Dear editor,

we carefully considered all comments and considered most of them. Please find the one-to-one responses to the referees and the suggested changes below.

Best regards, Sören Zorn

RC1

We thank the reviewer for the helpful comments and responded to all comments. The reviewer comments are type set in italics while our responses are type set in plain Times New Roman fonts. In case of changes line numbers refer to the revised manuscript. In case of no changes line numbers refer to the submitted manuscript.

Kang et al. uses high resolution NO_3^- ToF mass spectrometry to investigate the peroxy alkoxy pathway to highly oxygenated organic molecules (HOMs). Since the alkoxy radical cannot be detected using CIMS, they infer alkoxy reactions occurring by the parity of oxygen and hydrogen number, where odd oxygen $C_{10}H_{15}O_x$ peroxy radicals are assumed to have formed via an alkoxy radical intermediate. There are some limitations to this method (e.g. oxygen parity only works through one generation of peroxy-alkoxy isomerization and NO_3^- CIMS is only sensitive to HOM RO_2) and many assumptions about complex RO_2 and RO chemistry. Nevertheless, the story of this paper, summarized in Figure 8, is sound and may fundamentally shift how we think about HOM formation. I find this study interesting and believe the audience of ACP will too. Before being published I request the following comments to be addressed.

We thank the reviewer for the positive statement. Addressing the upcoming comments helped us to make the manuscript clearer.

Specific comments:

 My main concern is that the discussion often neglects the importance of R structure for the peroxy-alkoxy pathway. This includes RO formation and RO isomerization, both of which are broadly parameterized here. While there are instances where structure is addressed (e.g. Figure 1), below are a few places where I would like to see a deeper discussion.

First, we would like to make two general statements regarding the structure of R. Firstly, we only refer to HOM-RO and HOM-RO₂ and not to alkoxy and peroxy radicals in general. Limiting to HOM-RO and HOM-RO₂ already provides a preselection of potential R that are able to isomerize and grow into HOMs. Secondly, we agree with the reviewer that the structure of R is key for (the rate of) isomerization. However, we have no direct handle on the structure R of isomers in this study, since we applied mass spectrometric data. Nevertheless HR-MS provides sufficient resolution to resolve CHON molecular formulas. The advantage of HR-MS is that we can observe time evolution or steady state abundance of 100's of compounds simultaneously, so we capture quite a large wealth of R's. Nevertheless, our approach is limited to relations between formulas, which e.g. represent radicals. We must assume that at least one of the structure isomers represented by the reactant formula has the right structure for a fast isomerization step to react to a compound represented by the product formula. Our suggestions/conclusions are thus not to read as "10% of compounds do that step" but as "there must be one or more isomers" with the given formula which are able to provide 10% of the turnover to the product formula.

Action:

We clarified the limits of the approach to prevent misinterpretations of our results by adding the following to section 2.4, line 291-302:

"However, multifunctional HOM-RO· should have quite a potential for hydrogen rearrangement since they are highly functionalized, and functionalization facilitates isomerization (Vereecken and Peeters, 2010). Note that we are using HR-MS data, which allow for determining the compounds formulas but not the speciation. As a consequence, more than one structure isomer can contribute to the signal for one formula. We have thus no direct handle on the structure of R. The advantage of HR-MS is that we can observe the steady state abundance of 100's of compounds simultaneously, so that we capture quite a large wealth of R's. Nevertheless, our approach is limited to relations between formulas, which e.g. represent HOM-RO2· and their termination products. We assume that at least one of the structure isomers represented by the reactant formula has the right structure of R for a fast isomerization step to react to an isomer represented by the product formula. Our suggestions/conclusions are thus not to interpret in a statistical sense but in terms of "there must be one or more isomers" with the given formula that are able to provide the observed conversion to the product formula. Using this approach, we will show that isomerization can become dominant in cases of large, highly functionalized molecules, such as α-pinene derived HOM-RO· radicals."

A deeper investigation of which isomers could do the isomerization is beyond the scope of the present manuscript but could be a good starting point for further studies. Here, we *try to raise attention* to insight that alkoxy radicals play an important role in HOM formation and how that could happen as a general principle.

• Figure 1 is a great illustration of how a step of alkoxy chemistry changes the RO₂ hydrogen parity, in this case from an even to odd number. However, mechanism ABE produces a less oxygenated RO₂. This contradicts the paper conclusion that the peroxy alkoxy pathway leads to more oxygenated organic compounds. A discussion on R here would help clarify branching between mechanisms ABCD and ABE.

We agree with the reviewer that ABE produces a less oxidized alkoxy radical. However, the gain in O/C for HOMs is not so much in getting higher oxidized alkoxy radicals, but in that isomerization of alkoxy radicals does not stop the autoxidation chain but rather regenerates peroxy radicals that can then continue the autoxidation in competition to fragmentation or to termination of the radical chain. That is why we coined the notation "alkoxy peroxy" steps. If peroxy radical E continues with one autoxidation step, we will have gained still one O atom, and more in any subsequent steps. Regarding the structure of R, for our level of approach it is sufficient that an R exists, that enables isomerization of HOM-RO resulting in an HOM-RO₂ and that is able to continue the autoxidation…(See our response to comment 1.)

We stated that already in paragraph 3.4 line 682-689 and in the Conclusions line 780 in the originally submitted manuscript.

No action.

• It is difficult to interpret changes in the RO₂ and RO branching chemistry when the ratio of OH:O₃ oxidation changes. Peroxy and alkoxy branching is sensitive to R, and so it matters whether the peroxy radical you make is coming from OH addition, OH abstraction, or ozonolysis. Please address how the ozonolysis rate is accounted for in the AP turnover when you adjust O₃, NO₃, CO, or light aperture.

