10

15

20

25

Quantifying the influence of coastal flood hazards on building
habitability following Hurricane Irma

Benjamin Nelson-Mercer!, Tessa Swanson?, Seth Guikema®?, Jeremy Bricker!?

ICivil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
2Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA
3Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands

Correspondence to: Benjamin Nelson-Mercer (bnelsonm@umich.edu); Jeremy Bricker (jeremydb@umich.edu)

Abstract. Appropriate management of coastal flood risk is critical for creating resilient communities. An important part of
this is estimating what buildings will become uninhabitable due to a flood event such as a tropical cyclone. To increase the
accuracy of these estimations, habitability functions are developed to quantify the relationship between hydrodynamic hazards
and the probability of a building becoming uninhabitable following Hurricane Irma. Hazards like maximum flood depths are
determined by modeling Hurricane Irma flooding in Delft3D-FM coupled with the wave model SWAN. These modeled hazard
levels are then extracted at building locations where Location Based Services (LBS) data provide information on buildings
that were uninhabitable following Hurricane Irma. The developed habitability functions provide valuable insights into how
different hydrodynamic parameters and regression models perform for estimating building habitability, where maximum unit
discharge is generally the best predictor of habitability. Furthermore, we find that while wooden structure habitability is
significantly influenced by hazard level, concrete structure habitability is not. These findings provide novel methods for

estimating coastal flooding induced building uninhabitability, enhancing how planners can prepare for floods.

1 Introduction

Coastal flooding caused by tropical cyclones is a significant driver of structural damage, economic loss, and both short-term
and long-term migration worldwide. Sea level rise and precipitation intensification resulting from climate change is expected
to exacerbate the damage and loss caused by tropical cyclones (Gori et al., 2022; Hughes & Zhang, 2023; Mendelsohn et al.,
2012; Woodruff et al., 2013). The number of people living in low-elevation coastal zones is also increasing, with over a billion
people expected to be living in these zones by 2060 (Neumann et al., 2015). In the United States, tropical cyclones have
resulted in almost 7 thousand deaths and over $1.4 trillion in costs (CPI-Adjusted) since 1980 (Smith, 2020). The significant
losses due to tropical cyclones and increased risk posed by climate change highlight the need for improved planning and

adaptation for coastal areas subject to tropical cyclones.
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Common tools for managing flood risk include damage functions or fragility functions to estimate and predict the structural
damage sustained during a flood event (Diaz Loaiza et al., 2022; Pistrika & Jonkman, 2010; Suppasri et al., 2013; Tomiczek
et al., 2013; Tsubaki et al., 2016; Xu et al., 2023). Typically, damage functions estimate the percent of a building damaged,
while fragility functions estimate the likelihood of a building reaching a specific damaged state. These functions most
commonly estimate structural damage as a function of flood depth; however, other hydrodynamic parameters such as flow
velocity, unit discharge, and flood duration have also been used to estimate damage due to coastal flooding (Charvet et al.,
2015; De Risi etal., 2017; Diaz Loaiza et al., 2022; Nofal et al., 2020; Xu et al., 2023). Many of these functions also incorporate
structural components to increase the accuracy of predicting physical damage to buildings (Charvet et al., 2015; De Risi et al.,
2017; Paprotny et al., 2021; Tomiczek et al., 2013; Xu et al., 2023).

While damage functions are helpful for predicting structural damage, they are generally applied to derive economic losses
following a flood event (Pistrika & Jonkman, 2010). Paul et al. (2024) point out the use of post-disaster economic loss to
characterize risk often incorrectly emphasizes wealthier people as being at greater risk from disasters, when previous studies
have shown lower income groups are impacted more by natural disasters (Fothergill & Peek, 2004; Hallegatte et al., 2020).
Fragility functions offer an improvement over damage functions in this context by predicting what state a building is in
following an event such as “no damage”, “moderate damage”, or “complete damage” (Charvet et al., 2015; De Risi et al.,
2017), but these functions are still focused only on structural damage. Assessing building habitability rather than building
damage following an event is one option for providing a more equitable overview of coastal flood risk and post-disaster
recovery (Paul et al., 2024). Different factors such as structural components (number of stories, building material, etc.), power
outages, school closures, socioeconomic statuses, and access to other essential services can influence if and when a building
becomes habitable (Loos et al., 2023; Paprotny et al., 2021; Paul et al., 2024; Suppastri et al., 2013; Thieken et al., 2005; Yabe
et al., 2020). However, physical damage to structures is often the largest factor determining a building’s habitability (Paul et

al., 2024), showing the importance of flood hazard consideration in predicting post-disaster building habitability.

