more pronounced during HW periods.”

5. Section 3.3: The scenario setup requires clarification. How were the uniform
SVF values applied across the entire domain in scenario II and III? Does
scenario I have spatially heterogeneous SVF values? If so, the rationale for using
uniform values in scenario II and III needs justification. Currently it is difficult
to interpret spatial changes in Figures 10-13 with most discussions focused on the
central point.

Response: Thank you for your valuable comment. We apologize for the insufficient
clarification on scenario setup and spatial characteristics of SVF, which has led to
difficulties in interpretation. We have revised the relevant content to address these
concerns, and the key explanations are as follows:

(1) SVF characteristics in Scenario I: Scenario I adopted the original building heights
of the study area (a 500-meter radius around Station 651061), where building heights
vary spatially due to real urban morphological heterogeneity (e.g., differences in
residential and commercial building heights). Consequently, the SVF in Scenario I is
spatially heterogeneous, with local variations around the mean value of 0.76,
reflecting the actual urban spatial pattern.

(2) Uniform adjustment of SVF in Scenarios II and III: To isolate the independent
effect of SVF on thermal environment, we adjusted building heights uniformly across
the entire domain in Scenarios II and III (while keeping street width, building
footprint, and BCR unchanged). This uniform adjustment ensured that SVF values in
these scenarios are more spatially consistent (targeting 0.735 and 0.685, respectively),
reducing interference from other spatial heterogeneities (e.g., uneven building height
distribution). This design allows us to explicitly link temperature changes to SVF
variations, avoiding confounding effects from concurrent changes in multiple
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morphological factors.

(3) Enhanced spatial analysis: We agree that analyzing only the central point
temperature is insufficient to reflect spatial variations, and we apologize for the
oversimplified interpretation. To address this, we have supplemented spatial
heterogeneity analysis of temperature responses across the entire domain, rather than
focusing solely on the central point. In addition, we have merged Figures 10 and 11,
Figures 12 and 13 to facilitate the comparison of diurnal and nocturnal characteristics
under different simulation scenarios. The revised content is as follows:

“The figure above shows the simulated AT spatial distribution under different
scenarios during daytime (Figure 10a). Spatial patterns reveal that during NHW
periods, Scenario II shows a 0.2-0.7°C temperature rise across the study region. The
central point confirms this trend, with AT increasing from 30.68°C in Scenario I to
31.09°C in Scenario II. Meanwhile, Scenario III exhibits a 0.3—-0.8°C cooling in these
areas, driven by building shadows, with the central point AT in Scenario III decreasing
to 30.33°C. During HW periods, these effects intensify. Scenario II sees a 0.5-1.1°C
warming across these zones, with the central point air temperature in Scenario II
increasing from 35.01°C to 35.76°C. Scenario III shows a 0.6—1.4°C cooling in study
region, with the central point AT in Scenario III dropping to 34.39°C. As SVF
decreased, the obstruction of building clusters to air flow intensified, reducing the
heat dissipation capacity. Meanwhile, blocking of long wave radiation was
exacerbated, promoting heat accumulation and leading to temperature increases. It
should be noted that the temperature change patterns in Scenario III, like the drop in
central point AT, are related to excessively low SVF significantly increasing building
shadow areas, enhancing the shading effect on solar radiation, thus reducing surface
heat absorption and inhibiting temperature rise (Perini & Magliocco, 2014). Figure
10b shows the spatial distribution of the simulated AT indifferent scenarios at night.
During NHW periods, the central point AT in Scenario I was 24.86°C, increasing to
25.10°C in Scenario II with a relatively small variation, while that in Scenario III
increased significantly to 25.90°C. During HW periods, the central point AT in
Scenario I was 26.25°C, increasing to 26.83°C in Scenario II and increased
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significantly to 27.93°C in Scenario III. Notably, this pattern of temperature variation
(moderate rise in Scenario II, sharp increase in Scenario III) is consistent across the
entire simulation domain. The increase in building height hinders the convective heat
dissipation of nighttime air, making heat dissipation difficult and thus promoting a
significant temperature rise (Mo et al, 2024). Furthermore, the temperature
differences between the scenarios during the HW periods were more significant than
during the NHW periods, indicating that changes in building height have a more
pronounced impact on air temperature during the HW periods, further amplifying the

non-linear modulation of the building SVF in AT.”

(b) Night

Figure 10: Spatial distributions of simulated AT across scenarios during daytime (a) and nighttime
(b). NHW-SI represents Scenario I during NHW periods, HW-SI represents Scenario I during HW

periods, and so forth. The intersection of the two gray crosshairs in each subplot indicates the
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location of the meteorological station.