In the manuscript we used only the turnover of α -pinene with OH as a parameter and this is explicitly noted in the text and in x-axis labels in all figures where it applies.

Within the JO1D experiments we kept the O_3 input constant and increased JO1D and thus the [OH]. That leads to an increasing importance of OH, which became $\geq 90\%$ at OH turnover of about $4\cdot10^7$ cm⁻³ s⁻¹. In the JO1D related plots we show the whole range of turnover by OH, but we considered only the latter data for analysis and comparison (Fig. S3, Fig. S9, Fig. 9b). The OH pathway was thus the dominant channel for HOM formation. If, conversely, O_3 would be dominant, O_3 effects should decrease with increasing OH, but we mainly observe the OH effects increasing. Note that OH photochemistry produces peroxy radicals for HOM formation more efficient than O_3 chemistry (via the vinylhydroperoxide path).

In the CO and NO_X experiments, there are only two exceptions where OH contributed little less than 90% to the α -pinene turnover, but even there the OH contribution is still high: in the CO experiment, OH contributed about 86% to the α -pinene turnover, and in the NO_X experiment at the highest NO_X OH contributed 86%. In the NO_X cases it was necessary to vary the O_3 input in order to increase the OH source for compensating the OH loss with NO_2 . Otherwise, such experiments maintaining a roughly constant α -pinene turnover by OH would not have been possible.

Thus, we compare only chemically similar systems regarding the OH vs. O_3 turnover (fraction of turnover by $O_3 < 10\%$), with the two exceptions mentioned and the primary chemistry very likely generating similar sets of Rs. For our investigation on the role of alkoxy isomerization in HOM formation, it does not so much matter how exactly the HOM-RO are formed, as long as the isomeric distribution remains similar.

Action:

We added the information about the O₃ contribution for CO in paragraph 3.2.2, line 493:

"Turnover by O₃ contributed 14% in case of CO and 3% in case of the OH reference experiment." and for NOX in section 3.2.3, line 552:

"Despite increasing $[O_3]_{SS}$ with increasing $[NO_X]_{SS}$ (Table S1), the turnover of α -pinene by OH contributed more than 90% with exception of the highest $[NO_X]$ where it still contributed 86%."

• Line 84: ROO-OOR -> 2RO₂ + O₂ branching ratio seems to be largely parameterized and probably varies much more. Please clarify if using structure activity relationships.

We do not exactly understand this question. We assume the reviewer refers to the reaction $RO_2 + RO_2 - 2RO + O_2$. From structure-activity relationships we know there is high variability in the rate coefficients for these processes, spanning many orders of magnitude. However, processes that are too slow will not lead to HOMs in our experiments, leaving a strongly reduced rate range allowed for the observable chemistry. The rate coefficients used were averaged from reactions included in literature data and models, e.g. MCMv3.1.1 or Jenkin et al. (2019), and represent reasonable estimates for the subset of viable reactions. While this still leaves a high variability around the selected rate coefficients for each individual reaction, the conclusions are derived from the average change over the pool of intermediates and are not critically dependent on these exact values. Specifically, modifying the rate values doesn't change the interpretation, but merely the estimated ratios between the competing effective processes.

Action:

We expressed that clearer in the Introduction, line 87 - 91:

"The branching ratio of alkoxy radical formation from peroxy radicals varies strongly depending on their structure; for example, for primary and secondary RO₂· 60% are given for R7 by Jenkins et al. (2019). For R8 branching ratios supposedly vary between 70%-90% (MCMv3.1.1). For specific peroxy radicals even reaction with HO₂ can lead to significant branching into alkoxy formation (Jenkins et al. 2019). Alkoxy intermediates play an important role in the atmospheric degradation of VOCs (Färber et al., 2024; Jaoui et al., 2021; Yang et al., 2025)."

• Line 427: I don't agree that RO isomerization will be a statistical probability as you make it out here. It will be extremely dependent on R structure. RO isomerization will create new functionalized R backbones that may favor or inhibit future isomerization steps. Please clarify if using structure activity relationships and also their applicability.

The reviewer is correct; it is not a simple statistical probability for any given intermediate. However, there are hundreds of organic radicals involved, and a fraction of these will undergo one type of reaction, another fraction another type, and these fractions within the population are reflected in the rate ratios of the competing processes. In the sense of our general statements above, for the level of our interpretation it is thus sufficient that isomers exist that can do the reaction, not that each isomer has competing pathways. Since we have no structural information, we cannot apply SARS to individual isomers. Instead, we are tentatively applying an average branching ratio to the whole group of structure isomers. Like RO₂ autoxidation, RO isomerization may also produce intermediates with backbones that cannot undergo autoxidation (besides fragmentation). However, our results suggest that sufficient RO₂ with suitable backbones are produced, which can carry on the autoxidation. Our approach is clearly limited, as pointed out correctly by the reviewer, but interestingly the observed concentrations for the sum of structure isomers (with the same formula) treated with lumped and averaged rate constants and branching ratios, as applied also in MCM, produced results which are compatible with the observation. This serves here only for qualitative demonstration of the possibility.

Action:

We clarified this limitation by modifying the paragraph (line 454 - 457) in section 3.2.1.:

"Note, that the applied branching ratios of 0.6 (Jenkins et al. 2019 for primary and secondary RO_2 ·) and 0.5 for HOM-RO isomerization (see below and Suppl. Section 6) comprise a certain degree of lumping and serve here to demonstrate the possibility of alkoxy-peroxy steps. Individual branching ratios and thus alkoxy-peroxy steps for specific HOM-RO₂· and HOM-RO· are strongly dependent on the structure of R and can deviate quite far from the chosen values."

