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Abstract. Appropriate management of coastal flood risk is critical for creating resilient communities. An important part of 

this is estimating what buildings will become uninhabitable due to a flood event such as a tropical cyclone. To increase the 

accuracy of these estimations, habitability functions are developed to quantify the relationship between hydrodynamic hazards 10 

and the probability of a building becoming uninhabitable following Hurricane Irma. Hazards like maximum flood depths are 

determined by modeling Hurricane Irma flooding in Delft3D-FM coupled with the wave model SWAN. These modeled hazard 

levels are then extracted at building locations where Location Based Services (LBS) data provide information on buildings 

that were uninhabitable following Hurricane Irma. The developed habitability functions provide valuable insights into how 

different hydrodynamic parameters and regression models perform for estimating building habitability, where maximum unit 15 

discharge is generally the best predictor of habitability. Furthermore, we find that while wooden structure habitability is 

significantly influenced by hazard level, concrete structure habitability is not. These findings provide novel methods for 

estimating coastal flooding induced building uninhabitability, enhancing how planners can prepare for floods. 

1 Introduction 

Coastal flooding caused by tropical cyclones is a significant driver of structural damage, economic loss, and both short-term 20 

and long-term migration worldwide. Sea level rise and precipitation intensification resulting from climate change is expected 

to exacerbate the damage and loss caused by tropical cyclones (Gori et al., 2022; Hughes & Zhang, 2023; Mendelsohn et al., 

2012; Woodruff et al., 2013). The number of people living in low-elevation coastal zones is also increasing, with over a billion 

people expected to be living in these zones by 2060 (Neumann et al., 2015). In the United States, tropical cyclones have 

resulted in almost 7 thousand deaths and over $1.4 trillion in costs (CPI-Adjusted) since 1980 (Smith, 2020). The significant 25 

losses due to tropical cyclones and increased risk posed by climate change highlight the need for improved planning and 

adaptation for coastal areas subject to tropical cyclones. 
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Common tools for managing flood risk include damage functions or fragility functions to estimate and predict the structural 

damage sustained during a flood event (Diaz Loaiza et al., 2022; Pistrika & Jonkman, 2010; Suppasri et al., 2013; Tomiczek 

et al., 2013; Tsubaki et al., 2016; Xu et al., 2023). Typically, damage functions estimate the percent of a building damaged, 30 

while fragility functions estimate the likelihood of a building reaching a specific damaged state. These functions most 

commonly estimate structural damage as a function of flood depth; however, other hydrodynamic parameters such as flow 

velocity, unit discharge, and flood duration have also been used to estimate damage due to coastal flooding (Charvet et al., 

2015; De Risi et al., 2017; Diaz Loaiza et al., 2022; Nofal et al., 2020; Xu et al., 2023). Many of these functions also incorporate 

structural components to increase the accuracy of predicting physical damage to buildings (Charvet et al., 2015; De Risi et al., 35 

2017; Paprotny et al., 2021; Tomiczek et al., 2013; Xu et al., 2023). 

While damage functions are helpful for predicting structural damage, they are generally applied to derive economic losses 

following a flood event (Pistrika & Jonkman, 2010). Paul et al. (2024) point out the use of post-disaster economic loss to 

characterize risk often incorrectly emphasizes wealthier people as being at greater risk from disasters, when previous studies 

have shown lower income groups are impacted more by natural disasters (Fothergill & Peek, 2004; Hallegatte et al., 2020). 40 

Fragility functions offer an improvement over damage functions in this context by predicting what state a building is in 

following an event such as “no damage”, “moderate damage”, or “complete damage” (Charvet et al., 2015; De Risi et al., 

2017), but these functions are still focused only on structural damage. Assessing building habitability rather than building 

damage following an event is one option for providing a more equitable overview of coastal flood risk and post-disaster 

recovery (Paul et al., 2024). Different factors such as structural components (number of stories, building material, etc.), power 45 

outages, school closures, socioeconomic statuses, and access to other essential services can influence if and when a building 

becomes habitable (Loos et al., 2023; Paprotny et al., 2021; Paul et al., 2024; Suppasri et al., 2013; Thieken et al., 2005; Yabe 

et al., 2020). However, physical damage to structures is often the largest factor determining a building’s habitability (Paul et 

al., 2024), showing the importance of flood hazard consideration in predicting post-disaster building habitability. 

Efforts have been made to quantify the influence of physical damages on post-disaster recovery (FEMA, 2024a, 2024b; Nofal 50 

et al., 2024; Yabe et al., 2020). Yabe et al. (2020) utilized mobile phone data to estimate immediate and long-term household 

displacement from Hurricane Irma, finding that housing damage rates were strong estimators of household displacement 0 

days after Irma and housing damage rates were only weakly correlated with displacement 160 days after Irma. This study 

relied on the Federal Emergency Management Agency’s (FEMA) Individuals and Households Program for estimating housing 

damage, neglecting the actual flood hazard (Yabe et al., 2020). Furthermore, displacement 0 days from an event is measuring 55 

evacuation rates rather than building habitability. Nofal et al. (2024) transformed building fragility curves to functional fragility 

curves by estimating conditional probabilities of functionality states given different damage states. While habitability is 

considered a part of the functionality estimated by these curves, the conditional probabilities used are derived from the authors’ 
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judgement and are not directly developed from flood depths (Nofal et al., 2024). Hazus, a tool developed by FEMA, is capable 

of estimating building habitability with hazard information (FEMA, 2024a, 2024b). The Hazus Hurricane Model estimates 60 

building habitability with both demographic data and computed structural damage derived from wind hazard information 

(FEMA, 2024b). While the Hazus Flood Model also incorporates demographic data for estimating habitability, the hazard 

information used is simply the area of a census tract with nonzero inundation (FEMA, 2024a). This exhibits a significant 

knowledge gap in how varying levels of flood hazards influence building habitability.  

To improve coastal communities’ resilience to tropical cyclones, this study aims to uncover the relationship between flood 65 

hazards and building habitability following Hurricane Irma. Hurricane Irma made landfall in September 2017 in the Florida 

Keys as a Category 4 hurricane before reaching southwestern Florida as a Category 3 hurricane (Cangialosi et al., 2021), 

resulting in approximately $64 billion in damages (CPI-Adjusted) (Smith, 2020). In Florida, water elevations reached 1.1 m 

and 1.7 m above mean sea level (MSL) at NOAA tide gages in Key West and Naples, respectively. Overland, the Florida Keys 

and southwestern Florida experienced maximum flood depths that exceeded 2 m (Cangialosi et al., 2021). In addition to storm 70 

surge, Irma caused widespread destruction from wind and wave hazards, displacing millions of people (Issa et al., 2018; Joyce 

et al., 2019). Through Location Based Services (LBS) data collected from cell phones, we know if and when many buildings 

were once again occupied following Hurricane Irma (Swanson & Guikema, 2024). Combining this LBS dataset with an 

integrated hydrodynamic-wave model of Hurricane Irma, we draw upon previous methods for developing damage and fragility 

functions and apply them to develop habitability functions. These habitability functions offer new estimates of the probability 75 

of buildings being uninhabitable following tropical cyclones, advancing current approaches to quantifying flood-induced 

building uninhabitability. 

