Feature Selection for Landslide Forecasting
Models in Southern Andes
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Reviewer 1

This study presents a machine learning-based approach for landslide forecasting in the
Southern Andes, combining feature selection methods (CART and genetic algorithms) with
multiple classifiers (SVM, RF, XGB). The research design is sound, the methodology is
robust, and the results hold practical significance, particularly in the context of early warning
systems for geological hazards. The paper is recommended for publication after addressing
the following points.

A: We appreciate the comments of the reviewer. We agree with all the comments,
and these were improved in the newer version of the manuscript. Now, we include
additional sections and corrections to the information gap and low-quality figures. We
would appreciate it if the reviewer could revise the attached document.

Major comments:

1.

The introduction currently provides a broad Please, see R1_1 response
overview of landslide forecasting but could
better highlight the specific innovations of
this study. For example: (1) The proposed
solutions for data scarcity in the Southern
Andes (e.g., PU Bagging and buffer control
sampling); (2) The unique advantages of the
hybrid feature selection approach (GA +
CART) in landslide prediction.

2. The conclusion should more explicitly Please, revise subsection R1 2 +

summarize the improvements this study R1_8 response.
offers to existing landslide early warning
systems and its practical implications.




. The abstract should be refined to convey
more insightful information.

Please,

see R1

3 response.

. The paper mentions multiple databases
(e.g., ERAS5, CLSoilMaps) but lacks details
on their temporal coverage, resolution
consistency, and handling of missing data.
These details should be added.

Please,

see R1

4 response

. The methodology for generating "negative
examples" (non-landslide data) via Buffer
Control Sampling and PU Bagging requires
further justification.

Please,

see R1

5 response

. Tables 4 and 5 present performance metrics
for different methods but lack statistical
significance tests (e.g., p-values or
confidence intervals). Such tests would
strengthen the claim that GA-based
optimization outperforms other methods.

Please,

see R1

6 response

. The similar performance of GA XGB and GA
RF (both with 10.95% error rates) warrants
discussion on their trade-offs in real-world
applications (e.g., computational efficiency,
interpretability).

Please,

see R1

7/ response

. The study focuses on two regions in
southern Chile (Los Lagos and Los Rios).
The conclusions should clarify whether they
are applicable to areas with different
geological or climatic conditions.

Please, revise subsection

R1 2 + R1 8 response.

. The discussion should more thoroughly
address model limitations.

Please, see R1 9 response

Minor comments:

. Labels in Figures 3 and 4 (correlation
matrices) are too small and should be
enlarged or provided in higher resolution.

Please, see MC 1 response




2. Abbreviated variable names in Tables 1 and | Please, see MC 2 response
2 (e.g., "AvMoist") should be explained in the
main text or footnotes (e.g., "Available
Moisture").

3. Inconsistent formatting of terms (e.g., "GA Please, see MC_3 response
XGB" vs. "GA_XGB") should be unified.

Please, see MC 4 response

4. The first paragraph of the conclusion (lines
465-475) could be condensed to avoid
redundancy with earlier sections.

Reviewer 2

This manuscript provides an interesting study on identifying the primary factors controlling
rainfall-induced landslides in four Chilean regions. The framework and methodologies are
sound. However, | regret to say that the core innovation of this study has not been
sufficiently articulated. As the authors note (line 86-87), the study area is unique and
complex in geological and climatological features. Nevertheless, the manuscript does not
rigorously discuss which features emerge as the most representative variables for volcanic,
sedimentary, and glacial terrains, nor how these features influence susceptibility mapping.
Instead, the emphasis is placed on machine learning and feature selection techniques, which
are widely used and cannot be highlighted as innovative in comparison with the unique
geological setting of the study area. Meanwhile, the writing and structure of the manuscript
are not well organised, which makes it difficult for the reader to follow the authors’ idea. For
these reasons, | do not consider the manuscript is suitable for publication in its current form.
Substantial revisions are required to improve its quality. Some detailed comments are as
follows.

A: We are grateful to the reviewer for their careful and accurate assessment of our
manuscript. We appreciate the positive recognition of the study's sound framework
and methodologies and acknowledge the critical feedback regarding the insufficient
articulation of the core innovation and the overall structure. The detailed comments
have been invaluable in improving the quality and clarity of the revised submission.
We fully agree with the reviewer's observation that the original manuscript did not
sufficiently articulate the unique contribution in the context of the study area's
complex geology. The reviewer correctly identified that the emphasis on well-
established machine learning and feature selection techniques (CART and GA) may
have obscured the core novelty of our work. Now it was corrected and improved.

We wish to clarify that the primary objective of this study is not the construction of a
novel landslide susceptibility map, but rather to systematically identify the most



representative and influential variables that should be prioritised in monitoring
networks and future, localised susceptibility models for rainfall-induced landslides in
the Southern Andes. Our contribution is focused on filling a critical gap in South
American landslide hazard assessment, where monitoring surveys often lack clear,
evidence-based prioritisation of variables, especially across diverse, complex
geological terrains (volcanic, sedimentary, glacial). In the revised manuscript, we
have substantially re-focused the discussion to address the reviewer's point
rigorously. Detailing the physical significance of the selected features (e.g., the
importance of soil hydraulic properties like bulk density and saturated water content),
which reflects the influence of the region’s heterogeneous soil and shallow geology on
landslide initiation. Moreover, we connected the results directly to practical
recommendations for monitoring, thus reinforcing that the predictive power is a means
to determine variable importance, not an end in itself for producing a static
susceptibility map.