• Line 798: Please clarify what you mean by the alkoxy-peroxy step does not rely on specific chemistry of alpha-pinene. I agree these results are applicable (and important!) for large, functionalized VOCs, but would this statement hold true for alkanes, especially those with 5 or fewer carbon atoms?

We meant to express that alkoxy peroxy steps are not limited to α -pinene as a precursor. It will also apply to many atmospherically important VOC, in general to all that have structures to allow autoxidation and formation of HOM. This implies having a backbone of a certain minimum length since H-shifts are largely determined by formation of cyclic structures in the transition states. The smallest alkane with observable H-migration would thus be butane (i.e., forming 1-butoxy allowing a 1,5-H-shift with rate $\sim 1\cdot 10^5$ s⁻¹)

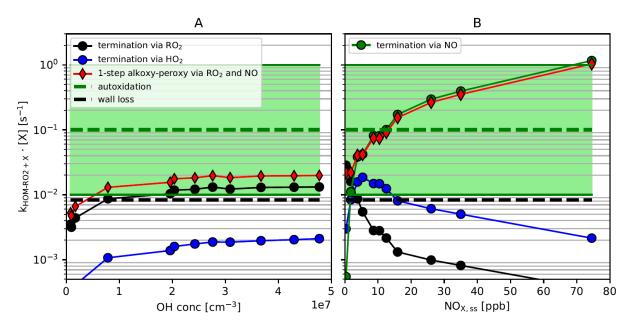
Action:

We modified the paragraph in the Conclusions (line 831 - 835):

"The analysis of the contribution of alkoxy-peroxy steps in this work, however, does not rely on specific chemistry of α-pinene, but also holds for a variety of atmospheric VOC. Prerequisite is a backbone of a certain minimum length since H-shift are largely determined by formation of cyclic structures in the transition states. Consideration of alkoxy-peroxy steps enables to derive a consistent interpretation across a wide variety of reaction conditions based solely on the reactivity trends captured in generalized Structure-Activity Relationships applicable to all peroxy- and alkoxy radicals (e.g. Jenkin et al. 2019, Vereecken and Peeters, 2009, 2010)."

2. Although it is pointed out that NO_3^- CIMS is selective towards measuring HOMs, there is little discussion as to what it cannot efficiently detect. Including more information on this is important for readers to interpret what's shown in the plots and also what's not shown (e.g. less oxygenated RO_2 that precede HOM RO_2).

Our experiments were performed under steady state conditions. The HOMs will react at the steady state concentrations. In this specific situation it is for our purposes not so important to measure all HOM precursors.


Action:

We added to the manuscript (section 2.3, line 206 - 210):

"As a consequence, compounds with less oxygen atoms cannot be detected with the same sensitivity. For example, the first generation of conventional peroxy radicals cannot be detected at all. Currently, absolute calibration for HOMs does not exist. Assuming clustering of HOMs with NO_3^- takes place at the kinetic limit it is common to apply the sensitivity towards sulfuric acid. This sensitivity was determined to be $3.7(\pm 1.2) \cdot 10^{10}$ molecules cm⁻³ ncps⁻¹ and applied to convert the MS signal to a concentration (see Pullinen et al. 2020)."

3. For the NO_x experiments, your aim is to increase $[NO_x]$ to produce RO from RO_2+NO reactions. There is a good discussion in the main text and SI about how NO_x affects OH and thus the alpha pinene turnover rate. Have you calculated/modeled how additional NO_x affects OH: HO_2 ? The previous CO experiments show that increased HO_2 shuts down peroxy alkoxy pathways, which could also explain your data in the NO_x experiments.

Regarding modelling, we don't have a good handle on $[HO_2]$ in the NO_X experiments as described in the supplement. NO, OH, and HO_2 are given in Table S1 and Table S2, respectively. In the presence of more than 8 ppb of NO_X , $RO_2 + HO_2$ cannot compete with $RO_2 + NO$, independent if we assume an HO_2 source in the model or not (see Figure B below, the termination is dominated by NO for $NO_X > 8$ ppb). Thus, while HO_2 shuts down alkoxy peroxy pathways, NO opens alkoxy-peroxy pathways more efficiently.

No action.

4. In Figure 5, the x-axis is plotted as the NO_x concentration. Table S1 indicates almost all of NO_x is NO_2 . Can this be changed to NO concentration since it is RO_2 +NO reactions that produce alkoxy radicals?

This is a good point, but we did not find a better plotting solution as the one presented; note that NO and NO_X are highly correlated and yield similar plots. We have considered plotting against NO, and the plots give the same information as the NO_X plots, however the data points at low NO_X become even more compressed as they are already now. A way out could be a logarithmic NO scale, which we also tested. Log scale axis is counter-intuitive in our case. Moreover, in atmospheric chemistry people often think in NO_X regimes. We would therefore prefer not to change the plot as it would not bring more clarity.

No action.

5. Figure 6 is interesting but may be better suited for the SI. The text points out that signal is changing due to [OH] which is not corrected for. The comparison to MCM does not fit in with this specific study since autoxidation is not implemented and therefore it is without a single path to HOM RO2 (with or without considering the peroxy alkoxy pathway).

Here we don't agree with the reviewer: the MCM results were not intended to fit the data. They are supposed to illustrate how $[RO_2] = f([NO_X])$ will look like in the absence of alkoxy isomerization, since MCM does not consider it. On top, in MCMv3.1.1 a prerequisite for alkoxy isomerization, i.e., autoxidation as source for highly functionalized compounds, is also missing, but this is not so important here.