2 Data and methods 

2.1 Flood model development for Hurricane Irma 

Coastal flooding caused by Hurricane Irma is modeled with D-Flow Flexible Mesh (D-Flow FM) coupled with SWAN 80 

(Simulating WAves Nearshore). Hydrodynamics are simulated by D-Flow FM, which implements a finite volume solver to 

calculate unsteady flow with the non-linear shallow water equations to simulate storm tide resulting from tidal and 

meteorological forcings (Deltares, 2022a). The depth-averaged approach is used for this study. SWAN is a phase-averaged 

wave model that simulates wave evolution (Deltares, 2022b). These models are integrated together in the Delft3D Flexible 

Mesh modeling suite via online coupling, enabling hydrodynamic parameters from D-Flow FM and wave parameters from 85 

SWAN to be exchanged every coupling timestep. 
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The model developed for this study includes both Collier and Monroe Counties. The extent of the model is from 12.94° N to 

32.84° N and 98.01° W to 63.91° W (Fig. 1a). D-Flow FM enables the use of an unstructured mesh for simulations. The 

unstructured mesh created for this modeling has a coarse resolution of 10 km and is refined to 80 m in areas with both coastal 

flooding during Irma’s landfall and LBS data (Fig. 1b&c). For wave modeling, SWAN requires nested structured meshes. Our 90 

SWAN model has a coarse 10 km resolution mesh spanning the entire domain with nested meshes down to a refinement of 80 

m for the same areas refined in the D-Flow FM model. 

Digital elevation models (DEMs) used for this flood modeling come from NOAA’s National Centers for Environmental 

Information’s (NCEI) DEM Global Mosaic and the General Bathymetric Chart of the Oceans (GEBCO). The refined areas of 

the flood model utilize 3 and 1 arcsecond DEMs from the NCEI’s DEM Global Mosaic (NOAA NCEI, 2022). The coarser 95 

portions in the model use GEBCO’s 15 arcsecond dataset (GEBCO, 2023). 

Spatially varying Manning’s coefficients of roughness are used to account for bed friction in the model. These values are 

derived from the 2019 National Land Cover Database (NLCD) for the Contiguous United States (Dewitz & USGS, 2024). 

These NLCD land cover values are then converted to Manning’s roughness coefficients by taking the corresponding minimum 

Manning’s value listed in the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) 2D User’s Manual 100 

(Hydrologic Engineering Center, 2021). 

Meteorological forcings used for the flood model are wind and atmospheric pressure fields. These fields are generated with 

the Holland model (Holland, 2008; Holland et al., 2010), which requires information on a tropical cyclone’s path such as the 

coordinates of the eye’s path, maximum wind speeds, and radius of maximum winds. The necessary Hurricane Irma best track 

data comes from the National Hurricane Center’s revised Atlantic hurricane database (HURDAT2) (Landsea & Franklin, 105 

2013), supplemented by the Tropical Cyclone Extended Best Track Dataset (EBTRK) that provides radius to maximum winds 

information (Demuth et al., 2006). Together, these datasets and the Holland model are used to develop a symmetric profile of 

Irma as a spiderweb grid. Spiderweb grids convey the atmospheric pressures, wind velocity magnitudes, and wind directions 

used in the flood model on a polar grid, where the origin of the grid represents the eye of the hurricane at each timestep 

(Deltares, 2022a). A second Irma profile is also created to account for asymmetries in the hurricane profile. This was done by 110 

incorporating a dependency on the azimuthal angle into the Holland model used (Xie et al., 2006), enabling an asymmetric 

Irma profile to be generated. 

The default wind drag coefficient formulation in D-Flow FM is utilized for determining the shear stress on the flow due to 

wind forcings. This drag coefficient is based on the Smith and Banke (1975) relationship, where the drag coefficient varies 

linearly from 0.00063 to 0.00723 for wind speeds from 0 to 100 m/s. It was determined that the default SWAN drag coefficient 115 



5 

 

profile, which relies on the Wu (1982) relationship, is insufficient for this modeling, producing unreasonably low wave heights 

and periods. Therefore, an increased drag coefficient profile is needed. For SWAN, the increased drag coefficient relationship 

used is as follows: 

𝐶𝐷 = {
2.012 × 10−3, 𝑈10 < 6

(0.127𝑈10 + 1.25) × 10−3, 𝑈10 ≥ 6
 (1) 

where 𝐶𝐷 is the drag coefficient and 𝑈10 is the wind speed 10 m above the surface in m/s (Deltares, 2022b; Wu, 1982). Due to 120 

the difficulty in prescribing a new drag profile in SWAN, implementing this increased drag profile was instead done by 

increasing the wind speed values by 25% in the spiderweb grids used by SWAN. This 25% increase to the wind speeds 

corresponds to the same wind wave growth due to the increased drag profile described by Eq. (1)(1). 

Tidal boundary conditions for the Atlantic Ocean and Gulf of Mexico are located around the northern, eastern, and southern 

boundaries of the domain where the bed elevation is below mean sea level. Tidal constituents at these boundaries are generated 125 

from the Oregon State University Tidal Inversion Software (Egbert & Erofeeva, 2002), which are then used as astronomical 

forcings at the boundaries. 
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Figure 1: Overview of the entire model domain (a) and two locations of refinement for Collier (b) and Monroe (c) Counties. NOAA 130 
tide and wave stations are indicated with diamonds and squares, respectively. USGS storm tide sensors are indicated with circles. 
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2.2 Model validation 

The validity of the model is assessed using water level measurement from three NOAA tide stations and five USGS storm tide 

sensors (Fig. 1), which have all been previously used when validating Hurricane Irma models (Asher & Luettich, 2025; 

Dobbelaere et al., 2022; Li et al., 2021; Musinguzi et al., 2022). The measurements from the USGS sensors are converted from 135 

NAVD88 to MSL using NOAA’s VDatum tool (vdatum.noaa.gov). Two USGS sensors (FLCOL03148 and FLCOL03089) 

are located outside valid tidal areas and are instead converted to MSL using the nearest valid tidal area in VDatum. 

Additionally, modeled wave parameters are compared to significant wave heights and peak wave periods measured at the 

National Data Buoy Center (NDBC) station 42097. First the tidal boundary conditions are validated by comparing the modeled 

water levels without meteorological forcings against the predicted water levels. Then the developed Irma wind and pressure 140 

fields are implemented into the model and the resulting water levels and wave parameters are validated against observations 

(Fig. 2). Four combinations of the symmetric and asymmetric Irma profiles are compared: the symmetric profile is used for 

both D-Flow FM and SWAN (M1), the asymmetric profile is used for both D-Flow FM and SWAN (M2), the symmetric 

profile is used for D-Flow FM and the asymmetric profile is used for SWAN (M3), and the asymmetric profile is used for D-

Flow FM and the symmetric profile is used for SWAN (M4). The root mean square error (RMSE) between modeled and 145 

observed water levels and wave parameters is determined for each model at each of the locations shown in Fig. 1 (Table 1). 

To remain consistent with the 30-minute time resolution of the model output, RMSE is calculated using observed data for each 

half hour. The difference between maximum modeled and maximum observed water levels and wave parameters is also 

determined at each station (Table 1). 

