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Response to Review Comments of the First Reviewer

Dear Reviewer and Editors:

We are sincerely grateful to the editor and reviewer for their valuable time for

reviewing our manuscript. The comments are very helpful and valuable, and we have

addressed the issues raised by the reviewer in the revised manuscript. Please find our

point-by-point response (in blue text) to the comments (in black text) raised by the

reviewer. We have revised the paper according to your comments (highlighted in red

text of the revised manuscript).

Sincerely yours,

Dr. Yuanjian Yang, representing all co-authors

Major comments:

1. Section 2.2.2: Six 2D and 3D indicators are selected as predictor variables for

CUHI, but there can be more indicators. Could authors justify why these

indicators are used? A review on morphology variables used in previous

regression/MLmethods is needed.

Response: We apologize for the vague description. As requested, we have

supplemented a review of morphology variables used in previous study. Please refer

to Lines 96-116 for the revised content:

“From a spatial perspective, urban spatial morphology can be divided into urban

2D/3D morphology. At the 2D level, academic circles have systematically explored

the association between urban morphology and local thermal environments (Tysa et

al., 2019; Yu et al., 2020). For instance, the proportion of building area has a

significant warming effect (Wang et al., 2017; Liu et al., 2021), and studies have

shown that when the building area is fixed, there is a significant positive correlation

between temperature and the building patch index (Shi et al., 2015). In addition to 2D



2

morphology, the regulatory role of 3D urban morphology in thermal environments has

attracted much attention in recent years (Yin et al., 2018; Tian et al., 2019; Zhou et al.,

2022; Xu et al., 2024; Bansal & Quan, 2024). Although 3D morphology is based on

2D pattern parameters with the addition of height information, its characterization is

not limited to height but also includes other features derived from height. Taking the

sky view factor (SVF) as an example, this indicator refers to the ratio of the visible

sky range to the total visible range at a fixed point on the ground. It is an important

parameter for characterizing the geometric characteristics, density, and thermal

balance of urban areas, and also a key factor affecting the generation and intensity of

the heat island effect (Scarano & Mancini, 2017). Relevant studies have shown that

surface temperature in summer is significantly correlated with building height (Cai &

Xu, 2017); regulating SVF may serve as a potential means to mitigate the urban local

thermal environment in high-density urban areas (Xu et al., 2024). We obtained

building data from Baidu Maps (https://map.baidu.com), including building base

projection boundaries and total floor information. The building base projection

boundaries can be used to characterize the horizontal distribution of urban buildings.

We calculate the height of the building by multiplying the number of floors by 3

meters. This method has been verified to have an overall accuracy of 86.78% (Liu et

al., 2021), and the conversion results are reliable based on the regular characteristics

of the floor heights of urban buildings (Alavipanah et al., 2018). The specific

definitions and calculations of the 2D/3D indicators are as follows in Table S1. Finally,

we selected a 500m buffer zone (Oke, 2004) and used the six two-dimensional

indicators and six three-dimensional indicators to describe the morphological

characteristics of buildings. ”

Table S1: The calculation and definitions of urban morphology indicators involved in this

paper.

Type Indicators Calculation Definitions

2D BCR A

a
BCR

i
ai: Area of individual building patches

Building coverage ratio (BCR):

The ratio of building base area
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A: Total area. to buffer area.

NEAR
))()(( 22

jiji yyxxminNEAR 

(x,y): Coordinates of building centroids.

Average adjacent building

distance (NEAR): A lower value

indicates higher building

density.

NP
 BPNP

BP: building patches.

Number of building patches

(NP): Reflects the fragmentation

degree of regional buildings.

SPLIT 


2
i

2

a

ASPLIT

Split index (SPLIT): A larger

value indicates a higher degree

of landscape fragmentation.

AI

100
)max(g

g
AI

ij

ij 













gii: Number of like adjacencies between

buildings.

Aggregation index (AI): A

smaller value indicates weaker

connectivity of landscape

patches.

L/W 100WL 









length  axisShortest  
length axisLongest /

Building length-width ratio

(L/W): Characterizes the planar

morphological characteristics of

buildings.

3D

H NP

h
H

i
hi: Height of individual buildings.

Average building height (H):

The mean value of building

heights within the buffer.

H-max ),h2,....,hmax(hH-max n1

Maximum building height

(H_max): The highest building

height in the region.

H-std
2

i

NP

H)(h
H-std  



Building height standard

deviation (H_std): Reflects the

difference in building heights in

the region.



4

FAR A

na
FAR

i 


n: Number of floors in the building.

Floor area ratio (FAR): The ratio

of total building area to buffer

area, where a higher value

indicates greater development

intensity per unit land.

CI

total area

building
V
V

CI 

Vbuilding: Building volume. Vtotal area:

Neighborhood volume.

Volume index (CI): The ratio of

building volume to the total

volume of the study area, where

a larger value indicates a higher

degree of space occupation.

SVF
2π

Δθγ
1SVF

i 


γi: Obstruction elevation angle.

Δθ: Azimuth interval.

Sky view factor (SVF): Ranges

from 0 to 1, where a smaller

value indicates more significant

sky obstruction.

Reference:

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban

heat island using explainable machine learning: A case of Seoul, Building and Environment,

247, 110957, https://doi.org/10.1016/j.buildenv.2023.110957, 2024.

Cai, H., & Xu, X.: Impacts of built-up area expansion in 2D and 3D on regional surface

temperature, Sustainability, 9(10), https://doi.org/10.3390/su9101862, 2017.

Liu, M., Ma, J., Zhou, R., Li, C., Li, D., & Hu, Y.: High-resolution mapping of mainland China’s

urban floor area, Landscape and Urban Planning, 214, 104187,

https://doi.org/10.1016/j.landurbplan.2021.104187, 2021.

Shi, T., Huang, Y., Shi, C., & Yang, Y.: Influence of urbanization on the thermal environment of

meteorological stations: Satellite-observational evidence, Advances in Climate Change

Research, 6(1), 7–15, https://doi.org/10.1016/j.accre.2015.07.001, 2015.

Tysa, S. K., Ren, G., Qin, Y., Zhang, P., Ren, Y., Jia, W., & Wen, K.: Urbanization effect in

regional temperature series based on a remote sensing classification scheme of stations,
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Journal of Geophysical Research: Atmospheres, 124(13), 7064–7079,

https://doi.org/10.1029/2019JD030948, 2019.

Wang, J., Tett, S. F. B., & Yan, Z.: Correcting urban bias in large-scale temperature records in

China, 1980–2009, Geophysical Research Letters, 44(1), 401–408,

https://doi.org/10.1002/2016GL071524, 2017.

Xu, Y., Yang, J., Zheng, Y., Liu, W.: Impacts of two-dimensional and three-dimensional urban

morphology on urban thermal environments in high-density cities: A case study of Hong

Kong, Building and Environment, 252, 111249,

https://doi.org/10.1016/j.buildenv.2024.111249, 2024.

Yu, Z., Chen, S., Wong, N., Ignatius, M., Deng, J., He, Y., & Hii, D. J. C.: Dependence between

urban morphology and outdoor air temperature: A tropical campus study using random

forests algorithm, Sustainable Cities and Society, 61, 102200,

https://doi.org/10.1016/j.scs.2020.102200, 2020.

Zhou, R., Xu, H., Zhang, H., Zhang, J., Liu, M., He, T., Gao, J., Li, C.: Quantifying the

Relationship between 2D/3D Building Patterns and Land Surface Temperature: Study on the

Metropolitan Shanghai, Remote Sensing, 14(16), 4098, https://doi.org/10.3390/rs14164098,

2022.

2. Section 2.3.1: How many HW days are found based on the criteria used in this

study? This information can be put in Figure 2 to better illustrate the length of

HWs.

Response: Thank you for your excellent suggestion. We have added the annual

duration of HW periods to Figure 2 as recommended. In addition, we have attached a

table showing the monthly duration of HW periods for each year in this response.

Thank you again for your valuable input.
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Figure 2: Diurnal variations of the CUHII during the NHW and HW periods. (a)-(e)

Year-specific patterns; (f) Multi-year average. Left panels: CUHII diurnal cycles (solid lines)

with shaded areas showing standard deviations. Right panels: Violin plots of CUHII

distributions during the day (08:00-19:00) and at night (00:00-07:00, 20:00-24:00).

Tab. R1 The duration of HW periods by year.