“Combined with the spatial distribution of short-wave (SW) radiation, the temperature
phenomena under different SVF daytime conditions can be further explained (Figure
11a). Overall, SW radiation during HW periods is higher than during NHW periods.
Specifically, in Scenario II during the HW periods, the average SW radiation slightly
decreases from 636.16 W/m? to 602.27 W/m?, the SW radiation at the central point
decreases from 970 W/m? to 930 W/m?, but AT shows an upward trend. This can be
attributed to the obstruction of air flow by buildings (Ge et al., 2025), where the heat
accumulation effect dominates in the competition between SW radiation attenuation
caused by increased building height and air flow resistance. In Scenario III, the
average SW radiation drops to 537.88 W/m?, the central point’s SW radiation
plummets to 860 W/m? and significant shadow shading leads to a substantial
reduction in SW radiation (Lin et al., 2024), thereby inhibiting the temperature rise.
At night, the heat dissipation of LW radiation exhibits stronger non-linear threshold
characteristics (Figure 11b). In Scenario II during the HW periods, the average LW
radiation increases from 408.34 W/m? to 412.81 W/m?, and the LW radiation at the
central point climbs from 388 W/m? to 394 W/m? At this time, the resistance to
escape of LW radiation is limited, so the air temperature only increases slightly. In
Scenario III, the lower SVF significantly reduces the loss of LW radiation to the
atmosphere, with the average LW radiation rapidly increasing to 424.31 W/m?, and
the central point’s LW radiation surges to 410 W/m?, accompanied by a noticeable
temperature increase. This is because multiple reflections between building facades
retain radiation energy within urban canyons, thus enhancing the capture of LW
radiation (Mei et al., 2025). In summary, buildings exert nonlinear modulation on
urban diurnal thermal environments through the competitive effects of SW radiation
shading and ventilation resistance, as well as the reflection and accumulation

mechanisms of LW radiation.”
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Figure: 11 Spatial distribution of simulated short-wave (SW) radiation (a) and long-wave (LW)

radiation (b) across scenarios during NHW and HW periods.

6. Section 4: While the wind-CUHII relationship is worth discussing, the
analysis should emphasize how urban morphology modulates wind patterns to
be tightly connected with the main theme of this work. The current presentation
of Figures 14-16 lacks clear connection to morphological controls, making it
difficult to identify the key messages.

Response: Thank you very much for your valuable comments, which have helped us
identify critical issues in our discussion. We sincerely apologize for the unclear
presentation in Section 4. We have carefully revised this section to address these

concerns, and the key explanations are as follows:
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“Figure 12a shows that during the daytime, the correlation coefficients (r) between
WS and CUHII were -0.14 during NHW periods and -0.18 during HW periods,
indicating a weak negative correlation that was slightly stronger during HW periods.
Deng et al. (2025) simulated that a 10% increase in WS could reduce the CUHII by
0.16°C during summer days. Stronger solar radiation during HW periods makes the
heat dissipation effect of wind more significant for CUHIIL. During the night (Figure
12b), the r was -0.19 during NHW periods and -0.27 during HW periods, with
enhanced negative correlations compared to daytime, especially during HW periods.
This may be related to the heat dissipation characteristics of the underlying urban
surface during nighttime (Liu et al., 2022), where slower heat release makes the
modulation of WS in CUHII more pronounced. Notably, compared with research
findings from other cities (Yang et al., 2023; Rajagopal et al., 2023; Deng et al., 2025),
the CUHII in Beijing exhibits a unique characteristic—it is insensitive to WS
variations both during the daytime and nighttime. This phenomenon may be closely
linked to urban morphology and local geographical environments. Urban morphology
significantly modulates wind penetration and heat exchange efficiency: compact
built-up areas with high BCR and low SVF (e.g., the Second Ring Road) form dense
building clusters that block airflow, reducing WS and weakening wind-driven heat
dissipation, thus making CUHII less responsive to WS changes. In addition, existing
studies have confirmed that local circulations formed under different geographical
backgrounds can significantly reshape the spatiotemporal distribution of urban
extreme high temperatures (Zhang et al., 2011; Zhou et al., 2020; Chen et al., 2022).
Specifically for Beijing, the mountainous terrain in its western and northern regions
gives rise to a typical mountain-valley wind circulation, which interacts with urban
morphology: dense buildings in central areas disrupt valley breeze penetration, while
sparse layouts in suburbs align with mountain winds. This interplay between
morphology and terrain-induced winds weakens the modulation of WS variations on
CUHII. Observations show that wind directions in Beijing’s urban area display a
regular diurnal variation: northerly winds (mountain breeze) dominate from 05:00 to
10:00 Beijing Time; there is an obvious reversal around 11:00, shifting to southerly
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winds (valley breeze) which persist until 04:00 the next day. Additionally, the average
WS of the mountain breeze is significantly lower than that of the valley breeze (Zheng
et al., 2018). Such distinct periodic characteristics make mountain-valley breeze a key
local factor influencing Beijing’s thermal environment (Dou et al., 2014). Based on
this, we speculate that the “insensitivity of CUHII to WS variations” observed in this
study may be the result of interactions between the mountain-valley breeze cycle,
urban morphology, and the inherent diurnal cycle of CUHIL.”

In short, the coupling mechanism between local circulation, urban morphology and
the diurnal cycle of CUHII (Fig. R1) may hold the key to explaining how WS acts on
CUHIL. We will further quantify this mechanism through refined numerical

simulations in future research.

