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Abstract. Appropriate management of coastal flood risk is critical for creating resilient communities. An important part of 

this is estimating what buildings will become uninhabitable due to a flood event such as a tropical cyclone. To increase the 

accuracy of these estimations, habitability functions are developed to quantify the relationship between hydrodynamic hazards 10 

and the probability of a building becoming uninhabitable following Hurricane Irma. Hazards like maximum flood depths are 

determined by modeling Hurricane Irma flooding in Delft3D-FM coupled with the wave model SWAN. These modeled hazard 

levels are then extracted at building locations where Location Based Services (LBS) data provide information on buildings 

that were uninhabitable following Hurricane Irma. The developed habitability functions provide valuable insights into how 

different hydrodynamic parameters and regression models perform for estimating building habitability, where maximum depth 15 

unit discharge is generally the best predictor of habitability. Furthermore, we find that while wooden structure habitability is 

significantly influenced by hazard level, concrete structure habitability is not. These findings provide novel methods for 

estimating coastal flooding induced building uninhabitability, enhancing how planners can prepare for floods. 

1 Introduction 

Coastal flooding induced caused by tropical cyclones is a significant driver of structural damage, economic loss, and both 20 

short-term and long-term migration worldwide. Sea level rise and precipitation intensification resulting from climate change 

is expected to exacerbate the damage and loss caused by tropical cyclones (Gori et al., 2022; Hughes & Zhang, 2023; 

Mendelsohn et al., 2012; Woodruff et al., 2013). The number of people living in low-elevation coastal zones is also increasing, 

with over a billion people expected to be living in these zones by 2060 (Neumann et al., 2015). In the United States, tropical 

cyclones (or hurricanes) make up the majority of costs due to all billion-dollar natural hazards, resultingtropical cyclones have 25 

resulted in almost 7 thousand deaths and over $1.4 trillion in costs (CPI-Adjusted) since 1980 (Smith, 2020). The significant 

losses due to tropical cyclones and increased risk posed by climate change highlights the need for improved planning and 

adaptation for coastal areas subject to hurricanestropical cyclones. 
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Common tools for managing flood risk include using “damage functions” or “fragility functions” to estimate and predict the 

structural damage sustained during a flood event (Diaz Loaiza et al., 2022; Pistrika & Jonkman, 2010; Suppasri et al., 2013; 30 

Tomiczek et al., 2013; Tsubaki et al., 2016; Xu et al., 2023). Typically, damage functions estimate the percent of a building 

damaged, while fragility functions estimate the likelihood of a building reaching a specific damaged state. These functions 

most commonly estimate structural damage as a function of flood depth; however, other hydrodynamic parameters such as 

flow velocity, unit discharge, and flood duration have also been used to estimate damage due to coastal flooding (Charvet et 

al., 2015; De Risi et al., 2017; Diaz Loaiza et al., 2022; Nofal et al., 2020; Xu et al., 2023). Many of these functions also 35 

incorporate structural components to increase the accuracy of predicting physical damage to buildings (Charvet et al., 2015; 

De Risi et al., 2017; Paprotny et al., 2021; Tomiczek et al., 2013; Xu et al., 2023). 

While damage functions are helpful for predicting structural damage, they are generally applied to derive economic losses 

following a flood event (Pistrika & Jonkman, 2010). Paul et al. (2024) point out the use of post-disaster economic loss to 

characterize risk often incorrectly emphasizes wealthier people as being at greater risk from disasters, when previous studies 40 

have shown lower income groups are impacted more by natural disasters (Fothergill & Peek, 2004; Hallegatte et al., 2020). 