We sincerely apologise for the original writing and structure, which made the
manuscript difficult to follow. We recognise that a lack of clear organisation can
severely hinder the transmission of the study's ideas. We have performed a
comprehensive revision of the entire manuscript’s structure and writing to improve
coherence and readability. The Introduction has been revised to clearly state the gap
(lack of variable prioritisation for monitoring) and the study's specific goal (feature
identification for early warning systems). The Methodology section is now more
logically organised. The Discussion has been restructured first to present the feature
selection results, then provide an in-depth analysis of their physical meaning and
implications for regional monitoring/early warning system design, before briefly
discussing model performance. We trust that these revisions have significantly
enhanced the clarity, quality, and focus of the manuscript, making the unique
contribution easily identifiable. We would appreciate it if the reviewer could revise the
attached document.

L12-13: The abstract ends abruptly
without presenting any concrete
results. Please expand the abstract
to include the key findings and avoid
vague statements such as “various
predictive models were tested.”

Please, see R2 1 response

L41-42: Seismic activity is not
relevant to this study and should not
be included in the introduction.

Please, see R2 2 response




. L87-88: The diverse geological

composition of the study area should
be emphasised as one of the most
important aspects. Please elaborate
on how different soil and lithological
types correspond to the selected
controlling features.

Please,

see R2 3 response

. L119-121: The phrase “considerable
attention” is unclear. Please specify
the exact steps taken to ensure data
quality.

Please,

see R2 4 response

. L127: The abbreviation “PP” is used

without being defined beforehand.
Please define it at first mention.

Please,

see R2 5 response

. Figure 7 and 8: These figures are not
properly prepared. They contain non-
English words, and their captions are
incomplete. Please revise
accordingly.

Please,

see R2 6 response

. Figure 9: Please add the coordinates
to the map.

Please,

revise the R2 7 answer.




Response to Reviewers

Reviewer 1

R1_1

“The introduction currently provides a broad overview of landslide forecasting but could
better highlight the specific innovations of this study. For example: (1) The proposed
solutions for data scarcity in the Southern Andes (e.g., PU Bagging and buffer control
sampling); (2) The unique advantages of the hybrid feature selection approach (GA +
CART) in landslide prediction.”

ANSWER: We agree with the reviewer's assessment and are grateful for this
constructive feedback. We acknowledge the observation regarding the necessary
background and have revised the manuscript accordingly to provide a more robust
conceptual and contextual foundation for the study. Specifically, we have modified
the Introduction to explicitly highlight the novelty, knowledge gap and original
contribution of this work, while also emphasising the critical need for this research
within the South American context (integrating the relevant point raised by
Reviewer 2). Consequently, these revisions have also necessitated modifications
to the final two paragraphs of the Introduction section to ensure coherence with the
expanded background and justification.

Original version (focused on “The unique advantages of the hybrid feature
selection approach (GA + CART) in landslide prediction”):

The drivers and controls of landslide generation exhibit both similarities and
differences across various global regions, shaped by a complex interplay of geological,
climatic, and anthropogenic factors. At a fundamental level, topography is a significant
factor influencing landslide occurrence; however, its importance can vary widely
depending on local conditions. For instance, Lin et al. (2016, 2017) note that while
topography is often emphasized in landslide susceptibility models, soil moisture
emerges as a critical factor on a global scale, particularly in regions prone to rainfall-
triggered landslides. Additionally, geological characteristics such as lithology and
drainage density are crucial conditioning factors that interact with triggering

mechanisms like precipitation and seismic activity (Bisht and Rawat, 2023).

Modified by:



Landslide generation is a complex, multi-variable process driven by a critical interplay of
geological, climatic, and anthropogenic factors, exhibiting significant global and regional
variability in the key variables (Chen et al., 2024; Fidan et al., 2024). While topography is a
fundamental conditioning factor, its relative importance can be overshadowed by local
conditions, such as rapid changes in soil moisture at specific depths, particularly for rainfall-
triggered landslides (Margafio et al., 2025; Fustos-Toribio et al., 2025). Additional conditioning
factors, including lithology and drainage density, interact with triggering mechanisms such as
extreme precipitation to initiate landslide events. The assessment of landslide susceptibility is
inherently challenging because of the numerous, interrelated variables that complicate the
development of accurate predictive models. Therefore, it becomes critical to establish the main
variables that could control a landslide to improve landslide susceptibility models (Maragafio et
al., 2023; Zighmi et al.,, 2025). The core difficulty lies in effectively processing this
heterogeneous data and identifying the most influential variables. To address this multi-variable
complexity and enhance predictive accuracy, advanced methodologies are combined, such as
hybrid feature selection approaches that combine optimisation algorithms, like Genetic
Algorithms (GA), or feature ranking algorithms, like Classification and Regression Trees
(CART), with classification techniques, to refine model inputs and achieve more precise,
actionable spatial predictions (Nguyen et al., 2017).

Original version (relevating the innovation and contribution for South America):

In the context of southern Chile, the present work proposes the application of ML
methods to analyze a comprehensive database comprising 136 features—ranging from
soil properties to climatic conditions, underscoring the importance of regionspecific
studies in assessing landslide susceptibility. Classification and Regression Trees
(CART) and Genetic Algorithms (GA) were considered for feature selection,
facilitating the identification of local critical factors influencing landslide risks
(Shirzadi et al., 2018; Miao et al., 2022).

A comprehensive understanding of the complex interplay between rainfall intensity,
soil moisture, and geological factors 80 is crucial for developing effective monitoring
networks and generating accurate early warning systems for landslides. This
manuscript presents an in-depth analysis of the conditioning factors that influence
landslide occurrence in a region of the southern Andes (38—42°S) as a pilot case study.
It highlights the importance of the critical variables that must be considered in future

monitoring approaches based on machine learning.