Efforts have been made to quantify the influence of physical damages on post-disaster recovery (FEMA, 2024a, 2024b; Nofal
etal., 2024; Yabe et al., 2020). Yabe et al. (2020) utilized mobile phone data to estimate immediate and long-term household
displacement from Hurricane Irma, finding that housing damage rates were strong estimators of household displacement 0
days after Irma and housing damage rates were only weakly correlated with displacement 160 days after Irma. This study
relied on the Federal Emergency Management Agency’s (FEMA) Individuals and Households Program for estimating housing
damage, neglecting the actual flood hazard (Yabe et al., 2020). Furthermore, displacement 0 days from an event is measuring
evacuation rates rather than building habitability. Nofal et al. (2024) transformed building fragility curves to functional fragility
curves by estimating conditional probabilities of functionality states given different damage states. While habitability is

considered a part of the functionality estimated by these curves, the conditional probabilities used are derived from the authors’
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judgement and are not directly developed from flood depths (Nofal et al., 2024). Hazus, a tool developed by FEMA, is capable
of estimating building habitability with hazard information (FEMA, 2024a, 2024b). The Hazus Hurricane Model estimates
building habitability with both demographic data and computed structural damage derived from wind hazard information
(FEMA, 2024b). While the Hazus Flood Model also incorporates demographic data for estimating habitability, the hazard
information used is simply the area of a census tract with nonzero inundation (FEMA, 2024a). This exhibits a significant

knowledge gap in how varying levels of flood hazards influence building habitability.

To improve coastal communities’ resilience to tropical cyclones, this study aims to uncover the relationship between flood
hazards and building habitability following Hurricane Irma. Hurricane Irma made landfall in September 2017 in the Florida
Keys as a Category 4 hurricane before reaching southwestern Florida as a Category 3 hurricane (Cangialosi et al., 2021),
resulting in approximately $64 billion in damages (CPI-Adjusted) (Smith, 2020). In Florida, water elevations reached 1.1 m
and 1.7 m above mean sea level (MSL) at NOAA tide gages in Key West and Naples, respectively. Overland, the Florida Keys
and southwestern Florida experienced maximum flood depths that exceeded 2 m (Cangialosi et al., 2021). In addition to storm
surge, Irma caused widespread destruction from wind and wave hazards, displacing millions of people (Issa et al., 2018; Joyce
et al., 2019). Through Location Based Services (LBS) data collected from cell phones, we know if and when many buildings
were once again occupied following Hurricane Irma (Swanson & Guikema, 2024). Combining this LBS dataset with an
integrated hydrodynamic-wave model of Hurricane Irma, we draw upon previous methods for developing damage and fragility
functions and apply them to develop habitability functions. These habitability functions offer new estimates of the probability
of buildings being uninhabitable following tropical cyclones, advancing current approaches to quantifying flood-induced
building uninhabitability.

2 Data and methods
2.1 Flood model development for Hurricane Irma

Coastal flooding caused by Hurricane Irma is modeled with D-Flow Flexible Mesh (D-Flow FM) coupled with SWAN
(Simulating WAves Nearshore). Hydrodynamics are simulated by D-Flow FM, which implements a finite volume solver to
calculate unsteady flow with the non-linear shallow water equations to simulate storm tide resulting from tidal and
meteorological forcings (Deltares, 2022a). The depth-averaged approach is used for this study. SWAN is a phase-averaged
wave model that simulates wave evolution (Deltares, 2022b). These models are integrated together in the Delft3D Flexible
Mesh modeling suite via online coupling, enabling hydrodynamic parameters from D-Flow FM and wave parameters from

SWAN to be exchanged every coupling timestep.
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The model developed for this study includes both Collier and Monroe Counties. The extent of the model is from 12.94° N to
32.84° N and 98.01° W to 63.91° W (Fig. 1a). D-Flow FM enables the use of an unstructured mesh for simulations. The
unstructured mesh created for this modeling has a coarse resolution of 10 km and is refined to 80 m in areas with both coastal
flooding during Irma’s landfall and LBS data (Fig. 1b&c). For wave modeling, SWAN requires nested structured meshes. Our
SWAN model has a coarse 10 km resolution mesh spanning the entire domain with nested meshes down to a refinement of 80

m for the same areas refined in the D-Flow FM model.

Digital elevation models (DEMs) used for this flood modeling come from NOAA’s National Centers for Environmental
Information’s (NCEI) DEM Global Mosaic and the General Bathymetric Chart of the Oceans (GEBCO). The refined areas of
the flood model utilize 3 and 1 arcsecond DEMs from the NCEI’s DEM Global Mosaic (NOAA NCEI, 2022). The coarser
portions in the model use GEBCO’s 15 arcsecond dataset (GEBCO, 2023).

Spatially varying Manning’s coefficients of roughness are used to account for bed friction in the model. These values are
derived from the 2019 National Land Cover Database (NLCD) for the Contiguous United States (Dewitz & USGS, 2024).
These NLCD land cover values are then converted to Manning’s roughness coefficients by taking the corresponding minimum
Manning’s value listed in the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) 2D User’s Manual
(Hydrologic Engineering Center, 2021).