HWs period

duration (day)
2018 2019 2020 2021 2022

Jun 10 0 3 5 10

Jul 6 13 3 3 4

Aug 5 0 3 2 3

Sum 21 13 9 8 17

3. Section 2.3.3: The training process of XGBoost model requires more details.

What data is used as training, validation, and test set, respectively? How is the

model performance evaluated? This is the major flaw because the results in Fig.
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5 and Fig. 6 will be significantly affected by the model performance.

Response: We have supplemented these important details in the text, including

specific information on the data used for the training set, validation set, and test set, as

well as the methods for evaluating model performance. In addition, we have added a

performance graph of the XGBoost model in predicting CUHII in the supplementary.

Please refer to Lines 143-150 and 259-261for the revised content:

“In this study, we first performed iterative calculations on 7 commonly used

hyperparameters (eta, gamma, max_depth, min_child_weight, subsample,

colsample_bytree, and nrounds) within a preset hyperparameter tuning space, and

selected the optimal hyperparameter combination that minimizes model error using a

5-fold cross-validation method (Yang et al., 2020; Lin et al., 2024). After completing

hyperparameter optimization, we randomly split the sample points in the Yangtze

River Basin at a 7:3 ratio to obtain training samples (70%) and validation samples

(30%), which were used for training and validating the XGBoost model, respectively.

Meanwhile, the coefficient of determination (R²) and root mean square error (RMSE)

were chosen as evaluation metrics for simulation accuracy. ”

“Fig. S1 illustrates the performance of the XGBoost model in predicting CUHII. For

the test dataset, the R² values all exceed 0.45, while the RMSE values are all within

0.05. These results indicate that the XGBoost model can be regarded as a reliable tool

for fitting the relationship between CUHII and urban morphology (He et al., 2024;

Lin et al., 2024).”
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Figure S1: The performance graph of the XGBoost model in predicting CUHII.

Reference:

He, J., Shi, Y., Xu, L., Lu, Z., Feng, M., Tang, J., & Guo, X.: Exploring the scale effect of urban

thermal environment through XGBoost model, Sustainable Cities and Society, 114, 105763,

https://doi.org/10.1016/j.scs.2024.105763, 2024.

Lin, Z., Xu, H., Han, L., et al.: Day and night: Impact of 2D/3D urban features on land surface

temperature and their spatiotemporal non-stationary relationships in urban building spaces,

Sustainable Cities and Society, 108, 105507, https://doi.org/10.1016/j.scs.2024.105507,

2024.

Yang, L., Xu, H., & Yu, S.: Estimating PM2.5 concentrations in Yangtze River Delta region of

China using random forest model and the Top-of-Atmosphere reflectance, J. Environ.

Manag., 272, 111061, 2020.
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4. Section 2.3.4: How did authors select study areas for ENVI-met simulations?

And what are the values used for various thermal properties in the model setup?

Response: Thank you for your insightful comments. We apologize for the lack of

clarity regarding the selection of study areas and thermal property parameters in the

ENVI-met model setup. We have supplemented relevant details in Section 2.3.4, and

the revised content is as follows:

“ENVI-met has been widely applied in cooling effect assessment (Di Giuseppe et al.,

2021), temperature field prediction (Forouzandeh, 2021), and thermal comfort

research (Berardi et al., 2020). The selection of ENVI-met simulation areas in this

study was based on two core principles: ① Urban morphological representativeness:

Typical functional zones in Beijing were selected, covering dominant urban forms

such as high-density high-rises and low-density low-rises, which can reflect the

representative spatial characteristics of Beijing’s urban area; ② Data support: These

zones are equipped with long-term AWS operated by the China Meteorological

Administration, which provide continuous air temperature data at a height of 1.5

meters, serving as a reliable benchmark for model validation.

The model integrates high-resolution Google Earth imagery and field survey data to

accurately construct the three-dimensional spatial configuration of buildings,

vegetation, and soil, with vegetation parameters derived from ENVI-met’s 3D plant

database. The horizontal extent of the model was set to 1×1 km (200×200 grids, 5 m

resolution), with 65 grid layers in the vertical direction. The setting of thermal

property parameters for surface materials integrated field sampling analysis and

calibration results from existing literature (Meng et al., 2024): ① Impervious surfaces:

Dominated by asphalt, with parameters set with reference to the heat conduction and

radiation characteristics of typical urban asphalt pavements; ② Pervious surfaces:

Mainly composed of loam, with parameters determined based on the heat capacity

and thermal conductivity of soil samples from the study area; ③ Vegetation

parameters: Set in combination with the leaf radiation characteristics and transpiration

parameters of common tree species in Beijing, which affect the surrounding thermal

environment through transpiration and shading. To reduce boundary effects, a
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10-layer nested grid technique was used (Kong et al., 2016), with surface materials set

as a mixture of loam and asphalt. The model’s boundary meteorological parameters

(temperature, humidity, wind speed, wind direction) were updated every 30 minutes

using a complete forcing method, with data obtained from meteorological station

measurements. For model validation, the R² and RMSE were adopted, with a focus on

the simulation accuracy of air temperature at a height of 1.5 meters. Typical urban

meteorological stations in Beijing were selected, multi-scenario simulation schemes

were designed, and emphasis was placed on analyzing the mechanisms by which

morphological indicators act on CUHII, canopy ventilation, and radiation exchange.”

Reference:

Di Giuseppe, E., Ulpiani, G., Cancellieri, C., Di Perna, C., D’Orazio, M., & Zinzi, M.: Numerical

modelling and experimental validation of the microclimatic impacts of water mist cooling in

urban areas, Energy and Buildings, 231, 110638,

https://doi.org/10.1016/j.enbuild.2020.110638, 2021.

Forouzandeh, A.: Prediction of surface temperature of building surrounding envelopes using

holistic microclimate ENVI-met model, Sustainable Cities and Society, 70, 102878,

https://doi.org/10.1016/j.scs.2021.102878, 2021.

Berardi, U., Jandaghian, Z., & Graham, J.: Effects of greenery enhancements for the resilience to

heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale

(Envi-met) modeling, Science of the Total Environment, 747, 141300,

https://doi.org/10.1016/j.scitotenv.2020.141300, 2020.

Meng, Q., Gao, J., Zhang, L., et al.: Coupled cooling effects between urban parks and surrounding

building morphologies based on the microclimate evaluation framework integrating remote

sensing data, Sustainable Cities and Society, 102, 105235,

https://doi.org/10.1016/j.scs.2024.105235, 2024.

Kong, F., Sun, C. F., Liu, F. F., Yin, H. W., Jiang, F., Pu, Y. X., et al.: Energy saving potential of

fragmented green spaces due to their temperature regulating ecosystem services in the

summer, Applied Energy, 183, 1428–1440, https://doi.org/10.1016/j.apenergy.2016.09.070,

2016.



11

5. Line 177: the larger nighttime CUHI than daytime CUHI shall be better

explained. there have been many studies in the literature, and it will be good to

have at least some comparisons against CUHI during HW at different cities.

Response: Thank you for your valuable suggestion. We have strengthened the

explanation of the causes for the diurnal differences in CUHII in the manuscript and

added comparisons with the diurnal variation characteristics of CUHII in cities such

as Shanghai and Athens. The revised content can be found in lines 199–211:

“It should be noted that during both NHW and HW periods, nighttime CUHII is

generally significantly higher than daytime CUHII. This can be explained by the

urban-rural differences in energy budgets: during the daytime, cities are heated by

solar radiation, with surface heat transferred to the atmosphere through turbulence and

regulated by ventilation conditions; at nighttime, urban buildings and impervious

surfaces release stored heat, while suburbs form radiative cooling due to vegetation

cover, further widening the urban-rural temperature difference (Zhou et al., 2019;

Shen et al., 2024). Furthermore, the diurnal variation characteristics of CUHII are not

absolute, as their intensity and timing distribution vary with the geographical

environment of cities. For example, the CUHII in Shanghai during HW periods and

its difference from that in non-heatwave periods are strongest around noon (Ao et al.,

2019; Tan et al., 2010), and this pattern has also been verified in Athens, Greece

(Founda et al., 2017). Such differences from Beijing (where nighttime CUHII is

stronger) mainly stem from variations in local circulation: coastal cities like Shanghai

and Athens are significantly affected by sea-land breeze advective cooling, and the

large heat capacity of seawater weakens the nighttime urban-rural temperature

difference; in contrast, nighttime CUHII in Beijing, an inland city, is mainly

dominated by surface radiation budgets (Ao et al., 2019).”

Reference:

Founda, D., Santamouris, M.: Synergies between urban heat island and heat waves in Athens

(Greece), during an extremely hot summer (2012), Scientific Reports, 7(1), 10973, 2017.