Modified version:

This manuscript offers a substantial and innovative contribution to understanding the
complex, dynamic processes of landslide generation in the Southern Andes (38-42°S)
considering for the first time a rigorous, data-driven methodology in this area. We
expect to delimitate the main variables that must be considered in Southern Andes to
understand the landslide triggering and control conditions using an innovative
deployment of Machine Learning (ML) techniques based on Classification and

Regression Trees (CART) and Genetic Algorithms (GA) allowing a meticulous feature



selection from climatic variables, soil properties to geological features. This targeted
feature selection process is vital for identifying the true local critical factors that govern
slope instability in this climatically active and geologically heterogeneous
environment, effectively translating complex hydro-geomorphological processes into
quantifiable variables. The prioritised factors are then strategically repurposed as high-
quality proxies to refine and improve variable mapping, enabling a crucial regional-to-
local scale approach that captures the spatial variability of landslide susceptibility. The
providing of an in-depth, data-validated analysis of the critical variables that interplay
among triggering mechanisms will support the design of next-generation, ML-based
monitoring networks and accurate early warning systems (EWS) for this vulnerable

mountain range.

R1 2 +R1_8

(R1_2) The conclusion should more explicitly summarize the improvements this study
offers to existing landslide early warning systems and its practical implications.

(R1_8) The study focuses on two regions in southern Chile (Los Lagos and Los Rios).
The conclusions should clarify whether they are applicable to areas with different
geological or climatic conditions.

ANSWER: Thank you for highlighting this weakness in our contribution. We agree
with your assessment and have fully rewritten the conclusion section to clearly
improve and elevate the relevance of our scientific contribution within the field.

Original text:

We evaluated the performance of machine learning models—Support Vector Machines (SVM),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost) to predict landslide
susceptibility in the southern Andes (38—42°S). The Southern Andes has a high soil variability
that does not allow for deep instrument monitoring. Therefore, we determined the domain-
relevant geotechnical, hydrological, and geomorphological variables and applied advanced
feature selection techniques, including Genetic Algorithms (GA) and Positive-Unlabeled (PU)
Bagging. We were able to systematically identify and optimise the most informative predictors
for rainfall-induced landslides.

Our results demonstrate that models optimised using Genetic Algorithms significantly
outperform baseline methods, such as CART with conventional feature selection. Notably, GA
RF and GA XGB achieved the lowest classification errors (10.95%). Moreover, compact feature

sets highlighted the potential of evolutionary algorithms to enhance both the accuracy and



efficiency of susceptibility assessments. Our models’ results consistently identified slope,
precipitation, and near-surface soil hydraulic properties—particularly bulk density and saturated
water content—as critical factors influencing landslide initiation. Future instrumental
developments must consider these variables, monitoring and landslide assessment.

Our findings also underscore the importance of incorporating both shallow and deep soil
moisture characteristics, as well as soil retention curve parameters, to better capture the complex
subsurface dynamics that precede slope failure. The differences in feature prioritisation between
GA RF, GA XGB, and GA SVM reflect distinct modelling philosophies: while RF and XGB
emphasised shallow hydraulic traits and retention thresholds, SVM gave greater weight to
deeper soil moisture indicators and retention curve shape parameters.

We conclude that integrating data-driven models with physically meaningful features provides
a robust framework for enhancing early warning systems and regional risk assessments. The
superior performance of GA-optimised ensemble models suggests that future efforts should
prioritise hybrid strategies that combine expert knowledge with automated feature selection.
These approaches are particularly valuable in data-scarce environments, offering scalable
solutions to inform risk management and decision-making in mountainous regions vulnerable

to rainfall-triggered landslides.

Modified text:

We evaluated machine learning models (SVM, RF and XGB) to predict landslide susceptibility
in the southern Andes (38—42°S), selecting domain-relevant geotechnical, hydrological, and
geomorphological variables through feature selection techniques (CART and GA). The GA-
optimized models, particularly GA-RF and GA-XGB, significantly outperformed baseline
methods, achieving the lowest classification errors (10.95%) with compact feature sets that
improved both accuracy and efficiency. Across experiments, slope, precipitation, and near-
surface soil hydraulic properties—especially bulk density and saturated water content—
emerged as the most critical factors influencing rainfall-induced landslides, underscoring their

importance for future monitoring and assessment.

R1_3

The abstract should be refined to convey more insightful information.

ANSWER: Thank you very much for this important suggestion. We improved the
abstract by presenting a more concise description of the study, highlighting the
main findings, and emphasizing what we consider to be its most important
contribution.

Original text:



Abstract. Rainfall-induced landslide (RIL) forecasting is crucial for early warning systems
developed to mitigate the devastating impacts of these events on human lives, infrastructure,
and the environment. Currently, dense instrumental networks for early warning require large
datasets to identify precursor patterns in current machine learning models. Topographic,
lithological, vegetation, soil moisture, and climatic characteristics are among the most
commonly used variables for training these models. However, there are no universal designs,
so it is necessary to adapt the requirements to each context and to the available variables that
characterise it. To develop a RIL forecasting model for the Southern Andes, this study gathers
data from various local soil and climate databases to identify the most relevant variables.
Feature selection is crucial for improving the design of machine learning models, reducing the
dimensionality of input data, enhancing computational efficiency, and preventing overfitting.
We assessed the impact of various features, both individually and in combination, on the
performance of predictive models. Methods such as Classification and Regression Tree and
Genetic Algorithms are employed to perform the feature selection. A national landslide
database was enriched using techniques such as buffer control sampling, PU Bagging, and
clustering methods to incorporate negative examples (non-landslide) data. Various predictive
models were tested. The results reveal some consistent variables as the most significant in

forecasting landslides in four southern Chilean regions.

