
 

 

Feature Selection for Landslide Forecasting 

Models in Southern Andes 

Labbe et al.,  

 

Reviewer 1 

 

This study presents a machine learning-based approach for landslide forecasting in the 

Southern Andes, combining feature selection methods (CART and genetic algorithms) with 

multiple classifiers (SVM, RF, XGB). The research design is sound, the methodology is 

robust, and the results hold practical significance, particularly in the context of early warning 

systems for geological hazards. The paper is recommended for publication after addressing 

the following points. 

A: We appreciate the comments of the reviewer. We agree with all the comments, 

and these were improved in the newer version of the manuscript. Now, we include 

additional sections and corrections to the information gap and low-quality figures. We 

would appreciate it if the reviewer could revise the attached document. 

 

Major comments: 

 

1. The introduction currently provides a broad 

overview of landslide forecasting but could 

better highlight the specific innovations of 

this study. For example: (1) The proposed 

solutions for data scarcity in the Southern 

Andes (e.g., PU Bagging and buffer control 

sampling); (2) The unique advantages of the 

hybrid feature selection approach (GA + 

CART) in landslide prediction. 

Please, see R1_1 response 

2. The conclusion should more explicitly 

summarize the improvements this study 

offers to existing landslide early warning 

systems and its practical implications. 

Please, revise subsection R1_2  + 
R1_8 response. 



 

 

3. The abstract should be refined to convey 

more insightful information. 

Please, see R1_3 response. 
 

4. The paper mentions multiple databases 

(e.g., ERA5, CLSoilMaps) but lacks details 

on their temporal coverage, resolution 

consistency, and handling of missing data. 

These details should be added. 

Please, see R1_4 response 

5. The methodology for generating "negative 

examples" (non-landslide data) via Buffer 

Control Sampling and PU Bagging requires 

further justification. 

Please, see R1_5 response 

 

 

6. Tables 4 and 5 present performance metrics 

for different methods but lack statistical 

significance tests (e.g., p-values or 

confidence intervals). Such tests would 

strengthen the claim that GA-based 

optimization outperforms other methods. 

Please, see R1_6 response 

7. The similar performance of GA XGB and GA 

RF (both with 10.95% error rates) warrants 

discussion on their trade-offs in real-world 

applications (e.g., computational efficiency, 

interpretability). 

Please, see R1_7 response 

8. The study focuses on two regions in 

southern Chile (Los Lagos and Los Ríos). 

The conclusions should clarify whether they 

are applicable to areas with different 

geological or climatic conditions. 

Please, revise subsection  
R1_2  + R1_8 response. 

9. The discussion should more thoroughly 

address model limitations. 

Please, see R1_9 response 
 
 

Minor comments:  

1. Labels in Figures 3 and 4 (correlation 

matrices) are too small and should be 

enlarged or provided in higher resolution. 

Please, see MC_1 response 



 

 

2. Abbreviated variable names in Tables 1 and 

2 (e.g., "AvMoist") should be explained in the 

main text or footnotes (e.g., "Available 

Moisture"). 

Please, see MC_2 response 

3. Inconsistent formatting of terms (e.g., "GA 

XGB" vs. "GA_XGB") should be unified. 

Please, see MC_3 response 

 

4. The first paragraph of the conclusion (lines 

465–475) could be condensed to avoid 

redundancy with earlier sections. 

 

Please, see MC_4 response 

 

Reviewer 2 

This manuscript provides an interesting study on identifying the primary factors controlling 

rainfall-induced landslides in four Chilean regions. The framework and methodologies are 

sound. However, I regret to say that the core innovation of this study has not been 

sufficiently articulated. As the authors note (line 86-87), the study area is unique and 

complex in geological and climatological features. Nevertheless, the manuscript does not 

rigorously discuss which features emerge as the most representative variables for volcanic, 

sedimentary, and glacial terrains, nor how these features influence susceptibility mapping. 

Instead, the emphasis is placed on machine learning and feature selection techniques, which 

are widely used and cannot be highlighted as innovative in comparison with the unique 

geological setting of the study area. Meanwhile, the writing and structure of the manuscript 

are not well organised, which makes it difficult for the reader to follow the authors’ idea. For 

these reasons, I do not consider the manuscript is suitable for publication in its current form. 

Substantial revisions are required to improve its quality. Some detailed comments are as 

follows. 

 A: We are grateful to the reviewer for their careful and accurate assessment of our 

manuscript. We appreciate the positive recognition of the study's sound framework 

and methodologies and acknowledge the critical feedback regarding the insufficient 

articulation of the core innovation and the overall structure. The detailed comments 

have been invaluable in improving the quality and clarity of the revised submission. 

We fully agree with the reviewer's observation that the original manuscript did not 

sufficiently articulate the unique contribution in the context of the study area's 

complex geology. The reviewer correctly identified that the emphasis on well-

established machine learning and feature selection techniques (CART and GA) may 

have obscured the core novelty of our work. Now it was corrected and improved.  

We wish to clarify that the primary objective of this study is not the construction of a 

novel landslide susceptibility map, but rather to systematically identify the most 



 

 

representative and influential variables that should be prioritised in monitoring 

networks and future, localised susceptibility models for rainfall-induced landslides in 

the Southern Andes. Our contribution is focused on filling a critical gap in South 

American landslide hazard assessment, where monitoring surveys often lack clear, 

evidence-based prioritisation of variables, especially across diverse, complex 

geological terrains (volcanic, sedimentary, glacial). In the revised manuscript, we 

have substantially re-focused the discussion to address the reviewer's point 

rigorously. Detailing the physical significance of the selected features (e.g., the 

importance of soil hydraulic properties like bulk density and saturated water content), 

which reflects the influence of the region’s heterogeneous soil and shallow geology on 

landslide initiation. Moreover, we connected the results directly to practical 

recommendations for monitoring, thus reinforcing that the predictive power is a means 

to determine variable importance, not an end in itself for producing a static 

susceptibility map.  