Comparison of the four different models clearly shows the symmetric Irma profile performs the best for modeling wave 150 

parameters, where the two models that utilize a symmetric profile for SWAN (M1 and M4) have the lowest RMSE and 

differences in maximum modeled and maximum observed significant wave height and peak wave period (Table 1). For the six 

locations compared in Collier County, M1 and M3 have the strongest agreement between maximum modeled and observed 

water level. M1 and M3 also perform best in terms of RMSE at the six Collier County locations, with the exception of the 

Naples station. At the Key West and Vaca Key stations, M2 and M4 perform the best for both metrics analyzed. 155 

Two models are selected for developing habitability functions based on these performance metrics. The M1 model is used for 

Collier County and the M4 model is used for Monroe County. The M2 and M3 models are not considered for developing the 

habitability functions because the symmetric Irma profile performed significantly better than the asymmetric profile for 

modeling wave parameters in SWAN. Since the habitability functions are developed using maximum values of the model 

output, M1 is selected for Collier County to minimize the difference between the maximum modeled and maximum observed 160 
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water levels at the six Collier County locations. Between M1 and M4, the M4 model performed better for the Key West and 

Vaca Key stations, which is why the M4 model is used for developing habitability functions for Monroe County. 

Table 1: Goodness of fit for different combinations of symmetric and asymmetric Irma wind profiles. 

Station 
RMSE  Max Modeled – Max Observed 

M1 M2 M3 M4  M1 M2 M3 M4 

FLCOL03294 

(Delnor-Wiggins State Park) 
0.7399 m 0.7412 m 0.7399 m 0.7412 m  0.5231 m 1.5580 m 0.6311 m 1.4999 m 

8725110 

(Naples) 
0.6360 m 0.5263 m 0.6346 m 0.5223 m  0.1006 m 0.9410 m 0.1624 m 0.8998 m 

FLCOL03148 

(Hendersen Creek) 
0.7124 m 0.7147 m 0.7124 m 0.7146 m  0.5554 m 1.5808 m 0.6551 m 1.5095 m 

FLCOL03176 

(Goodland) 
0.7971 m 0.7979 m 0.7972 m 0.7978 m  -0.6510 m 0.8384 m -0.5378 m 0.7520 m 

FLCOL03089 

(Faka Union Canal) 
0.9599 m 0.9602 m 0.9599 m 0.9602 m  -0.1415 m 1.5171 m -0.0205 m 1.4179 m 

FLCOL03237 

(Everglades City) 
1.0048 m 1.0126 m 1.0049 m 1.0124 m  -0.0022 m 1.2243 m 0.0646 m 1.1682 m 

8724580 

(Key West) 
0.3273 m 0.2742 m 0.3202 m 0.2756 m  -0.4986 m -0.2728 m -0.4363 m -0.3207 m 

8723970 

(Vaca Key) 
0.3790 m 0.3480 m 0.3771 m 0.3547 m  0.1510 m -0.0187 m 0.1581 m -0.0353 m 

42097 

(Sig. Wave Height) 
1.1343 m 1.3962 m 1.3995 m 1.1368 m  0.2590 m -1.2070 m -1.2360 m 0.2870 m 

42097 

(Peak Wave Period) 
2.1652 s 3.0023 s 2.9965 s 2.1453 s  -1.6600 s -3.5120 s -3.5120 s -1.6600 s 
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 165 

Figure 2: Storm tide comparisons between the measured and modeled water levels relative to MSL (a-h). Comparisons between the 

measured and modeled significant wave heights (i) and peak wave periods (j). 
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2.3 Determining building habitability following Irma 

Whether or not a building was habitable directly following Hurricane Irma is determined using Location Based Services (LBS) 

and CoreLogic property data. LBS data areis provided by Veraset LLC and consists of “pings” that represent exchanges 170 

between mobile phones and a cellular network or Wi-Fi. Each ping includes an anonymized user identification number, 

latitude, longitude, and timestamp, as well as estimates of horizontal accuracy and device type. Pings are filtered and 

aggregated based on frequently visited locations and time of day to identify each user’s home and workplace (Swanson, 2023; 

Washington et al., 2024). The LBS data utilized spans August 1, 2017, until October 3, 2017. In total, there are 18,505 

identified home and work locations available for Collier and Monroe Counties, where 16,769 of these are for Collier County 175 

and 1,736 are for Monroe County. 

The recovery period for each user following Hurricane Irma is determined using a Bayesian belief network (BBN) in 

combination with anomaly detection methods (Swanson, 2023). The BBN incorporates contextual knowledge and time-series 

data of each user’s daily location visits to estimate the joint probability of a user’s presence at home or work on a given day 

prior to Hurricane Irma’s landfall. By considering dependencies—such as the day of the week, prior appearances, and visits to 180 

other locations on the same day—the model identifies probabilistic patterns for all Florida users and refines these priors with 

individual user data to create personalized models of each user’s “typical” behavior. Anomaly detection methods are applied 

to user data during the period surrounding Hurricane Irma’s landfall to identify anomalous patterns of behavior, such as being 

absent from home or work or exclusively staying at home, that differ from their previously typical appearance behavior. 

Recovery is defined as the date when a user’s anomalous behavior ends and their visit patterns resemble their pre-landfall 185 

behavior for at least three consecutive days. Greater details on identifying recovery periods from LBS data areis available in 

Swanson (2023). Locations where users did not recover their previous visit patterns by the end of September 28, 2017, 18 days 

after Irma’s landfall in Florida, are assumed to be uninhabitable due to damages caused by Irma since essential services such 

as power and schools were recovered by this date (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema, 2024). 

This assumes that the reason a user did not return to a location is solely because that location was damaged by Irma beyond 190 

habitability. This assumption does not account for other socioeconomic factors that may influence if and when someone returns 

to a location. From this method for estimating habitability, we find that about 13.5% of the users in Monroe County and 6.0% 

of the users in Collier County are identified as having uninhabitable homes by the end of September 28, 2017. 

Each location derived from the LBS data is then approximated to the nearest building by assigning it to the nearest CoreLogic 

coordinate, representing the center point of a property. This ensures each LBS datapoint corresponds to an actual building and 195 

provides information on the building material. In some instances, this results in multiple LBS datapoints being linked to the 

same building. For these buildings with multiple LBS datapoints, a building is assumed habitable if at least one LBS user 
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returned to the building by the end of September 2017. A building is assumed uninhabitable if all corresponding LBS users 

did not return to the building by the end of September 2017. LBS datapoints farther than 0.001 decimal degrees from the 

nearest CoreLogic coordinate are excluded.  200 

For each CoreLogic property location that has a habitable or uninhabitable designation from the LBS data analysis, the 

maximum depth, velocity, and significant wave height experienced are determined by matching each building’s latitude and 

longitude to the nearest cell in the computational mesh of the flood model (Figs. 3 and A1-A2). If a building’s coordinate is 

inundated at the initialization of the model, indicating its corresponding mesh cell’s bed level is below mean sea level, the 

building is excluded from our analysis. Additionally, buildings with a maximum depth of zero, determined from the 205 

hydrodynamic model, are removed. After these exclusions, there are 1,067 locations with assigned hydrodynamic parameters, 

where 408 of these locations are for Collier County and the other 659 locations are for Monroe County. From the 1,067 

locations included in our analysis, 123 of these buildings do not have any user returning by the end of September 2017, 

indicating these 123 buildings were uninhabitable due to Hurricane Irma. 85 of these uninhabitable buildings are in Monroe 

County and the other 38 are in Collier County. 210 
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Figure 3: Maximum modeled flood depths for Collier County (a) and the western (b) and eastern (c) regions of Monroe County. 

Building locations and associated maximum flood depths used for habitability functions (d-f). To preserve privacy the exact building 

locations are not identified. 
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3 Results 215 

3.1 Developing habitability functions 

The outputs generated from the previous section are used to develop habitability functions for Florida due to Hurricane Irma 

as a function of the modeled maximum depth, flow speed, and significant wave height (Figs. 4 and A3). Since each datapoint’s 

habitability entry is binary (habitable/uninhabitable), logistic regression is used to develop habitability functions. 

