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Abstract. Water storage in snowpacks in mountain areas is critical for hydropower production, hydrological forecasting, and 

freshwater availability. Spaceborne synthetic aperture radar (SAR) is a powerful tool for quantitatively measuring snow mass 

because of its high spatial resolution and the sensitivity of signals to snow depth (SD). In particular, the first SAR SD 

product (C-snow) based on Sentinel-1 satellites displays high sensitivity to depolarization signals for dynamic SD 

monitoring in mountainous areas. Moreover, upscaled C-snow retrievals (e.g., 10 and 25 km) have been used to provide 15 

reference data to train machine learning models, improve passive microwave-based retrieval, and calibrate many 

hydrological models. However, a systematic assessment of C-snow products at various scales has not been conducted, until 

now. In this study, the performance of C-snow products at three scales (1, 10 and 25 km) is comparatively assessed via 

station-based measurements and airborne LiDAR observations, and the scale patterns associated with the heterogeneity of 

the geographic environment and the representativeness of so-called truth data are analyzed. The results indicate that the scale 20 

patterns of the C-snow products across various resolutions differ from those of station- and airborne-based reference data. As 

the spatial scale increases from 1 to 25 km, the error of C-snow retrieval in reference to station measurements tends to 

increase (e.g., ubRMSE from 68.18 to 77.47 cm, bias from -9.81 to 10.68 cm), whereas it tends to decrease compared with 

airborne snow observatory (ASO) data, with ubRMSE values ranging from 104.3 to 83.29 cm, and the bias values from -

91.31 to -52.73 cm. We also found that land cover types, e.g., tree cover and permanent ice, affect the C-snow product at 25 

various scales. Especially an overestimation tends to occur in coarse pixels covered with even a small amount of permanent 

ice. It is concluded that C-snow retrieval at three scales is characterized by high uncertainty. Researchers should focus on 

developing a robust SD retrieval algorithm by combining SAR backscattering signals and polarimetric and interferometric 

information. 
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1 Introduction 30 

Snow storage and seasonal meltwater in mountains are components of the “water towers” that form in global mountains. 

Therefore, quantitatively estimating snow mass in mountain areas is very important for hydropower production, hydrological 

forecasting, and freshwater availability (Barnett et al., 2005; Dozier et al., 2016; Daloz et al., 2020; Qin et al., 2020). The 

snow water equivalent (SWE) is a parameter that reflects how much water the snowpack contains, which typically can be 

estimated from snow depth (SD). Satellite remote sensing has been demonstrated to be an effective tool for monitoring 35 

multiscale SD information, which enhances our understanding water availability in snowpacks (Chang et al., 1987; Kelly, 

2009; Takala et al., 2011; Lievens et al., 2019). 

Microwave remote sensing is the most widely-used technology for retrieving SWE because of its penetrating ability to 

the snowpack and the volume scattering effects caused by snow particles (Chang et al., 1987; Tsang et al., 2022). Generally, 

active microwave remote sensing, especially synthetic aperture radar (SAR), has advantages over passive microwave 40 

techniques (e.g., radiometer-based methods) for characterizing the SWE across high-mountain regions (Dozier et al., 2016). 

Notably, spaceborne SAR can support fine-spatial-resolution (dozens of meters) monitoring compared with passive 

microwave remote sensing (dozens of kilometers). Additionally, the snow cover in mountain areas is typically deep (up to 

meters), and snowpack evolution in these areas is generally much more complex than that in flat areas. For example, the 

snow density can reach 550–700 kg/m3 due to snowfall accumulation and wind- and gravity-driven compaction 45 

(Lemmetyinen et al., 2016; Venäläinen et al., 2021). In addition, owing to the large negative temperature gradient between 

the air temperature and ground temperature, the development of depth hoars is common (Fierz et al., 2009). For example, the 

snow grain size in depth hoars can reach the centimeter level at high elevations and on shady slopes (King et al., 2018; 

Picard et al., 2022). Thus, the signals of typically used frequencies (e.g., the Ka-band) in passive microwave remote sensing 

tend to be saturated within the SD range of 40–80 cm (Derksen et al, 2010; Takala et al., 2011; Picard et al., 2018). 50 

In recent years, the scientific community has focused on the monitoring SWE in mountain regions via C-band SAR 

observations, benefitting from their strong penetration depth and data accessibility. Notably, although snow volume 

scattering is stronger in high-frequency Ku-bands than in other bands in theory, the sensitivity of the backscattering 

coefficient at this frequency is also limited to approximately 150 cm (Rott et al., 2010; Cui et al., 2016; Zhu et al., 2021). 