Fragility functions offer an improvement over damage functions in this context by predicting what state a building is in 

following an event such as “no damage”, “moderate damage”, or “complete damage” (Charvet et al., 2015; De Risi et al., 

2017), but these functions are still focused only on structural damage. Assessing building habitability rather than building 

damage following an event is one option for providing a more equitable overview of coastal flood risk and post-disaster 45 

recovery (Paul et al., 2024). Different factors such as structural components (number of stories, building material, etc.), power 

outages, school closures, socioeconomic statuses, and access to other essential services can influence if and when a building 

becomes habitable (Loos et al., 2023; Paprotny et al., 2021; Paul et al., 2024; Suppasri et al., 2013; Thieken et al., 2005; Yabe 

et al., 2020). However, physical damage to structures is often the largest factor determining a building’s habitability (Paul et 

al., 2024), showing the importance of flood hazard consideration in predicting post-disaster building habitability. 50 

Efforts have been made to quantify the influence of physical damages on post-disaster recovery (FEMA, 2024a, 2024b; Nofal 

et al., 2024; Yabe et al., 2020). Yabe et al. (2020) utilized mobile phone data to estimate immediate and long-term household 

displacement from Hurricane Irma, finding that housing damage rates were strong estimators of household displacement 0 

days after Irma and housing damage rates were only weakly correlated with displacement 160 days after Irma. This study 

relied on the Federal Emergency Management Agency’s (FEMA) Individuals and Households Program for estimating housing 55 

damage, neglecting the actual flood hazard (Yabe et al., 2020). Furthermore, displacement 0 days from an event is measuring 

evacuation rates rather than building habitability. Nofal et al. (2024) transformed building fragility curves to functional fragility 

curves by estimating conditional probabilities of functionality states given different damage states. While habitability is 

considered a part of the functionality estimated by these curves, the conditional probabilities used are derived from the authors’ 
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judgement and are not directly developed from flood depths (Nofal et al., 2024). Hazus, a tool developed by FEMA, is capable 60 

of estimating building habitability with hazard information (FEMA, 2024a, 2024b). The Hazus Earthquake Hurricane Model 

estimates building habitability with both demographic data and computed structural damage derived from earthquake wind 

hazard information (FEMA, 2024b). While the Hazus Flood Model also incorporates demographic data for estimating 

habitability, the hazard information used is simply the area of a census tract with nonzero inundation (FEMA, 2024a). This 

exhibits a significant knowledge gap in how varying levels of flood hazards influence building habitability.  65 

To improve coastal communities’ resilience to hurricanestropical cyclones, this study aims to uncover the relationship between 

flood hazards and building habitability following Hurricane Irma. Hurricane Irma made landfall in September 2017 in the 

Florida Keys as a Category 4 hurricane before reaching southwesternern Florida as a Category 3 hurricane (Cangialosi et al., 

2021), resulting in approximately $64 billion in damages (CPI-Adjusted) (Smith, 2020). Irma caused widespread destruction 

through storm surge, wind, and wave damage, which displaced millions of people (Issa et al., 2018; Joyce et al., 2019).In 70 

Florida, water elevations reached 1.1 m and 1.7 m above mean sea level (MSL) at NOAA tide gages in Key West and Naples, 

respectively. Overland, the Florida Keys and southwestern Florida experienced maximum flood depths that exceeded 2 m 

(Cangialosi et al., 2021). In addition to storm surge, Irma caused widespread destruction throughfrom storm surge, wind, and 

wave damagehazards,  which displacinged millions of people (Issa et al., 2018; Joyce et al., 2019).  Through Location Based 

Services (LBS) data collected from cell phones, we know if and when many buildings were once again occupied following 75 

Hurricane Irma (Swanson & Guikema, 2024). Combining this LBS dataset with an integrated hydrodynamic-wave model of 

Hurricane Irma, we draw upon previous methods for developing damage and fragility functions and apply them to develop 

habitability functions. These habitability functions offer new estimates of the probability of buildings being uninhabitable 

following tropical cyclones, advancing current approaches to quantifying flood-induced building uninhabitability. 