Meteorological forcings used for the flood model are wind and atmospheric pressure fields. These fields are generated with
the Holland model (Holland, 2008; Holland et al., 2010), which requires information on a tropical cyclone’s path such as the
coordinates of the eye’s path, maximum wind speeds, and radius of maximum winds. The necessary Hurricane Irma best track
data come from the National Hurricane Center’s revised Atlantic hurricane database (HURDAT?2) (Landsea & Franklin, 2013),
supplemented by the Tropical Cyclone Extended Best Track Dataset (EBTRK) that provides radius to maximum winds
information (Demuth et al., 2006). Together, these datasets and the Holland model are used to develop a symmetric profile of
Irma as a spiderweb grid. Spiderweb grids convey the atmospheric pressures, wind velocity magnitudes, and wind directions
used in the flood model on a polar grid, where the origin of the grid represents the eye of the hurricane at each timestep
(Deltares, 2022a). A second Irma profile is also created to account for asymmetries in the hurricane profile. This was done by
incorporating a dependency on the azimuthal angle into the Holland model used (Xie et al., 2006), enabling an asymmetric
Irma profile to be generated.

The default wind drag coefficient formulation in D-Flow FM is utilized for determining the shear stress on the flow due to
wind forcings. This drag coefficient is based on the Smith and Banke (1975) relationship, where the drag coefficient varies
linearly from 0.00063 to 0.00723 for wind speeds from 0 to 100 m/s. It was determined that the default SWAN drag coefficient
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profile, which relies on the Wu (1982) relationship, is insufficient for this modeling, producing unreasonably low wave heights
and periods. Therefore, an increased drag coefficient profile is needed. For SWAN, the increased drag coefficient relationship

used is as follows:

2.012 x 1073, U <6
= { 10 €Y

(0.127Uy + 1.25) x 1073, Uy =6

where Cp, is the drag coefficient and U, is the wind speed 10 m above the surface in m/s (Deltares, 2022b; Wu, 1982). Due to
the difficulty in prescribing a new drag profile in SWAN, implementing this increased drag profile was instead done by
increasing the wind speed values by 25% in the spiderweb grids used by SWAN. This 25% increase to the wind speeds

corresponds to the same wind wave growth due to the increased drag profile described by Eq. (1).

Tidal boundary conditions for the Atlantic Ocean and Gulf of Mexico are located around the northern, eastern, and southern
boundaries of the domain where the bed elevation is below mean sea level. Tidal constituents at these boundaries are generated
from the Oregon State University Tidal Inversion Software (Egbert & Erofeeva, 2002), which are then used as astronomical

forcings at the boundaries.
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130 Figure 1: Overview of the entire model domain (a) and two locations of refinement for Collier (b) and Monroe (c) Counties. NOAA
tide and wave stations are indicated with diamonds and squares, respectively. USGS storm tide sensors are indicated with circles.
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2.2 Model validation

The validity of the model is assessed using water level measurement from three NOAA tide stations and five USGS storm tide
sensors (Fig. 1), which have all been previously used when validating Hurricane Irma models (Asher & Luettich, 2025;
Dobbelaere et al., 2022; Li et al., 2021; Musinguzi et al., 2022). The measurements from the USGS sensors are converted from
NAVDS88 to MSL using NOAA’s VDatum tool (vdatum.noaa.gov). Two USGS sensors (FLCOL03148 and FLCOL03089)
are located outside valid tidal areas and are instead converted to MSL using the nearest valid tidal area in VDatum.
Additionally, modeled wave parameters are compared to significant wave heights and peak wave periods measured at the
National Data Buoy Center (NDBC) station 42097. First the tidal boundary conditions are validated by comparing the modeled
water levels without meteorological forcings against the predicted water levels. Then the developed Irma wind and pressure
fields are implemented into the model and the resulting water levels and wave parameters are validated against observations
(Fig. 2). Four combinations of the symmetric and asymmetric Irma profiles are compared: the symmetric profile is used for
both D-Flow FM and SWAN (M1), the asymmetric profile is used for both D-Flow FM and SWAN (M2), the symmetric
profile is used for D-Flow FM and the asymmetric profile is used for SWAN (M3), and the asymmetric profile is used for D-
Flow FM and the symmetric profile is used for SWAN (M4). The root mean square error (RMSE) between modeled and
observed water levels and wave parameters is determined for each model at each of the locations shown in Fig. 1 (Table 1).
To remain consistent with the 30-minute time resolution of the model output, RMSE is calculated using observed data for each
half hour. The difference between maximum modeled and maximum observed water levels and wave parameters is also

determined at each station (Table 1).

Comparison of the four different models clearly shows the symmetric Irma profile performs the best for modeling wave
parameters, where the two models that utilize a symmetric profile for SWAN (M1 and M4) have the lowest RMSE and
differences in maximum modeled and maximum observed significant wave height and peak wave period (Table 1). For the six
locations compared in Collier County, M1 and M3 have the strongest agreement between maximum modeled and observed
water level. M1 and M3 also perform best in terms of RMSE at the six Collier County locations, with the exception of the

Naples station. At the Key West and Vaca Key stations, M2 and M4 perform the best for both metrics analyzed.

Two models are selected for developing habitability functions based on these performance metrics. The M1 model is used for
Collier County and the M4 model is used for Monroe County. The M2 and M3 models are not considered for developing the
habitability functions because the symmetric Irma profile performed significantly better than the asymmetric profile for
modeling wave parameters in SWAN. Since the habitability functions are developed using maximum values of the model

output, M1 is selected for Collier County to minimize the difference between the maximum modeled and maximum observed



water levels at the six Collier County locations. Between M1 and M4, the M4 model performed better for the Key West and

Vaca Key stations, which is why the M4 model is used for developing habitability functions for Monroe County.