Modified Text:

Abstract. Rainfall-induced landslides (RIL) are a major hazard in the Southern Andes,
threatening lives, infrastructure, and ecosystems. Early warning systems require accurate
predictive models, yet their effectiveness is constrained by heterogeneous data availability
and the lack of universal design standards. This study develops a systematic framework for
identifying the most influential features controlling landslide generation, integrating local soil,
climatic, and topographic datasets. A national landslide inventory was expanded with buffer
control sampling and PU Bagging to improve representation of non-landslide cases, yielding a
robust database of 3,148 instances with 136 variables. Feature selection was performed using
Classification and Regression Trees (CART) and Genetic Algorithms (GA), followed by
evaluation with Support Vector Machines, Random Forest, and XGBoost classifiers. Results
highlight precipitation, slope, and soil hydraulic properties—particularly bulk density and
saturated water content—as recurrent critical predictors. GA-based models significantly
outperformed CART, with GA-RF and GA-XGB achieving the lowest error rates (10.95%) using

compact feature sets. These findings underscore the potential of evolutionary feature



selection to enhance predictive accuracy while reducing data complexity, and they provide
actionable insights into which variables should be prioritized in monitoring networks. By
emphasizing both shallow and deep soil moisture dynamics, this work contributes to the
design of more reliable and region-specific early warning systems for rainfall-induced

landslides in mountainous environments.

R1_4

The paper mentions multiple databases (e.g., ERA5, CLSoilMaps) but lacks details on
their temporal coverage, resolution consistency, and handling of missing data. These
details should be added.

ANSWER: Thank you for this observation: the following paragraphs show how this
information was added to the paper.

Original text:

We considered the soil moisture, precipitation, and slope from the ERAS database
(ERAS5, 2023), one of the most widely used climate datasets, with 10km resolution. The
slope was obtained combining the ERAS5 database with high-resolution digital
elevation models. The Chilean soil properties were extracted from the CLSoilMaps
database (Dinamarca et al., 2023). The database has soil properties at 100 meters of
spatial resolution, being trained using random forest at six standard depths (Table 2),
following the GlobalSoilMap standards.For all the characteristics except for the slope,
PP and soil moisture values, the measures available were obtained at the six different
soil depths (Table 2), totalling 133 soil features in addition to the 3 extracted from
ERAS, giving 136 features for each geographical point.

Modified Text:

We considered the soil moisture, precipitation, and slope from the ERAS database
(ERAS, 2023), one of the most widely used climate datasets, with 10km resolution. The
slope was obtained by combining the ERA5 database with high-resolution digital
elevation models. The Chilean soil properties were extracted from the CLSoilMaps

database (Dinamarca et al., 2023). The ERAS5-Land dataset corresponds to the land



component of the European Centre for Medium-Range Weather Forecasts' (ECMWF)
fifth-generation reanalysis, executed under the Copernicus Climate Change Service
(C3S) mandate, being generated via offline, high-resolution integrations of the
ECMWEF land surface model, CHTESSEL. The offline generation approach offers
improved temporal consistency in land surface fields, thereby representing global water
and energy cycles more accurately (Mufioz-Sabater et al., 2021). The dataset delivers
approximately 50 variables essential for describing hydrological and surface energy
processes, including soil moisture, runoff, snow cover, skin temperature,
evapotranspiration, and land carbon fluxes at high resolution, providing a 9 km global
horizontal resolution in comparison to 31 km and 80 km resolutions of ERAS and ERA-
Interim, respectively. The currently accessible public record spans from January 1981
to the present, subject to a typical latency of 2—3 months. To mitigate boundary
discontinuities, each stream is preceded by multi-year spin-up periods. However,
residual inconsistencies are acknowledged, particularly within variables with long
memory, such as deep soil moisture and permanent snow regions. The internal
consistency of ERAS5-Land is intrinsically tied to its reliance on ERAS for
meteorological forcing, through a 4D-Var data assimilation system. Near-surface air
temperature, pressure, and humidity are, however, corrected for elevation discrepancies
between the ERAS and ERAS5-Land grids utilising daily lapse rates. Validation against
diverse observational datasets, including in situ networks, satellite products, and
hydrological records, unequivocally demonstrates that ERAS5-Land surpasses ERAS
performance in the representation of soil moisture, temperature, runoff, and lake
dynamics (Mufloz-Sabater et al., 2021; Bonshoms et al., 2022; Yilmaz et al., 2023).
Moreover, we utilised the new CLSoilMaps database, an improvement over global soil
databases in Chile. CLSoilMaps provides spatially explicit and high-resolution
predictions of critical soil physical and hydraulic properties specifically for continental
Chile and its shared transboundary basins with Argentina. The database was rigorously
developed using Digital Soil Mapping (DSM) techniques within the SCORPAN
framework (McBratney et al., 2003), trained on over 4,000 soil profile observations
encompassing diverse and historically underrepresented ecosystems, including the
Andes and Patagonia. Modelled soil attributes include clay, sand, and bulk density,
with silt content derived indirectly. Hydraulic properties, such as field capacity,
permanent wilting point, and available water capacity, were estimated using the well-
established Rosetta V3 pedotransfer function (Zhang and Schaap, 2017). The
predictions were executed using Random Forest algorithms that incorporated over 200
environmental covariates, spanning climate, topography, and satellite-based
reflectance indices, and adhered to the six standardised depth intervals (0—200 cm)

stipulated by the GlobalSoilMap project.



R1_5
The methodology for generating "negative examples" (non-landslide data) via Buffer
Control Sampling and PU Bagging requires further justification.

ANSWER: We thank the reviewer for this observation. The decision to use PU-
Bagging for generating negative cases was motivated to ensure that the additional
negative examples are truly representative of the negative class, without
introducing contamination from borderline or ambiguous cases. In our setting,
many candidate negative samples can exhibit characteristics that are very similar
to the positives, and including them could make the decision boundary more
difficult to find and the classification unnecessarily more complex.

PUBagging provides a principled way to mitigate this risk by leveraging the positive
set and treating the remaining data as unlabeled, iteratively identifying those
instances most likely to be reliable negatives. In this way, the method filters out
‘hard” negatives that resemble positives, while still providing enough negative
samples to balance the dataset and improve classifier training. This ensures that
the model learns to discriminate between classes more robustly, without being
biased by mislabeled or ambiguous data. We included this in the paper.