𝑃(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋)
 (2) 220 

where 𝑃(𝑦 = 1) is the probability of a building being uninhabitable, 𝑋 is the hydrodynamic hazard level, and 𝛽0 and 𝛽1 are 

the logistic regression coefficients. Maximum likelihood estimation is used to estimate the values of the coefficients. 

Additionally, the 95% confidence interval is determined to assess the uncertainty of each function (Fig. 4). Goodness of fit for 

the developed habitability functions is determined with the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) (Akaike, 1974; Schwarz, 1978), where lower values of AIC and BIC indicate a better fit. 225 

 

 

Figure 4: Building habitability as a function of maximum depth (a), flow speed (b), and significant wave height (c) for buildings 

analyzed in Collier and Monroe Counties. 

All three habitability functions developed show positive relationships between hazard level and uninhabitable probability that 230 

are significant at the 95% confidence level (Table 2). This indicates that buildings that experienced larger flood depths, flow 

speeds, and wave heights were more likely to be uninhabitable following Hurricane Irma. Of the three habitability functions 

developed, the one dependent on flow speed performs the best, having the lowest AIC and BIC values. Conversely, using 

significant wave height to predict building uninhabitability shows the worst fit. Another apparent detail of these functions is 

that some buildings are uninhabitable at relatively low hazard levels and others are habitable at relatively high hazard levels. 235 

This highlights some of the uncertainty in estimating building habitability using just hazard levels. 
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Table 2: Coefficients for maximum depth, flow speed, and significant wave height for buildings in Collier and Monroe Counties. 

 Depth Flow Speed Sig. Wave Height 

𝛽0 -2.608** -2.558** -2.490** 

𝛽1 0.648** 1.336** 1.122* 

AIC 751.843 747.540 756.925 

BIC 761.789 757.485 766.871 

𝜒2 test p-value 1.156e-04 1.198e-05 0.002 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

3.2 Influence of building material on habitability 

The exterior wall material listed for each building is the building material information available for locations in Monroe 

County. Collier County does not have any relevant building material information from the CoreLogic dataset used; therefore, 240 

only Monroe County locations are included in this section’s analysis. The listed exterior wall materials are aggregated into 

three categories: “Concrete”, “Wood”, and “Other” (Fig. 5a). Habitability functions are then developed for the concrete and 

wood categories as functions of maximum water depth, flow speed, and significant wave height (Fig. 5b-g). Habitability 

functions are not generated for the other category since there is no similar defining feature within the group. 

 245 

Figure 5: Histogram of the exterior wall descriptions from CoreLogic for buildings analyzed in Monroe County and the three 

aggregated categories: concrete, wood, and other (a). Building habitability as a function of maximum depth, flow speed, and 

significant wave height for concrete (b-d) and wood (e-g). 
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The only significant trends revealed from this analysis are for the habitability functions developed for the wood category (Table 

3). The habitability functions developed for the concrete group are not significant at the 95% confidence interval. This can be 250 

interpreted to mean that wooden buildings are less likely to be habitable after sustaining a relatively larger maximum depth, 

flow speed, or significant wave height, while the uninhabitable probability of concrete structures is not influenced by the level 

of hazard. For these wooden buildings, the depth-dependent habitability function has the greatest fit. 

Table 3: Coefficients for different building materials for buildings in Monroe County. 

 Concrete  Wood 

 Depth Flow Speed Sig. Wave Height  Depth Flow Speed Sig. Wave Height 

𝛽0 -2.007** -2.239** -2.056**  -3.801** -2.964** -3.473** 

𝛽1 0.151 0.894 0.426  1.526* 1.690* 2.780* 

AIC 209.825 208.309 209.720  120.695 124.857 122.930 

BIC 216.961 215.445 216.857  127.002 131.163 129.236 

𝜒2 test p-value 0.666 0.192 0.590  8.118e-04 0.008 0.003 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

3.3 Habitability functions based on additional hydrodynamic parameters 255 

Habitability functions are also developed using the maximum unit discharge (ℎ𝑣), flow momentum flux (𝜌ℎ𝑣2), total water 

depth (ℎ + 𝐻𝑠𝑖𝑔), wave energy flux (
1

16
𝜌𝑔𝐻𝑠𝑖𝑔

2 √𝑔ℎ), and total force (
1

16
𝜌𝑔𝐻𝑠𝑖𝑔

2 + 𝜌ℎ𝑣2) as the hazard level (Figs. 6 and A3), 

where ℎ is the water depth, 𝑣 is the flow speed, 𝜌 is the density of water (1,000 kg/m3), 𝐻𝑠𝑖𝑔 is the significant wave height, 

and 𝑔 is gravitational acceleration (9.81 m/s2) . These additional hydrodynamic parameters have been shown to be significant 

drivers of flood damage in addition to the basic hazard parameters of depth, flow speed, and significant wave height (Diaz 260 

Loaiza et al., 2022; Xu et al., 2023), motivating the following analysis on their influence of building habitability. 

The additional habitability functions generated for maximum unit discharge, flow momentum flux, total water depth, wave 

energy flux, and total force all exhibit significant positive relationships with the probability of a building being uninhabitable 

(Table 4). Of these five parameters, the habitability function dependent on maximum wave energy flux has the worst fit with 

an AIC of 754.560 and BIC of 764.506. While the habitability function developed for maximum wave energy flux performs 265 

relatively poorly, the other functions developed based on the additional hydrodynamic parameters are comparable to those 

developed for depth and flow speed. Habitability functions based on unit discharge, momentum flux, and total force all exhibit 
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better fits than the functions generated based on either depth or flow speed (Tables 2 and 4). The function dependent on total 

depth performs worse than the depth or flow speed habitability functions. 

 270 

Figure 6: Building habitability as a function of maximum unit discharge (a), total depth (b), flow momentum flux (c), wave energy 

flux (d), and total force (e) for buildings analyzed in Collier and Monroe Counties. 

Table 4: Coefficients for buildings in Monroe and Collier Counties as a function of maximum unit discharge, total depth, flow 

momentum flux, wave energy flux, and total force. 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.397** -2.611** -2.264** -2.277** -2.319** 

𝛽1 0.867** 0.455** 7.830e-04** 4.942e-04** 6.857e-04** 

AIC 742.701 752.692 742.888 754.560 743.131 

BIC 752.646 762.637 752.833 764.506 753.077 

𝜒2 test p-value 9.608e-07 1.814e-04 1.059e-06 4.920e-04 1.202e-06 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 
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Habitability functions for these additional hydrodynamic parameters are also developed for the concrete and wood building 275 

material categories described in the previous section (Figs. B1-B4). None of these habitability functions for concrete buildings 

are significant at the 95% confidence level (Table B1), but all those for wood buildings show significant positive relationships 

(Table B2). Furthermore, the wooden structure habitability function dependent on total depth (ℎ + 𝐻𝑠𝑖𝑔) has the greatest fit of 

all habitability functions developed for wooden buildings, including the one developed for just depth. Therefore, predicting 

habitability can be improved by incorporating information on both inundation depths and significant wave heights at wooden 280 

structures for the buildings analyzed. 