Table 1: Goodness of fit for different combinations of symmetric and asymmetric Irma wind profiles.

RMSE Max Modeled — Max Observed
Station
M1 M2 M3 M4 M1 M2 M3 M4
FLCOL03294 07399m  0.7412m  07399m  0.7412m 05231 m  15580m  0.6311m  1.4999 m
(Delnor-Wiggins State Park)
8725110
(Naples) 0.6360m 05263m  0.6346m  0.5223m 01006 m  0.9410m  0.1624m  0.8998 m
(th(g:e?s'ggg’éfeik) 07124m  07147m  0.7124m  0.7146m 05554m  1.5808m  0.6551m  1.5095m
Fz-go?)'agigf; 0.7971m  07979m  07972m  0.7978 m 06510m 08384m  -05378m  0.7520 m
(Fai';%?]'i-of’giaal) 0.0509m  0.9602m  0.9599m  0.9602m 01415m  15171m  -00205m 14179 m
(Eit%%laggzc?ﬁy) 10048 m  1.0126m  1.0049m  1.0124m 00022m  12243m 00646 m  1.1682m
8724580
(g Wt 03273m  02742m  03202m  0.2756 m 04986 m  -02728m  -04363m  -0.3207 m
8723970
(aca Key) 03790m 03480m  03771m  0.3547m 01510m  -0.0187m  0.1581m  -0.0353 m
42097
(Sig. Wave Height) 11343m  1.3962m  1.3995m  1.1368m 02590m  -12070m  -1.2360m  0.2870m
42097
216525  3.0023s 299655  2.1453s 166005  -35120s  -35120s  -1.6600s

(Peak Wave Period)
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Figure 2: Storm tide comparisons between the measured and modeled water levels relative to MSL (a-h). Comparisons between the
measured and modeled significant wave heights (i) and peak wave periods (j).
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2.3 Determining building habitability following Irma

Whether or not a building was habitable directly following Hurricane Irma is determined using Location Based Services (LBS)
and CoreLogic property data. LBS data are provided by Veraset LLC and consists of “pings” that represent exchanges between
mobile phones and a cellular network or Wi-Fi. Each ping includes an anonymized user identification number, latitude,
longitude, and timestamp, as well as estimates of horizontal accuracy and device type. Pings are filtered and aggregated based
on frequently visited locations and time of day to identify each user’s home and workplace (Swanson, 2023; Washington et
al., 2024). The LBS data utilized span August 1, 2017, until October 3, 2017. In total, there are 18,505 identified home and
work locations available for Collier and Monroe Counties, where 16,769 of these are for Collier County and 1,736 are for

Monroe County.

The recovery period for each user following Hurricane Irma is determined using a Bayesian belief network (BBN) in
combination with anomaly detection methods (Swanson, 2023). The BBN incorporates contextual knowledge and time-series
data of each user’s daily location visits to estimate the joint probability of a user’s presence at home or work on a given day
prior to Hurricane Irma’s landfall. By considering dependencies—such as the day of the week, prior appearances, and visits to
other locations on the same day—the model identifies probabilistic patterns for all Florida users and refines these priors with
individual user data to create personalized models of each user’s “typical” behavior. Anomaly detection methods are applied
to user data during the period surrounding Hurricane Irma’s landfall to identify anomalous patterns of behavior, such as being
absent from home or work or exclusively staying at home, that differ from their previously typical appearance behavior.
Recovery is defined as the date when a user’s anomalous behavior ends and their visit patterns resemble their pre-landfall
behavior for at least three consecutive days. Greater details on identifying recovery periods from LBS data are available in
Swanson (2023). Locations where users did not recover their previous visit patterns by the end of September 28, 2017, 18 days
after Irma’s landfall in Florida, are assumed to be uninhabitable due to damages caused by Irma since essential services such
as power and schools were recovered by this date (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema, 2024).
This assumes that the reason a user did not return to a location is solely because that location was damaged by Irma beyond
habitability. This assumption does not account for other socioeconomic factors that may influence if and when someone returns
to a location. From this method for estimating habitability, we find that 13.5% of the users in Monroe County and 6.0% of the

users in Collier County are identified as having uninhabitable homes by the end of September 28, 2017.

Each location derived from the LBS data is then approximated to the nearest building by assigning it to the nearest CoreLogic
coordinate, representing the center point of a property. This ensures each LBS datapoint corresponds to an actual building and
provides information on the building material. In some instances, this results in multiple LBS datapoints being linked to the

same building. For these buildings with multiple LBS datapoints, a building is assumed habitable if at least one LBS user

10
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returned to the building by the end of September 2017. A building is assumed uninhabitable if all corresponding LBS users
did not return to the building by the end of September 2017. LBS datapoints farther than 0.001 decimal degrees from the

nearest CoreLogic coordinate are excluded.