Moreover, Lievens et al. (2019) observed the sensitivity of the depolarization signal (VH/VV) in the C-band to the SD and 55 

innovatively developed a C-band-based SD retrieval algorithm for mountains in the Northern Hemisphere. Notably, the 

backscattering coefficient at cross-polarization is more sensitive to volume scattering than co-polarization is due to the non-

spherical properties of snowpack, and this physical mechanism is used for SD retrieval; in addition, co- and cross-

polarization signals are similar for surface scattering at the snow–soil boundary (Shi and Dozier, 2000; Lievens et al., 2022; 

Borah et al., 2024). Thus, the ratio of cross- to co-polarization signals enhances the snow volume scattering and weakens the 60 

surface scattering between snow and soil. 
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Given its high resolution of 1 km, the C-snow product can potentially be used to assess the heterogeneity of the snow 

distribution in mountain areas (Alfieri et al., 2022; Girotto et al., 2024). However, it has only been evaluated from the point 

to regional scales until now, not at the global scale. For example, an evaluation across the Po River basin in Italy revealed 

that the RMSE ranges from 20 to 60 cm, in reference to ultrasonic sensor measurements (Alfieri et al., 2022). Sourp et al. 65 

(2024) compared C-snow retrieval products with the results of airborne lidar surveys in the Sierra Nevada region from 2017–

2019 and reported that the RMSE ranged from 21 to 138 cm, and that the bias reached up to -124 cm. Hoppinen et al. (2024) 

also evaluated algorithm performance at six study sites across the western United States on the basis of 2020-2021 airborne 

LiDAR observations, with mean RMSE and bias values of 92 cm and -49 cm, respectively. In addition, C-snow products at 

10 and 25 km resolutions have been used as reference datasets, such as for training samples for machine learning models to 70 

improve passive microwave SWE estimates (Xiong et al., 2022; Broxton et al., 2024; Yang et al., 2024). Lievens et al. (2022) 

utilized Sentinel-1 observations to monitor SD in the European Alps and evaluated its performance across different 

resolutions. When compared to the 500 m and 1 km resolutions (by linearly averaging the 100 m retrievals), the performance 

at 100 m resolution showed slight degradation, due to the impacts of radar speckle noise, geometric distortions, and local 

heterogeneity in topography, land surface properties, and snow characteristics. The accuracy of the C-snow product at 1-, 10- 75 

and 25-km still requires further investigation. The scale effect across three spatial resolutions and sensitive influencing 

factors (e.g., topography, land cover and wet snow) are crucial to consider when evaluating the performance of C-snow 

product. However, exploration of these factors remains insufficient, thus hindering our understanding of ways to further 

improve C-band SD retrieval technology. 

Therefore, the specific objectives of our study are to (1) systematically evaluate the error of C-snow retrieval across 1-, 80 

10- and 25-km spatial scales via both ground-based measurements and airborne LiDAR data and analyze the sensitivity of 

the error to various factors, as well as (2) quantitatively compare the scale patterns of the SD products at three spatial scales 

and explain the inconsistency of scale effects on the basis of different reference datasets (stations vs. ASO). To achieve this 

goal, we used measurements from point-scale stations and airborne LiDAR campaigns. The latter has a much wider global 

coverage, whereas the former is ideal for characterizing the SD distribution and assessing snow heterogeneity. This paper is 85 

structured with five sections. Section 2 describes the methods and data. The results and discussion are presented in Section 3 

and Section 4, respectively. Finally, Section 5 presents the conclusions, and future research is discussed. 

2 Data and Methodology 

2.1 Sentinel-1 SD product 

The first 1-km SD product based on C-band SAR covers all mountain ranges in the Northern Hemisphere and can be 90 

downloaded from https://ees.kuleuven.be/project/c-snow. An empirical change detection method is used to retrieve SD 

(Lievens et al., 2019). The available C-snow dataset covers the period from September 1, 2016, to May 19, 2019. The spatial 
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resolution of the C-snow product is 1 km, and the temporal resolution varies from daily to every two weeks, depending on 

the frequency of Sentinel-1 observations. 

2.2 Reference SD data 95 

2.2.1 Ground-based measurements 

In this study, we collected six ground-based observational datasets as reference data to evaluate and compare the 

performance of the C-snow product across three scales (Figure 1). They include the Global Historical Climate Network 

(GHCN), Canadian Historical Snow Water Equivalent (CanSWE), in situ measurements from Chinese weather stations 

(China-SD), SD measurements from Maine (Maine-SD), SWE variables from Snow Telemetry (SNOTEL) and an SWE 100 

dataset in the range of the former Soviet Union (Russia-SWE). For the SNOTEL and Russia-SWE datasets, we used a fixed 

snow density of 0.24 g/cm³ to convert the SWE to SD (Takala et al., 2011; Luojus et al., 2021). 