Figure 6 shows that $HOM-RO_2$ behave different as $f([NO_X])$ than conventional RO_2 , and we suggest that this is the case because HOM-RO can isomerize. We believe that this plot pretty well illustrates our findings and suggestions about the role of alkoxy isomerization. We would prefer to leave the plot where it is.

No action.

6. The branching ratios you derive for both RO formation and subsequent isomerization are important and really jumped out to me in the abstract. However, the discussion in the text

comes late and was not clear. I would recommend putting more of a focus on this in the main text.

We do not quite agree with the reviewer. We put a lot of effort in deriving an idea of a value for branching of HOM-RO into isomerization based on our data. All steps are described in the manuscript, eventually referring to the supplement. Lacking better approaches at this time, we tried to distill, as good as we could, branching ratios for HOM-RO₂ into RO in analogy to conventional RO₂ from the literature; these are our choices but not our findings. They are momentarily assumptions. As explained before, it is not our intention to claim certain values as best ones, but to show that assuming alkoxy isomerization is indeed feasible for a not unreasonable choice of "numbers" documented in the literature.

In any case, we are using mass spectrometric data without speciation. Thus, we are treating strongly lumped systems with all their limits. Kinetic data derived from lumped systems are in any case of limited transferability. On the other hand, we based as much as possible on our observed data (including those published in Pullinen et al. 2020), which are at least self-consistent in a certain way. We think of our results as more of a starting point than a final result.. Every step of derivation and assumption is clearly described, and as soon as there will be better data available the branching ratio can be recalculated by everyone who is interested.

Action:

We removed the values for branching ratios into alkoxy radicals from the abstract. We had given them because their values were used for the calculation of the branching into isomerization, which we determined in this study (Supplement section 6).

We underlined the preliminary character of our results and the limits of our kinetic data in Section 3.4, line 739 -741:

"Note, we are dealing here with mass spectrometric data, and several isomers are possibly lumped under the same formula. The values for rate coefficients and branching ratios we derived and chose for the following calculations are suited for the intended *plausibility considerations* and should be handled with care when transferred to other systems or used for the purpose of *strict* quantification."

Minor comments:

Line 70: Should alcohol product have a radical dot?

A typo, fixed.

Line 90: Add NO2 as product

"NO2" added

Line 97: Clarify RO₂+NO produces RO or RONO₂ as products

The reaction scheme is split into termination reactions generating closed shell products (R1-R5) and chain continuing reactions generating radicals (R7-R9). The formation of RONO₂ is covered by R4. We do not see a need to change this; the desired information is given by R4.

Line 201: You mention using SA calibration factor for HOMs and specify a value. But no concentrations are reported in the paper. Why is that?

As described in line 195

"In this work, the observed MS signals, normalized to the total signal, were used for the interpretation of the data since the *relative changes* of the HOM product distribution for the different reaction conditions were more relevant than the absolute concentrations."

We rely on the precision of our data. We could have also used concentrations, which means in our case multiplication with the calibration factor for sulfuric acid of $3.7(\pm 1.2) \cdot 10^{10}$ molecules cm⁻³ ncps⁻¹. This will not help the precision and may pretend an accuracy which we don't have. For kinetic considerations signals must be converted into concentrations, though.

Line 258: You specify the same formula, $C_{10}H_{17}O_{x+1}$, twice. Please clarify.

Accepted, should be " $C_{10}H_{17}O_{X+1}$ or $C_{10}H_{17}O_X$ "

Line 264-267: This paragraph is generally confusing to read. Please clarify. You point out 3 products coming from 2 precursors and then say respectively. It is not clear what products are from which precursors.

Accepted, we will change the text in section 2.4, line 274 - 276:

"Still, classifying C_{10} and C_{20} molecules by family may help to understand which HOM-RO₂· were involved in their formation, especially in case of $C_{10}H_{14}O_Y$ and $C_{10}H_{15}$ -HOM-NO₃, which are exclusively produced by $C_{10}H_{15}O_X$, and for $C_{10}H_{18}O_Y$ and $C_{10}H_{17}$ -HOM-NO₃, which are exclusively formed from $C_{10}H_{17}O_X$."

Line 268: What is sufficient NO? Even low NO will be important to peroxy-alkoxy chemistry (Nie, W., et al, Nature Comm, 2023)

Accepted, we removed "sufficient amounts of"

Line 417: "Different from $C_{10}H_{15}O_8$ and $C_{10}H_{15}O_{10}$, formation of $C_{10}H_{15}O_6$ is obviously exclusively initialized by OH oxidation." I would remove obviously. Could $C_{10}H_{15}O_6$ not been formed from AP + O_3 -> $C_{10}H_{15}O_4$ -> $C_{10}H_{15}O_6$ through one generation of autoxidation?

Accepted, we will replace "obviously exclusively" by "efficiently"

Line 495: "The CO experiment resulted in a clear suppression in the abundance of HOM-RO₂ radicals" This is not clear from the data presented in Figure 4 which is normalized. Please show unnormalized data to make this point.

Accepted, this sentence is misleading: We wanted to repeat the **result** stated in the text (line 472), that enhanced HO₂ decreased HOM-RO₂ by a factor of two (from $\approx 6 \cdot 10^6$ to $\approx 3 \cdot 10^6$ cm⁻³) since HO₂ is in general an RO₂ sink. This information is a measurement result and independent from Figure 4. Since the abundance of HOM-RO₂ decreased, normalization makes the results clearer as it just removes the effect of different concentrations, therefore we would not like to change Figure 4.