For each CoreLogic property location that has a habitable or uninhabitable designation from the LBS data analysis, the
maximum depth, velocity, and significant wave height experienced are determined by matching each building’s latitude and
longitude to the nearest cell in the computational mesh of the flood model (Figs. 3 and A1-A2). If a building’s coordinate is
inundated at the initialization of the model, indicating its corresponding mesh cell’s bed level is below mean sea level, the
building is excluded from our analysis. Additionally, buildings with a maximum depth of zero, determined from the
hydrodynamic model, are removed. After these exclusions, there are 1,067 locations with assigned hydrodynamic parameters,
where 408 of these locations are for Collier County and the other 659 locations are for Monroe County. From the 1,067
locations included in our analysis, 123 of these buildings do not have any user returning by the end of September 2017,
indicating these 123 buildings were uninhabitable due to Hurricane Irma. 85 of these uninhabitable buildings are in Monroe

County and the other 38 are in Collier County.

11
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Figure 3: Maximum modeled flood depths for Collier County (a) and the western (b) and eastern (c) regions of Monroe County.
Building locations and associated maximum flood depths used for habitability functions (d-f). To preserve privacy the exact building
locations are not identified.
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3 Results
3.1 Developing habitability functions

The outputs generated from the previous section are used to develop habitability functions for Florida due to Hurricane Irma
as a function of the modeled maximum depth, flow speed, and significant wave height (Figs. 4 and A3). Since each datapoint’s

habitability entry is binary (habitable/uninhabitable), logistic regression is used to develop habitability functions.

1
Py=1= 1 + e~ Bo+B1X) @)

where P(y = 1) is the probability of a building being uninhabitable, X is the hydrodynamic hazard level, and g, and 3, are
the logistic regression coefficients. Maximum likelihood estimation is used to estimate the values of the coefficients.
Additionally, the 95% confidence interval is determined to assess the uncertainty of each function (Fig. 4). Goodness of fit for
the developed habitability functions is determined with the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) (Akaike, 1974; Schwarz, 1978), where lower values of AIC and BIC indicate a better fit.

1 1 1
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Figure 4: Building habitability as a function of maximum depth (a), flow speed (b), and significant wave height (c) for buildings
analyzed in Collier and Monroe Counties.

All three habitability functions developed show positive relationships between hazard level and uninhabitable probability that
are significant at the 95% confidence level (Table 2). This indicates that buildings that experienced larger flood depths, flow
speeds, and wave heights were more likely to be uninhabitable following Hurricane Irma. Of the three habitability functions
developed, the one dependent on flow speed performs the best, having the lowest AIC and BIC values. Conversely, using
significant wave height to predict building uninhabitability shows the worst fit. Another apparent detail of these functions is
that some buildings are uninhabitable at relatively low hazard levels and others are habitable at relatively high hazard levels.

This highlights some of the uncertainty in estimating building habitability using just hazard levels.
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Table 2: Coefficients for maximum depth, flow speed, and significant wave height for buildings in Collier and Monroe Counties.

Depth Flow Speed  Sig. Wave Height
Bo -2.608** -2.558** -2.490**
B 0.648** 1.336** 1.122*
AIC 751.843 747.540 756.925
BIC 761.789 757.485 766.871
x? testp-value  1.156e-04  1.198e-05 0.002

For individual coefficients: * p-value < 0.05, ** p-value < 0.001

3.2 Influence of building material on habitability

The exterior wall material listed for each building is the building material information available for locations in Monroe

240

County. Collier County does not have any relevant building material information from the CoreLogic dataset used; therefore,

only Monroe County locations are included in this section’s analysis. The listed exterior wall materials are aggregated into

three categories: “Concrete”, “Wood”, and “Other” (Fig. 5a). Habitability functions are then developed for the concrete and

wood categories as functions of maximum water depth, flow speed, and significant wave height (Fig. 5b-g). Habitability

functions are not generated for the other category since there is no similar defining feature within the group.
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Figure 5: Histogram of the exterior wall descriptions from CoreLogic for buildings analyzed in Monroe County and the three
aggregated categories: concrete, wood, and other (a). Building habitability as a function of maximum depth, flow speed, and
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The only significant trends revealed from this analysis are for the habitability functions developed for the wood category (Table
3). The habitability functions developed for the concrete group are not significant at the 95% confidence interval. This can be
interpreted to mean that wooden buildings are less likely to be habitable after sustaining a relatively larger maximum depth,
flow speed, or significant wave height, while the uninhabitable probability of concrete structures is not influenced by the level
of hazard. For these wooden buildings, the depth-dependent habitability function has the greatest fit.

Table 3: Coefficients for different building materials for buildings in Monroe County.