We sincerely apologise for the original writing and structure, which made the 

manuscript difficult to follow. We recognise that a lack of clear organisation can 

severely hinder the transmission of the study's ideas. We have performed a 

comprehensive revision of the entire manuscript’s structure and writing to improve 

coherence and readability. The Introduction has been revised to clearly state the gap 

(lack of variable prioritisation for monitoring) and the study's specific goal (feature 

identification for early warning systems). The Methodology section is now more 

logically organised. The Discussion has been restructured first to present the feature 

selection results, then provide an in-depth analysis of their physical meaning and 

implications for regional monitoring/early warning system design, before briefly 

discussing model performance. We trust that these revisions have significantly 

enhanced the clarity, quality, and focus of the manuscript, making the unique 

contribution easily identifiable. We would appreciate it if the reviewer could revise the 

attached document. 

 

 

1. L12-13: The abstract ends abruptly 

without presenting any concrete 

results. Please expand the abstract 

to include the key findings and avoid 

vague statements such as “various 

predictive models were tested.” 

 

Please, see R2_1 response 

2. L41-42: Seismic activity is not 

relevant to this study and should not 

be included in the introduction. 

Please, see R2_2 response 



 

 

3. L87-88: The diverse geological 

composition of the study area should 

be emphasised as one of the most 

important aspects. Please elaborate 

on how different soil and lithological 

types correspond to the selected 

controlling features. 

Please, see R2_3 response 

4. L119-121: The phrase “considerable 

attention” is unclear. Please specify 

the exact steps taken to ensure data 

quality. 

Please, see R2_4 response 

5. L127: The abbreviation “PP” is used 

without being defined beforehand. 

Please define it at first mention. 

Please, see R2_5 response 

6. Figure 7 and 8: These figures are not 

properly prepared. They contain non-

English words, and their captions are 

incomplete. Please revise 

accordingly. 

Please, see R2_6 response 

7. Figure 9: Please add the coordinates 

to the map. 

Please, revise the R2_7 answer. 

 

 

  



 

 

Response to Reviewers 

 

Reviewer 1 

R1_1  

“The introduction currently provides a broad overview of landslide forecasting but could 

better highlight the specific innovations of this study. For example: (1) The proposed 

solutions for data scarcity in the Southern Andes (e.g., PU Bagging and buffer control 

sampling); (2) The unique advantages of the hybrid feature selection approach (GA + 

CART) in landslide prediction.” 

 

ANSWER: We agree with the reviewer's assessment and are grateful for this 

constructive feedback. We acknowledge the observation regarding the necessary 

background and have revised the manuscript accordingly to provide a more robust 

conceptual and contextual foundation for the study. Specifically, we have modified 

the Introduction to explicitly highlight the novelty, knowledge gap and original 

contribution of this work, while also emphasising the critical need for this research 

within the South American context (integrating the relevant point raised by 

Reviewer 2). Consequently, these revisions have also necessitated modifications 

to the final two paragraphs of the Introduction section to ensure coherence with the 

expanded background and justification. 

 

Original version (focused on “The unique advantages of the hybrid feature 

selection approach (GA + CART) in landslide prediction”): 

 

The drivers and controls of landslide generation exhibit both similarities and 

differences across various global regions, shaped by a complex interplay of geological, 

climatic, and anthropogenic factors. At a fundamental level, topography is a significant 

factor influencing landslide occurrence; however, its importance can vary widely 

depending on local conditions. For instance, Lin et al. (2016, 2017) note that while 

topography is often emphasized in landslide susceptibility models, soil  moisture 

emerges as a critical factor on a global scale, particularly in regions prone to rainfall-

triggered landslides. Additionally, geological characteristics such as lithology and 

drainage density are crucial conditioning factors that interact with triggering 

mechanisms like precipitation and seismic activity (Bisht and Rawat, 2023). 

 

 

Modified by: 

 

 



 

 

Landslide generation is a complex, multi-variable process driven by a critical interplay of 

geological, climatic, and anthropogenic factors, exhibiting significant global and regional 

variability in the key variables (Chen et al., 2024; Fidan et al., 2024). While topography is a 

fundamental conditioning factor, its relative importance can be overshadowed by local 

conditions, such as rapid changes in soil moisture at specific depths, particularly for rainfall-

triggered landslides (Margaño et al., 2025; Fustos-Toribio et al., 2025). Additional conditioning 

factors, including lithology and drainage density, interact with triggering mechanisms such as 

extreme precipitation to initiate landslide events. The assessment of landslide susceptibility is 

inherently challenging because of the numerous, interrelated variables that complicate the 

development of accurate predictive models. Therefore, it becomes critical to establish the main 

variables that could control a landslide to improve landslide susceptibility models (Maragaño et 

al., 2023; Zighmi et al., 2025). The core difficulty lies in effectively processing this 

heterogeneous data and identifying the most influential variables. To address this multi-variable 

complexity and enhance predictive accuracy, advanced methodologies are combined, such as 

hybrid feature selection approaches that combine optimisation algorithms, like Genetic 

Algorithms (GA), or feature ranking algorithms, like Classification and Regression Trees 

(CART), with classification techniques, to refine model inputs and achieve more precise, 

actionable spatial predictions (Nguyen et al., 2017).  

 

Original version (relevating the innovation and contribution for South America): 

 

In the context of southern Chile, the present work proposes the application of ML 

methods to analyze a comprehensive database comprising 136 features—ranging from 

soil properties to climatic conditions, underscoring the importance of regionspecific 

studies in assessing landslide susceptibility. Classification and Regression Trees 

(CART) and Genetic Algorithms (GA) were considered for feature selection, 

facilitating the identification of local critical factors influencing landslide risks 

(Shirzadi et al., 2018; Miao et al., 2022). 

A comprehensive understanding of the complex interplay between rainfall intensity, 

soil moisture, and geological factors 80 is crucial for developing effective monitoring 

networks and generating accurate early warning systems for landslides. This 

manuscript presents an in-depth analysis of the conditioning factors that influence 

landslide occurrence in a region of the southern Andes (38–42°S) as a pilot case study. 

It highlights the importance of the critical variables that must be considered in future 

monitoring approaches based on machine learning. 