3.4 Habitability functions derived from multivariable logistic regression 

Rather than combining the three basic parameters of depth, flow speed, and significant wave height into additional 

hydrodynamic parameters to develop habitability functions as in the previous section, multivariable logistic regression can be 

used as an alternative to derive habitability functions. This expands Eq. (2)(2) into the following: 285 

𝑃(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑖𝑋𝑖)
 (3) 

where the 𝑖 subscript indicates the 𝑖-th parameter in the regression model. Including multiple independent variables has been 

shown to improve traditional depth- dependent fragility functions (Charvet et al., 2015; De Risi et al., 2017), making it an 

important consideration for the habitability functions developed in this study. Four multivariable logistic regression models 

are considered (R1-R4), and Table 5 lists the hydrodynamic parameters considered for each model. The three basic parameters 290 

of maximum depth (ℎ), flow speed (𝑣), and significant wave height (𝐻𝑠𝑖𝑔) are considered for these models. To check for 

multicollinearity in these models, the variance inflation factor (VIF) is computed. All VIF values for these models are between 

1.7 and 3.4, which is generally accepted as an indicator that multicollinearity problems are small (Sheather, 2009). 

Table 5: Hydrodynamic parameters considered for each multivariable logistic regression model. 

 R1 R2 R3 R4 

𝑋1 ℎ ℎ 𝑣 ℎ 

𝑋2 𝑣 𝐻𝑠𝑖𝑔 𝐻𝑠𝑖𝑔 𝑣 

𝑋3 - - - 𝐻𝑠𝑖𝑔 

Of the four multivariable models developed, R1 displays the best fit and R2 displays the worst fit (Table 6). While the AIC of 295 

R1 is slightly smaller than the AIC of the flow speed-dependent habitability function, the BIC shows a greater preference for 
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the flow speed-dependent function over R1. Furthermore, a likelihood ratio test to statistically determine if R1 offers significant 

improvements over the nested flow speed-dependent habitability function is performed. This likelihood ratio test accepts the 

null hypothesis, the nested habitability function dependent on just flow speed, over the alternative of R1 (p-value = 0.130). 

Therefore, it can be concluded that the habitability function developed depending solely on maximum flow speed is a better 300 

predictor of habitability than any of the multivariable models. 

Table 6: Coefficients for each multivariable logistic regression model for buildings in Monroe and Collier Counties. 

 R1 R2 R3 R4 

𝛽0 -2.707** -2.604** -2.628** -2.679** 

𝛽1 0.320 0.672* 1.181* 0.488 

𝛽2 0.996* -0.063 0.323 1.057* 

𝛽3 - - - -0.495 

AIC 747.243 753.835 749.053 748.802 

BIC 762.161 768.753 763.971 768.692 

𝜒2 test p-value 2.184e-05 5.899e-04 5.400e-05 6.828e-05 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

Habitability functions based on the four multivariable models are also developed for the buildings in the concrete and wood 

categories (Table B3). However, none of the functions for concrete or wood structures based on these four models offer any 

serious improvement over those developed with the univariable models presented in Table 3. 305 

4 Discussion 

Overall, many of the habitability functions developed show that hydrodynamic hazard level significantly increases the 

probability of a building being uninhabitable following Hurricane Irma. This holds true for the first functions developed based 

on the three basic hazards of maximum flood depth, flow speed, and significant wave height, where the flow speed-dependent 

habitability function shows the best fit (Fig. 4 and Table 2). In an effort to improve upon these habitability functions dependent 310 

on the three basic hazards, two methods for combining the basic hazard levels are explored. The first method creates new 

habitability functions based on five additional hydrodynamic parameters used previously to generate damage functions (Diaz 

Loaiza et al., 2022; Xu et al., 2023): maximum unit discharge, flow momentum flux, total water depth, wave energy flux, and 

total force. Not only does the probability of uninhabitability exhibit a significant positive dependency on these additional 

hydrodynamic parameters, but the habitability functions dependent on unit discharge, flow momentum flux, and total force 315 
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offer greater fits than the flow speed-dependent function (Tables 2 and 4). Specifically, the unit discharge-dependent 

habitability function shows the greatest performance for predicting building habitability of the univariable models. The second 

method aimed at improving the developed habitability functions expands the univariable regression to multivariable regression 

based on depth, flow speed, and significant wave height. The multivariable model R1 (depth and flow speed) performs best of 

the multivariable models and shows a slightly improved AIC value to the solely flow speed-dependent function. This 320 

potentially aligns with previous studies that have shown including multivariable models improves fragility functions based on 

a single variable (Charvet et al., 2015; De Risi et al., 2017). However, comparison of the BIC values shows a clearer preference 

for the univariable flow speed-dependent function. This questions whether including maximum depth with flow speed in a 

multivariable model actually improves the ability to estimate building habitability. Results from the likelihood ratio test agree 

with those from comparing BIC values, suggesting the flow speed-dependent function is superior to the multivariable models. 325 

This leads back to the function dependent on unit discharge as being the best habitability function developed in this study. 

This study also revealed significant differences in how varying hazard levels impact habitability probability for wooden and 

concrete buildings. None of the habitability functions developed for concrete buildings exhibit significant relationships 

between hazard level and uninhabitable probability. This indicates that other factors besides hydrodynamic hazards strongly 

influenced whether people returned to concrete structures after Irma. Conversely, the habitability functions developed for 330 

wooden structures display significant positive relationships between hazard level and uninhabitable probability, showing that 

hydrodynamic hazards strongly influenced if a wooden building became uninhabitable due to Hurricane Irma. These 

differences between wooden and concrete structures are understandable since flood hazards typically result in greater damage 

to wooden buildings than concrete ones (Charvet et al., 2015; De Risi et al., 2017; Suppasri et al., 2013).  

While the habitability functions developed generally show the expected dependency of hazard level on building uninhabitable 335 

probability, there is still a good degree of uncertainty in estimating which buildings people return to. This is evident when 

visually inspecting the habitability functions, where some buildings are habitable at relatively high hazard levels and 

uninhabitable at lower hazard levels (Figs. 4-6). This shows a major difference between traditional damage and fragility 

functions and these new habitability functions, where many socioeconomic factors can also influence if and when people return 

to a building after a flood event. For example, someone may not return to a completely undamaged building if they are able to 340 

stay with friends or family for an elongated period, and for others, returning to a highly damaged building may be the best 

option, which may bias these functions against people with fewer recovery options. While previous studies have looked at 

some of these factors influencing post-flood building habitability (Nofal et al., 2024; Paprotny et al., 2021; Paul et al., 2024; 

Yabe et al., 2020), this is the first study, to our knowledge, that directly quantifies how flood hazards influence habitability. 
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Besides uncertainties associated with socioeconomic factors, there are other assumptions and uncertainties in this study that 345 

could be addressed in the future. Firstly, the confidence intervals of the developed habitability functions typically widen at 

larger hazard levels due to a smaller number of buildings experiencing these large hazard levels, which could be improved by 

including areas that experienced greater flood impacts in future studies. Uncertainty in the developed Hurricane Irma model is 

highly influenced by grid and DEM resolution, and higher resolutions are known to improve the flood model accuracy (Diaz 

Loaiza et al., 2022; Luppichini et al., 2019; Muñoz et al., 2024). The spatially varying Manning’s roughness coefficients and 350 

parameterization of Hurricane Irma’s wind and pressure fields also introduce uncertainties in the flood model that influence 

the developed habitability functions (Asher & Luettich, 2025). Aside from the flood model, the LBS data used to determine 

buildings that were uninhabitable due to Hurricane Irma bring their own uncertainties. For example, spatial inaccuracies of the 