Concrete Wood
Depth Flow Speed  Sig. Wave Height Depth Flow Speed  Sig. Wave Height
Bo -2.007** -2.239** -2.056** -3.801** -2.964** -3.473**
B1 0.151 0.894 0.426 1.526* 1.690* 2.780*
AIC 209.825 208.309 209.720 120.695 124.857 122.930
BIC 216.961 215.445 216.857 127.002 131.163 129.236
x? testp-value  0.666 0.192 0.590 8.118e-04 0.008 0.003

For individual coefficients: * p-value < 0.05, ** p-value < 0.001

3.3 Habitability functions based on additional hydrodynamic parameters

Habitability functions are also developed using the maximum unit discharge (hv), flow momentum flux (phv?), total water

depth (h + Hg;,), wave energy flux (%Gngfig\/ﬁ), and total force (1—16 pgHZ, + phv?) as the hazard level (Figs. 6 and A3),
where h is the water depth, v is the flow speed, p is the density of water (1,000 kg/m?3), H;, is the significant wave height,
and g is gravitational acceleration (9.81 m/s?) . These additional hydrodynamic parameters have been shown to be significant
drivers of flood damage in addition to the basic hazard parameters of depth, flow speed, and significant wave height (Diaz

Loaiza et al., 2022; Xu et al., 2023), motivating the following analysis on their influence of building habitability.

The additional habitability functions generated for maximum unit discharge, flow momentum flux, total water depth, wave
energy flux, and total force all exhibit significant positive relationships with the probability of a building being uninhabitable
(Table 4). Of these five parameters, the habitability function dependent on maximum wave energy flux has the worst fit with
an AIC of 754.560 and BIC of 764.506. While the habitability function developed for maximum wave energy flux performs
relatively poorly, the other functions developed based on the additional hydrodynamic parameters are comparable to those

developed for depth and flow speed. Habitability functions based on unit discharge, momentum flux, and total force all exhibit
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better fits than the functions generated based on either depth or flow speed (Tables 2 and 4). The function dependent on total

depth performs worse than the depth or flow speed habitability functions.
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Figure 6: Building habitability as a function of maximum unit discharge (a), total depth (b), flow momentum flux (c), wave energy
flux (d), and total force (e) for buildings analyzed in Collier and Monroe Counties.

Table 4: Coefficients for buildings in Monroe and Collier Counties as a function of maximum unit discharge, total depth, flow
momentum flux, wave energy flux, and total force.

Unit Discharge  Total Depth  Momentum Flux Wave Energy Flux  Total Force

Bo -2.397** -2.611** -2.264** -2.277%* -2.319**
B 0.867** 0.455** 7.830e-04** 4.942e-04** 6.857e-04**
AIC 742.701 752.692 742.888 754.560 743.131
BIC 752.646 762.637 752.833 764.506 753.077
x? test p-value 9.608e-07 1.814e-04 1.059¢-06 4.920e-04 1.202e-06

For individual coefficients: * p-value < 0.05, ** p-value < 0.001
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Habitability functions for these additional hydrodynamic parameters are also developed for the concrete and wood building
material categories described in the previous section (Figs. B1-B4). None of these habitability functions for concrete buildings
are significant at the 95% confidence level (Table B1), but all those for wood buildings show significant positive relationships
(Table B2). Furthermore, the wooden structure habitability function dependent on total depth (h + Hg;4) has the greatest fit of
all habitability functions developed for wooden buildings, including the one developed for just depth. Therefore, predicting
habitability can be improved by incorporating information on both inundation depths and significant wave heights at wooden

structures for the buildings analyzed.

3.4 Habitability functions derived from multivariable logistic regression

Rather than combining the three basic parameters of depth, flow speed, and significant wave height into additional
hydrodynamic parameters to develop habitability functions as in the previous section, multivariable logistic regression can be

used as an alternative to derive habitability functions. This expands Eq. (2) into the following:

1
Py=1= 1 + e~ Bo+B1X1+B2Xz+..+BiX}) ®)

where the i subscript indicates the i-th parameter in the regression model. Including multiple independent variables has been
shown to improve traditional depth-dependent fragility functions (Charvet et al., 2015; De Risi et al., 2017), making it an
important consideration for the habitability functions developed in this study. Four multivariable logistic regression models
are considered (R1-R4), and Table 5 lists the hydrodynamic parameters considered for each model. The three basic parameters
of maximum depth (h), flow speed (v), and significant wave height (H;,) are considered for these models. To check for
multicollinearity in these models, the variance inflation factor (VIF) is computed. All VVIF values for these models are between

1.7 and 3.4, which is generally accepted as an indicator that multicollinearity problems are small (Sheather, 2009).

Table 5: Hydrodynamic parameters considered for each multivariable logistic regression model.

R1 R2 R3 R4

Of the four multivariable models developed, R1 displays the best fit and R2 displays the worst fit (Table 6). While the AIC of
R1 is slightly smaller than the AIC of the flow speed-dependent habitability function, the BIC shows a greater preference for
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the flow speed-dependent function over R1. Furthermore, a likelihood ratio test to statistically determine if R1 offers significant
improvements over the nested flow speed-dependent habitability function is performed. This likelihood ratio test accepts the
null hypothesis, the nested habitability function dependent on just flow speed, over the alternative of R1 (p-value = 0.130).
Therefore, it can be concluded that the habitability function developed depending solely on maximum flow speed is a better

predictor of habitability than any of the multivariable models.

Table 6: Coefficients for each multivariable logistic regression model for buildings in Monroe and Collier Counties.