10.1038/s41598-017-11407-6



12

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., F Li:

The urban heat island and its impact on heat waves and human health in Shanghai,

International Journal of Biometeorology, 54, 75–84, 2010. 10.1007/S00484-009-0256-X

Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D.: Observed synergies between urban heat

islands and heat waves and their controlling factors in Shanghai, China, Journal of Applied

Meteorology and Climatology, https://doi.org/10.1175/jamc-d-19-0073.1, 2019.

Zhou, D., J Xiao，S Bonafoni，C Berger，Deilami, Kaveh，Zhou, Yuyu，Frolking, Steve，Yao,

Rui，Qiao, Zhi，Sobrino, José: Satellite remote sensing of surface urban heat islands: Progress,

challenges, and perspectives, Remote Sens., 11, 48, 2019. 10.3390/rs11010048

Shen, P., Zhao, S., Zhou, D., Lu, B., Han, Z., Ma, Y., Wang, Y., Zhang, C., Shi, C., Song, L.:

Surface and canopy urban heat island disparities across 2064 urban clusters in China, Science

of the Total Environment, 955, https://doi.org/10.1016/j.scitotenv.2024.177035, 2024.

6. Line 189-196: The explanation here relies on visual interpretation of Figs. 3

and 4. I think this part can be removed as Fig.5 shows more reliable statistical

analyses.

Response: We apologize for the unclear description. As you correctly pointed out, this

part does rely too much on visual interpretation, especially the analysis of Fig. 4. The

reason we introduced urban morphology in Section 3.1 was to conduct a preliminary

analysis here, laying the groundwork for the in-depth analysis in the following

sections. In response to your comment, we have reorganized the relevant content to

reduce reliance on visual interpretation and better connect it with the more reliable

statistical analyses in Fig. 5. The revised content is shown in Lines 218-229:

“ Spatial analysis of daytime CUHII (Figure 3a) reveals that the Second Ring Road

exhibits the highest CUHII values across all metrics: 0.27°C during NHW periods,

0.65°C during HW periods, and a difference of 0.38°C between the two. Analysis of

urban configuration structures (Figure 4a) shows that the Second Ring has the highest

proportion of dense buildings, and the compact layout leads to the accumulation of

solar radiation heat in dense building clusters during the day, which is difficult to

diffuse (Ge et al., 2016). This may be an important reason for the increase in daytime
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CUHII during the HW periods. The nighttime CUHII differs (Figure 3b), with the

Fourth Ring having the highest CUHII (1.80℃ during NHW periods, 2.52℃ during

HW periods, and a difference of 0.72°C between the two). The Fourth Ring exhibits

the highest proportion of high-rise buildings (Figure 4b). The concentrated emission

of anthropogenic heat sources, such as air conditioners, in these high-rise zones (Yin

& Zhao, 2024) could potentially contribute to the intensification of nighttime CUHII

during heatwave events. Thus, urban morphology may be an important factor for the

formation of diurnal patterns of CUHII. In the following sections, this study will

conduct more reliable analyses using machine learning and numerical simulation

methods.”

7. Fig.5: Are these results from XGBoost model? How is the model evaluated?

For daytime results, the correlation value is small for all indicators except for

BCR, which is only about 0.3; This seems to suggest that model performance is

bad, or no single indicator is powerful enough to explain the CUHI. For

nighttime results, many 3D indicators have coefficients very closed to SVF, and

thus it is hard to argue that SVF is the dominant factor. The results can be

changed with slight modifications of the data or training processes. Without

rigorous model validation, the SHAP results in Fig.6 are less meaningful.

Response: We apologize for the unclear description. Figure 5 presents statistical

results based on the linear Pearson correlation model, which was used to conduct a

preliminary analysis of the relationship between urban morphological indicators and

CUHII before machine learning analysis. We have supplemented this explanation in

the figure caption and the main text. As you pointed out, there were inappropriate

descriptions of SVF. We have revised the relevant content accordingly.

In addition, as you emphasized, rigorous model validation is crucial for subsequent

SHAP analysis. Regarding the evaluation of the XGBoost model, we have provided a

detailed response and supplementary information in Comment 3, and here we will

give a brief summary. In this study, the coefficient of determination (R²) and root

mean square error (RMSE) were selected as evaluation metrics for simulation
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accuracy. We have added content related to the performance of the XGBoost model in

predicting CUHII: for the test dataset (Fig. S1), the R² values all exceed 0.45, while

the RMSE values are all within 0.05. These results indicate that the XGBoost model

can be regarded as a reliable tool for fitting the relationship between CUHII and urban

morphology.

8. Fig.8: the derivation and meaning of PDP plots shall be elaborated for general

readers not familiar with this method. Current discussions related to Figure 8

are hard to understand.

Response: Thank you for your valuable suggestion. We apologize for the insufficient

explanation of the Partial Dependence Plot (PDP) method, which may have caused

difficulties in understanding. Explainable machine learning techniques can help

understand the prediction process of "black-box models", as well as how the

relationships between variables change within their value ranges (Bansal & Quan,

2024). Such post-hoc explanation techniques can probe into the model to reveal the

relationships between variables. Partial Dependence Plot (PDP) is a commonly used

technique that can present the marginal effects of independent variables (Friedman,

2001). The generated plots show partial dependence function values, which are the

average marginal effects on the prediction results (Molnar, 2020). The partial

dependence function is defined as follows:

f�s(xs)=Exc[f�(xs,xc)]= f�� (xs,xc)dP(xc) (1)

Wherexsis the target feature whose effects are to be studied, xc are other marginalized

features, and P represents the marginal probability density. The function f�s can be

estimated using the Monte Carlo approximation method, with the formula as follows:

f�s(xs)=
1
n i=1

n f�� xS,xC
(i) (2)

where xC
(i) denotes the value of xc in the dataset, and n is the sample size.

Due to the model-agnostic nature of the above PDP specification, it can be applied to

both traditional linear regression models and machine learning models such as

XGBoost. For linear models, PDP can present marginal effects when other
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independent variables take their mean values; for machine learning models, PDP can

present the relationships between variables based on the tree structure of the model

(Bansal & Quan, 2024).

To address this, we have supplemented the derivation and core meaning of PDP plots

at the beginning of the discussion on Figure 8, aiming to help general readers grasp

the method first. Additionally, we have adjusted the expression of results related to

Figure 8 to enhance readability. The revised content is shown in Lines 287-291.

Reference:

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban

heat island using explainable machine learning: A case of Seoul, Building and Environment,

247, 1.1–1.20, https://doi.org/10.1016/j.buildenv.2023.110957, 2024.

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Annals of

Statistics, 29(5), 1189–1232, https://doi.org/10.2307/2699986, 2001.

9. Fig.9: How did the authors modify the physical domain to have different SVFs,

increase building height or reduce road width? Is such increment or decrement

uniform across the entire domain?

Response: Thank you for your inquiry. We apologize for not clarifying the specific

method of SVF adjustment. To address this, we have supplemented details on the

modification of the physical domain: SVF in different scenarios was adjusted only by

changing building heights (without altering street width, building area, or other spatial

parameters), and the adjustment was applied uniformly across the entire simulation

domain. The revised description is as follows:

“This section selected a 500-meter radius area around Station 651061 on the North

Fourth Ring Road as the simulation region, where the BCR was 0.225 and the SVF

was 0.76. Three scenarios were set up by adjusting building heights (with street width,

building footprint, and BCR kept unchanged to isolate the independent effect of SVF):

① Scenario Ⅰ: Used the original building heights in the study area, corresponding to

the real SVF (0.76, Figure 9a); ② Scenario Ⅱ: Based on the PDP analysis results of

the machine learning model, building heights were adjusted to reduce SVF to 0.735
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(the critical point of positive/negative effects, Figure 9b); ③ Scenario Ⅲ: Building

heights were further adjusted to reduce SVF to 0.685 (the rapid growth stage of

negative effects, Figure 9c). Notably, building height modifications were applied

uniformly across the entire simulation domain to ensure consistent spatial conditions

except for SVF differences.”

10. Figs. 10 and 11: After changing SVF in the ENVI-met domain, authors only

analyze the temperature at the central point of the domain, this is too simple. In

fact, using ENVI-MET at 1 neighborhood with different SVFs to demonstrate

that temperature will change differently from NHW to HW does not sound

convincing or necessary.