 

Modified version: 

 

This manuscript offers a substantial and innovative contribution to understanding the 

complex, dynamic processes of landslide generation in the Southern Andes (38-42°S) 

considering for the first time a rigorous, data-driven methodology in this area. We 

expect to delimitate the main variables that must be considered in Southern Andes to 

understand the landslide triggering and control conditions using an innovative 

deployment of Machine Learning (ML) techniques based on Classification and 

Regression Trees (CART) and Genetic Algorithms (GA) allowing a meticulous feature 



 

 

selection from climatic variables, soil properties to geological features. This targeted 

feature selection process is vital for identifying the true local critical factors that govern 

slope instability in this climatically active and geologically heterogeneous 

environment, effectively translating complex hydro-geomorphological processes into 

quantifiable variables. The prioritised factors are then strategically repurposed as high-

quality proxies to refine and improve variable mapping, enabling a crucial regional-to-

local scale approach that captures the spatial variability of landslide susceptibility. The 

providing of an in-depth, data-validated analysis of the critical variables that interplay 

among triggering mechanisms will support the design of next-generation, ML-based 

monitoring networks and accurate early warning systems (EWS) for this vulnerable 

mountain range. 

 

 

 

R1_2  + R1_8 

(R1_2) The conclusion should more explicitly summarize the improvements this study 

offers to existing landslide early warning systems and its practical implications. 

(R1_8) The study focuses on two regions in southern Chile (Los Lagos and Los Ríos). 

The conclusions should clarify whether they are applicable to areas with different 

geological or climatic conditions. 

 

ANSWER: Thank you for highlighting this weakness in our contribution. We agree 

with your assessment and have fully rewritten the conclusion section to clearly 

improve and elevate the relevance of our scientific contribution within the field. 

 

 

Original text: 

 

We evaluated the performance of machine learning models—Support Vector Machines (SVM), 

Random Forest (RF), and Extreme Gradient Boosting (XGBoost) to predict landslide 

susceptibility in the southern Andes (38–42°S). The Southern Andes has a high soil variability 

that does not allow for deep instrument monitoring. Therefore, we determined the domain-

relevant geotechnical, hydrological, and geomorphological variables and applied advanced 

feature selection techniques, including Genetic Algorithms (GA) and Positive-Unlabeled (PU) 

Bagging. We were able to systematically identify and optimise the most informative predictors 

for rainfall-induced landslides. 

Our results demonstrate that models optimised using Genetic Algorithms significantly 

outperform baseline methods, such as CART with conventional feature selection. Notably, GA 

RF and GA XGB achieved the lowest classification errors (10.95%). Moreover, compact feature 

sets highlighted the potential of evolutionary algorithms to enhance both the accuracy and 



 

 

efficiency of susceptibility assessments. Our models’ results consistently identified slope, 

precipitation, and near-surface soil hydraulic properties—particularly bulk density and saturated 

water content—as critical factors influencing landslide initiation. Future instrumental 

developments must consider these variables, monitoring and landslide assessment. 

Our findings also underscore the importance of incorporating both shallow and deep soil 

moisture characteristics, as well as soil retention curve parameters, to better capture the complex 

subsurface dynamics that precede slope failure. The differences in feature prioritisation between 

GA RF, GA XGB, and GA SVM reflect distinct modelling philosophies: while RF and XGB 

emphasised shallow hydraulic traits and retention thresholds, SVM gave greater weight to 

deeper soil moisture indicators and retention curve shape parameters. 

We conclude that integrating data-driven models with physically meaningful features provides 

a robust framework for enhancing early warning systems and regional risk assessments. The 

superior performance of GA-optimised ensemble models suggests that future efforts should 

prioritise hybrid strategies that combine expert knowledge with automated feature selection. 

These approaches are particularly valuable in data-scarce environments, offering scalable 

solutions to inform risk management and decision-making in mountainous regions vulnerable 

to rainfall-triggered landslides. 

 

 

 

Modified text: 

 

We evaluated machine learning models (SVM, RF and XGB) to predict landslide susceptibility 

in the southern Andes (38–42°S), selecting domain-relevant geotechnical, hydrological, and 

geomorphological variables through feature selection techniques (CART and GA). The GA–

optimized models, particularly GA-RF and GA-XGB, significantly outperformed baseline 

methods, achieving the lowest classification errors (10.95%) with compact feature sets that 

improved both accuracy and efficiency. Across experiments, slope, precipitation, and near-

surface soil hydraulic properties—especially bulk density and saturated water content—

emerged as the most critical factors influencing rainfall-induced landslides, underscoring their 

importance for future monitoring and assessment. 

 

R1_3   

The abstract should be refined to convey more insightful information. 

 

ANSWER: Thank you verý much for this important suggestion. We improved the 

abstract by presenting a more concise description of the study, highlighting the 

main findings, and emphasizing what we consider to be its most important 

contribution. 

 
Original text: 



 

 

 

Abstract. Rainfall-induced landslide (RIL) forecasting is crucial for early warning systems 

developed to mitigate the devastating impacts of these events on human lives, infrastructure, 

and the environment. Currently, dense instrumental networks for early warning require large 

datasets to identify precursor patterns in current machine learning models. Topographic, 

lithological, vegetation, soil moisture, and climatic characteristics are among the most 

commonly used variables for training these models. However, there are no universal designs, 

so it is necessary to adapt the requirements to each context and to the available variables that 

characterise it. To develop a RIL forecasting model for the Southern Andes, this study gathers 

data from various local soil and climate databases to identify the most relevant variables. 

Feature selection is crucial for improving the design of machine learning models, reducing the 

dimensionality of input data, enhancing computational efficiency, and preventing overfitting. 

We assessed the impact of various features, both individually and in combination, on the 

performance of predictive models. Methods such as Classification and Regression Tree and 

Genetic Algorithms are employed to perform the feature selection. A national landslide 

database was enriched using techniques such as buffer control sampling, PU Bagging, and 

clustering methods to incorporate negative examples (non-landslide) data. Various predictive 

models were tested. The results reveal some consistent variables as the most significant in 

forecasting landslides in four southern Chilean regions. 