Original text:

This distance was intentionally chosen given the 10-kilometer resolution of the
climatological variables, enabling the capture of spatial variability of the precipitation
and soil moisture content, differentiating between landslide and non-landslide
conditions. Subsequent refinement of the negative examples was performed via a
modified PU Bagging (Positive-Unlabeled Bagging) (Gu et al., 2024), built on the idea
of bagging (bootstrap aggregating) by repeatedly sampling subsets of the unlabeled
data and combining them with the positive set to train multiple base classifiers. Each
subset is treated as if the unlabeled instances were negative (which may introduce
noise), and by aggregating the predictions across many such classifiers, PUBagging

reduces the bias introduced by this assumption and improves robustness.

Modified text:

This distance was intentionally chosen given the 10-kilometer resolution of the
climatological variables, enabling the capture of spatial variability of the precipitation
and soil moisture content, differentiating between landslide and non-landslide
conditions. Subsequent refinement of the negative examples was performed via a
modified PUBagging (Positive-Unlabeled Bagging) (Gu et al., 2024), built on the idea
of bagging (bootstrap aggregating) by repeatedly sampling subsets of the unlabeled

data and combining them with the positive set to train multiple base classifiers. In our



setting, many candidate negative samples can exhibit characteristics that are very
similar to the positives, and including them could make the decision boundary more
difficult to find and the classification unnecessarily more complex. PUBagging
provides a way to mitigate this risk by leveraging the positive set and treating each
subset as if the unlabeled instances were negative (which may introduce noise), and by
aggregating the predictions across many such classifiers, PUBagging reduces the bias

introduced by this assumption and improves robustness.

R1_6:

Tables 4 and 5 present performance metrics for different methods but lack statistical
significance tests (e.g., p-values or confidence intervals). Such tests would strengthen
the claim that GA-based optimization outperforms other methods.

ANSWER: We modified the tables and improved the quality. We corrected the text,
which previously stated that it referred to the standard deviation, when in fact it was
the confidence interval (line 436) indicated for each metric in Tables 4 and 5. In
addition, we conducted hypothesis tests to evaluate the statistical significance of
the performance differences among the top-ranking models.

Original text:

The features selected by the different methods were used to train and test classifiers implemented
with the three models - SVM, RF and XGB - to compare them. The results are presented in Table
5, providing a comprehensive overview of their performance under two distinct conditions: Non
PU Bagging and PU Bagging. The evaluation metrics include accuracy and recall, both of which
are critical for assessing the effectiveness of these classification models. In the Non PU Bagging
category, the classifiers demonstrated notable performance. The SVM achieved an accuracy of
0.735 with a standard deviation of = 0.029, and a recall of 0.749 + 0.041. The XGB model
outperformed the SVM, recording an accuracy of 0.873 + 0.020 and a recall of 0.885 + 0.028,
indicating its strong predictive capability. The Random Forest classifier exhibited the highest
performance among the three, with an accuracy of 0.879 + 0.020 and a recall of 0.901 + 0.027.
These results suggest that all classifiers were effective in identifying instances from the dataset,
with Random Forest showing the best overall performance. In the PU Bagging category, the
classifiers maintained strong performance, although there were slight variations compared to the
Non PU Bagging results. The SVM recorded an accuracy of 0.769 + 0.0284 and a recall of 0.809
+0.0372, indicating an improvement in its predictive ability with PU Bagging. The XGB model
achieved an accuracy of 0.862 + 0.022 and a recall of 0.889 + 0.028, which, while slightly lower
than in the Non PU Bagging scenario, still reflects robust performance. The Random Forest

classifier, however, showed a decrease in accuracy to 0.856 + 0.023 and a recall of 0.881 =



0.028, suggesting that while it remained effective, the application of PU Bagging may have

introduced some variability in its performance.

The RandomForest discriminator results indicate that all classifiers performed well in both
scenarios, with Random Forest consistently demonstrating the highest accuracy and recall. The
application of PU Bagging appears to have had a mixed impact on classifier performance,
enhancing some models while slightly reducing the effectiveness of others. These findings
highlight the importance of evaluating different modeling strategies and their configurations to
optimize predictive performance in classification tasks. Future research should explore the
underlying factors contributing to these performance variations and consider additional

techniques for further enhancing model accuracy and recall.

The model performance shows good agreement. Our results showed that the best-performing
model is the XGB classifier utilizing GA optimization under the "PU Bagging" approach,
achieving an accuracy of 0.896 + 0.019 and a recall of 0.886 * 0.026. Conversely, the worst-
performing model is the Support Vector Machine (SVM) classifier with GA optimization and
"No PU Bagging," which recorded an accuracy of 0.735 + 0.029 and a recall of 0.749 + 0.041.

Modified text:

The features selected by the different methods were used to train and test classifiers implemented with the three
models - SVM, RF and XGB - to compare them. The results are presented in Table 5, providing a comprehensive
overview of their performance under two distinct conditions: Non PU Bagging and PU Bagging. The evaluation
metrics include accuracy and recall with their respective confidence intervals, both of which are critical for
assessing the effectiveness of these classification models. In the Non PU Bagging category, the classifiers
demonstrated notable performance. Table 5 shows that the best-performing models were those obtained using the
features selected through GA-RF. The SVM achieved an accuracy of 0.735 with a confidence interval of = 0.029,
and a recall of 0.749 £ 0.041. The XGB model outperformed the SVM, recording an accuracy of 0.873 + 0.020
and a recall of 0.885 £ 0.028, indicating its strong predictive capability.