Response: Thank you for your critical insight. We agree that analyzing only the

central point temperature is insufficient to reflect spatial variations, and we apologize

for the oversimplified interpretation. To address this, we have supplemented spatial

heterogeneity analysis of temperature responses across the entire domain, rather than

focusing solely on the central point. In addition, we have merged Figures 10 and 11 to

facilitate the comparison of diurnal and nocturnal characteristics under different

simulation scenarios. The revised content is as follows:

“The figure above shows the simulated AT spatial distribution under different

scenarios during daytime (Figure 10a). Spatial patterns reveal that during NHW

periods, Scenario Ⅱ shows a 0.2–0.7°C temperature rise across the study region. The

central point confirms this trend, with AT increasing from 30.68℃ in Scenario Ⅰ to

31.09℃ in Scenario Ⅱ. Meanwhile, Scenario Ⅲ exhibits a 0.3–0.8°C cooling in these

areas, driven by building shadows, with the central point AT in Scenario Ⅲ decreasing

to 30.33℃. During HW periods, these effects intensify. Scenario Ⅱ sees a 0.5–1.1°C

warming across these zones, with the central point air temperature in Scenario Ⅱ

increasing from 35.01℃ to 35.76℃. Scenario Ⅲ shows a 0.6–1.4°C cooling in study

region, with the central point AT in Scenario Ⅲ dropping to 34.39℃. As SVF

decreased, the obstruction of building clusters to air flow intensified, reducing the

heat dissipation capacity. Meanwhile, blocking of long wave radiation was
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exacerbated, promoting heat accumulation and leading to temperature increases. It

should be noted that the temperature change patterns in Scenario Ⅲ, like the drop in

central point AT, are related to excessively low SVF significantly increasing building

shadow areas, enhancing the shading effect on solar radiation, thus reducing surface

heat absorption and inhibiting temperature rise (Perini & Magliocco, 2014). Figure

10b shows the spatial distribution of the simulated AT indifferent scenarios at night.

During NHW periods, the central point AT in Scenario Ⅰ was 24.86℃, increasing to

25.10℃ in Scenario Ⅱ with a relatively small variation, while that in Scenario Ⅲ

increased significantly to 25.90℃. During HW periods, the central point AT in

Scenario Ⅰ was 26.25℃, increasing to 26.83℃ in Scenario Ⅱ and increased

significantly to 27.93℃ in Scenario Ⅲ. Notably, this pattern of temperature variation

(moderate rise in Scenario Ⅱ, sharp increase in Scenario Ⅲ) is consistent across the

entire simulation domain. The increase in building height hinders the convective heat

dissipation of nighttime air, making heat dissipation difficult and thus promoting a

significant temperature rise (Mo et al., 2024). Furthermore, the temperature

differences between the scenarios during the HW periods were more significant than

during the NHW periods, indicating that changes in building height have a more

pronounced impact on air temperature during the HW periods, further amplifying the

non-linear modulation of the building SVF in AT.”
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Figure 10: Spatial distributions of simulated AT across scenarios during daytime (a) and nighttime

(b). NHW-SⅠ represents Scenario Ⅰ during NHW periods, HW-SⅠ represents Scenario Ⅰ during HW

periods, and so forth. The intersection of the two gray crosshairs in each subplot indicates the

location of the meteorological station.

11. Section 4: the discussion section focuses on analyzing the impact of wind on

CUHI. However, the correlation is very weak. In addition, this part seems to

deviate from previous correlation and SHAP results. From my perspective,

authors seem to combine too many methods (XGBoost, ENVI-met, and

correlation with wind) to explain CUHI change under HW, and this paper lacks

a good organization and logic flow. After reading the paper, I am not sure what

authors aim to address, and what are the key findings.
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Response: Thank you very much for your valuable comments, which have helped us

identify critical issues in our discussion. We sincerely apologize for the unclear

presentation in Section 4. We have carefully revised this section to address these

concerns, and the key explanations are as follows:

“Figure 12a shows that during the daytime, the correlation coefficients (r) between

WS and CUHII were -0.14 during NHW periods and -0.18 during HW periods,

indicating a weak negative correlation that was slightly stronger during HW periods.

Deng et al. (2025) simulated that a 10% increase in WS could reduce the CUHII by

0.16℃ during summer days. Stronger solar radiation during HW periods makes the

heat dissipation effect of wind more significant for CUHII. During night (Figure 12b),

the r was -0.19 during NHW periods and -0.27 during HW periods, with enhanced

negative correlations compared to daytime, especially during HW periods. This may

be related to the heat dissipation characteristics of the underlying urban surface during

nighttime (Liu et al., 2022), where slower heat release makes the modulation of WS in

CUHII more pronounced. Notably, compared with research findings from other cities

(Yang et al., 2023; Rajagopal et al., 2023; Deng et al., 2025), the CUHII in Beijing

exhibits a unique characteristic—it is insensitive to WS variations both during the

daytime and nighttime. This phenomenon may be explained by the regulatory role of

local geographical environments: existing studies have confirmed that local

circulations formed under different geographical backgrounds can significantly

reshape the spatiotemporal distribution of urban extreme high temperatures (Zhang et

al., 2011; Zhou et al., 2020; Chen et al., 2022). Specifically for Beijing, the

mountainous terrain in its western and northern regions gives rise to a typical

mountain-valley wind circulation, which exerts a strong regulatory effect on the urban

near-surface thermal dynamic field (Miao et al., 2013). Observations show that wind

directions in Beijing’s urban area display a regular diurnal variation: northerly winds

(mountain breeze) dominate from 05:00 to 10:00 Beijing Time; there is an obvious

reversal around 11:00, shifting to southerly winds (valley breeze) which persist until

04:00 the next day. Additionally, the average wind speed of mountain breeze is

significantly lower than that of valley breeze (Zheng et al., 2018b). Such distinct
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periodic characteristics make mountain-valley breeze a key local factor influencing

Beijing’s thermal environment (Dou et al., 2014). Based on this, we speculate that the

“insensitivity of CUHII to WS variations” observed in this study may be the result of

interactions between the mountain-valley breeze cycle and the inherent diurnal cycle

of CUHII—the superposition of these two periodic processes may weaken the

regulatory effect of WS variations on CUHII. ”

In short, the coupling mechanism between mountain-valley breezes and the diurnal

cycle of CUHII (Fig. R1) may hold the key to explaining how WS acts on CUHII. We

will further quantify this mechanism through refined numerical simulations in future

research.

Figure R1: Schematic diagram illustrating the modulation of CUHII by mountain-valley breeze (self-draw).

Reference:

Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., Gao, Z.: A high-resolution monitoring

approach of canopy urban heat island using a random forest model and multi-platform

observations, Atmospheric Measurement Techniques, 15, 735–756,

https://doi.org/10.5194/amt-15-735-2022, 2022.
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Dou, J., Wang, Y., Miao, S.: Fine spatial and temporal characteristics of humidity and wind in

Beijing urban area, Journal of Applied Meteorological Science, 25, 5, 559–569,

https://doi.org/10.11898/1001-7313.20140505, 2014.

Miao, Y., Liu, S., Chen, B., Zhang, B., Wang, S., Li, S.: Simulating urban flow and dispersion in

Beijing by coupling a CFD model with the WRF model, Advances in Atmospheric Sciences,

30, 6, 1663–1678, https://doi.org/10.1007/s00376-013-2234-9, 2013.

Rajagopal, P., Priya, R. S., & Senthil, R.: A review of recent developments in the impact of

environmental measures on urban heat island, Sustainable Cities and Society, 88, 104279,

https://doi.org/10.1016/j.scs.2022.104279, 2023.

Zhang, N., Zhu, L. F., Zhu, Y.: Urban heat island and boundary layer structures under hot weather

synoptic conditions: A case study of Suzhou City, China, Advances in Atmospheric Sciences,

28, 4, 855–865, https://doi.org/10.1007/s00376-010-0040-1, 2011.

Zheng, Z., Ren, G., Gao, H.: Analysis of the local circulation in Beijing area, Meteorological

Monthly, 44, 3, 425–433, https://doi.org/10.7519/j.issn.1000-0526.2018.03.009, 2018.

Zhou, X., Okaze, T., Ren, C., Cai, M., Mochida, A.: Evaluation of urban heat islands using local

climate zones under the influences of sea-Land breeze, Sustainable Cities and Society, 55,

102060, https://doi.org/10.1016/j. scs.2020.102060, 2020.

In addition, We apologize for the unclear organization and vague presentation of the

research objectives and key findings in the original manuscript, which may have

caused confusion about how we integrated the methods (XGBoost, ENVI-met, and

wind correlation analysis) and the core logic. To fix this, we have revised the abstract

and conclusion. We now clarify that the methods work together (rather than being

simply combined) and clearly present the central research objective and key findings.