The ground-based observations span multiple regions and stations. The CanSWE dataset in Canada includes data from 

273 stations in mountain regions and can be accessed via https://zenodo.org/records/5217044#.YdYEsllybb0 (Vionnet et al. 

2021). The GHCN dataset includes data from 4,133 stations in mountain regions and provides SD values worldwide 105 

(ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) (Menne et al. 2012). The China-SD dataset from the China Meteorology 

Administration (http://data.cma.cn/) includes observations from 744 stations in mountainous regions. The SNOTEL dataset 

was acquired from 677 stations in mountainous regions in the United States (https://toolkit.climate.gov/tool/snow-telemetry-

snotel-data-viewer). The Russia-SWE dataset from former Soviet Union regions contains observations from 52 stations in 

mountain regions, and it can be downloaded from the All-Russia Research Institute of Hydrometeorological Information–110 

World Data Center (http://meteo.ru/english/climate/snow1.php). Additionally, the Maine-SD dataset for the Maine region 

includes information from 92 stations in mountainous regions; it can be accessed via https://mgs-

maine.opendata.arcgis.com/datasets/maine/about. Figure 1 shows the distribution of stations for these datasets. 

 

Figure 1. Spatial distribution of stations in various SD datasets. 115 

To control the quality of the station observations, we excluded observations with SD of zero, removed observations 

higher than twice the 95th percentile, and excluded stations with fewer than three SD measurements over the entire study 

period. Later, we calculated the averages of measurements from multiple stations within pixels at three scales of 1, 10 and 25 
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km (see details in Section 2.4). Figure 2a-Figure 2c show the processed grids of SD as the reference datasets at the 1-, 10- 

and 25-km scales in two selected areas; the number of grids decreases from 2881 to 2231 and to 1503 grids as the scale 120 

increases. 

 

Figure 2. Spatial distributions of the matched grids at (a) 1-, (b) 10-, and (c) 25 km scales. Zoomed-in views show the detailed 

distributions of grid locations in the Sierra Nevada range over the United States and the Jotunheimen mountain range in Norway and 

Sweden. 125 

2.2.2 Airborne snow observatory (ASO) data 

The ASO is a LiDAR mission designed to measure the evolution process of SD during different snow seasons in major 

watersheds in the western United States (Painter et al., 2016). Airborne remote sensing campaigns over the western United 

States were conducted from 2013 to present, and hyperspectral reflectance and LiDAR SD data were collected in Colorado, 

California, Oregon, and Washington. These data are used to develop standard basin-scale instantaneous SD maps, with a 130 

resolution of 3 m and an evaluated accuracy of 0.08 m (Painter et al., 2016). To assess and compare the accuracy of the C-

snow product at different scales, we obtained 59 ASO maps at a 3 m resolution from September 2016 to May 2019 (Figure 

3). Figure 4 provides the statistics of the available measurements by basin and date. 

https://doi.org/10.5194/egusphere-2025-276
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

 

Figure 3. Spatial distributions of the ASO coverages in this study. The left subplot presents the SD distribution in the Tuolumne Basin on 135 
March 24, 2019, and the right subplot displays the SD distribution in the Gunnison-Taylor River Basin on March 30, 2018. 

 

Figure 4. Temporal distribution of the ASO observations used in this study. 

2.3 Auxiliary data 

To evaluate the influence of land cover type, forest fraction, and topography (elevation and its standard deviation) on 140 

the accuracy of C-snow SD, we collected corresponding datasets from the Google Earth Engine 

(https://earthengine.google.com) and processed them at various scales (1, 10, and 25 km). Table 1 lists the auxiliary data 

used in this study. 
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To match the scales of the C-snow SD data, we resampled the auxiliary data accordingly. The land cover type data were 

first resampled to a 1 km resolution via the mode resampling method. Subsequently, these 1 km land cover data were further 145 

resampled to 10- and 25-km resolutions. During the resampling process, if a certain land cover type occupied 80% or more 

of a large grid of 10 or 25 km, that type was then assigned to the resampled grid; otherwise, no land cover type was assigned. 

The forest fraction, elevation, and standard deviation of elevation at a 1 km resolution were resampled to 10 and 25 km 

resolutions via the average resampling method. 