 

 

Modified Text: 

Abstract. Rainfall-induced landslides (RIL) are a major hazard in the Southern Andes, 

threatening lives, infrastructure, and ecosystems. Early warning systems require accurate 

predictive models, yet their effectiveness is constrained by heterogeneous data availability 

and the lack of universal design standards. This study develops a systematic framework for 

identifying the most influential features controlling landslide generation, integrating local soil, 

climatic, and topographic datasets. A national landslide inventory was expanded with buffer 

control sampling and PU Bagging to improve representation of non-landslide cases, yielding a 

robust database of 3,148 instances with 136 variables. Feature selection was performed using 

Classification and Regression Trees (CART) and Genetic Algorithms (GA), followed by 

evaluation with Support Vector Machines, Random Forest, and XGBoost classifiers. Results 

highlight precipitation, slope, and soil hydraulic properties—particularly bulk density and 

saturated water content—as recurrent critical predictors. GA-based models significantly 

outperformed CART, with GA-RF and GA-XGB achieving the lowest error rates (10.95%) using 

compact feature sets. These findings underscore the potential of evolutionary feature 



 

 

selection to enhance predictive accuracy while reducing data complexity, and they provide 

actionable insights into which variables should be prioritized in monitoring networks. By 

emphasizing both shallow and deep soil moisture dynamics, this work contributes to the 

design of more reliable and region-specific early warning systems for rainfall-induced 

landslides in mountainous environments. 

 

 

R1_4 

The paper mentions multiple databases (e.g., ERA5, CLSoilMaps) but lacks details on 

their temporal coverage, resolution consistency, and handling of missing data. These 

details should be added. 

 

ANSWER: Thank you for this observation: the following paragraphs show how this 

information was added to the paper.   

 

Original text: 

 

We considered the soil moisture, precipitation, and slope from the ERA5 database 

(ERA5, 2023), one of the most widely used climate datasets, with 10km resolution. The 

slope was obtained combining the ERA5 database with high-resolution digital 

elevation models. The Chilean soil properties were extracted from the CLSoilMaps 

database (Dinamarca et al., 2023). The database has soil properties at 100 meters of 

spatial resolution, being trained using random forest at six standard depths (Table 2), 

following the GlobalSoilMap standards.For all the characteristics except for the slope, 

PP and soil moisture values, the measures available were obtained at the six different 

soil depths (Table 2), totalling 133 soil features in addition to the 3 extracted from 

ERA5, giving 136 features for each geographical point. 

 

Modified Text: 

We considered the soil moisture, precipitation, and slope from the ERA5 database 

(ERA5, 2023), one of the most widely used climate datasets, with 10km resolution. The 

slope was obtained by combining the ERA5 database with high-resolution digital 

elevation models. The Chilean soil properties were extracted from the CLSoilMaps 

database (Dinamarca et al., 2023). The ERA5-Land dataset corresponds to the land 



 

 

component of the European Centre for Medium-Range Weather Forecasts' (ECMWF) 

fifth-generation reanalysis, executed under the Copernicus Climate Change Service 

(C3S) mandate, being generated via offline, high-resolution integrations of the 

ECMWF land surface model, CHTESSEL. The offline generation approach offers 

improved temporal consistency in land surface fields, thereby representing global water 

and energy cycles more accurately (Muñoz-Sabater et al., 2021). The dataset delivers 

approximately 50 variables essential for describing hydrological and surface energy 

processes, including soil moisture, runoff, snow cover, skin temperature, 

evapotranspiration, and land carbon fluxes at high resolution, providing a 9 km global 

horizontal resolution in comparison to 31 km and 80 km resolutions of ERA5 and ERA-

Interim, respectively. The currently accessible public record spans from January 1981 

to the present, subject to a typical latency of 2–3 months. To mitigate boundary 

discontinuities, each stream is preceded by multi-year spin-up periods. However, 

residual inconsistencies are acknowledged, particularly within variables with long 

memory, such as deep soil moisture and permanent snow regions. The internal 

consistency of ERA5-Land is intrinsically tied to its reliance on ERA5 for 

meteorological forcing, through a 4D-Var data assimilation system. Near-surface air 

temperature, pressure, and humidity are, however, corrected for elevation discrepancies 

between the ERA5 and ERA5-Land grids utilising daily lapse rates. Validation against 

diverse observational datasets, including in situ networks, satellite products, and 

hydrological records, unequivocally demonstrates that ERA5-Land surpasses ERA5 

performance in the representation of soil moisture, temperature, runoff, and lake 

dynamics (Muñoz-Sabater et al., 2021; Bonshoms et al., 2022; Yilmaz et al., 2023). 

Moreover, we utilised the new CLSoilMaps database, an improvement over global soil 

databases in Chile. CLSoilMaps provides spatially explicit and high-resolution 

predictions of critical soil physical and hydraulic properties specifically for continental 

Chile and its shared transboundary basins with Argentina. The database was rigorously 

developed using Digital Soil Mapping (DSM) techniques within the SCORPAN 

framework (McBratney et al., 2003), trained on over 4,000 soil profile observations 

encompassing diverse and historically underrepresented ecosystems, including the 

Andes and Patagonia. Modelled soil attributes include clay, sand, and bulk density, 

with silt content derived indirectly. Hydraulic properties, such as field capacity, 

permanent wilting point, and available water capacity, were estimated using the well-

established Rosetta V3 pedotransfer function (Zhang and Schaap, 2017). The 

predictions were executed using Random Forest algorithms that incorporated over 200 

environmental covariates, spanning climate, topography, and satellite-based 

reflectance indices, and adhered to the six standardised depth intervals (0–200 cm) 

stipulated by the GlobalSoilMap project. 

 



 

 

R1_5  
The methodology for generating "negative examples" (non-landslide data) via Buffer 
Control Sampling and PU Bagging requires further justification. 
 

ANSWER: We thank the reviewer for this observation. The decision to use PU-

Bagging for generating negative cases was motivated to ensure that the additional 

negative examples are truly representative of the negative class, without 

introducing contamination from borderline or ambiguous cases. In our setting, 

many candidate negative samples can exhibit characteristics that are very similar 

to the positives, and including them could make the decision boundary more 

difficult to find and the classification unnecessarily more complex. 

PUBagging provides a principled way to mitigate this risk by leveraging the positive 

set and treating the remaining data as unlabeled, iteratively identifying those 

instances most likely to be reliable negatives. In this way, the method filters out 

“hard” negatives that resemble positives, while still providing enough negative 

samples to balance the dataset and improve classifier training. This ensures that 

the model learns to discriminate between classes more robustly, without being 

biased by mislabeled or ambiguous data. We included this in the paper. 