Specifically:

Revised abstract: Currently, the diurnal asymmetric and nonlinear mechanisms by

which urban morphology modulates the canopy urban heat island (CUHI) during heat

wave (HW) periods remain underexplored. This study aims to fill this gap by focusing

on the area within the Fifth Ring Road of Beijing, integrating three complementary

methods: XGBoost (to identify key morphological drivers), ENVI-met (to reveal
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nonlinear regulatory processes), and wind environment analysis (to supplement

dynamic modulation). The results show that: (1) HW periods significantly enhance

CUHI intensity (CUHII) compared to non-heat wave (NHW) periods, with a 91.3%

increase in daytime and 52.7% at night; (2) XGBoost identifies building coverage

ratio (BCR) as the core daytime driver of CUHII, while sky view factor (SVF)

dominates at night, and both 2D and 3D morphological indicators exert stronger

effects during HW periods; (3) ENVI-met simulations reveal nonlinear mechanisms

of building height/SVF: daytime thermal environments are co-driven by short-wave

radiation shading and ventilation resistance (as SVF decreases), while nighttime

environments are dominated by long-wave radiation accumulation by buildings; (4)

Wind environment analysis further shows diurnal differences in wind’s role: nighttime

ventilation corridors mitigate CUHII by 33.91–42.09%, while daytime prevailing

winds may exacerbate downstream CUHII via thermal advection. These findings

clarify the diurnal asymmetric mechanisms of CUHI and provide scientific support

for urban morphological optimization under extreme heat.

Revised conclusions: By integrating ground observations, XGBoost, and ENVI-met

simulations, this study systematically unravels the diurnal asymmetric and nonlinear

response of canopy urban heat island (CUHI) to urban morphology during heat wave

(HW) periods in Beijing. The results show that compared with non-heat wave (NHW)

periods, CUHI intensity (CUHII) during HW periods is significantly enhanced, with a

91.3% increase in daytime and 52.7% at night, and its diurnal variation presents a

U-shaped fluctuation with distinct spatial patterns (strongest within the Second Ring

Road in daytime and most prominent around the Fourth Ring Road at night). Machine

learning analysis indicates that building coverage ratio (BCR) is the most critical

driver of daytime CUHII, while sky view factor (SVF) dominates at night; the mean

importance of 2D/3D morphological indicators increases by 16.2%–36.7% during

HW periods, with significant interactions between BCR and SVF. ENVI-met

simulations further confirm the nonlinear modulation mechanism of urban

morphology: when SVF decreases from 0.735 to 0.685, daytime temperature

regulation is jointly affected by short-wave radiation shading and ventilation
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resistance, showing a "first warming then cooling" pattern, while nighttime

temperature changes are dominated by the reflection and accumulation of long-wave

radiation by buildings, exhibiting accelerated warming characteristics. Additionally,

the study identifies diurnal differences in the impact of wind fields on CUHII:

ventilation corridors can reduce nighttime CUHII by 33.91%–42.09% to mitigate heat

islands effectively, whereas daytime prevailing winds may intensify CUHII in

downstream regions through thermal advection rather than simply acting as a cooling

factor. These findings clarify the diurnal asymmetric formation mechanism of CUHI

during HW periods and provide quantitative references for optimizing urban

morphology and planning ventilation corridors, offering precise scientific guidance

for mitigating urban thermal risks.

Minor comments:

1. Fig.1 caption: "Overview of study area" is repeated.

Response: Thank you for your comment. We apologize for the repetition of

"Overview of study area" in the caption of Fig. 1. This issue has been corrected.

Additionally, we have carefully checked the entire manuscript to avoid similar writing

problems.

2. Line 167: remove "the next day" as this is a averaged diurnal cycle

Response: Thank you for your reminder. We have removed "the next day" from Line

167, as it is indeed inappropriate in the context of an averaged diurnal cycle.

3. Fig.3 caption: only (a) and (b) sub-figures; and I suggest authors to add the

different in CUHI between HW and NHW to better illustrate the distribution of

CUHI change

Response: Thank you for your professional suggestion. As you recommended, we

have added the difference in CUHI between HW and NHW to Fig. 3 and conducted

relevant analyses in the text.
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Figure: 3 Diurnal spatial patterns of CUHII during NHW & HW. Panel (a) for daytime, (b) for

nighttime. In each panel, left: NHW CUHII stats & distribution; middle: HW CUHII stats &

distribution; right: HW-NHW CUHII difference.
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Response to Review Comments of the Second

Reviewer

Dear Reviewer and Editors:

We are sincerely grateful to the editor and reviewer for their valuable time for

reviewing our manuscript. The comments are very helpful and valuable, and we have

addressed the issues raised by the reviewer in the revised manuscript. Please find our

point-by-point response (in blue text) to the comments (in black text) raised by the

reviewer. We have revised the paper according to your comments (highlighted in red

text of the revised manuscript).

Sincerely yours,

Dr. Yuanjian Yang, representing all co-authors

Major comments:

1. Section 2.3.1: The HW definition requires stronger justification. Specifically,

why did the authors decide to use reference stations to define HW and why was

the threshold set to “more than two reference stations”?

Response: We apologize for the unclear in the original manuscript regarding the HW

events definition. We have supplemented relevant details in the revised version to

address this issue.

Reference stations (primarily rural stations) provide a baseline of regional climatic

conditions unaffected by urbanization, ensuring that the defined HWs reflect true

regional extreme HW events rather than local CUHI effects. As highlighted in

previous studies (Cheng et al., 2020; Stewart & Oke, 2012), rural reference stations,

with minimal impervious surfaces and anthropogenic heat emissions, capture the

natural climatic background.

Heat waves, by nature, are large-scale extreme weather events (Perkins et al., 2012;
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Rajulapati et al., 2022), and a single reference station’s abnormal high temperatures

may result from local factors (e.g., microtopography, temporary human activities)

rather than a true regional HW. Requiring confirmation from multiple reference

stations reduces the risk of misclassification due to individual station errors or local

anomalies, improving the robustness of the definition. This aligns with the statistical

logic in our study, where HW were counted independently at each station but required

spatial consistency to be recognized as a regional event (Xue et al., 2023).

In summary, using reference stations ensures the HW definition is rooted in regional

climatic anomalies, while the multi-station threshold guarantees the spatial generality

of the identified heat waves, making the results more reliable for analyzing CUHI and

HW.

References:

Cheng, X., Lan, T., Mao, R., Gong, D., Han, H., Liu, X.: Reducing air pollution increases the local

diurnal temperature range: a case study of Lanzhou, China, Meteorological Applications, 27,

https://doi.org/10.1002/met.1939, 2020.

Perkins, S. E., Alexander, L. V., & Nairn, J. R.: Increasing frequency, intensity and duration of

observed global heatwaves and warm spells, Geophysical Research Letters, 39,

https://doi.org/10.1029/2012GL053361, 2012.

Rajulapati, C. R., Gaddam, R. K., Nerantzaki, S. D., Papalexiou, S. M., Cannon, A. J., Clark, M. P.:

Exacerbated heat in large Canadian cities, Urban Climate, 42, 101097,

https://doi.org/10.1016/j.uclim.2022.101097, 2022.

Stewart, I. D., & Oke, T. R.: Local climate zones for urban temperature studies, Bulletin of the

American Meteorological Society, 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1,

2012.

Xue, J., Zong, L., Yang, Y., Bi, X., Zhang, Y., Zhao, M.: Diurnal and interannual variations of canopy

urban heat island (CUHI) effects over a mountain–valley city with a semi-arid climate, Urban

Climate, 48, 101425, https://doi.org/10.1016/j.uclim.2023.101425, 2023.

2. Section 2.3.3: More details on the training/validation processes of XGBoost

are needed. How were the collinearity among morphological indicators (e.g.,

https://doi.org/10.1002/met.1939,
https://doi.org/10.1029/2012GL053361,
https://doi.org/10.1016/j.uclim.2022.101097,
https://doi.org/10.1175/BAMS-D-11-00019.1,
https://doi.org/10.1016/j.uclim.2023.101425,
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FAR and BCR) treated in the ML models? More detailed explanations of SHAP

and PDP methods would improve reader comprehension of the results in Figure

6-8.

Response: Thank you for your constructive comments. We appreciate the opportunity

to clarify the methodological details, and we have supplemented Section 2.3.3 with

additional explanations as follows:

(1) Details on the training/validation processes of XGBoost:

The XGBoost model training and validation processes were designed to ensure

robustness:

“In this study, we first performed iterative calculations on 7 commonly used

hyperparameters (eta, gamma, max_depth, min_child_weight, subsample,

colsample_bytree, and nrounds) within a preset hyperparameter tuning space, and

selected the optimal hyperparameter combination that minimizes model error using a

5-fold cross-validation method (Yang et al., 2020; Lin et al., 2024). After completing

hyperparameter optimization, we randomly split the sample points in the Yangtze

River Basin at a 7:3 ratio to obtain training samples (70%) and validation samples

(30%), which were used for training and validating the XGBoost model, respectively.