Table 1. Description of the auxiliary data used in this study. 150 

Name Source Initial resolution Coarse resolution 

Land cover type European Space Agency (ESA) 

WorldCover 10 m 2020 product 

(Zanaga et al., 2021) 

10 m 

1, 10, and 25 km 

Forest fraction 10 m 

Elevation Multi-Error-Removed 

Improved-Terrain (MERIT) 

DEM (Yamazaki et al., 2017) 

3 arc second 
Standard deviation 

of elevation 

2.4 Methodology 

Figure 5 shows the workflow of this study. To assess the accuracy of C-snow retrieval at different scales, the 1 km C-

snow product was resampled to 10 and 25 km, respectively. Here we directly used the mean resampling method according to 

previous studies (Broxton et al. 2024; Herbert et al. 2024). Meanwhile, we tested and compared the mean and median 

sampling methods, and found the validation results were similar. To control equality and the representativeness of coarse-155 

resolution pixels, we selected only the 10- and 25-km grids in which the percentage of the snow-covered area was at least 

80%. The average 1 km SD values within the coarse-resolution pixels were then used as the 10- or 25-km-scale products 

(Figure 5). To compare C-snow with ground-based data and ASO observations at different scales, we also resampled the 3-

m-resolution ASO data to 1, 10, and 25 km. When resampling the ASO data, we only calculated the average for grids for 

which the number of 3 m ASO observations at the larger scales (1, 10, and 25 km) was not less than 30%. Here, we selected 160 

30% because it ensures a sufficient quantity and representativeness of validation samples. 

Additionally, we explored the relations between land cover type, forest fraction, elevation and standard deviation of 

elevation on C-snow SD across different scales. Four evaluation metrics were used to assess the C-snow products: the 

correlation coefficient (corr.coe), bias, unbiased root mean square error (ubRMSE), and relative bias (Rbias). 
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 165 

Figure 5. Diagram of the research workflow. 

3 Results 

3.1 Comparison of the SD retrieval results with ground-based measurements 

Figure 6 displays a comparison of the station measurements and the C-snow products at different scales. As the scale 

increases, corr.coe decreases from 0.52 to 0.33. Additionally, ubRMSE increases from 68.18 to 77.47 cm, reflecting 170 

increased uncertainty. Moreover, as the scale increases, the mean bias transfers from a slight underestimation of -9.81 cm to 

a slight overestimation of 10.63 cm. The decreased correlation is reasonable because the station observations are point-scale 

measurements. Even for pixels with multiple stations, it is still difficult to obtain a continuously distributed SD map using a 

limited number of samples. 
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 175 

Figure 6. Comparisons (left column) and distributions (right column) between the C-snow SD and the station-observed SD at (a) 1-, (b) 

10-, and (c) 25-km scales. The dashed lines in the right column indicate the 25th, 50th and 75th percentiles. 

The spatial distributions of C-snow at different scales are displayed in Figure 7. The overall spatial patterns at the three 

scales are similar. However, the spatial details are different. For example, in the mountainous regions of the western United 

States, Europe, and Asia, the 1-km-resolution C-snow SD clearly captures more detailed features of the snowpack. In 180 

contrast, at the larger scales of 10 and 25 km, these details are masked, resulting in a loss of spatial distribution information 

for SD. 
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Figure 7. Spatial distribution of the monthly average C-snow SD in three mountainous regions in February 2018 at three scales: (a) the 

western mountainous region of the United States, (b) the European Alps, and (c) the Hindu-Kush Himalayas. The left, middle and right 185 
columns show the results at scales of 1, 10, and 25 km, respectively. 

Figure 8 shows the time series of the C-snow products compared with the station measurements. In general, at all scales, 

the C-snow SD is underestimated in the snowmelt season starting in March. When the scale increases from 1 to 25 km, we 

observe an increase in the mismatch of snow season length between the C-snow and station SDs. In addition, the average SD 

from the stations becomes increasingly greater than the C-snow SD during the dry snow season and increasingly lower 190 

during the wet snow season. This explains the decreased correlation between the two datasets as the scale increases in terms 

of temporal variation. The underestimation of the SD for C-snow at 1 km in the wet snow season can be explained as the 

damping effect of liquid water on microwaves. The differences at 25 km are more difficult to explain. This is because a long 

snow season is usually associated with a high SD. Therefore, this pattern makes it difficult to provide a consistent answer as 

to why the stations are characterized by lower SD in the dry snow season and higher SD in the wet snow season. To explore 195 

this question, we must assess the relevant spatially distributed influential factors. 
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Figure 8. Time series of C-snow and station-observed SD at scales of (a) 1, (b) 10, and (c) 25 km. 