We rephrased that sentence in Section 3.2.2. line 521 - 523:

"In summary, the enhanced importance of $HOM-RO_2$ · $+ HO_2$ · reactions compared to $HOM-RO_2$ · $+ RO_2$ · reactions in the CO experiment led to a general suppression of the abundance of $HOM-RO_2$ ·. Hereby concentrations of $HOM-C_{10}H_{15}O_{2n+1}$ and fragmented compounds which are related to alkoxy steps were disproportionally stronger suppressed."

Line 655: "...strong increase in O:C caused by NOx addition is only explainable by impacts of HOM-RO..." I agree that your data supports this conclusion, but I would caution against saying this is the only explanation since there are not measurements for how the less oxygenated RO₂ were affected

Accepted: We discarded "only"

Additionally, please reread the manuscript to minor typos (extra word in line 491, missing word in line 638, subscripts in line 726)

We are sorry about too many surviving mistakes and eliminated as many of them as possible.

Citation: https://doi.org/10.5194/egusphere-2025-2772-RC1

We thank the reviewer for the helpful comments and responded to all comments. The reviewer comments are type set in italics while our reponses are type set in plain Times New Roman fonts. In case of changes line numbers refer to the revised manuscript. In case of "no changes" line numbers refer to the submitted manuscript.

With chamber oxidation experiments, Kang et al. show that bimolecular reactions of alphapinene + OH derived peroxy radicals with RO2 and NO enhance the formation HOM by alkoxyperoxy steps instead of inhibiting it as previously thought. RO2 + NO reactions appear to be particularly important in this regard, leading to products with up to 15 oxygen atoms, three oxygens higher than experiments without NO. As they highlight in their conclusion, this would imply that the formation of HOM is more favorable under polluted conditions than clean, opposite to what is widely accepted in the community. This work is important, timely and highly relevant to the work of others in the field. I recommend its publication. I have the following comments that I request be addressed.

We thank reviewer 2 for the positive words.

1. One concern I have is the scarce measurement of the C10H17Ox family of peroxy radicals. These first-generation peroxy radicals from OH addition to alpha-pinene are completely unmeasured, except for C10H17O10, while first-generation peroxy radicals from H-abstraction, a minor channel in comparison, are measured.

We will respond in the following point by point.

• It is clear from Xu et al. 2019 and Berndt 2021 that OH addition to alpha-pinene initiates autoxidation and the formation of peroxy radicals at least up to C10H17O7. Further reactions of some of these are likely the source of the C10H17O10 measured here. Insensitivity of the NO3-CIMS method toward these products is unlikely to be the reason as Figure S5 in this paper shows that C10H15O6-9 are measured above the detection limit.

 $C_{10}H_{17}O_X$ (X<10) are surely formed, but in our system apparently their concentrations remained below the detection limit, though a potential role of $C_{10}H_{17}O_X$ becomes evident as we find substantial amounts $C_{20}H_{34}O_Y$ accretion products. Why our system behaves differently is less obvious. Differences to Berndt's experiments are longer reaction times which would allow a larger contribution to $C_{10}H_{15}O_X$ by oxidation of first-generation products. Another difference is the presence of O_3 . However, Shen et al. (2021) found dominance of $C_{10}H_{15}O_X$ chemistry in absence of O_3 . In any case, an assumed significant O_3 contribution to $C_{10}H_{15}O_X$ should not suppress $C_{10}H_{17}O_X$ chemistry. Our explanation would be: a) Autoxidation of $C_{10}H_{17}O_X$ does not efficiently lead to HOM products with high oxygen number (O > 7, 8). (We are able to detect $C_{10}H_{17}O_X$ (Figure 6) and $C_{10}H_{18}O_X$ in the NO_X experiments and monomer termination products $C_{10}H_{18}O_X$ in the OH reference experiments (Figure S7)). b) Autoxidation of $C_{10}H_{15}O_X$ (X>7) can be more efficient than autoxidation of $C_{10}H_{17}O_X$ (X>7). c) $C_{10}H_{17}O_X$ (X<=7) are at the edge of what we can detect with our Eisele style CIMS set up.

No action.

• The authors attribute their low detection of C10H17Ox compounds partly to their measurement conditions. While some secondary oxidation of pinonaldehyde could explain the C10H15Ox compounds, the authors find primary products from OH H-abstraction to also be at least equally important (Figure S6). This necessitates a more detailed discussion regarding why primary OH-addition products, which should dominate a-pinene + OH reactions, are not measured or measured minimally. Perhaps

the additional -OH group in the latter leads more efficiently to termination during autoxidation, and these are then candidates for secondary oxidation by OH?

We were apparently unable to express the intended conclusions clearly. In Figure S6 we show the turnover of α -pinene by the different routes. We only show that, based on MCMv3.3.1 level chemistry, oxidation of $C_{10}H_{16}O_Y$ compounds by OH is fast enough to explain in principle a part of the observed $C_{10}H_{15}O_X$ chemistry. We do not claim it is pinonaldehyde. In the same sense also the channel of H-abtraction by OH has sufficient potential to explain (a part of) the observed $C_{10}H_{15}O_X$ chemistry. That H-abstraction by OH exists as a minor oxidation channel for α -pinene is well known. Here we would like to refer to the article by Shen et al. (2021) where it is shown that a minor channel of α -pinene oxidation can be still a main path to HOM. A reason is that α -pinene HOM, despite their importance for SOA, still have small chemical yields (<10%!). We cannot discriminate which routes are taken by measurement as this would require speciation.

No action.

• Figure S5 shows multiple C10H18Ox measured. As the authors state in line 257 of the manuscript, these products can only from bimolecular reactions of C10H17Ox and C10H17Ox+1 (correct the typo in the manuscript, you have two instances of C10H17Ox+1). So, the C10H17Ox peroxy radical precursors of C10H18Ox clearly form during these experiments.