Meanwhile, the coefficient of determination (R²) and root mean square error (RMSE)

were chosen as evaluation metrics for simulation accuracy. ”

Reference:

Lin, Z., Xu, H., Han, L., et al.: Day and night: Impact of 2D/3D urban features on land surface

temperature and their spatiotemporal non-stationary relationships in urban building spaces,

Sustainable Cities and Society, 108, 105507, https://doi.org/10.1016/j.scs.2024.105507, 2024.

Yang, L., Xu, H., & Yu, S.: Estimating PM2.5 concentrations in Yangtze River Delta region of China

using random forest model and the Top-of-Atmosphere reflectance, J. Environ. Manag., 272,

111061, 2020.

(2) Treatment of collinearity among morphological indicators:

To address collinearity among morphological indicators in the XGBoost model, we

first conducted a correlation analysis for feature screening, following established

methodologies in similar studies (Harrell, 2015). Specifically, pairwise Pearson
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correlation coefficients were calculated for all indicators, with a threshold of 0.8 set to

identify highly collinear features. Features exceeding this threshold were evaluated

for retention based on their physical significance and relevance to CUHII. For FAR

(Floor Area Ratio) and BCR (Building Coverage Ratio), their correlation coefficient

was 0.56, well below the 0.8 threshold, indicating moderate correlation without severe

collinearity. Thus, both indicators were retained in the model.

Notably, the correlation coefficient between H (average building height) and H-std

(building height standard deviation) exceeded 0.8. Both are critical urban

morphological parameters influencing the local thermal environment (Tian et al.,

2019), yet their regulatory mechanisms differ substantially. On one hand, taller

buildings reduce daytime surface temperatures by increasing shading and reducing

solar radiation input at the surface (Zhang et al., 2016; Krayenhoff & Voogt, 2016;

Taleghani et al., 2016; Cai, 2017). Conversely, high-rise buildings have higher heat

capacity, enabling heat storage and slow nighttime release, which delays cooling and

intensifies nocturnal heat island effects (Unger, 2004). Additionally, ventilation

resistance increases with H: taller buildings strongly block air flow, potentially

causing stagnant air in the urban canopy and localized heat accumulation (Hang et al.,

2011). In contrast, H-std (building height standard deviation) captures height

variation, reflecting spatial heterogeneity of urban morphology with distinct thermal

regulatory roles. By day, greater H-std enhances urban canopy turbulence, promoting

air circulation and heat dissipation to reduce LST. For instance, studies in Shenzhen

show significant cooling when ln(H-std) > 0.5, as increased height variation

strengthens surface roughness and airflow disturbance (Wan et al., 2025). Similarly,

Fuzhou’s BH_std (building height standard deviation) correlates negatively with

daytime LST, indicating ventilation-driven cooling (Lin et al., 2024). Given their

distinct roles in regulating thermal environments, H and H-std are irreplaceable.

Therefore, this study retained both indicators.

Reference:
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Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and

Ordinal Regression, and Survival Analysis (2nd ed.), Springer,

https://doi.org/10.1007/978-3-319-19425-7, 2015.

Tian, Y., Zhou, W., Qian, Y., Zheng, Z., & Yan, J.: The effect of urban 2D and 3D morphology on air

temperature in residential neighborhoods, Landscape Ecology, 34(5), 1161–1178,

https://doi.org/10.1007/s10980-019-00834-7, 2019.

Unger, J.: Intra-urban relationship between surface geometry and urban heat island: review and new

approach, Climate Research, 27, 253–264, https://doi.org/10.3354/cr0272532004, 2004.

Zhang, H., Zhu, S., Gao, Y., Zhang, G.: The relationship between urban spatial morphology parameters

and urban heat island intensity under fine weather condition, Journal of Applied Meteorological

Science, 27, 2, 249–256. https://doi.org/10.11898/1001-7313.20160213, 2016.

Krayenhoff, E. S., Voogt, J. A.: Daytime thermal anisotropy of urban neighbourhoods: Morphological

causation, Remote Sensing, 8, 2, https://doi.org/10.3390/rs8020108, 2016.

Taleghani, M., Sailor, D., Ban-Weiss, G. A.: Micrometeorological simulations to predict the impacts of

heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood,

Environmental Research Letters, 11, 2, https://doi.org/10.1088/1748-9326/11/2/024003, 2016.

Cai, H., Xu, X.: Impacts of built-up area expansion in 2D and 3D on regional surface temperature,

Sustainability, 9, 10, https://doi.org/10.3390/su9101862, 2017.

Hang, J., Li, Y., Sandberg, M.: Experimental and numerical studies of flows through and within

high-rise building arrays and their link to ventilation strategy, Journal of Wind Engineering &

Industrial, 99, 1036–1055, https://doi.org/10.1016/j.envsoft.2016.06.021, 2011.

Wan, Y., Du, H., Yuan, L., Xu, X., Tang, H., & Zhang, J.: Exploring the influence of block

environmental characteristics on land surface temperature and its spatial heterogeneity for a

high-density city, Sustainable Cities and Society, 118, 105973,

https://doi.org/10.1016/j.scs.2024.105973, 2025.

Lin, Z., Xu, H., Yao, X., Yang, C., & Ye, D.: How does urban thermal environmental factors impact

diurnal cycle of land surface temperature? A multi-dimensional and multi-granularity perspective,

Sustainable Cities and Society, 101, 105190, https://doi.org/10.1016/j.scs.2024.105190, 2024.

(3) Detailed explanations of SHAP and PDP methods :

Explainable machine learning techniques can help understand the prediction process

https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1016/j.scs.2024.105973
https://doi.org/10.1016/j.scs.2024.105190,
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of "black-box models", as well as how the relationships between variables change

within their value ranges (Bansal & Quan, 2024). Such post-hoc explanation

techniques can probe into the model to reveal the relationships between variables. We

have expanded the descriptions of SHAP to enhance clarity:

"SHAP (SHapley Additive exPlanations): This method quantifies each feature’s

contribution to individual predictions based on Shapley values from game theory

(Park et al., 2023). For each sample, SHAP values decompose the prediction into

feature-specific contributions, with positive/negative values indicating

promotion/inhibition of CUHII. "

In addition, Partial Dependence Plot (PDP) is a commonly used technique that can

present the marginal effects of independent variables (Friedman, 2001). The generated

plots show partial dependence function values, which are the average marginal effects

on the prediction results. The partial dependence function is defined as follows:

f�s(xs)=Exc[f�(xs,xc)]= f�� (xs,xc)dP(xc) (1)

Wherexsis the target feature whose effects are to be studied, xc are other marginalized

features, and P represents the marginal probability density. The function f�s can be

estimated using the Monte Carlo approximation method, with the formula as follows:

f�s(xs)=
1
n i=1

n f�� xS,xC
(i) (2)

where xC
(i) denotes the value of xc in the dataset, and n is the sample size.

Due to the model-agnostic nature of the above PDP specification, it can be applied to

both traditional linear regression models and machine learning models such as

XGBoost. For linear models, PDP can present marginal effects when other

independent variables take their mean values; for machine learning models, PDP can

present the relationships between variables based on the tree structure of the model

(Bansal & Quan, 2024).

To address this, we have supplemented the derivation and core meaning of PDP to

enhance clarity:

"Partial dependency plots (PDP) are a common explainable machine learning

technique that reveals the marginal effect of a target feature (e.g., urban
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morphological indicators) on prediction outcomes (CUHII) by holding other features

at their average levels or marginalizing their effects (Friedman, 2001; Bansal & Quan,

2024). Specifically, PDP illustrates the average trend of change in CUHII as a single

indicator (or a combination of two indicators) varies, while other indicators remain

stable—thereby isolating the independent impact of the target indicator. By leveraging

PDP to visualize the functional relationship between feature variables and model

outputs, we clarify the marginal effects of urban morphological indicators on CUHII,

which supports the identification of key driving factors and their threshold

characteristics. "

These supplementary ensure the methodological rigor of the ML-based analyses and

improve the interpretability of results in Figures 6–8. We appreciate your guidance in

strengthening the methodological transparency of our study.

Reference:

Park, S., Park, J., Lee, S.: Unpacking the nonlinear relationships and interaction effects between urban

environment factors and the urban night heat index. Journal of cleaner production, 428,

https://doi.org/10.1016/j.jclepro.2023.139407, 2023.