3.2 Comparison of the SD retrieval results with the ASO LiDAR data 

In this section, the C-snow retrieval results are assessed at different scales on the basis of the ASO data (Figure 9). At 200 

the 1 km scale, C-snow SD is underestimated, with a bias value of -91.31 cm and an ubRMSE as high as 104.3 cm. As the 

scale increases, the accuracy of C-snow increases, with the ubRMSE decreasing from 104.30 to 83.21 cm and the bias 

decreasing from -91.31 to -52.73 cm. Overall, the results of the ASO-based validation indicate an increasing trend in the 

accuracy of C-snow as the scale increases, which is different from the conclusions based on the station-based measurements 

in Figure 6. A detailed discussion of this difference is provided in Section 4.1. 205 
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Figure 9. Comparisons (left column) and distributions (right column) between C-snow SD products and ASO SD at different scales, where 

(a), (b), and (c) represent scales of 1, 10, and 25 km, respectively. The dashed lines in the right column indicate the 25th, 50th, and 75th 

percentiles. 

Figure 10 shows a comparison of time series of the C-snow SDs and ASO observations in different basins at three 210 

scales. The gray points represent the daily average air temperature. The red points represent the average daily C-snow SD in 

all the selected basins, and the different blue symbols indicate the daily average ASO data in various basins. At all scales, the 

C-snow retrievals match well with the ASO data in 2017. In 2018, when the ASO observations are primarily concentrated 

between March and June, the C-snow retrieval results are underestimated because of wet snow. During the heavy snow 
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season of 2019, the C-snow SD are significantly underestimated compared with the ASO data and fail to accurately capture 215 

the changes in the snowpack during this period. 

 

Figure 10. Time series comparison of C-snow products with ASO observations for various basins at (a) 1-, (b) 10-, and (c) 25 km scales. 

3.3 Effects of landscape and terrain on the SD retrieval results 

The impact of land cover on C-snow accuracy was investigated at different scales, as shown in Figure 11. Here, station 220 

measurements were used as reference data because of their global coverage. In forested covered regions, C-snow tend to be 

slightly underestimated in general. The accuracy decreases with increasing scale, with corr.coe decreasing from 0.52 to 0.35 

and ubRMSE increasing from 69.45 to 76.07 cm. In the permanent ice region, the C-snow product includes several 

abnormally overestimated results, especially at the 10- and 25-km scales, with a bias over 290 cm. For other types, C-snow 

also displays a decrease in accuracy at 10- and 25-km resolutions compared with that at the 1-km scale. 225 
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Figure 11. Impact of various land cover types on the accuracy of C-snow products at different scales: (a) tree cover, (b) permanent ice, 

and (c) other types. The left column represents the scale of 1 km, the middle column represents the scale of 10 km, and the right column 

represents the scale of 25 km. 

Figure 12 shows the impact of the SD conditions and various geographic environments on the accuracy of C-snow data 230 

at different scales. Here, the samples with permanent ice cover were excluded from the validation data because of large 

errors (see Figure 11b). When the SD at a station is less than 100 cm, all three scales are overestimated (Figure 12a). The 

overestimation becomes more pronounced as the scale increases, with Rbias increasing from 38.44% at 1 km to 83.74%. In 

contrast, when the SD exceeds 100 cm, all scales show underestimation. The underestimation is relatively small at the 10 km 

scale, where Rbias reaches -47.80% when the SD is greater than 200 cm. For tree cover, the results at the three scales tend to 235 

be underestimated (Figure 12b). For the other land cover types, Rbias at the 10 km scale reaches as high as 46.97%, 

indicating significant overestimation. When the forest fraction is between 0 and 0.2, significant overestimation occurs at both 

the 10- and 25-km scales, with Rbias values of 74.29% and 107.14%, respectively (Figure 12c). 

At elevations below 1000 m, the C-snow product is overestimated at the 1 km scale, with an Rbias of 26.48%, whereas 

it is underestimated at all other elevation intervals (Figure 12d). For elevations between 2000 and 3000 m, the values at both 240 

the 10- and 25-km scales are underestimated, with Rbias values of -13.82% and -13.70%, respectively. When the standard 

deviation of elevation is less than 50 m, C-snow is significantly overestimated, with an Rbias value as high as 47.56% 

(Figure 12e). When the standard deviation of elevation is greater than 100 m, the C-snow values at both the 10- and 25-km 

scales are overestimated, with an Rbias value of up to 26.82%. We also find that C-snow performs best in areas with 
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moderate standard deviations of elevation (50-100) and moderately to highly forested (0.4-0.8) areas. As the elevation 245 

difference between the station and the grid increases, an underestimation trend is observed at all scales at the 25 km scale, 

with Rbias ranging from 24.16% to -60.13% (Figure 12f). When the station elevation is lower than the grid elevation 

(elevation difference < 0), underestimation is only observed at the 1 km scale, with an Rbias of -25.24%. 