LBS data could lead to misidentification of the associated building. Additional uncertainties could arise if the LBS data used 

is not representative of the study areas and populations (Swanson & Guikema, 2024). Another important assumption for our 355 

definition of building habitability is that essential services such as power and schools are recovered 18 days after Irma’s landfall 

in Florida. While this assumption is appropriate for Irma (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema, 

2024), flood events that cause longer recovery periods for essential services may create difficulties in estimating building 

habitability the same way. Finally, these habitability functions could be improved if additional building information such as 

the number of stories or whether a building is elevated was available. 360 

5 Conclusions 

This study utilizes a Hurricane Irma flood model and LBS data to develop habitability functions for buildings in two Florida 

counties. First, we show that of the habitability functions dependent on maximum depth, flow speed, or significant wave height, 

the flow speed-dependent function performs the best. Five additional hydrodynamic parameters are also investigated to see if 

improvements can be made to the flow speed-dependent habitability function, and we find that the habitability function 365 

dependent on maximum unit discharge offers the greatest improvement. Then multivariable regression is employed, showing 

potential improvements to the univariable flow speed function with model R1 (depth and flow speed). However, additional 

analysis indicates these multivariable models do not offer significant improvements to the univariable flow speed-dependent 

function. Furthermore, buildings are grouped by material to evaluate how habitability functions compare for wooden and 

concrete structures, showing that the uninhabitable probability of concrete buildings is not influenced by hazard level while 370 

wooden buildings’ uninhabitable probability increase with hazard level. These findings provide novel quantifications of the 

influence of flood hazards on whether a building becomes uninhabitable due to a flood event. This can be used in applications 

like Hazus, which currently assumes buildings become uninhabitable for any nonzero flood depth (FEMA, 2024b). 
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Future work could be done to incorporate socioeconomic factors into these habitability functions to increase the accuracy of 

estimating which buildings become uninhabitable during Irma due to flooding. Developing habitability curves for different 375 

regions and flood events is another area of future research that should be explored. Given this study focuses on two Florida 

counties, it would be insightful to investigate other regions both inside and outside the United States. Differences in building 

codes, zoning laws, and other policies may significantly change how flood hazards influence building habitability, which could 

be compared against the habitability functions developed here for Collier and Monroe Counties.  

Data availability 380 

Elevation models are available from NOAA’s National Centers for Environmental Information and the General Bathymetric 

Chart of the Oceans (GEBCO, 2023; NOAA NCEI, 2022). Land cover data comes from the 2019 National land Cover Database 

for the Contiguous United States (Dewitz & USGS, 2024). Meteorological data for Hurricane Irma is retrieved from the 

National Hurricane Center’s revised Atlantic hurricane database and the Tropical Cyclone Extended Best Tract Dataset 

(Demuth et al., 2006; Landsea & Franklin, 2013). Tidal constituents are available from the Oregon State University Tidal 385 

Inversion Software (Egbert & Erofeeva, 2002). NOAA station data is available from NOAA’s National Data Buoy Center 

(https://www.ndbc.noaa.gov/). The developed Hurricane Irma flood model can be shared upon reasonable request. Location 

Based Services (LBS) data, provided by Veraset LLC, and CoreLogic property data are not publicly available. 

Author contributions 

BN, SG, and JB conceptualized the study. BN and JB developed the flood model and regression models. TS and SG analyzed 390 

the LBS data. BN drafted the manuscript and created the figures. All authors discussed and reviewed the final manuscript. 

Competing interests 

The authors declare that they have no competing interests. 

Financial support 

This project is funded, in part, with federal funds under award number NA23OAR4170115 from the US Coastal Research 395 

Program (USCRP) as administered by the US Army Corps of Engineers (USACE), Department of Defense, and the National 

Oceanic and Atmospheric Administration (NOAA) Sea Grant program, Department of Commerce. The content of the 

information provided in this publication does not necessarily reflect the position or the policy of the government, and no 

official endorsement should be inferred. The authors acknowledge the USACE, NOAA Sea Grant, and USCRP’s support of 

their effort to strengthen coastal academic programs and address coastal community needs in the United States. This work was 400 

also funded by a 2021 Catalyst Grants from the Michigan Institute for Computational Discovery and Engineering (MICDE). 



22 

 

References 

Akaike, H.: A new look at the statistical model identification, IEEE T. Automatic Control, 19, 716–723, 

https://doi.org/10.1109/TAC.1974.1100705, 1974. 

Asher, T. G., and Luettich Jr., R. A.: A hindcast of coastal flooding from hurricane Irma, Ocean Model., 197, 102582, 405 

10.1016/j.ocemod.2025.102582, 2025. 

Cangialosi, J. P., Latto, A. S., and Berg, R.: National Hurricane Center tropical cyclone report - Hurricane Irma, 2021. 

Charvet, I., Suppasri, A., Kimura, H., Sugawara, D., and Imamura, F.: A multivariate generalized linear tsunami fragility model 

for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy, Nat. 

Hazards, 79, 2073–2099, https://doi.org/10.1007/s11069-015-1947-8, 2015. 410 

De Risi, R., Goda, K., Yasuda, T., and Mori, N.: Is flow velocity important in tsunami empirical fragility modeling?, Earth-

Sci. Rev., 166, 64–82, https://doi.org/10.1016/j.earscirev.2016.12.015, 2017. 

Deltares: D-Flow Flexible Mesh User Manual, Version: 2022.02, SVN Revision: 75614, 2022a. 

Deltares: D-Waves User Manual, Version: 1.2, SVN Revision: 75624, 2022b. 

Demuth, J. L., DeMaria, M., and Knaff, J. A.: Improvement of advanced microwave sounding unit tropical cyclone intensity 415 

and size estimation algorithms, J. Appl. Meteorol. and Clim., 45, 1573–1581, https://doi.org/10.1175/JAM2429.1, 2006. 

Dewitz, J. and USGS: National Land Cover Database (NLCD) 2019 Products (ver. 3.0, February 2024), U.S. Geological 

Survey data release [data set], https://doi.org/10.5066/P9KZCM54, 2024. 

Diaz Loaiza, M. A., Bricker, J. D., Meynadier, R., Duong, T. M., Ranasinghe, R., and Jonkman, S. N.: Development of damage 

curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations, Nat. 420 

Hazard. Earth Sys., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, 2022. 

Dobbelaere, T., Curcic, M., Le Hénaff, M., and Hanert, E.: Impacts of Hurricane Irma (2017) on wave-induced ocean transport 

processes, Ocean Model., 171, 101947, https://doi.org/10.1016/j.ocemod.2022.101947, 2022. 

Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 

https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. 425 

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/s11069-015-1947-8
https://doi.org/10.1016/j.earscirev.2016.12.015
https://doi.org/10.1175/JAM2429.1
https://doi.org/10.5066/P9KZCM54
https://doi.org/10.5194/nhess-22-345-2022
https://doi.org/10.1175/1520-0426(2002)019%3c0183:EIMOBO%3e2.0.CO;2


23 

 

FEMA: Hazus Flood Model Technical Manual - Hazus 6.1, https://www.fema.gov/flood-maps/tools-resources/flood-map-

products/hazus/user-technical-manuals, 2024a. 

FEMA: Hazus Hurricane Model Technical Manual - Hazus 6.1, https://www.fema.gov/flood-maps/tools-resources/flood-map-

products/hazus/documentation, 2024b. 

Fothergill, A. and Peek, L. A.: Poverty and disasters in the United States: a review of recent sociological findings, Nat. Hazards, 430 

32, 89–110, https://doi.org/10.1023/B:NHAZ.0000026792.76181.d9, 2004. 