Bansal, P., Quan, S. J.: Examining temporally varying nonlinear effects of urban form on urban heat

island using explainable machine learning: A case of Seoul, Building and Environment, 247,

1.1–1.20, https://doi.org/10.1016/j.buildenv.2023.110957, 2024.

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Annals of Statistics,

29(5), 1189–1232, https://doi.org/10.2307/2699986, 2001.

3. Section 3.2: Before presenting the analysis of Figures 6-8, there should be at

least one figure showing the model performance of XGBoost, as the validity of

these results strongly depend on the model’s predictability of CUHII.

Response: Thank you for this valuable suggestion. We fully agree that verifying the

predictive performance of the XGBoost model is critical to supporting the validity of

subsequent analyses (Figures 6–8).

To address this, we have added a new figure (now Figure X, placed at the beginning

of Section 3.2) that demonstrates the model’s performance. This figure includes: (1) a
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scatter plot of observed vs. predicted CUHII values, with a fitted regression line; (2)

statistical metrics such as R², RMSE, and MAE to quantify prediction accuracy. These

results confirm that the XGBoost model achieves robust predictability, providing a

reliable basis for the subsequent SHAP and partial dependency analyses.

We appreciate your insight, which has enhanced the rigor of our methodological

validation.

Figure S1: The performance graph of the XGBoost model in predicting CUHII.

4. Line 255-257: This summary largely repeats content in line 236-239. The

authors should streamline the conclusion from figure 8, e.g., focus more on the

nonlinear modulation.

Response: We apologize for the redundant in the previous version. We have deleted

the content in lines 236–239 to avoid repetition. Based on the findings from Figure 8,

we have streamlined the conclusion regarding nonlinear modulation. The revised

description is as follows:

“In summary, the regulation of urban morphology on CUHII exhibits significant
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diurnal asymmetry: 2D indicators predominate during the daytime, while 3D

indicators play a dominant role at night. Furthermore, urban morphology exerts

nonlinear modulation on CUHII, characterized by threshold effects and dual roles

(e.g., SVF showing both negative and positive impacts), with these nonlinear effects

being more pronounced during HW periods.”

5. Section 3.3: The scenario setup requires clarification. How were the uniform

SVF values applied across the entire domain in scenario II and III? Does

scenario I have spatially heterogeneous SVF values? If so, the rationale for using

uniform values in scenario II and III needs justification. Currently it is difficult

to interpret spatial changes in Figures 10-13 with most discussions focused on the

central point.

Response: Thank you for your valuable comment. We apologize for the insufficient

clarification on scenario setup and spatial characteristics of SVF, which has led to

difficulties in interpretation. We have revised the relevant content to address these

concerns, and the key explanations are as follows:

(1) SVF characteristics in Scenario I: Scenario I adopted the original building heights

of the study area (a 500-meter radius around Station 651061), where building heights

vary spatially due to real urban morphological heterogeneity (e.g., differences in

residential and commercial building heights). Consequently, the SVF in Scenario I is

spatially heterogeneous, with local variations around the mean value of 0.76,

reflecting the actual urban spatial pattern.

(2) Uniform adjustment of SVF in Scenarios II and III: To isolate the independent

effect of SVF on thermal environment, we adjusted building heights uniformly across

the entire domain in Scenarios II and III (while keeping street width, building

footprint, and BCR unchanged). This uniform adjustment ensured that SVF values in

these scenarios are more spatially consistent (targeting 0.735 and 0.685, respectively),

reducing interference from other spatial heterogeneities (e.g., uneven building height

distribution). This design allows us to explicitly link temperature changes to SVF

variations, avoiding confounding effects from concurrent changes in multiple
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morphological factors.

(3) Enhanced spatial analysis: We agree that analyzing only the central point

temperature is insufficient to reflect spatial variations, and we apologize for the

oversimplified interpretation. To address this, we have supplemented spatial

heterogeneity analysis of temperature responses across the entire domain, rather than

focusing solely on the central point. In addition, we have merged Figures 10 and 11,

Figures 12 and 13 to facilitate the comparison of diurnal and nocturnal characteristics

under different simulation scenarios. The revised content is as follows:

“The figure above shows the simulated AT spatial distribution under different

scenarios during daytime (Figure 10a). Spatial patterns reveal that during NHW

periods, Scenario Ⅱ shows a 0.2–0.7°C temperature rise across the study region. The

central point confirms this trend, with AT increasing from 30.68℃ in Scenario Ⅰ to

31.09℃ in Scenario Ⅱ. Meanwhile, Scenario Ⅲ exhibits a 0.3–0.8°C cooling in these

areas, driven by building shadows, with the central point AT in Scenario Ⅲ decreasing

to 30.33℃. During HW periods, these effects intensify. Scenario Ⅱ sees a 0.5–1.1°C

warming across these zones, with the central point air temperature in Scenario Ⅱ

increasing from 35.01℃ to 35.76℃. Scenario Ⅲ shows a 0.6–1.4°C cooling in study

region, with the central point AT in Scenario Ⅲ dropping to 34.39℃. As SVF

decreased, the obstruction of building clusters to air flow intensified, reducing the

heat dissipation capacity. Meanwhile, blocking of long wave radiation was

exacerbated, promoting heat accumulation and leading to temperature increases. It

should be noted that the temperature change patterns in Scenario Ⅲ, like the drop in

central point AT, are related to excessively low SVF significantly increasing building

shadow areas, enhancing the shading effect on solar radiation, thus reducing surface

heat absorption and inhibiting temperature rise (Perini & Magliocco, 2014). Figure

10b shows the spatial distribution of the simulated AT indifferent scenarios at night.

During NHW periods, the central point AT in Scenario Ⅰ was 24.86℃, increasing to

25.10℃ in Scenario Ⅱ with a relatively small variation, while that in Scenario Ⅲ

increased significantly to 25.90℃. During HW periods, the central point AT in

Scenario Ⅰ was 26.25℃, increasing to 26.83℃ in Scenario Ⅱ and increased
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significantly to 27.93℃ in Scenario Ⅲ. Notably, this pattern of temperature variation

(moderate rise in Scenario Ⅱ, sharp increase in Scenario Ⅲ) is consistent across the

entire simulation domain. The increase in building height hinders the convective heat

dissipation of nighttime air, making heat dissipation difficult and thus promoting a

significant temperature rise (Mo et al., 2024). Furthermore, the temperature

differences between the scenarios during the HW periods were more significant than

during the NHW periods, indicating that changes in building height have a more

pronounced impact on air temperature during the HW periods, further amplifying the

non-linear modulation of the building SVF in AT.”

Figure 10: Spatial distributions of simulated AT across scenarios during daytime (a) and nighttime

(b). NHW-SⅠ represents Scenario Ⅰ during NHW periods, HW-SⅠ represents Scenario Ⅰ during HW

periods, and so forth. The intersection of the two gray crosshairs in each subplot indicates the
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location of the meteorological station.

“Combined with the spatial distribution of short-wave (SW) radiation, the temperature

phenomena under different SVF daytime conditions can be further explained (Figure

11a). Overall, SW radiation during HW periods is higher than during NHW periods.

Specifically, in Scenario Ⅱ during the HW periods, the average SW radiation slightly

decreases from 636.16 W/m² to 602.27 W/m², the SW radiation at the central point

decreases from 970 W/m² to 930 W/m², but AT shows an upward trend. This can be

attributed to the obstruction of air flow by buildings (Ge et al., 2025), where the heat

accumulation effect dominates in the competition between SW radiation attenuation

caused by increased building height and air flow resistance. In Scenario Ⅲ, the

average SW radiation drops to 537.88 W/m², the central point’s SW radiation

plummets to 860 W/m², and significant shadow shading leads to a substantial

reduction in SW radiation (Lin et al., 2024), thereby inhibiting the temperature rise.

At night, the heat dissipation of LW radiation exhibits stronger non-linear threshold

characteristics (Figure 11b). In Scenario Ⅱ during the HW periods, the average LW

radiation increases from 408.34 W/m² to 412.81 W/m², and the LW radiation at the

central point climbs from 388 W/m² to 394 W/m². At this time, the resistance to

escape of LW radiation is limited, so the air temperature only increases slightly. In

Scenario Ⅲ, the lower SVF significantly reduces the loss of LW radiation to the

atmosphere, with the average LW radiation rapidly increasing to 424.31 W/m², and

the central point’s LW radiation surges to 410 W/m², accompanied by a noticeable

temperature increase. This is because multiple reflections between building facades

retain radiation energy within urban canyons, thus enhancing the capture of LW

radiation (Mei et al., 2025). In summary, buildings exert nonlinear modulation on

urban diurnal thermal environments through the competitive effects of SW radiation

shading and ventilation resistance, as well as the reflection and accumulation

mechanisms of LW radiation.”
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Figure: 11 Spatial distribution of simulated short-wave (SW) radiation (a) and long-wave (LW)

radiation (b) across scenarios during NHW and HW periods.