 

Figure 12. Impact of different (a) station-observed SD, (b) land cover types, (c) forest fractions, (d) elevations, (e) standard deviations of 250 
elevation, and (f) elevation differences between stations and grids on the accuracy of C-snow SD products across various scales, where the 

left axis represents Rbias and the right axis represents the average SD observed at stations and in the C-snow products. 

Figure 13 shows the spatial distributions of Rbias at different scales. A total of 38.95% of the grids with Rbias values 

lower than 0 are underestimated at the 1-km scale, and 34.22% of the grids with Rbias values greater than 100% are 

significantly overestimated, especially in the western mountain ranges of the United States, the Appalachian Mountains, the 255 

southern part of the Scandinavian Mountains, the European Alps, and the Hindu-Kush Himalayas. Moreover, this trend 

becomes more pronounced with increasing scale, with Rbias values greater than 100% accounting for 39.94% and 39.45% of 

all values at the 10- and 25 km scales, respectively. 
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Figure 13. Histograms (the left column) and spatial distributions (the right column) of Rbias at (a) 1-, (b) 10-, and (c) 25 km scales. 260 

3.4 Influence of complex geographic environments on SD retrieval 

To explore the influence of complex geography on C-snow retrieval, we selected three nested grids of C-snow retrieval 

results at different scales (1, 10, and 25 km) and the corresponding station observation data. Figure 14 displays the 

discrepancies in geographic environments among these nested grids. Within the first and third nested grids, there is only one 

station, corresponding to the three scale grids. In the second nested grid, there are four stations, which correspond to the four 265 

1 km C-snow grids and three 10 km C-snow grids. The average values are calculated for the C-snow product and the station 

observations. 

 

Figure 14. Spatial locations of the three selected nested grids, with the first at 67.45°N, -150.31°E; the second at 39.42°N, -107.00°E; and 

the third at 56.00°N, 6.85°E. 270 

In the first nested grid, the station observations generally match the C-snow retrieval results at three scales (Figure 15a). 

In the second nested grid, the station-observed snow cover is quite shallow, whereas the C-snow values at three scales are 

overestimated relative to the station observations, especially during the period from December 2016 to March 2017 (Figure 
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15b). In the third nested grid, the time series changes at the 1 km scale for C-snow closely match those of the station 

observations, whereas the C-snow retrieval results are overestimated relative to the station observations at both the 10- and 275 

25 km scales (Figure 15c). Moreover, we find a large discrepancy between the C-snow at the 10- and 25-km scales. 

 

Figure 15. Time series of SD at different scales (1, 10, and 25 km) for three selected nested grids, where (a), (b), and (c) represent the 

results for the first, second, and third grids, respectively. 

To explain the scale effects associated with geographical heterogeneity, we calculated the differences between the 10- 280 

and 25-km grids in terms of land cover type, forest fraction, elevation, and standard deviation of elevation (Figure 16). For 

the first nested grid, the terrain is relatively flat (mainly below 1000 m) at both the 10- and 25-km scales, which ensures the 

representativeness of the station to a certain extent. Moreover, the snowpack is below 100 cm where the C-snow retrievals 

perform well (Figure 6 and Figure 8). Thus, the C-snow retrievals at 1, 10 and 25 km are in good agreement with the station 

observations. For the second nested grid, the geographic environments at the 10- and 25-km scales are very similar; thus, the 285 

SD retrievals at both scales are similar. However, the terrain is very complex, e.g., high elevation (2000-3000 m) and high 

topographic relief (0-300). Thus, the representativeness of the stations may be problematic, resulting in poor agreement with 
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the C-snow retrieval results. For the third nested grid, we find that the heterogeneity of the 10- and 25-km grids is high. For 

example, the coverage of permanent ice (24.96%) at the 25 km scale is high relative to that at the 10 km scale, whereas the 

tree cover fraction (25%) in the 10 km grid is high. Additionally, the terrain is more complex in the 25 km grid than in the 10 290 

km grid, e.g., at high altitudes. The overestimation occurs mainly because of permanent ice, which is consistent with the 

results in Figure 11. The large differences (scale effects) in the SD retrieval results at the 10- and 25-km scales are related to 

the heterogeneity of the geographic environment. Specifically, the greater the heterogeneity of the geographic environment 

between the 10- and 25-km scales is, the greater the differences in the SD retrievals. 