R1 R2 R3 R4

Bo -2707%%  -2.604%%  -2.628%*  -2.679**
B 0320  0672*  1181*  0.488
Bs 0.996*  -0.063 0323  1.057*
Bs - - - -0.495

AlC 747.243 753835  749.053  748.802

BIC 762161  768.753  763.971  768.692

x?testp-value 2.184e-05 5.899e-04 5.400e-05 6.828e-05

For individual coefficients: * p-value < 0.05, ** p-value < 0.001

Habitability functions based on the four multivariable models are also developed for the buildings in the concrete and wood
categories (Table B3). However, none of the functions for concrete or wood structures based on these four models offer any

serious improvement over those developed with the univariable models presented in Table 3.

4 Discussion

Overall, many of the habitability functions developed show that hydrodynamic hazard level significantly increases the
probability of a building being uninhabitable following Hurricane Irma. This holds true for the first functions developed based
on the three basic hazards of maximum flood depth, flow speed, and significant wave height, where the flow speed-dependent
habitability function shows the best fit (Fig. 4 and Table 2). In an effort to improve upon these habitability functions dependent
on the three basic hazards, two methods for combining the basic hazard levels are explored. The first method creates new
habitability functions based on five additional hydrodynamic parameters used previously to generate damage functions (Diaz
Loaiza et al., 2022; Xu et al., 2023): maximum unit discharge, flow momentum flux, total water depth, wave energy flux, and
total force. Not only does the probability of uninhabitability exhibit a significant positive dependency on these additional

hydrodynamic parameters, but the habitability functions dependent on unit discharge, flow momentum flux, and total force
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offer greater fits than the flow speed-dependent function (Tables 2 and 4). Specifically, the unit discharge-dependent
habitability function shows the greatest performance for predicting building habitability of the univariable models. The second
method aimed at improving the developed habitability functions expands the univariable regression to multivariable regression
based on depth, flow speed, and significant wave height. The multivariable model R1 (depth and flow speed) performs best of
the multivariable models and shows a slightly improved AIC value to the solely flow speed-dependent function. This
potentially aligns with previous studies that have shown including multivariable models improves fragility functions based on
asingle variable (Charvet et al., 2015; De Risi et al., 2017). However, comparison of the BIC values shows a clearer preference
for the univariable flow speed-dependent function. This questions whether including maximum depth with flow speed in a
multivariable model actually improves the ability to estimate building habitability. Results from the likelihood ratio test agree
with those from comparing BIC values, suggesting the flow speed-dependent function is superior to the multivariable models.

This leads back to the function dependent on unit discharge as being the best habitability function developed in this study.

This study also revealed significant differences in how varying hazard levels impact habitability probability for wooden and
concrete buildings. None of the habitability functions developed for concrete buildings exhibit significant relationships
between hazard level and uninhabitable probability. This indicates that other factors besides hydrodynamic hazards strongly
influenced whether people returned to concrete structures after Irma. Conversely, the habitability functions developed for
wooden structures display significant positive relationships between hazard level and uninhabitable probability, showing that
hydrodynamic hazards strongly influenced if a wooden building became uninhabitable due to Hurricane Irma. These
differences between wooden and concrete structures are understandable since flood hazards typically result in greater damage
to wooden buildings than concrete ones (Charvet et al., 2015; De Risi et al., 2017; Suppasri et al., 2013).

While the habitability functions developed generally show the expected dependency of hazard level on building uninhabitable
probability, there is still a good degree of uncertainty in estimating which buildings people return to. This is evident when
visually inspecting the habitability functions, where some buildings are habitable at relatively high hazard levels and
uninhabitable at lower hazard levels (Figs. 4-6). This shows a major difference between traditional damage and fragility
functions and these new habitability functions, where many socioeconomic factors can also influence if and when people return
to a building after a flood event. For example, someone may not return to a completely undamaged building if they are able to
stay with friends or family for an elongated period, and for others, returning to a highly damaged building may be the best
option, which may bias these functions against people with fewer recovery options. While previous studies have looked at
some of these factors influencing post-flood building habitability (Nofal et al., 2024; Paprotny et al., 2021; Paul et al., 2024;
Yabe et al., 2020), this is the first study, to our knowledge, that directly quantifies how flood hazards influence habitability.
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Besides uncertainties associated with socioeconomic factors, there are other assumptions and uncertainties in this study that
could be addressed in the future. Firstly, the confidence intervals of the developed habitability functions typically widen at
larger hazard levels due to a smaller number of buildings experiencing these large hazard levels, which could be improved by
including areas that experienced greater flood impacts in future studies. Uncertainty in the developed Hurricane Irma model is
highly influenced by grid and DEM resolution, and higher resolutions are known to improve the flood model accuracy (Diaz
Loaiza et al., 2022; Luppichini et al., 2019; Mufioz et al., 2024). The spatially varying Manning’s roughness coefficients and
parameterization of Hurricane Irma’s wind and pressure fields also introduce uncertainties in the flood model that influence
the developed habitability functions (Asher & Luettich, 2025). Aside from the flood model, the LBS data used to determine
buildings that were uninhabitable due to Hurricane Irma bring their own uncertainties. For example, spatial inaccuracies of the
LBS data could lead to misidentification of the associated building. Additional uncertainties could arise if the LBS data used
is not representative of the study areas and populations (Swanson & Guikema, 2024). Another important assumption for our
definition of building habitability is that essential services such as power and schools are recovered 18 days after Irma’s landfall
in Florida. While this assumption is appropriate for Irma (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema,
2024), flood events that cause longer recovery periods for essential services may create difficulties in estimating building
habitability the same way. Finally, these habitability functions could be improved if additional building information such as

the number of stories or whether a building is elevated was available.