 

Original text: 

This distance was intentionally chosen given the 10-kilometer resolution of the 

climatological variables, enabling the capture of spatial variability of the precipitation 

and soil moisture content, differentiating between landslide and non-landslide 

conditions. Subsequent refinement of the negative examples was performed via a 

modified PU Bagging (Positive-Unlabeled Bagging) (Gu et al., 2024), built on the idea 

of bagging (bootstrap aggregating) by repeatedly sampling subsets of the unlabeled 

data and combining them with the positive set to train multiple base classifiers. Each 

subset is treated as if the unlabeled instances were negative (which may introduce 

noise), and by aggregating the predictions across many such classifiers, PUBagging 

reduces the bias introduced by this assumption and improves robustness.  

Modified text: 

 

 

This distance was intentionally chosen given the 10-kilometer resolution of the 

climatological variables, enabling the capture of spatial variability of the precipitation 

and soil moisture content, differentiating between landslide and non-landslide 

conditions. Subsequent refinement of the negative examples was performed via a 

modified PUBagging (Positive-Unlabeled Bagging) (Gu et al., 2024), built on the idea 

of bagging (bootstrap aggregating) by repeatedly sampling subsets of the unlabeled 

data and combining them with the positive set to train multiple base classifiers.  In our 



 

 

setting, many candidate negative samples can exhibit characteristics that are very 

similar to the positives, and including them could make the decision boundary more 

difficult to find and the classification unnecessarily more complex. PUBagging 

provides a way to mitigate this risk by leveraging the positive set and treating each 

subset as if the unlabeled instances were negative (which may introduce noise), and by 

aggregating the predictions across many such classifiers, PUBagging reduces the bias 

introduced by this assumption and improves robustness.  

R1_6:  
Tables 4 and 5 present performance metrics for different methods but lack statistical 

significance tests (e.g., p-values or confidence intervals). Such tests would strengthen 

the claim that GA-based optimization outperforms other methods. 

 
ANSWER: We modified the tables and improved the quality. We corrected the text, 

which previously stated that it referred to the standard deviation, when in fact it was 

the confidence interval (line 436) indicated for each metric in Tables 4 and 5. In 

addition, we conducted hypothesis tests to evaluate the statistical significance of 

the performance differences among the top-ranking models. 

 

 
 

Original text: 

 

The features selected by the different methods were used to train and test classifiers implemented 

with the three models - SVM, RF and XGB - to compare them. The results are presented in Table 

5, providing a comprehensive overview of their performance under two distinct conditions: Non 

PU Bagging and PU Bagging. The evaluation metrics include accuracy and recall, both of which 

are critical for assessing the effectiveness of these classification models. In the Non PU Bagging 

category, the classifiers demonstrated notable performance. The SVM achieved an accuracy of 

0.735 with a standard deviation of ± 0.029, and a recall of 0.749 ± 0.041. The XGB model 

outperformed the SVM, recording an accuracy of 0.873 ± 0.020 and a recall of 0.885 ± 0.028, 

indicating its strong predictive capability. The Random Forest classifier exhibited the highest 

performance among the three, with an accuracy of 0.879 ± 0.020 and a recall of 0.901 ± 0.027. 

These results suggest that all classifiers were effective in identifying instances from the dataset, 

with Random Forest showing the best overall performance. In the PU Bagging category, the 

classifiers maintained strong performance, although there were slight variations compared to the 

Non PU Bagging results. The SVM recorded an accuracy of 0.769 ± 0.0284 and a recall of 0.809 

± 0.0372, indicating an improvement in its predictive ability with PU Bagging. The XGB model 

achieved an accuracy of 0.862 ± 0.022 and a recall of 0.889 ± 0.028, which, while slightly lower 

than in the Non PU Bagging scenario, still reflects robust performance. The Random Forest 

classifier, however, showed a decrease in accuracy to 0.856 ± 0.023 and a recall of 0.881 ± 



 

 

0.028, suggesting that while it remained effective, the application of PU Bagging may have 

introduced some variability in its performance. 

The RandomForest discriminator results indicate that all classifiers performed well in both 

scenarios, with Random Forest consistently demonstrating the highest accuracy and recall. The 

application of PU Bagging appears to have had a mixed impact on classifier performance, 

enhancing some models while slightly reducing the effectiveness of others. These findings 

highlight the importance of evaluating different modeling strategies and their configurations to 

optimize predictive performance in classification tasks. Future research should explore the 

underlying factors contributing to these performance variations and consider additional 

techniques for further enhancing model accuracy and recall. 

The model performance shows good agreement. Our results showed that the best-performing 

model is the XGB classifier utilizing GA optimization under the "PU Bagging" approach, 

achieving an accuracy of 0.896 ± 0.019 and a recall of 0.886 ± 0.026. Conversely, the worst-

performing model is the Support Vector Machine (SVM) classifier with GA optimization and 

"No PU Bagging," which recorded an accuracy of 0.735 ± 0.029 and a recall of 0.749 ± 0.041. 

Modified text: 

 

The features selected by the different methods were used to train and test classifiers implemented with the three 

models - SVM, RF and XGB - to compare them. The results are presented in Table 5, providing a comprehensive 

overview of their performance under two distinct conditions: Non PU Bagging and PU Bagging. The evaluation 

metrics include accuracy and recall with their respective confidence intervals, both of which are critical for 

assessing the effectiveness of these classification models. In the Non PU Bagging category, the classifiers 

demonstrated notable performance. Table 5 shows that the best-performing models were those obtained using the 

features selected through GA-RF.  The SVM achieved an accuracy of 0.735 with a confidence interval of ± 0.029, 

and a recall of 0.749 ± 0.041. The XGB model outperformed the SVM, recording an accuracy of 0.873 ± 0.020 

and a recall of 0.885 ± 0.028, indicating its strong predictive capability. 

The Random Forest classifier exhibited the highest performance among the three models, achieving an accuracy 

of 0.879 ± 0.020 and a recall of 0.901 ± 0.027. However, a Wilcoxon signed-rank test showed that the difference 

between RF and SVM—both with and without PU-Bagging—is statistically significant (p-value = 1.23×10⁻²⁷). In 

contrast, no significant difference was observed between RF and XGB under either sampling strategy (p-value > 

0.56). These findings indicate that all classifiers were effective in identifying landslide and non-landslide 

instances, with Random Forest and XGBoost consistently demonstrating the strongest overall performance. 