(a) Mountain breeze phase (b) Valley breeze phase
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Figure R1: Schematic diagram illustrating the modulation of CUHII by mountain-valley breeze (self-draw).

“Urban ventilation corridors represent an energy-efficient ecological approach to
improving urban wind-thermal environments by taking advantage of natural
meteorological conditions (Masmoudi & Mazouz, 2004; Masson, 2006; Palusci et al.,
2021). In recent years, Beijing has proposed to construct ventilation corridors to
alleviate increasingly severe urban environmental problems, with corridor designs

intentionally aligned with urban morphological features—such as low BCR, high SVF,

39



and wide street canyons—to minimize aerodynamic resistance (Figure 13a). This
section designates nine stations within first-level ventilation corridors (VC-Stations)
as those embedded in open built-up areas (sparse buildings, low-rise structures) and
the remaining 39 stations in compact built-up areas (NVC-Stations) as
Non-Ventilation Corridor Stations. Data show that WS at NVC-Stations (Figure 13b)
is significantly lower than that at VC-Stations (Figure 13c), a difference primarily
driven by urban morphological controls: dense high-rises in NVC areas disrupt
airflow, while VC areas’ open layouts allow unobstructed wind penetration. For
example, at night during HW periods, WS at NVC-Stations remains around 0.5 m/s
due to wind blockage by closely packed buildings, whereas that at VC-Stations stays
above 0.8 m/s, facilitated by their low-rise, sparse morphologies. CUHII in
VC-Stations generally exhibits an inverse relationship with WS, with morphological
traits amplifying this effect. At NVC-Stations, their compact morphologies (high BCR,
low SVF) limit heat dissipation; when WS is 0.5 m/s in the early morning during HW
periods, CUHII reaches 1.9°C due to trapped heat. In contrast, when WS increases to
1.5 m/s in the afternoon at VC-Stations—where open morphologies enhance turbulent
heat exchange—CUHII drops to only 0.3°C. Notably, the CUHII mitigation effect of
ventilation corridors shows significant diurnal differences influenced by urban
morphology. During the daytime, high baseline WS reduces the relative impact of
ventilation corridor-induced WS gains, but VC areas’ low-rise structures still promote
more efficient heat dispersion than NVC’s dense canyons. During nighttime, with
lower background WS, the WS enhancement from VC’s open morphologies is more
pronounced (Hsieh & Huang, 2016), and the thermal environment—sensitive to
trapped heat in NVC’s compact morphologies—is more responsive to WS modulation
(She et al., 2022), resulting in significantly lower nighttime CUHII at VC-Stations
(42.09% lower during NHW periods and 33.91% lower during HW periods).”

These revisions strengthen the connection between urban morphology and
wind-CUHII dynamics, ensuring the analysis is tightly linked to our focus on urban
morphology’s role in modulation of CUHIL.
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Minor comments:

1. Figure 3: There are (a)-(f) in the caption but only four subplots are presented.
Response: We apologize for the error in Figure 3 where the caption incorrectly. This
has been corrected to ensure the number of subplots matches the caption. We have
also thoroughly reviewed the entire manuscript to prevent similar issues in other

figures. Thank you for bringing this to our attention.
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Figure: 3 Diurnal spatial patterns of CUHII during NHW & HW. Panel (a) for daytime, (b) for
nighttime. In each panel, left: NHW CUHII stats & distribution; middle: HW CUHII stats &

distribution; right: HW-NHW CUHII difference.
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2. Figure 6: It would be easier to interpret if the authors can group 2D and 3D
indicators (e.g.presenting all 2D indicators in the first 6 rows, followed by 3D
indicators).

Response: We apologize for the unclear differentiation of 2D and 3D urban
morphological indicators in Figure 6, which compromised interpretability. The current
arrangement of indicators in the SHAP plots follows the feature importance order
automatically determined by the XGBoost model (based on their contribution to
CUHII predictions), resulting in the interleaving of 2D (e.g., BCR, L/W) and 3D (e.g.,
H, SVF, H-std) indicators.

Recognizing the merit of your suggestion, we have enhanced the figure by
color-coding 2D indicators in red and 3D indicators in green. Thank you for your

constructive feedback, which has guided us to strengthen the figure’s communicative

clarity.
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Figure 6: SHAP value analysis of urban morphology indicators for diurnal CUHII during NHW and HW periods,
using XGBoost model. SHAP quantifies feature contributions to model outputs. The red/blue color gradients

represent high/low feature values, with red indicating 2D urban morphological indicators and green indicating 3D
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urban morphological indicators.

3. Figure 9d: Does the ‘simulation accuracy’ refer to scenario 1?

Response: We apologize for the ambiguous reference to "simulation accuracy" in
Figure 9d. To address this, we have explicitly clarified in the figure caption. The
updated caption now states: “(d) simulation accuracy of air temperature (AT) for

Scenario I during NHW and HW periods.”
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