GEBCO: Gridded Bathymetry Data, General Bathymetric Chart of the Oceans [data set], https://www.gebco.net/data-

products/gridded-bathymetry-data, 2023. 

Gori, A., Lin, N., Xi, D., and Emanuel, K.: Tropical cyclone climatology change greatly exacerbates US extreme rainfall–

surge hazard, Nat. Clim. Change, 12, 171–178, https://doi.org/10.1038/s41558-021-01272-7, 2022. 435 

Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Bangalore, M., and Beaudet, C.: From poverty to disaster and back: a review 

of the literature, Economics of Disasters and Climate Change, 4, 223–247, https://doi.org/10.1007/s41885-020-00060-5, 2020. 

Hodge, T., and Lee, A.: Hurricane Irma cut power to nearly two-thirds of Florida’s electricity customers, 

https://www.eia.gov/todayinenergy/detail.php?id=32992, last access: 16 October 2024. 

Holland, G.: A revised hurricane pressure–wind model, Mon. Weather Rev., 136, 3432–3445, 440 

https://doi.org/10.1175/2008MWR2395.1, 2008. 

Holland, G., Belanger, J. I., and Fritz, A.: A revised model for radial profiles of hurricane winds, Mon. Weather Rev., 138, 

4393–4401, https://doi.org/10.1175/2010MWR3317.1, 2010. 

Hughes, W. and Zhang, W.: Evaluation of post-disaster home livability for coastal communities in a changing climate, Int. J. 

Disast. Risk Re., 96, 103951, https://doi.org/10.1016/j.ijdrr.2023.103951, 2023. 445 

Hydrologic Engineering Center: HEC-RAS 2D User’s Manual, 

https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest, 2021. 

https://doi.org/10.1023/B:NHAZ.0000026792.76181.d9
https://doi.org/10.1038/s41558-021-01272-7
https://doi.org/10.1007/s41885-020-00060-5
https://www.eia.gov/todayinenergy/detail.php?id=32992
https://doi.org/10.1175/2008MWR2395.1
https://doi.org/10.1175/2010MWR3317.1
https://doi.org/10.1016/j.ijdrr.2023.103951


24 

 

Issa, A., Ramadugu, K., Mulay, P., Hamilton, J., Siegel, V., Harrison, C., Campbell, C. M., Blackmore, C., Bayleyegn, T., and 

Boehmer, T.: Deaths related to Hurricane Irma — Florida, Georgia, and North Carolina, September 4–October 10, 2017, 

MMWR-Morbid. Mortal. W., 67, 829–832, https://doi.org/10.15585/mmwr.mm6730a5, 2018. 450 

Joyce, B. R., Gonzalez-Lopez, J., Van der Westhuysen, A. J., Yang, D., Pringle, W. J., Westerink, J. J., and Cox, A. T.: U.S. 

IOOS coastal and ocean modeling testbed: hurricane-induced winds, waves, and surge for deep ocean, reef-fringed islands in 

the Caribbean, J. Geophys. Res.-Oceans, 124, 2876–2907, https://doi.org/10.1029/2018JC014687, 2019. 

Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty and presentation of a new database format, Mon. 

Weather Rev., 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013. 455 

Li, Y., Chen, Q., Kelly, D. M., and Zhang, K.: Hurricane Irma simulation at South Florida using the parallel CEST model, 

Front. Clim., 3, https://doi.org/10.3389/fclim.2021.609688, 2021. 

Loos, S., Lallemant, D., Khan, F., McCaughey, J. W., Banick, R., Budhathoki, N., and Baker, J. W.: A data-driven approach 

to rapidly estimate recovery potential to go beyond building damage after disasters, Commun. Earth Environ., 4, 1–12, 

https://doi.org/10.1038/s43247-023-00699-4, 2023. 460 

Luppichini, M., Favalli, M., Isola, I., Nannipieri, L., Giannecchini, R., and Bini, M.: Influence of topographic resolution and 

accuracy on hydraulic channel flow simulations: case study of the Versilia River (Italy), Remote Sensing, 11, 1630, 

https://doi.org/10.3390/rs11131630, 2019. 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global tropical cyclone 

damage, Nat. Clim. Change, 2, 205–209, https://doi.org/10.1038/nclimate1357, 2012. 465 

Mitsova, D., Esnard, A-M., Sapat, A., & Lai, B. S.: Socioeconomic vulnerability and electric power restoration timelines in 

Florida: The case of Hurricane Irma, Nat. Hazards, 94(2), 689–709, https://doi.org/10.1007/s11069-018-3413-x, 2018. 

Muñoz, D. F., Moftakhari, H., and Moradkhani, H.: Quantifying cascading uncertainty in compound flood modeling with 

linked process-based and machine learning models, Hydrol. Earth Syst. Sc., 28, 2531–2553, https://doi.org/10.5194/hess-28-

2531-2024, 2024. 470 

Musinguzi, A., Reddy, L., and Akbar, M. K.: Evaluation of wave contributions in Hurricane Irma storm surge hindcast. Atmos., 

13(3), 404. https://doi.org/10.3390/atmos13030404, 2022. 

https://doi.org/10.15585/mmwr.mm6730a5
https://doi.org/10.1029/2018JC014687
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1038/s43247-023-00699-4
https://doi.org/10.3390/rs11131630
https://doi.org/10.1038/nclimate1357
https://doi.org/10.5194/hess-28-2531-2024
https://doi.org/10.5194/hess-28-2531-2024


25 

 

Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future coastal population growth and exposure to sea-

level rise and coastal flooding - a global assessment, PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 

2015. 475 

NOAA NCEI: Digital Elevation Models Global Mosaic (Elevation Values) [data set]: 

https://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff, 2022. 

Nofal, O., Rosenheim, N., Kameshwar, S., Patil, J., Zhou, X., van de Lindt, J. W., Duenas-Osorio, L., Cha, E. J., Endrami, A., 

Sutley, E., Cutler, H., Lu, T., Wang, C., and Jeon, H.: Community-level post-hazard functionality methodology for buildings 

exposed to floods, Comput.-Aided Civ. Inf., 39, 1099–1122, https://doi.org/10.1111/mice.13135, 2024. 480 

Nofal, O. M., van de Lindt, J. W., and Do, T. Q.: Multi-variate and single-variable flood fragility and loss approaches for 

buildings, Reliab. Eng. Syst. Safe., 202, 106971, https://doi.org/10.1016/j.ress.2020.106971, 2020. 

Paprotny, D., Kreibich, H., Morales-Nápoles, O., Wagenaar, D., Castellarin, A., Carisi, F., Bertin, X., Merz, B., and Schröter, 

K.: A probabilistic approach to estimating residential losses from different flood types, Nat. Hazards, 105, 2569–2601, 

https://doi.org/10.1007/s11069-020-04413-x, 2021. 485 

Paul, N., Galasso, C., and Baker, J.: Household displacement and return in disasters: a review, Nat. Hazards Rev., 25, 

03123006, https://doi.org/10.1061/NHREFO.NHENG-1930, 2024. 

Pistrika, A. K. and Jonkman, S. N.: Damage to residential buildings due to flooding of New Orleans after Hurricane Katrina, 

Nat. Hazards, 54, 413–434, https://doi.org/10.1007/s11069-009-9476-y, 2010. 