Moreover, the comparison between PU-Bagging and Non–PU-Bagging strategies revealed no statistically 

significant differences, suggesting that PU-Bagging did not substantially alter the classifiers’ general predictive 

ability. 



 

 

The superior performance of XGB further highlights its effectiveness in capturing complex, nonlinear 

relationships within the dataset. Although the GA optimization improved all models, the SVM appears less 

capable of fully exploiting hyperparameter tuning when compared to the more flexible and expressive structure 

of XGB. Prior studies also show that SVMs can perform competitively on simpler datasets but tend to lose 

effectiveness in more heterogeneous or high-dimensional contexts unless subjected to extensive parameter 

optimization. The recall results reinforce this interpretation: XGB achieves a higher recall than SVM, indicating 

a stronger ability to minimize false negatives. This characteristic is particularly crucial in applications where the 

identification of true positive cases—such as potential rainfall-induced landslides—is a priority for early warning 

and risk mitigation. 

 

 

R1_7:  

The similar performance of GA XGB and GA RF (both with 10.95% error rates) warrants 

discussion on their trade-offs in real-world applications (e.g., computational efficiency, 

interpretability). 

 

ANSWER: We appreciate the reviewer’s suggestion to discuss the trade-offs 

between GA–XGB and GA–RF, given that both achieved the same error rate 

(10.95%). Although their predictive accuracy was similar, the models differ in 

aspects that are relevant for real-world applications. We added this text in the fourth 

paragraph of the 6.2 section of the discussion. 

 

Original text: 

- 

Added text: 

Although the similar performance of GA–RF and GA–XGB, they differ in practical trade-offs. 

GA–RF is computationally lighter and easier to interpret, favoring operational applications, 

while GA–XGB is less interpretable but more robust in heterogeneous environments, as it may 

capture more complex interactions. This complementary perspective may underscore the 

importance of applying ensemble classifiers for operational landslide forecasting. 

 

 



 

 

R1_8  

Please, revise subsection R1_2  + R1_8 response. 

 

R1_9 

The discussion should more thoroughly address model limitations. 

 

ANSWER: Thank you again for this suggestion. We added these lines to the 2nd 

paragraph of the 6.3 section of the discussion.  

 

 
Original text: 

The development of automated systems that utilize continuous monitoring of critical parameters 

can enhance the reliability of landslide predictions, as demonstrated by recent studies that have 

successfully employed deep-learning techniques to forecast landslide occurrences based on 

rainfall and soil conditions (Abraham et al., 2019; Qiao et al., 2020). Additionally, establishing 

a network of monitoring stations across diverse geomorphological environments can provide 

valuable insights into the varying responses of slopes to rainfall, thereby improving the 

generalizability of predictive models (Kuradusenge et al., 2020; Bortolozo 450 et al., 2024). 

 

Modified text: 

However, while the proposed classifiers showed strong performance (Abraham et al., 2019; Qiao 

et al., 2020), their effectiveness is constrained by the quality of the database, which in this 

domain is challenged by data scarcity, sparsity, and features availability. Another limitation is 

that the models may not readily generalize to other regions, or even fully capture the evolving 

dynamics within the study area. Finally, their limited transparency underscores the need for 

further validation and for integration with physically based models to enhance interpretability 

and reliability. Thus, future work should focus on validating these models across diverse regions 

and integrating them with physically based approaches to enhance both their robustness and 

interpretability. Additionally, establishing a network of monitoring stations across diverse 

geomorphological environments can provide valuable insights into the varying responses of 

slopes to rainfall, thereby improving the generalizability of predictive models (Kuradusenge et 

al., 2020; Bortolozo 450 et al., 2024). 

 

 



 

 

 

Minor comments (MC) 

MC_1 

 Labels in Figures 3 and 4 (correlation matrices) are too small and should be enlarged 

or provided in higher resolution. 

ANSWER: Thank you for this observation. We removed the text from the 

figures and instead referenced the tables listing the correlated variables. 

Additionally, we enlarged the figures to improve readability. 

MC_2 

Abbreviated variable names in Tables 1 and 2 (e.g., "AvMoist") should be explained in 

the main text or footnotes (e.g., "Available Moisture"). 

ANSWER: Thank you for this observation. We have defined all abbreviated 

variable names in the footnotes of Tables 1 and 2 

 

MC_3 

Inconsistent formatting of terms (e.g., "GA XGB" vs. "GA_XGB") should be unified. 

ANSWER: Thank you for pointing out this error in the text. We have corrected 

it, carefully reviewing the entire document, tables and figures 

 

 

MC_4 

The first paragraph of the conclusion (lines 465–475) could be condensed to avoid 

redundancy with earlier sections. 

ANSWER: Thank you for highlighting this. We agree with your assessment and 

performed the changes, condensing the first two paragraphs of the conclusion 

in one paragraph. 

 

 

 

 

Original text: 

We evaluated the performance of machine learning models—Support Vector Machines 

(SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) to predict 

landslide susceptibility in the southern Andes (38–42°S). The Southern Andes has a 



 

 

high soil variability that does not allow for deep instrument monitoring. Therefore, we 

determined the domain-relevant geotechnical, hydrological, and geomorphological 

variables and applied advanced feature selection techniques, including Genetic 

Algorithms (GA) and Positive-Unlabeled (PU) Bagging. We were able to 

systematically identify and optimise the most informative predictors for rainfall-

induced landslides. 

Our results demonstrate that models optimised using Genetic Algorithms significantly 

outperform baseline methods, such as CART with conventional feature selection. 

Notably, GA RF and GA XGB achieved the lowest classification errors (10.95%). 

Moreover, compact feature sets highlighted the potential of evolutionary algorithms to 

enhance both the accuracy and efficiency of susceptibility assessments. Our models’ 

results consistently identified slope, precipitation, and near-surface soil hydraulic 

properties—particularly bulk density and saturated water content—as critical factors 

influencing landslide initiation. Future instrumental developments must consider these 

variables, monitoring and landslide assessment.  