5 Conclusions

This study utilizes a Hurricane Irma flood model and LBS data to develop habitability functions for buildings in two Florida
counties. First, we show that of the habitability functions dependent on maximum depth, flow speed, or significant wave height,
the flow speed-dependent function performs the best. Five additional hydrodynamic parameters are also investigated to see if
improvements can be made to the flow speed-dependent habitability function, and we find that the habitability function
dependent on maximum unit discharge offers the greatest improvement. Then multivariable regression is employed, showing
potential improvements to the univariable flow speed function with model R1 (depth and flow speed). However, additional
analysis indicates these multivariable models do not offer significant improvements to the univariable flow speed-dependent
function. Furthermore, buildings are grouped by material to evaluate how habitability functions compare for wooden and
concrete structures, showing that the uninhabitable probability of concrete buildings is not influenced by hazard level while
wooden buildings’ uninhabitable probability increase with hazard level. These findings provide novel quantifications of the
influence of flood hazards on whether a building becomes uninhabitable due to a flood event. This can be used in applications

like Hazus, which currently assumes buildings become uninhabitable for any nonzero flood depth (FEMA, 2024b).
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Future work could be done to incorporate socioeconomic factors into these habitability functions to increase the accuracy of
estimating which buildings become uninhabitable during Irma due to flooding. Developing habitability curves for different
regions and flood events is another area of future research that should be explored. Given this study focuses on two Florida
counties, it would be insightful to investigate other regions both inside and outside the United States. Differences in building
codes, zoning laws, and other policies may significantly change how flood hazards influence building habitability, which could

be compared against the habitability functions developed here for Collier and Monroe Counties.
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Figure Al: Maximum modeled flow speeds for Collier County (a) and the western (b) and eastern (c) regions of Monroe County.
Building locations and associated maximum flow speeds used for habitability functions (d-f). To preserve privacy the exact building
locations are not identified.
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Figure A2: Maximum modeled significant wave heights for Collier County (a) and the western (b) and eastern (c) regions of Monroe
County. Building locations and associated maximum significant wave heights used for habitability functions (d-f). To preserve
privacy the exact building locations are not identified.
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Figure A3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow
momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Collier and Monroe Counties.
Appendix B

Table B1: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth,
flow momentum flux, wave energy flux, and total force for buildings in the concrete category.

Unit Discharge  Total Depth  Momentum Flux  Wave Energy Flux  Total Force

Bo -2.088** -2.021** -2.034** -2.005** -2.064**
B1 0.510 0.114 5.973e-04 2.622e-04 4.77%-04
AIC 208.231 209.809 207.066 209.207 207.386
BIC 215.368 216.946 214.203 216.344 214523
x? test p-value 0.182 0.653 0.086 0.370 0.105

For individual coefficients: * p-value < 0.05, ** p-value < 0.001
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Table B2: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth,
flow momentum flux, wave energy flux, and total force for buildings in the wood category.

Unit Discharge  Total Depth Momentum Flux Wave Energy Flux  Total Force

Bo -2.899** -4.035** -2.513** -2.766** -2.682**
B 1.269** 1.202* 9.261e-04* 0.001* 9.269e-04**
AIC 120.709 119.615 122.000 123.047 120.384
BIC 127.015 125.921 128.307 129.354 126.691
x? test p-value 8.176e-04 4.543e-04 0.002 0.003 6.866e-04

For individual coefficients: * p-value < 0.05, ** p-value < 0.001
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Figure B1: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow
momentum flux (c), wave energy flux (d), and total force (e) for buildings in the concrete category.
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Figure B2: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow
550 momentum flux (c), wave energy flux (d), and total force (e) for buildings in the wood category.
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Figure B3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow
momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in

the concrete category.
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Figure B4: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow
momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in
the wood category.
Table B3: Coefficients for each multivariable logistic regression model for buildings in the concrete or wood categories in Monroe
560 County.
Concrete Wood
R1 R2 R3 R4 R1 R2 R3 R4
Bo -2.173**  -2,053**  -2,193**  -2.189** -4.059**  -4.051**  -3.922** -4.277**
B -0.139 -0.036 0.980 -0.212 1.232* 1.014 1.183 0.816
Ba 1.040 0.494 -0.187 1.022 1.023 1.571 2.279* 0.925
B3 - - - 0.207 - - - 1.404
AlC 210.196 211.717 210.270 212.179 120.983 121.638 122.166 122.236
BIC 220.901 222.422 220.975 226.453 130.443 131.098 131.626 134.850
x? test p-value 0.404 0.863 0.419 0.608 0.002 0.002 0.003 0.003

For individual coefficients: * p-value < 0.05, ** p-value < 0.001
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