We agree that $C_{10}H_{17}O_X$ (X>7) radicals must be of some importance as we see resulting products. Besides the $C_{10}H_{34}O_Y$ accretion products, which result from recombination of two $C_{10}H_{17}O_X$, also some $C_{10}H_{18}O_X$ compounds are observed as result from the alcohol channel of HOM- $C_{10}H_{17}O_X + RO_2$ (or from HOM- $C_{10}H_{17}O_X + HO_2$). However, the $C_{10}H_{18}O_X$ family contributes only a small fraction of about 5% to the HOM- C_{10} monomers in OH reference experiment and of about 10% in the NO_X experiment. $C_{10}H_{17}O_X$ contribute also to $C_{20}H_{32}O_Y$ accretion products, but here it is not clear in how far these result from the recombination of HOM- $C_{10}H_{15}O_X$ and conventional $C_{10}H_{17}O_3$, or form in the recombination of HOM- $C_{10}H_{15}O_X$ and HOM- $C_{10}H_{17}O_X$.

Nevertheless, a low contribution of $C_{10}H_{17}O_X$ chemistry to HOM formation compared to $C_{10}H_{15}O_X$ chemistry is a finding, whereby "low" refers to primary oxidation chemistry where $C_{10}H_{17}O_3$ dominate to > 80%. We stated clearer that we cannot finally clarify what the detailed reasons are, based on the data presented:

Action:

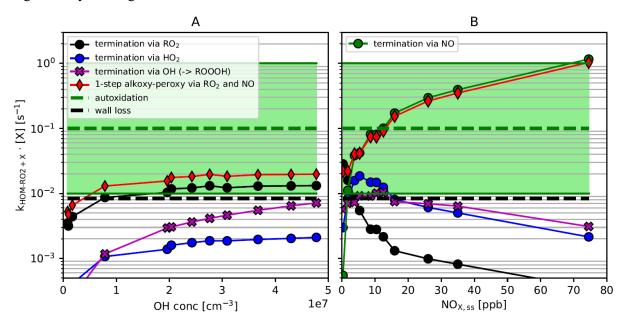
Typo corrected.

In manuscript we added to Section 3.1, line 411 - 413:

"Despite the line of arguments above, we are not able to finally clarify why we observe only a minor contribution of $C_{10}H_{17}O_X$ chemistry to HOM formation in our experiments. It had at least some significance as indicated by the observed termination products $C_{10}H_{18}O_Y$ and $C_{10}H_{32,34}O_Y$."

We would prefer not to go deeper into this mechanistic discussion in the present manuscript. For the main topic of the paper - the role of alkoxy-peroxy steps in the autoxidation chain – the question why the contribution of $C_{10}H_{17}O_X$ is minor is not so important. In Figure 6 we show that the $C_{10}H_{17}O_X$ peroxy radical family shows a similar behavior as a function of NO_X as the $C_{10}H_{15}O_X$ peroxy radical family. Hence, alkoxy-peroxy steps may keep also $C_{10}H_{17}O_X$ on a high level at high NO_X (in accordance with Berndt et al. (2015)).

2. In addition to the reaction classes described by the authors, some of the products could form from RO2 + OH reaction producing trioxides (ROOOH) (Assaf et al.). This reaction could be


particularly important under the elevated OH conditions of the experiments carried out here. The importance of this reaction should perhaps be modelled out.

Yes, we agree that $RO_2 + OH$ should be mentioned in the manuscript.

 Related, could the increase in C10H15O2n+1 signals at elevated levels of OH (line 420) be attributed in some part to the RO2 + OH => ROOOH => RO + HO2 (and not just HOM-RO2 + RO2 as currently stated)?

The rate coefficient of the RO_2 + OH reaction was determined to about 1.5 10^{-11} cm⁻³ s⁻¹ (see summary paper by Fittschen in ChemPhysLett (2019)). For larger molecules it was theoretically calculated that >>90% form the ROOOH adduct (Assaf et al. 2018). From these numbers it follows that $k_{RO2+OH} \cdot [OH]_{SS}$ is of the order of 7.5 10^{-3} s⁻¹ for $[OH]_{SS} = 5 \cdot 10^7$ cm⁻³ in the OH reference experiments and $1.1 \cdot 10^{-2}$ s⁻¹ for $[OH]_{SS} = 7 \cdot 10^7$ cm⁻³ in the NO_X experiments.

A comparison of RO_2 + OH (magenta crosses) to all other channels is demonstrated in the following Figure in style of Figure 9.

For the JO1D experiments this means that ROOOH adduct formation could be probably more important than $RO_2 + HO_2$, therefore it could contribute to $C_{10}H_{16}O_X$. But even at the highest [OH] $_{SS}$ applied during these experiments $RO_2 + RO_2$ is still about a factor of two faster. In the NO_X case $RO_2 + OH$ could be more important than $RO_2 + RO_2$. However, it is still about a factor of two slower than $RO_2 + HO_2$ at $[NO_X]_{SS} < 8$ ppb. At $[NO_X]_{SS} > 8$ ppb, $RO_2 + NO$ is dominant. Lifetime of ROOOH with respect to unimolecular decay is estimated to about 5000-10000 s. From these numbers it could be indeed true that $RO_2 + OH$ has some influence. If all findings for small molecules are applicable to highly functionalized HOM-RO₂, the reaction $RO_2 + OH$ can contribute to formation of molecules of the $C_{10}H_{16}O_X$ and the $C_{10}H_{18}O_X$ families.