 295 

Figure 16. Distributions of (a) land cover types, (b) forest fraction, (c) elevation, and (d) standard deviation of elevation in three selected 

nested grids, with the left, middle, and right columns representing the first, middle, and third grids, respectively. 
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4 Discussion 

4.1 Different scale patterns of C-snow retrievals with station and ASO measurements 

In this study, we compared the C-snow retrievals with both station data and ASO observations across various scales, 300 

with different trends identified with increasing scale. Compared with that of the station data, the accuracy of the C-snow data 

tended to decrease as the scale increased, whereas the accuracy of the ASO data tended to increase (Figure 17a). To explain 

this inconsistency, we further compared the station data and ASO observations (Figure 17b). There is a significant 

correlation between the station and ASO data, with a corr.coe of 0.79. Moreover, the bias is -31.60 cm, and the ubRMSE is 

41.19 cm, indicating that some errors remain. Thus, the uncertainty of the ASO data may affect the results, although the data 305 

are reliable. The ASO SD is calculated using scanning LiDAR measurements, a straightforward and robust approach 

involving the subtraction of snow-free surface elevation data from snowpack surface elevation data. The accuracy of 

LiDAR-derived SD is affected by factors such as terrain and vegetation cover (Enderlin et al., 2022; Neuenschwander et al., 

2020; Klápště et al., 2020). Within the coverage scope of ASO data, steep slopes (as high as 80 degrees) and high forest 

fractions (mean value of 53%) likely affect the accuracy of the observations (Figure A1). 310 

 

Figure 17. (a) Accuracy performance of the C-snow product at different scales when station observations and ASO SD data are used as 

reference data and (b) a comparison of station data and ASO observations (3-m ASO data are used to match the station data). 

Another reason for the contrasting accuracy trend is the variation in the representativeness of the SD stations. To 

address this issue, we counted the number of stations within each grid at the 10- and 25-km scales (Figure A2). We found 315 

that most grids, namely, 83.54% at the 10 km scale and 62.12% at the 25 km scale, contain only one station. We further 

compared the accuracy of the C-snow retrievals from grids with only one station and those with more than one station 

(Figure 18). The results show that the performance of C-snow is related to the number of stations in the sample grids. For 

example, at the 10 km scale, corr.coe increases from 0.44 to 0.55 and ubRMSE decreases from 71.63 to 66.07 cm with 

increasing number of stations. At the 25 km scale, the improvement in accuracy is not obvious, with the corr.coe improving 320 

from 0.33 to 0.35 and the ubRMSE decreasing from 77.11 to 75.86 cm. This is reasonable because the coarser the grids are, 

the more stations need to ensure the representativeness of the true data. In addition, the C-snow retrievals from grids with 

only one station are overestimated, and the bias ranges from 7.12 to 20.44 cm. For grids with more than one station, the C-

snow retrievals are typically underestimated, with bias ranging from -3.19 to -9.45 cm. Thus, the representativeness of 
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stations at large scales, such as 10 and 25 km, is very important for achieving reasonable validation results. Beyond the 325 

representativeness of the stations, the method used to convert point-scale observations to the spatial scale of satellite pixels 

also affects the validation results (Fassnacht et al., 2006; Hou et al., 2022), this study employed a simple averaging method, 

which somewhat ignores spatial variability (Ge et al., 2019). 

 

Figure 18. The impact of the number of stations within grids at the (a) 10- and (b) 25-km scales on the accuracy of the C-snow product. 330 
The left column presents the C-snow evaluation result when there is only one station within the grid, and the right column presents the 

evaluation result when there is more than one station within the grid. 

4.2 Overestimation in permanent ice landscapes 

The presence of permanent ice results in large errors in the accuracy of C-snow at different scales (Figure 11). We 

further analyzed the errors in the C-snow product as the coverage of permanent ice within the grids increased at the 10- and 335 

25-km scales (Figure 19). With increasing permanent ice coverage, the bias gradually increases at both the 10- and 25-km 

scales, clearly indicating an overestimation trend (Figure 19a). Moreover, the ubRMSE also presents an increasing trend, 

from 67.00 to 214.24 cm, indicating high uncertainty due to the presence of permanent ice (Figure 19b). 
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Figure 19. Impact of permanent ice on the accuracy of the C-snow product at different scales, including (a) bias and (b) ubRMSE, which 340 
are statistics based on the station dataset. 

We also selected three nested grids to show the time series SD data at three scales (Figure A3). In the first grid, there is no 

ice present in the 1 km grid. In the 10 km grid, the ice coverage reaches 29.30%, whereas it is as high as 62.42% within the 

25 km grid. In the second nested grid, the percentages of ice coverage are 11.60% and 61.31% for the 10- and 25 km grids, 

respectively. In the third nested grid, the ice coverage within the 10 km grid (68.0%) exceeds that within the 25 km grid 345 

(48.26%). 