The Random Forest classifier exhibited the highest performance among the three models, achieving an accuracy
0f 0.879 + 0.020 and a recall of 0.901 + 0.027. However, a Wilcoxon signed-rank test showed that the difference
between RF and SVM—both with and without PU-Bagging—is statistically significant (p-value = 1.23x107%"). In
contrast, no significant difference was observed between RF and XGB under either sampling strategy (p-value >
0.56). These findings indicate that all classifiers were effective in identifying landslide and non-landslide
instances, with Random Forest and XGBoost consistently demonstrating the strongest overall performance.
Moreover, the comparison between PU-Bagging and Non—PU-Bagging strategies revealed no statistically
significant differences, suggesting that PU-Bagging did not substantially alter the classifiers’ general predictive

ability.



The superior performance of XGB further highlights its effectiveness in capturing complex, nonlinear
relationships within the dataset. Although the GA optimization improved all models, the SVM appears less
capable of fully exploiting hyperparameter tuning when compared to the more flexible and expressive structure
of XGB. Prior studies also show that SVMs can perform competitively on simpler datasets but tend to lose
effectiveness in more heterogeneous or high-dimensional contexts unless subjected to extensive parameter
optimization. The recall results reinforce this interpretation: XGB achieves a higher recall than SVM, indicating
a stronger ability to minimize false negatives. This characteristic is particularly crucial in applications where the
identification of true positive cases—such as potential rainfall-induced landslides—is a priority for early warning

and risk mitigation.

R1_7:

The similar performance of GA XGB and GA RF (both with 10.95% error rates) warrants
discussion on their trade-offs in real-world applications (e.g., computational efficiency,
interpretability).

ANSWER: We appreciate the reviewer’s suggestion to discuss the trade-offs
between GA-XGB and GA-RF, given that both achieved the same error rate
(10.95%). Although their predictive accuracy was similar, the models differ in
aspects that are relevant for real-world applications. We added this text in the fourth
paragraph of the 6.2 section of the discussion.

Original text:

Added text:
Although the similar performance of GA—RF and GA—XGB, they differ in practical trade-offs.

GA-RF is computationally lighter and easier to interpret, favoring operational applications,
while GA—XGB is less interpretable but more robust in heterogeneous environments, as it may
capture more complex interactions. This complementary perspective may underscore the

importance of applying ensemble classifiers for operational landslide forecasting.



R1_8

Please, revise subsection R1_2 + R1_8 response.

R1.9

The discussion should more thoroughly address model limitations.

ANSWER: Thank you again for this suggestion. We added these lines to the 2nd
paragraph of the 6.3 section of the discussion.

Original text:

The development of automated systems that utilize continuous monitoring of critical parameters
can enhance the reliability of landslide predictions, as demonstrated by recent studies that have
successfully employed deep-learning techniques to forecast landslide occurrences based on
rainfall and soil conditions (Abraham et al., 2019; Qiao et al., 2020). Additionally, establishing
a network of monitoring stations across diverse geomorphological environments can provide
valuable insights into the varying responses of slopes to rainfall, thereby improving the

generalizability of predictive models (Kuradusenge et al., 2020; Bortolozo 450 et al., 2024).

Modified text:

However, while the proposed classifiers showed strong performance (Abraham et al., 2019; Qiao
et al., 2020), their effectiveness is constrained by the quality of the database, which in this
domain is challenged by data scarcity, sparsity, and features availability. Another limitation is
that the models may not readily generalize to other regions, or even fully capture the evolving
dynamics within the study area. Finally, their limited transparency underscores the need for
further validation and for integration with physically based models to enhance interpretability
and reliability. Thus, future work should focus on validating these models across diverse regions
and integrating them with physically based approaches to enhance both their robustness and
interpretability. Additionally, establishing a network of monitoring stations across diverse
geomorphological environments can provide valuable insights into the varying responses of
slopes to rainfall, thereby improving the generalizability of predictive models (Kuradusenge et

al., 2020; Bortolozo 450 et al., 2024).



Minor comments (MC)
MC_1

Labels in Figures 3 and 4 (correlation matrices) are too small and should be enlarged
or provided in higher resolution.

ANSWER: Thank you for this observation. We removed the text from the
figures and instead referenced the tables listing the correlated variables.
Additionally, we enlarged the figures to improve readability.

MC_2

Abbreviated variable names in Tables 1 and 2 (e.g., "AvMoist") should be explained in
the main text or footnotes (e.g., "Available Moisture").

ANSWER: Thank you for this observation. We have defined all abbreviated
variable names in the footnotes of Tables 1 and 2

MC_3
Inconsistent formatting of terms (e.g., "GA XGB" vs. "GA_XGB") should be unified.

ANSWER: Thank you for pointing out this error in the text. We have corrected
it, carefully reviewing the entire document, tables and figures

MC_4

The first paragraph of the conclusion (lines 465—475) could be condensed to avoid
redundancy with earlier sections.

ANSWER: Thank you for highlighting this. We agree with your assessment and
performed the changes, condensing the first two paragraphs of the conclusion
in one paragraph.

Original text:

We evaluated the performance of machine learning models—Support Vector Machines
(SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) to predict
landslide susceptibility in the southern Andes (38—42°S). The Southern Andes has a



high soil variability that does not allow for deep instrument monitoring. Therefore, we
determined the domain-relevant geotechnical, hydrological, and geomorphological
variables and applied advanced feature selection techniques, including Genetic
Algorithms (GA) and Positive-Unlabeled (PU) Bagging. We were able to
systematically identify and optimise the most informative predictors for rainfall-
induced landslides.

Our results demonstrate that models optimised using Genetic Algorithms significantly
outperform baseline methods, such as CART with conventional feature selection.
Notably, GA RF and GA XGB achieved the lowest classification errors (10.95%).
Moreover, compact feature sets highlighted the potential of evolutionary algorithms to
enhance both the accuracy and efficiency of susceptibility assessments. Our models’
results consistently identified slope, precipitation, and near-surface soil hydraulic
properties—particularly bulk density and saturated water content—as critical factors
influencing landslide initiation. Future instrumental developments must consider these

variables, monitoring and landslide assessment.