For the topic of our paper the minor path alkoxy-radical formation, $RO_2 + OH \rightarrow RO + HO_2$, would be more interesting, but this is obviously unimportant for larger molecules. Although $RO_2 + OH$ should be investigated as a potential path to $C_{10}H_{16}O_X$ in mechanistic oriented papers, for our purpose to make aware of the alkoxy isomerization as carrier of the autoxidation/radical chain it is not so interesting. We would strongly prefer not to discuss the potential issues of $RO_2 + OH = ROOOH$ for HOM formation in general here, because it is beyond the scope of this already lengthy paper.

We will mention the RO_2 + OH reaction and stable trioxide formation in the Introduction (line 75 - 77):

"Recent studies indicate that RO₂· could also react with OH· radicals (summarized in Fittschen, 2019). Theoretical calculations suggest that larger peroxy radicals could form stable trioxides under atmospheric conditions, while formation of alkoxy radicals is negligible (Assaf et al., 2018)."

and in Method section 2.4 (line 24 - 242):

"Reaction of HOM-RO₂' with OH (Assaf et al., 2018; Fittschen, 2019) could contribute somewhat to the HOM-termination products at our reaction conditions but it will not be considered, since it cannot compete with the particular major termination pathways in the experiments."

• This mechanism could also explain in part the CO experiments. In the absence of CO, higher OH concentrations can lead to C10H15O2n+1 products via the ROOOH pathway above, which switches in the presence of CO when OH concentrations are lower. The trioxide does get more stable against decomposition with the increase in carbon chain length, so the contribution of the channel is perhaps minimal.

A similar consideration as in the previous response shows that in the CO case at $[OH] = 1 \cdot 10^7$ cm⁻³, $RO_2 + OH$ cannot significantly compete with HOM-RO₂ + HO₂ and HOM-RO₂ + RO₂.

No action.

3. About the C10H16O7 signal in page 10 which dominates the C10H16Ox family in their measurements, the authors state that the contribution to this signal from C10H17Ox is low (line 351). Does the majority of the C10H16O7 signal measured then come from reactions of C10H15Ox? Maybe provide additional details regarding the reactions that are likely involved, whether R2 or R3b or something else. If it's R2, does [HO2] explain the measured intensity?

The purpose of these lines was to make it plausible that $C_{10}H_{17}O_X$ peroxy radicals likely did not end up in $C_{10}H_{16}O_7$, so they are not trapped specifically in this compound. As a consequence, $C_{10}H_{16}O_7$ must arise from $C_{10}H_{15}O_8 + RO_2$ or $C_{10}H_{15}O_7 + HO_2$. Both, HOM peroxy radicals have large abundances. The high concentration and the fast increase with turnover by OH indicate an efficient termination reaction. For the latter a missing HO_2 source in the model calculations would help, as discussed in the supplement. (To continue the discussion on comment 2: the contribution of the reaction HOM- $RO_2 + OH$ -> HOM-ROOOH is small since $C_{10}H_{15}O_6$ is relatively small.)

Action:

We will add to the manuscript, Section 3.1, line 370 -372):

" $C_{10}H_{16}O_7$ is thus likely formed from $C_{10}H_{15}O_8$ or $C_{10}H_{15}O_7$ which show high abundances (Fig. S5). The large contribution of $C_{10}H_{16}O_7$ to the $C_{10}H_{16}O_X$ family indicates specifically efficient termination reactions of $C_{10}H_{15}O_8 + RO_2$ or $C_{10}H_{15}O_7 + HO_2$."

4. Lines 415-419: C10H15O6 can form from a-pinene ozonolysis. In fact, Meder et al. 2025 cited here measure multiple isomers of this peroxy radical. Also, consider a different word than "unimportant" in line 419. C10H15O6 is crucial to formation of the next peroxy radical in the autoxidation chain, C10H15O8. It can also react bimolecularly to form the closed-shell C10H14O5 species, as reported in Meder et al.

We agree with the reviewer, our formulations are unlucky and misleading.

First, we would like to state that the concentration of $C_{10}H_{15}O_6$ is low in our dark case (60% ozonolysis / 40% OH) but not zero. It increases with OH, which means at least one $C_{10}H_{15}O_6$ isomer must have a strong OH related source, as stated in the manuscript.

However, a low concentration of an intermediate is indeed not equivalent to being unimportant. Iyers et al. (2021) suggested that $C_{10}H_{15}O_6$ is rapidly converted to $C_{10}H_{15}O_8$, which would explain the small concentration and relatively high $C_{10}H_{15}O_8$ concentrations at the same time. Meder et al. (2025) discuss the relative importance of different abstraction pathways. Meder et al. supported the mechanism proposed by Iyers et al. (2021) as it can explain a part of the observed H-abstraction behavior leading to $C_{10}H_{15}O_6$. However, Meder et al. also state that Iyers' mechanism cannot explain all H-abstraction pathways they observe, which indicates involvement of different $C_{10}H_{15}O_6$ isomers. In our opinion, $C_{10}H_{15}O_6$ isomers could also arise in Meder's experiments from (dark) OH, as they did, like us, not quench OH in their experiments. Insofar we agree with Iyers and Meder, however, in different aspects.

Action:

We modified the sentence in Section 3.2.1 (line 441 – 444) and avoided the notation "unimportant".

"This observation is consistent with the HOM pathways in α -pinene ozonolysis proposed by Iyer et al. (2021) wherein an efficient 1,4 shift to $C_{10}H_{15}O_8$ should lead to a small concentration of $C_{10}H_{15}O_6$ in bare ozonolysis. The fraction of $C_{10}H_{15}O_6$, which in Meder's et al. (2023, 2025) experiments could not be explained by the Iyer mechanism, could arise in parts from dark OH as in our experiments."