6. Section 4: While the wind-CUHII relationship is worth discussing, the

analysis should emphasize how urban morphology modulates wind patterns to

be tightly connected with the main theme of this work. The current presentation

of Figures 14-16 lacks clear connection to morphological controls, making it

difficult to identify the key messages.

Response: Thank you very much for your valuable comments, which have helped us

identify critical issues in our discussion. We sincerely apologize for the unclear

presentation in Section 4. We have carefully revised this section to address these

concerns, and the key explanations are as follows:
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“Figure 12a shows that during the daytime, the correlation coefficients (r) between

WS and CUHII were -0.14 during NHW periods and -0.18 during HW periods,

indicating a weak negative correlation that was slightly stronger during HW periods.

Deng et al. (2025) simulated that a 10% increase in WS could reduce the CUHII by

0.16℃ during summer days. Stronger solar radiation during HW periods makes the

heat dissipation effect of wind more significant for CUHII. During the night (Figure

12b), the r was -0.19 during NHW periods and -0.27 during HW periods, with

enhanced negative correlations compared to daytime, especially during HW periods.

This may be related to the heat dissipation characteristics of the underlying urban

surface during nighttime (Liu et al., 2022), where slower heat release makes the

modulation of WS in CUHII more pronounced. Notably, compared with research

findings from other cities (Yang et al., 2023; Rajagopal et al., 2023; Deng et al., 2025),

the CUHII in Beijing exhibits a unique characteristic—it is insensitive to WS

variations both during the daytime and nighttime. This phenomenon may be closely

linked to urban morphology and local geographical environments. Urban morphology

significantly modulates wind penetration and heat exchange efficiency: compact

built-up areas with high BCR and low SVF (e.g., the Second Ring Road) form dense

building clusters that block airflow, reducing WS and weakening wind-driven heat

dissipation, thus making CUHII less responsive to WS changes. In addition, existing

studies have confirmed that local circulations formed under different geographical

backgrounds can significantly reshape the spatiotemporal distribution of urban

extreme high temperatures (Zhang et al., 2011; Zhou et al., 2020; Chen et al., 2022).

Specifically for Beijing, the mountainous terrain in its western and northern regions

gives rise to a typical mountain-valley wind circulation, which interacts with urban

morphology: dense buildings in central areas disrupt valley breeze penetration, while

sparse layouts in suburbs align with mountain winds. This interplay between

morphology and terrain-induced winds weakens the modulation of WS variations on

CUHII. Observations show that wind directions in Beijing’s urban area display a

regular diurnal variation: northerly winds (mountain breeze) dominate from 05:00 to

10:00 Beijing Time; there is an obvious reversal around 11:00, shifting to southerly
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winds (valley breeze) which persist until 04:00 the next day. Additionally, the average

WS of the mountain breeze is significantly lower than that of the valley breeze (Zheng

et al., 2018). Such distinct periodic characteristics make mountain-valley breeze a key

local factor influencing Beijing’s thermal environment (Dou et al., 2014). Based on

this, we speculate that the “insensitivity of CUHII to WS variations” observed in this

study may be the result of interactions between the mountain-valley breeze cycle,

urban morphology, and the inherent diurnal cycle of CUHII.”

In short, the coupling mechanism between local circulation, urban morphology and

the diurnal cycle of CUHII (Fig. R1) may hold the key to explaining how WS acts on

CUHII. We will further quantify this mechanism through refined numerical

simulations in future research.

Figure R1: Schematic diagram illustrating the modulation of CUHII by mountain-valley breeze (self-draw).

“Urban ventilation corridors represent an energy-efficient ecological approach to

improving urban wind-thermal environments by taking advantage of natural

meteorological conditions (Masmoudi & Mazouz, 2004; Masson, 2006; Palusci et al.,

2021). In recent years, Beijing has proposed to construct ventilation corridors to

alleviate increasingly severe urban environmental problems, with corridor designs

intentionally aligned with urban morphological features—such as low BCR, high SVF,
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and wide street canyons—to minimize aerodynamic resistance (Figure 13a). This

section designates nine stations within first-level ventilation corridors (VC-Stations)

as those embedded in open built-up areas (sparse buildings, low-rise structures) and

the remaining 39 stations in compact built-up areas (NVC-Stations) as

Non-Ventilation Corridor Stations. Data show that WS at NVC-Stations (Figure 13b)

is significantly lower than that at VC-Stations (Figure 13c), a difference primarily

driven by urban morphological controls: dense high-rises in NVC areas disrupt

airflow, while VC areas’ open layouts allow unobstructed wind penetration. For

example, at night during HW periods, WS at NVC-Stations remains around 0.5 m/s

due to wind blockage by closely packed buildings, whereas that at VC-Stations stays

above 0.8 m/s, facilitated by their low-rise, sparse morphologies. CUHII in

VC-Stations generally exhibits an inverse relationship with WS, with morphological

traits amplifying this effect. At NVC-Stations, their compact morphologies (high BCR,

low SVF) limit heat dissipation; when WS is 0.5 m/s in the early morning during HW

periods, CUHII reaches 1.9℃ due to trapped heat. In contrast, when WS increases to

1.5 m/s in the afternoon at VC-Stations—where open morphologies enhance turbulent

heat exchange—CUHII drops to only 0.3℃. Notably, the CUHII mitigation effect of

ventilation corridors shows significant diurnal differences influenced by urban

morphology. During the daytime, high baseline WS reduces the relative impact of

ventilation corridor-induced WS gains, but VC areas’ low-rise structures still promote

more efficient heat dispersion than NVC’s dense canyons. During nighttime, with

lower background WS, the WS enhancement from VC’s open morphologies is more

pronounced (Hsieh & Huang, 2016), and the thermal environment—sensitive to

trapped heat in NVC’s compact morphologies—is more responsive to WS modulation

(She et al., 2022), resulting in significantly lower nighttime CUHII at VC-Stations

(42.09% lower during NHW periods and 33.91% lower during HW periods).”

These revisions strengthen the connection between urban morphology and

wind-CUHII dynamics, ensuring the analysis is tightly linked to our focus on urban

morphology’s role in modulation of CUHI.
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Minor comments:

1. Figure 3: There are (a)-(f) in the caption but only four subplots are presented.

Response: We apologize for the error in Figure 3 where the caption incorrectly. This

has been corrected to ensure the number of subplots matches the caption. We have

also thoroughly reviewed the entire manuscript to prevent similar issues in other

figures. Thank you for bringing this to our attention.

Figure: 3 Diurnal spatial patterns of CUHII during NHW & HW. Panel (a) for daytime, (b) for

nighttime. In each panel, left: NHW CUHII stats & distribution; middle: HW CUHII stats &

distribution; right: HW-NHW CUHII difference.
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2. Figure 6: It would be easier to interpret if the authors can group 2D and 3D

indicators (e.g.presenting all 2D indicators in the first 6 rows, followed by 3D

indicators).

Response: We apologize for the unclear differentiation of 2D and 3D urban

morphological indicators in Figure 6, which compromised interpretability. The current

arrangement of indicators in the SHAP plots follows the feature importance order

automatically determined by the XGBoost model (based on their contribution to

CUHII predictions), resulting in the interleaving of 2D (e.g., BCR, L/W) and 3D (e.g.,

H, SVF, H-std) indicators.

Recognizing the merit of your suggestion, we have enhanced the figure by

color-coding 2D indicators in red and 3D indicators in green. Thank you for your

constructive feedback, which has guided us to strengthen the figure’s communicative

clarity.

Figure 6: SHAP value analysis of urban morphology indicators for diurnal CUHII during NHW and HW periods,

using XGBoost model. SHAP quantifies feature contributions to model outputs. The red/blue color gradients

represent high/low feature values, with red indicating 2D urban morphological indicators and green indicating 3D
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urban morphological indicators.

3. Figure 9d: Does the ‘simulation accuracy’ refer to scenario I?

Response: We apologize for the ambiguous reference to "simulation accuracy" in

Figure 9d. To address this, we have explicitly clarified in the figure caption. The

updated caption now states: “(d) simulation accuracy of air temperature (AT) for

Scenario Ⅰ during NHW and HW periods.”