Modified text:

We evaluated machine learning models (SVM, RF and XGB) to predict landslide susceptibility in the southern
Andes (38—42°S), selecting domain-relevant geotechnical, hydrological, and geomorphological variables through
feature selection techniques (CART and GA). The GA—optimized models, particularly GA-RF and GA-XGB,
significantly outperformed baseline methods, achieving the lowest classification errors (10.95%) with compact
feature sets that improved both accuracy and efficiency. Across experiments, slope, precipitation, and near-surface
soil hydraulic properties—especially bulk density and saturated water content—emerged as the most critical
factors influencing rainfall-induced landslides, underscoring their importance for future monitoring and

assessment.



Reviewer 2

R2 1

L12-13: The abstract ends abruptly without presenting any concrete results. Please
expand the abstract to include the key findings and avoid vague statements such as
“various predictive models were tested.”

ANSWER: Thanks for this observation. We agree with you suggestion and
incorporated the recommended changes into the new version of the abstract that
we present in R1_3.

R2 2

L41-42: Seismic activity is not relevant to this study and should not be included in the
introduction.

ANSWER: We are grateful for your valuable feedback on this point. We agree
with your comment and have now revised the text to ensure it is more consistent
with our overall scientific contribution and methodological approach.

Original text:

e Additionally, geological characteristics such as lithology and drainage density are crucial
conditioning factors that interact with triggering mechanisms like precipitation and seismic
activity (Bisht and Rawat, 2023).

e  Conversely, in areas like the Southern Andes, seismic activity plays a more pronounced role,
with earthquakes serving as significant triggers for landslides (Marc et al., 2016; Fan et al.,
2021).

e Studies indicate that the presence of certain rock types and the geomorphological features of the
terrain can predispose areas to landslides, particularly during seismic events (Panek et al., 2022;
Serey et al., 2019). Seismic activity is a critical trigger for landslides in this region, as evidenced
by the correlation between earthquake occurrences and landslide events (Serey et al., 2019,
2020). The 2010 Maule earthquake, for instance, led to numerous landslides, underscoring the

impact of seismic forces on slope stability.

Modified text:

e Additionally, geological characteristics such as lithology and drainage density are crucial
conditioning factors that interact with triggering mechanisms like extreme precipitation events
(Bisht and Rawat, 2023).

e Sentence removed



R2 3

Studies indicate that the presence of weak lithology along the margin and the geomorphological
features could predispose areas to landslides, particularly during extreme precipitation events

(Maragano-Carmona et al., 2025).

L87-88: The diverse geological composition of the study area should be emphasized
as one of the most important aspects. Please elaborate on how different soil and
lithological types correspond to the selected controlling features.

ANSWER: We greatly appreciate this comment from the reviewer. We agree
that further clarification is needed, and we have now incorporated additional

information related to the geological composition of the study area to provide a
more complete context.

Original text:

The area presents a unique and complex geological and climatological landscape that
significantly influences soil moisture dynamics and mass wasting processes. This region is
characterized by a diverse geological composition, including volcanic rocks, sedimentary
formations, and glacial deposits, contributing to various soil types and structures. The interplay
of these geological features with climatic conditions creates a dynamic environment that is

crucial for understanding hydrological processes.

The geological framework of the Southern Andes is predominantly shaped by tectonic activity,
resulting in a range of rock types, including andesites, basalts, and sedimentary rocks. The
presence of glacial deposits from the last glacial maximum has resulted in the formation of
heterogeneous soil profiles, which vary in texture and composition throughout the region. These
geological characteristics influence water retention and drainage properties, thereby affecting
soil moisture levels and slope susceptibility to mass wasting events. Understanding the
geological context is essential for assessing the stability of slopes and predicting potential
landslide occurrences. Moreover, the climate of the Southern Andes shows a high variability,
influenced by altitude, latitude, and prevailing weather patterns. The region experiences a range
of climatic conditions, from arid to humid, with significant precipitation occurring primarily in
the winter months. This variability leads to distinct wet and dry seasons, profoundly affecting
soil moisture dynamics at different depths with unknown control. Moreover, climate change
poses additional challenges, as shifts in precipitation patterns and increased frequency of

extreme weather events may exacerbate soil erosion and landslide risks.



The area is highly influenced by volcanic eruptions of different style, ranging from plinian to
strombolian. These eruptions generate different volcanic soils derived from the tephra
degradation during the holocene. Soil variability in the Southern Andes is characterized by
differences in texture, moisture retention capacity, and organic matter content. The region hosts
a range of soil types, including Andosols, which are rich in volcanic ash and exhibit high
moisture retention, and more sandy or gravelly soils that drain quickly. This variability
complicates the prediction of soil moisture levels and their influence on slope stability. Current
knowledge gaps exist about the specific relationships between soil texture, moisture dynamics,

and susceptibility to mass loss.

Despite the wealth of geological and climatological data available, significant gaps remain in
our understanding of soil moisture dynamics and their parametric controls, that could control
mass wasting. Specifically, there is a need for comprehensive studies that integrate geological,
climatic, and soil data to develop a holistic understanding of how these factors interact to
influence soil moisture levels and slope stability. Additionally, the impact of invasive species
on soil moisture and erosion processes has not been extensively studied, presenting an

opportunity for future research to explore these interactions.