 

 

Modified text: 

We evaluated machine learning models (SVM, RF and XGB) to predict landslide susceptibility in the southern 

Andes (38–42°S), selecting domain-relevant geotechnical, hydrological, and geomorphological variables through 

feature selection techniques (CART and GA). The GA–optimized models, particularly GA-RF and GA-XGB, 

significantly outperformed baseline methods, achieving the lowest classification errors (10.95%) with compact 

feature sets that improved both accuracy and efficiency. Across experiments, slope, precipitation, and near-surface 

soil hydraulic properties—especially bulk density and saturated water content—emerged as the most critical 

factors influencing rainfall-induced landslides, underscoring their importance for future monitoring and 

assessment. 

 

 

 

  



 

 

Reviewer 2 

 

R2_1 

L12-13: The abstract ends abruptly without presenting any concrete results. Please 

expand the abstract to include the key findings and avoid vague statements such as 

“various predictive models were tested.” 

 

ANSWER: Thanks for this observation. We agree with you suggestion and 

incorporated the recommended changes into the new version of the abstract that 

we present in R1_3. 

R2_2 

L41-42: Seismic activity is not relevant to this study and should not be included in the 

introduction. 

 

ANSWER: We are grateful for your valuable feedback on this point. We agree 

with your comment and have now revised the text to ensure it is more consistent 

with our overall scientific contribution and methodological approach. 

 

Original text: 

● Additionally, geological characteristics such as lithology and drainage density are crucial 

conditioning factors that interact with triggering mechanisms like precipitation and seismic 

activity (Bisht and Rawat, 2023). 

●  Conversely, in areas like the Southern Andes, seismic activity plays a more pronounced role, 

with earthquakes serving as significant triggers for landslides (Marc et al., 2016; Fan et al., 

2021). 

● Studies indicate that the presence of certain rock types and the geomorphological features of the 

terrain can predispose areas to landslides, particularly during seismic events (Pánek et al., 2022; 

Serey et al., 2019). Seismic activity is a critical trigger for landslides in this region, as evidenced 

by the correlation between earthquake occurrences and landslide events (Serey et al., 2019, 

2020). The 2010 Maule earthquake, for instance, led to numerous landslides, underscoring the 

impact of seismic forces on slope stability. 

 

Modified text: 

● Additionally, geological characteristics such as lithology and drainage density are crucial 

conditioning factors that interact with triggering mechanisms like extreme precipitation events 

(Bisht and Rawat, 2023). 

● Sentence removed 



 

 

● Studies indicate that the presence of weak lithology along the margin and the geomorphological 

features could predispose areas to landslides, particularly during extreme precipitation events 

(Maragano-Carmona et al., 2025).  

 

 

R2_3 

L87-88: The diverse geological composition of the study area should be emphasized 

as one of the most important aspects. Please elaborate on how different soil and 

lithological types correspond to the selected controlling features. 

 

ANSWER: We greatly appreciate this comment from the reviewer. We agree 

that further clarification is needed, and we have now incorporated additional 

information related to the geological composition of the study area to provide a 

more complete context. 

 

Original text: 

The area presents a unique and complex geological and climatological landscape that 

significantly influences soil moisture dynamics and mass wasting processes. This region is 

characterized by a diverse geological composition, including volcanic rocks, sedimentary 

formations, and glacial deposits, contributing to various soil types and structures. The interplay 

of these geological features with climatic conditions creates a dynamic environment that is 

crucial for understanding hydrological processes. 

 

The geological framework of the Southern Andes is predominantly shaped by tectonic activity, 

resulting in a range of rock types, including andesites, basalts, and sedimentary rocks. The 

presence of glacial deposits from the last glacial maximum has resulted in the formation of 

heterogeneous soil profiles, which vary in texture and composition throughout the region. These 

geological characteristics influence water retention and drainage properties, thereby affecting 

soil moisture levels and slope susceptibility to mass wasting events. Understanding the 

geological context is essential for assessing the stability of slopes and predicting potential 

landslide occurrences. Moreover, the climate of the Southern Andes shows a high variability, 

influenced by altitude, latitude, and prevailing weather patterns. The region experiences a range 

of climatic conditions, from arid to humid, with significant precipitation occurring primarily in 

the winter months. This variability leads to distinct wet and dry seasons, profoundly affecting 

soil moisture dynamics at different depths with unknown control. Moreover, climate change 

poses additional challenges, as shifts in precipitation patterns and increased frequency of 

extreme weather events may exacerbate soil erosion and landslide risks. 



 

 

The area is highly influenced by volcanic eruptions of different style, ranging from plinian to 

strombolian. These eruptions generate different volcanic soils derived from the tephra 

degradation during the holocene. Soil variability in the Southern Andes is characterized by 

differences in texture, moisture retention capacity, and organic matter content. The region hosts 

a range of soil types, including Andosols, which are rich in volcanic ash and exhibit high 

moisture retention, and more sandy or gravelly soils that drain quickly. This variability 

complicates the prediction of soil moisture levels and their influence on slope stability. Current 

knowledge gaps exist about the specific relationships between soil texture, moisture dynamics, 

and susceptibility to mass loss. 

Despite the wealth of geological and climatological data available, significant gaps remain in 

our understanding of soil moisture dynamics and their parametric controls, that could control 

mass wasting. Specifically, there is a need for comprehensive studies that integrate geological, 

climatic, and soil data to develop a holistic understanding of how these factors interact to 

influence soil moisture levels and slope stability. Additionally, the impact of invasive species 

on soil moisture and erosion processes has not been extensively studied, presenting an 

opportunity for future research to explore these interactions. 

Modified text: 

The area presents a unique and complex geological and climatological landscape that 

significantly influences soil moisture dynamics and mass wasting processes. The diverse 

geological composition of the study area yields a complex landscape, formed by numerous relief 

changes related to volcanic and glacial processes during the Holocene and more recently, 

influenced by different-scale mass wasting processes (Maragaño et al., 2025; Fustos-Toribio et 

al., 2022, 2025). From a geological perspective, the area has a wide range of lithological units, 

encompassing volcanic rocks (andesites, basalts), metamorphic rocks (Horton et al., 2018), 

sedimentary formations, and glacial deposits (Rabassa and Clapperton, 1990; Cuzzone et al., 

2024). This variability introduces potential soil sources from weathered rocks and sediment 

sources that will send their material to sedimentary environments in the central valley. However, 

the amount of the source is still poorly quantified.  The geological framework of the Southern 

Andes is predominantly shaped by tectonic activity, resulting in a range of rock types, including 

andesites, basalts, and sedimentary rocks. Stand out the volcanic activity, where this area 

contributed to volcanic eruptions, ranging from plinian to strombolian, which formed tephra 

deposits with different mineralogies (Moreno-Yaeger et al., 2024). The tephra degradation 

during the Holocene triggered high soil variability, characterised by different textures and water 

retention capacities, which could control the landslide triggering processes. Moreover, the 

different soil textures generated from lithological and tephra deposits control the water storage 

and the following organic matter content. 