5. Regarding the effect of CO on the formation of HOM RO, the authors cite Jenkin et al. 2019 to say that the branching to alkoxy radicals from RO2 + HO2 reactions should be low (line 464). However, this is highly dependent on the structure of the R. According to Jenkin et al., there is an almost 50:50 branching towards ROOH and RO for beta-oxo peroxy radicals (Table 8 in Jenkin et al 2019). The authors should discuss the importance of the RO2 + HO2 reaction in the context of the structures of the Rs in their system.

We agree with the reviewer that the result of the CO experiment looks a bit more complex than simply replacing RO₂ by HO₂, although the overall trend is suppression of the alkoxy-peroxy paths (parity change). If HOM-RO₂ + HO₂ would be an important source of HOM-RO, the oxygen parity should behave like in the OH reference experiment or like in the NO_X experiments. This is, however, not the case. Parity change is reduced in the presence of enhanced HO₂, which indicates that HOM-RO is suppressed compared to reaction with RO₂. Secondly, we agree with the reviewer that the structure of R is key for (the rate of) isomerization. Regarding the structure of R in HOM-RO2 and potential HOM-RO formation by HO₂, we agree that there may be isomers with significant tendency to form alkoxy radicals. However, we have no direct handle on the structure R of isomers in this study, since we applied HR mass spectrometry, which provides only chemical formulas. The advantage of HR-MS is that we can observe the time evolution or here the steady state abundance of several HOM-RO₂ simultaneously. Therefore we probably capture a variation of Rs. Our approach assumes that there are structure isomers represented in the pool of intermediates with the reactant formula that have the ability to form the hydroperoxide in reaction with HO₂. While there may be also isomers that are able to form a significant fraction HOM-RO, which we don't know. This would overall mostly shift the chemistry somewhat between termination and autoxidation within a rather large uncertainty envelope.

Action:

We added a remark to the Introduction (line 89 - 90):

"For specific peroxy radicals even reaction with HO₂ can lead to significant branching into alkoxy formation (Jenkins et al. 2019)."

and made clearer in section 3.2.2. (line 507 - 509) that we do not exclude contribution of RO from HO₂:

"Regarding the reaction HOM-RO $_2$ · + HO $_2$ · (R9) a production of HOM-RO· cannot be excluded; it seems to be less efficient than HOM-ROOH formation (R2), though."

6. How does the decrease in [OH] from CO addition affect the RO2 intensities and distribution? In line 494 the authors put the onus of HOM-RO2 suppression completely on HOM-RO2 + HO2 reactions, but how much of the suppression is due to lower [OH]?

We choose for this comparison experiments with a similar turnover with and without CO, therefore the primary production of RO₂ is about the same. We do therefore not expect a large effect on the distribution of R of the RO₂ radicals starting the autoxidation. Since production is about the same it must be the enhanced sink by HO₂ that leads to overall reduction of HOM-RO₂. (Further, we did not claim in line 494f that the suppression is *completely* due to enhanced [HO2].)

In summary, the enhanced importance of $HOM-RO_2$ · $+HO_2$ · reactions compared to $HOM-RO_2$ · $+RO_2$ · reactions in the CO experiment led to suppression in the abundance of $HOM-RO_2$ · radicals as well as fragmented compounds related to alkoxy steps.

Action:

We modified the sentence (Section 3.2.2. line 521 -523):

"In summary, the enhanced importance of $HOM-RO_2$ · $+ HO_2$ · reactions compared to $HOM-RO_2$ · $+ RO_2$ · reactions in the CO experiment led to a general suppression of the abundance of $HOM-RO_2$ ·. Hereby concentrations of $HOM-C_{10}H_{15}O_{2n+1}$ and fragmented compounds which are related to alkoxy steps were disproportionally stronger suppressed."

7. The increase in C10H15Ox signals with the increase in NOx: is there a possibility that some ozone is forming from NO2 photolysis? If I understand the method section correctly, UV-A lights are on during these experiments, so won't NO2 photolysis increase O3 concentrations, explaining at least partly, the observed increase in C10H15Ox signals?

Yes, we agree that NO_X chemistry affects the O_3 steady state concentrations. In our experiments, we observed net destruction as well as production of O_3 depending on $[NO_X]_{SS}$. For our calculations, we used always the steady state concentration of O_3 as measured (Table S1), insofar NO_X related changes in O_3 are already considered. In the NO_X experiments, turnover is dominated by 90% by OH despite high $[O_3]_{SS}$; even in the experiment with the highest NO_X , it is still 86%. Moreover, RO_2 production is much more efficient in OH photochemistry compared to RO_2 production from O_3 (vinylhydroperoxide path). In any case, for the measured NO concentration >8 ppb, reaction by NO is the dominant fate of peroxy radicals. So, a little stronger RO_2 source from O_3 cannot explain the relatively high levels of $C_{10}H_{15}O_X$ with increasing NO_X . Moreover, O_3 related HOM- RO_2 would react with NO in the same way as OH generated HOM- RO_2 . Of course O_3 related peroxy radicals will also undergo the alkoxy-peroxy steps (Mentel et al. 2015). In addition, as shown in Figure 9, $C_{10}H_{17}O_X$, which are not formed by O_3 , also survive at high NO_X . All this indicates that for HOM- RO_2 an extra source must exist compared to conventional RO_2 . And our suggestion is that it is alkoxy-isomerization under preservation of the carbon backbone.

No action

Assaf, E., Schoemaecker, C., Vereecken, L. and Fittschen, C., 2018. Experimental and theoretical investigation of the reaction of RO2 radicals with OH radicals: Dependence of the HO2 yield on the size of the alkyl group. International journal of chemical kinetics, 50(9), pp.670-680

Citation: https://doi.org/10.5194/egusphere-2025-2772-RC2