Schwarz, G.: Estimating the dimension of a model, The Annals of Statistics, 6, 461–464, 1978. 490 

Sheather, S. J.: Diagnostics and transformations for multiple linear regression, in: A Modern Approach to Regression with R, 

edited by: Sheather, S., Springer, New York, NY, 151–225, https://doi.org/10.1007/978-0-387-09608-7_6, 2009. 

Smith, A. B.: U.S. billion-dollar weather and climate disasters, 1980 – present, NOAA National Centers for Environmental 

Information [data set], https://doi.org/10.25921/stkw-7w73, 2020. 

Smith, S. D. and Banke, E. G.: Variation of the sea surface drag coefficient with wind speed, Q. J. Royal Meteor. Soc., 101, 495 

665–673, https://doi.org/10.1002/qj.49710142920, 1975. 

https://doi.org/10.1371/journal.pone.0118571
https://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff
https://doi.org/10.1111/mice.13135
https://doi.org/10.1016/j.ress.2020.106971
https://doi.org/10.1007/s11069-020-04413-x
https://doi.org/10.1061/NHREFO.NHENG-1930
https://doi.org/10.1007/s11069-009-9476-y
https://doi.org/10.1007/978-0-387-09608-7_6
https://doi.org/10.1002/qj.49710142920


26 

 

Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., Abe, Y., and Imamura, F.: Building damage 

characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami, Nat. Hazards, 66, 319–341, 

https://doi.org/10.1007/s11069-012-0487-8, 2013. 

Swanson, T.: Towards new measures of resilience: leveraging location based services data for evaluating hazard-induced 500 

changes in access to essential services and community recovery, Ph.D. thesis, University of Michigan, 

https://doi.org/10.7302/22240, 2023. 

Swanson, T. and Guikema, S.: Using mobile phone data to evaluate access to essential services following natural hazards, Risk 

Anal., 44, 883–906, https://doi.org/10.1111/risa.14201, 2024. 

Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: new insights from the August 505 

2002 flood in Germany, Water Resour. Res., 41, https://doi.org/10.1029/2005WR004177, 2005. 

Tomiczek, T., Kennedy, A., and Rogers, S.: Survival analysis of elevated homes on the Bolivar Peninsula after Hurricane Ike, 

Advances in Hurricane Engineering, ASCE, 108–118, https://doi.org/10.1061/9780784412626.010, 2013. 

Tsubaki, R., Bricker, J. D., Ichii, K., and Kawahara, Y.: Development of fragility curves for railway embankment and ballast 

scour due to overtopping flood flow, Nat. Hazard. Earth Sys., 16, 2455–2472, https://doi.org/10.5194/nhess-16-2455-2016, 510 

2016. 

Washington, V., Guikema, S., Mondisa, J., and Misra, A.: A data‐driven method for identifying the locations of hurricane 

evacuations from mobile phone location data, Risk Anal., 44, 390–407, https://doi.org/10.1111/risa.14188, 2024. 

Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by tropical cyclones and sea-level rise, Nature, 504, 44–52, 

https://doi.org/10.1038/nature12855, 2013. 515 

Wu, J.: Wind‐stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res., 87, 9704–9706, 

https://doi.org/10.1029/JC087iC12p09704, 1982. 

Xie, L., Bao, S., Pietrafesa, L. J., Foley, K., and Fuentes, M.: A real-time hurricane surface wind forecasting model: formulation 

and verification, Mon. Weather Rev., 134, 1355-1370, https://doi.org/10.1175/MWR3126.1, 2006. 

https://doi.org/10.1007/s11069-012-0487-8
https://doi.org/10.7302/22240
https://doi.org/10.1111/risa.14201
https://doi.org/10.1029/2005WR004177
https://doi.org/10.1061/9780784412626.010
https://doi.org/10.5194/nhess-16-2455-2016
https://doi.org/10.1111/risa.14188
https://doi.org/10.1038/nature12855
https://doi.org/10.1029/JC087iC12p09704
https://doi.org/10.1175/MWR3126.1


27 

 

Xu, C., Nelson-Mercer, B. T., Bricker, J. D., Davlasheridze, M., Ross, A. D., and Jia, J.: Damage curves derived from 520 

Hurricane Ike in the West of Galveston Bay based on insurance claims and hydrodynamic simulations, Int. J. Disast. Risk Sc., 

14, 932–946, https://doi.org/10.1007/s13753-023-00524-8, 2023. 

Yabe, T., Tsubouchi, K., Fujiwara, N., Sekimoto, Y., and Ukkusuri, S. V.: Understanding post-disaster population recovery 

patterns, J. R. Soc. Interface, 17, 20190532, https://doi.org/10.1098/rsif.2019.0532, 2020. 

https://doi.org/10.1007/s13753-023-00524-8
https://doi.org/10.1098/rsif.2019.0532


28 

 

Appendix A 525 

 

Figure A1: Maximum modeled flow speeds for Collier County (a) and the western (b) and eastern (c) regions of Monroe County. 

Building locations and associated maximum flow speeds used for habitability functions (d-f). To preserve privacy the exact building 

locations are not identified. 
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 530 

Figure A2: Maximum modeled significant wave heights for Collier County (a) and the western (b) and eastern (c) regions of Monroe 

County. Building locations and associated maximum significant wave heights used for habitability functions (d-f). To preserve 

privacy the exact building locations are not identified. 
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 535 

Figure A3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Collier and Monroe Counties. 

Appendix B 

Table B1: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, 

flow momentum flux, wave energy flux, and total force for buildings in the concrete category. 540 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.088** -2.021** -2.034** -2.005** -2.064** 

𝛽1 0.510 0.114 5.973e-04 2.622e-04 4.779e-04 

AIC 208.231 209.809 207.066 209.207 207.386 

BIC 215.368 216.946 214.203 216.344 214.523 

𝜒2 test p-value 0.182 0.653 0.086 0.370 0.105 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 
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Table B2: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, 

flow momentum flux, wave energy flux, and total force for buildings in the wood category. 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.899** -4.035** -2.513** -2.766** -2.682** 

𝛽1 1.269** 1.202* 9.261e-04* 0.001* 9.269e-04** 

AIC 120.709 119.615 122.000 123.047 120.384 

BIC 127.015 125.921 128.307 129.354 126.691 

𝜒2 test p-value 8.176e-04 4.543e-04 0.002 0.003 6.866e-04 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

 545 

Figure B1: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow 

momentum flux (c), wave energy flux (d), and total force (e) for buildings in the concrete category. 
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Figure B2: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow 

momentum flux (c), wave energy flux (d), and total force (e) for buildings in the wood category. 550 

 

Figure B3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in 

the concrete category. 
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 555 

Figure B4: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in 

the wood category. 

Table B3: Coefficients for each multivariable logistic regression model for buildings in the concrete or wood categories in Monroe 

County. 560 

 Concrete  Wood 

 R1 R2 R3 R4  R1 R2 R3 R4 

𝛽0 -2.173** -2.053** -2.193** -2.189**  -4.059** -4.051** -3.922** -4.277** 

𝛽1 -0.139 -0.036 0.980 -0.212  1.232* 1.014 1.183 0.816 

𝛽2 1.040 0.494 -0.187 1.022  1.023 1.571 2.279* 0.925 

𝛽3 - - - 0.207  - - - 1.404 

AIC 210.196 211.717 210.270 212.179  120.983 121.638 122.166 122.236 

BIC 220.901 222.422 220.975 226.453  130.443 131.098 131.626 134.850 

𝜒2 test p-value 0.404 0.863 0.419 0.608  0.002 0.002 0.003 0.003 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

 