Modified text:

The area presents a unique and complex geological and climatological landscape that
significantly influences soil moisture dynamics and mass wasting processes. The diverse
geological composition of the study area yields a complex landscape, formed by numerous relief
changes related to volcanic and glacial processes during the Holocene and more recently,
influenced by different-scale mass wasting processes (Maragaifio et al., 2025; Fustos-Toribio et
al., 2022, 2025). From a geological perspective, the area has a wide range of lithological units,
encompassing volcanic rocks (andesites, basalts), metamorphic rocks (Horton et al., 2018),
sedimentary formations, and glacial deposits (Rabassa and Clapperton, 1990; Cuzzone et al.,
2024). This variability introduces potential soil sources from weathered rocks and sediment
sources that will send their material to sedimentary environments in the central valley. However,
the amount of the source is still poorly quantified. The geological framework of the Southern
Andes is predominantly shaped by tectonic activity, resulting in a range of rock types, including
andesites, basalts, and sedimentary rocks. Stand out the volcanic activity, where this area
contributed to volcanic eruptions, ranging from plinian to strombolian, which formed tephra
deposits with different mineralogies (Moreno-Yaeger et al., 2024). The tephra degradation
during the Holocene triggered high soil variability, characterised by different textures and water
retention capacities, which could control the landslide triggering processes. Moreover, the
different soil textures generated from lithological and tephra deposits control the water storage

and the following organic matter content.



The area was covered by two pulses of glacial periods (Cuzzone et al., 2024), which modified
the relief and eroded previous deposits. Therefore, early-stage soils are available on the eastern
side. Meanwhile, ancient soils are present in the western area, creating a good contrast between
soil ages. The presence of glacial deposits from the last glacial maximum has resulted in the
formation of heterogeneous soil profiles, which vary in texture and composition throughout the
region (Vasquez-Antipan et al., 2025). These features influence the water retention and drainage
properties, thereby affecting soil moisture levels and slope susceptibility to mass wasting events.
Understanding the main control of the soil features becomes essential for assessing the stability
of slopes and predicting potential landslide occurrences. In addition to the wide range of
lithological and soil properties and features existing in the area, the climate of the Southern
Andes exhibits an extreme range of climates, from arid to humid, influenced by altitude, latitude,
and patterns of western winds and atmospheric rivers (Tetzner et al., 2025). The main
precipitation amount occurs primarily in the austral winter months (May-September), reaching
over 4,000 mm/year. The summer dry seasons modify soil moisture dynamics at different
depths, with an unknown impact on landslides. Recently, climate change has posed additional
challenges, as shifts in precipitation patterns and increased frequency of extreme weather events

may exacerbate soil erosion and landslide risks.

Nowadays, accurately assessing landslide risk in this region presents significant challenges. The
high variability in multiple variables introduces a complex dynamic that acts as a primary control
on slope stability, which is currently poorly understood. The interplay of these varying variables
creates a highly dynamic environment where the key relationships governing stability can
change dramatically over short distances. The study area has been affected by large-scale mass
wasting events (Fustos-Toribio et al., 2021; Ochoa-Cornejo et al., 2024; Maragano et al., 2025;
Vasquez-Antipan et al., 2025), underscoring the need to develop a robust early warning system
and enhance assessment accuracy. This requires comprehensive, integrated studies to create
models that fully incorporate geological, climatic, and soil data, including the often-overlooked
parametric controls, enabling a reliable landslide early warning system. A network of advanced
sensors is needed to monitor real-time changes in all the variables across the varying lithological

units. However, it needs to focus on the main variables, which have not yet been established.



R2 4

L119-121: The phrase “considerable attention” is unclear. Please specify the exact steps
taken to ensure data quality.

ANSWER: We agree. Now, we modify the text:

Original text:

In constructing the database, considerable attention was paid to data quality, temporal resolution,
and spatial consistency, which are critical for capturing the transient nature of the environmental

processes leading to landslides in the Southern Andes.

Modified text:

The construction of the database was guided by constraining the data to high quality, considering
the exact emplacement of the landslide and the date it occurred. This constrains the compiled
dataset to ensure an extensive temporal distribution and high spatial consistency across the full
spectrum of lithological and climatic features within the study area. This deliberate selection, by
encompassing wide environmental variability, allows capturing the range of soil and lithologic
features under different hydrometeorological and climatic conditions in the Southern Andes.
The selected data provided a robust framework for analysing the dynamic relationships between

hydrological, geological, and climatic controls in landslide generation.

R2 5

L127: The abbreviation “PP” is used without being defined beforehand. Please define it
at first mention.

ANSWER: Now, we state the variable PP in the caption of the table 1.

Original caption:
Table 1. List of Variables available in the databases
Modified caption:

Table 1. List of Variables available in the databases. AvMoist: Available moisture =6_{ FC}
- 6_{PWP]} (cm3 cm™3); AWC: Available water capacity (mm); Bulk: bulk density of the
fine fraction (g cm™); Clay/Silt/Sand: textural fractions (%); FC: field capacity at 330 kPa (cm?
cm™); PWP: permanent wilting point at 1500 Kpa (cm® cm™); 0 _s: saturated water content
(cm® cm™); 8_1: residual water content (cm?® cm™); ksat: saturated hydraulic conductivity (cm
day'); n, a: van Genuchten shape parameters ( - ,cm™); Vmoist:volumetric soil moisture (cm?
cm™); PP: precipitation (mm); slope: terrain slope (degrees); Tex_Class: soil textural class (%);
PIRange X: prediction-interval range for property X (_Bulk: g/cm™3; Clay: %; Sand: %);
Total AWC: depth-integrated AWC (mm).



R2 6

Figure 7 and 8: These figures are not properly prepared. They contain non-English
words, and their captions are incomplete. Please revise accordingly.

ANSWER: We improved the quality of the figures in the manuscript, and
completed the captions. We suggest to eliminate figure 8, because it does not
retrieve more information than explained in the text.

Original figures:
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Figure 8. Evolution

Modified figures:
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Figure 7. Genetic Algorithm Convergence: the curves show the population’s average performance

(Mean) and the best individual’s performance (Best) across an evolution of 300 generations.

R2 7

Figure 9: Please add the coordinates to the map.

ANSWER: Thanks for your observation. Now, we replaced the original figure
with a new one. The final version will appear in the resubmitted version of the
manuscript.

Original Figure:
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Modified figure 9
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