 



 

 

The area was covered by two pulses of glacial periods (Cuzzone et al., 2024), which modified 

the relief and eroded previous deposits. Therefore, early-stage soils are available on the eastern 

side. Meanwhile, ancient soils are present in the western area, creating a good contrast between 

soil ages. The presence of glacial deposits from the last glacial maximum has resulted in the 

formation of heterogeneous soil profiles, which vary in texture and composition throughout the 

region (Vasquez-Antipan et al., 2025). These features influence the water retention and drainage 

properties, thereby affecting soil moisture levels and slope susceptibility to mass wasting events. 

Understanding the main control of the soil features becomes essential for assessing the stability 

of slopes and predicting potential landslide occurrences. In addition to the wide range of 

lithological and soil properties and features existing in the area, the climate of the Southern 

Andes exhibits an extreme range of climates, from arid to humid, influenced by altitude, latitude, 

and patterns of western winds and atmospheric rivers (Tetzner et al., 2025). The main 

precipitation amount occurs primarily in the austral winter months (May-September), reaching 

over 4,000 mm/year. The summer dry seasons modify soil moisture dynamics at different 

depths, with an unknown impact on landslides. Recently, climate change has posed additional 

challenges, as shifts in precipitation patterns and increased frequency of extreme weather events 

may exacerbate soil erosion and landslide risks.  

 

Nowadays, accurately assessing landslide risk in this region presents significant challenges. The 

high variability in multiple variables introduces a complex dynamic that acts as a primary control 

on slope stability, which is currently poorly understood. The interplay of these varying variables 

creates a highly dynamic environment where the key relationships governing stability can 

change dramatically over short distances. The study area has been affected by large-scale mass 

wasting events (Fustos-Toribio et al., 2021; Ochoa-Cornejo et al., 2024; Maragano et al., 2025; 

Vasquez-Antipan et al., 2025), underscoring the need to develop a robust early warning system 

and enhance assessment accuracy. This requires comprehensive, integrated studies to create 

models that fully incorporate geological, climatic, and soil data, including the often-overlooked 

parametric controls, enabling a reliable landslide early warning system. A network of advanced 

sensors is needed to monitor real-time changes in all the variables across the varying lithological 

units. However, it needs to focus on the main variables, which have not yet been established.  

 

 

 

 

 

 



 

 

R2_4 

L119-121: The phrase “considerable attention” is unclear. Please specify the exact steps 

taken to ensure data quality. 

 

ANSWER: We agree. Now, we modify the text: 

 

Original text: 

 

In constructing the database, considerable attention was paid to data quality, temporal resolution, 

and spatial consistency, which are critical for capturing the transient nature of the environmental 

processes leading to landslides in the Southern Andes. 

 

Modified text: 

 

The construction of the database was guided by constraining the data to high quality, considering 

the exact emplacement of the landslide and the date it occurred. This constrains the compiled 

dataset to ensure an extensive temporal distribution and high spatial consistency across the full 

spectrum of lithological and climatic features within the study area. This deliberate selection, by 

encompassing wide environmental variability, allows capturing the range of soil and lithologic 

features under different hydrometeorological and climatic conditions in the Southern Andes. 

The selected data provided a robust framework for analysing the dynamic relationships between 

hydrological, geological, and climatic controls in landslide generation. 

 

R2_5 

L127: The abbreviation “PP” is used without being defined beforehand. Please define it 

at first mention. 

ANSWER: Now, we state the variable PP in the caption of the table 1. 

 

Original caption: 

Table 1. List of Variables available in the databases 

Modified caption: 

Table 1. List of Variables available in the databases. AvMoist: Available moisture =θ_{FC} 
− θ_{PWP} (cm³ cm⁻³); AWC: Available water capacity (mm); Bulk:  bulk density of the 

fine fraction (g cm⁻³); Clay/Silt/Sand: textural fractions (%); FC: field capacity at 330 kPa (cm³ 

cm⁻³); PWP: permanent wilting point at 1500 Kpa (cm³ cm⁻³); θ_s: saturated water content 

(cm³ cm⁻³); θ_r: residual water content (cm³ cm⁻³); ksat: saturated hydraulic conductivity (cm 

day⁻¹); n, α: van Genuchten shape parameters ( - ,cm⁻¹); Vmoist:volumetric soil moisture (cm³ 

cm⁻³); PP: precipitation (mm); slope: terrain slope (degrees); Tex_Class: soil textural class (%); 

PIRange_X: prediction-interval range for property X (_Bulk: g/cm⁻³; _Clay: %; _Sand: %); 

Total_AWC: depth-integrated AWC (mm).  



 

 

R2_6 

Figure 7 and 8: These figures are not properly prepared. They contain non-English 

words, and their captions are incomplete. Please revise accordingly. 

 

ANSWER: We improved the quality of the figures in the manuscript, and 

completed the captions. We suggest to eliminate figure 8, because it does not 

retrieve more information than explained in the text. 

 

Original figures: 

 

Figure 7. Genetic Algorithm Convergence 

 

 

Figure 8. Evolution 

 

Modified figures: 



 

 

 

Figure 7. Genetic Algorithm Convergence: the curves show the population’s average performance 

(Mean) and the best individual’s performance (Best) across an evolution of 300 generations. 

 

 

R2_7 

Figure 9: Please add the coordinates to the map. 

 

ANSWER: Thanks for your observation. Now, we replaced the original figure 

with a new one. The final version will appear in the resubmitted version of the 

manuscript. 

 

Original Figure: 

 

 

Modified figure 9 
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