The time series of C-snow retrieval results within three selected nested grids is shown in Figure A4, together with the station 

data at different scales (1, 10, and 25 km). Notably, the percentage of ice coverage dominates the bias in the C-snow 

retrievals in both the 10- and 25-km grids. For example, the C-snow retrieval results at the 25 km scale are significantly 

overestimated compared with the station observations because of the high degree of ice coverage (Figure A4a, Figure A4b). 350 

The C-snow retrievals at the 10 km scale are seriously overestimated compared with those at the 25 km scale because of the 

high ice coverage (Figure A3). Permanent ice exhibits similar electromagnetic properties to those of snowpacks, enhancing 

the backscattering of radar signals (Scott et al., 2006). During the melt season, an increase in the roughness of the ice surface 

leads to an increase in the backscattering coefficient (Baumgartner et al., 1999). The dynamic nature of glaciers, 

characterized by crevasses and glacier movement, can lead to temporal variations in the backscattering coefficient (Sander 355 

and Bickel, 2007; Brock and Billy, 2010), complicating interactions between radar signals and snow characterization. Thus, 

quality control of spatially sampled C-snow products, especially at coarse scales, must be performed, ensuring that the 

retrieval results in permanent ice-covered areas are filtered and removed. 

5 Conclusion 

In this study, we evaluated and compared the accuracies of C-snow retrieval results at three spatial scales (1, 10, and 25 km) 360 

through station measurements and ASO observations. We also analyzed the factors influencing the accuracy at these scales 

and explored the inconsistency in scale effects via station and airborne reference datasets. Our results indicate that as the 
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spatial scale increases, the correlation between the C-snow products and station observations significantly decreases, with a 

corr.coe of 0.52 at the 1 km scale, which decreases to 0.46 at the 10 km scale and 0.33 at the 25 km scale. The error increases 

with scale, from 68.18 cm at the 1 km scale to 77.47 cm at the 25 km scale. Compared with the airborne ASO data, the C-365 

snow product became increasingly more accurate as the spatial scale increased. with bias values ranging from -91.31 to -

52.73 cm and ubRMSE values ranging from 104.3 to 83.29 cm. These different scale patterns occur mainly because of the 

different representativeness of station and ASO data. 

We also found that the land cover type affects the accuracy of C-snow classification. In areas covered with tree cover, the 

accuracy of C-snow significantly decreases as the spatial scale increases, with the corr.coe decreasing from 0.52 to 0.35 and 370 

the ubRMSE increasing from 69.45 to 76.07 cm. In areas covered by permanent ice, C-snow consistently overestimates SD 

at all scales, which is related to the percentage of ice coverage. The impact of terrain on the accuracy of C-snow is complex. 

The overestimation of C-snow at the 1 km scale is evident for elevations below 1000 m, whereas SD tends to be 

underestimated in other elevation ranges. For elevations between 2000 and 3000 m, the C-snow retrievals at both the 10- and 

25-km scales displayed an underestimation trend, with Rbias values of -13.82% and -13.70%, respectively. The standard 375 

deviation of elevation also affects the accuracy of C-snow. When the standard deviation of elevation is less than 50 m, C-

snow at the 1 km scale is overestimated (Rbias of 47.56%), and when the standard deviation of elevation is greater than 100 

m, C-snow at the 25 km scale is overestimated (Rbias of 26.82%). 

In this study, we assessed the performance of C-snow products at different spatial scales and analized the corresponding 

influencing factors. According to our study, C-snow products at the three scales are characterized by high uncertainty. 380 

Particularly, we should be careful when using coarse-scale C-snow products as a reference, and at a minimum, some outlier 

data should be filtered and removed. Future research should continue to explore the possibility of improving C-snow 

retrieval by combining SAR backscattering, polarimetric, interferometric and satellite LiDAR data to enhance the reliability 

and accuracy of Sentinel-1-based products in practical applications. 
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Appendix 385 

 

Figure A1. (a) The overall geographical conditions within the coverage area of ASO, with zoomed-in views of (b) the forest fraction and 

(c) slope conditions. 

 

Figure A2. Statistics regarding the number of stations within the grids at scales of (a) 10 km and (b) 25 km. 390 
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Figure A3. Spatial distributions and summaries of tree cover, permanent ice, and other coverage types in three selected nested grids: (a) 

the first 25 km grid at 62.84°N, -150.82°E, (b) the second 25 km grid at 59.61°N, -150.82°E, and (c) the third 25 km grid at 61.59°N, 

7.11°E. 

 395 

Figure A4. Time series of the C-snow retrieval results and station measurements at three scales (1, 10, and 25 km) within the three 

specifically selected nested grids in Figure A3. 
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