2 Data and methods 80 

2.1 Flood model development for Hurricane Irma 

Coastal flooding caused by Hurricane Irma is modeled with D-Flow Flexible Mesh (D-Flow FM) coupled with SWAN 

(Simulating WAves Nearshore). Hydrodynamics are simulated by D-Flow FM, which implements a finite volume solver to 

calculate unsteady flow with the non-linear shallow water equations to simulate storm tide resulting from tidal and 

meteorological forcings (Deltares, 2022a). The depth-averaged approach is used for this study. SWAN is a phase-averaged 85 

wave model that simulates wave evolution (Deltares, 2022b). These models are integrated together in the Delft3D Flexible 

Mesh modeling suite via online coupling, enabling hydrodynamic parameters from D-Flow FM and wave parameters from 

SWAN to be exchanged every coupling timestep. 
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The model developed for this study includes both Collier and Monroe Counties. The extent of the model is from 2212.7494° 

N to 32.840.94° N and 98.0178.91° W to 63.9184.21° W, covering the majority of Florida (Fig. 1a). D-Flow FM enables the 90 

use of an unstructured mesh for simulations. The unstructured mesh created for this modeling has a coarse resolution of 10 km 

and is refined to 80 m in areas with both coastal flooding during Irma’s landfall and LBS data (Fig. 1b&c). For wave modeling, 

SWAN requires nested structured meshes. Our SWAN models each have has a coarse 10 km resolution mesh spanning the 

entire domain with nested meshes down to a refinement of 8150 m for the same areas refined in the D-Flow FM model. 

Digital elevation models (DEMs) used for this flood modeling come from NOAA’s National Centers for Environmental 95 

Information’s (NCEI) DEM Global Mosaic and the General Bathymetric Chart of the Oceans (GEBCO). The refined areas of 

the flood model utilize 3 and 1 arcsecond DEMs from the NCEI’s DEM Global Mosaic (NOAA NCEI, 2022). The coarser 

portions in the model use GEBCO’s 15 arcsecond dataset (GEBCO, 2023). 

Spatially varying Manning’s coefficients of roughness are used to account for bed friction in the model. These values are 

derived from the 2019 National Land Cover Database (NLCD) for the Contiguous United States (Dewitz & USGS, 2024). 100 

These NLCD land cover values are then converted to Manning’s roughness coefficients by taking the corresponding minimum 

Manning’s value listed in the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) 2D User’s Manual 

(Hydrologic Engineering Center, 2021). 

Meteorological forcings used for the flood model are wind and atmospheric pressure fields. These fields are generated with 

the Holland model (Holland, 2008; Holland et al., 2010), which requires information on a tropical cyclone’s path such as the 105 

coordinates of the eye’s path, maximum wind speeds, and radius of maximum winds. The necessary Hurricane Irma best track 

data comes from the National Hurricane Center’s revised Atlantic hurricane database (HURDAT2) (Landsea & Franklin, 

2013), supplemented by the Tropical Cyclone Extended Best Track Dataset (EBTRK) that provides radius to maximum winds 

information (Demuth et al., 2006). Together, these datasets and the Holland model are used to develop a symmetric profile of 

Irma as a spiderweb grid. Spiderweb grids, which conveys the atmospheric pressures, wind velocity magnitudes, and wind 110 

directions used in the flood models on a polar grid, where the origin of the grid represents the eye of the hurricane at each 

timestep (Deltares, 2022a). A second Irma profile is also created to account for asymmetries in the hurricane profile. This was 

done by incorporating a dependency on the azimuthal angle into the Holland model used (Xie et al., 2006), enabling an 

asymmetric Irma profile to be generated. 

The default wind drag coefficient formulation in D-Flow FM is utilized for determining the shear stress on the flow due to 115 

wind forcings. This drag coefficient is based on the Smith and Banke (1975) relationship, where the drag coefficient varies 

linearly from 0.00063 to 0.00723 for wind speeds from 0 to 100 m/s.  It was determined that the default SWAN drag coefficient 
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profile, which relies on the Wu (1982) relationship, was is insufficient for this modeling, producing unreasonably low wave 

heights and periods. Therefore, , which relies on the Wu (1982) relationship, and an increased drag coefficient profile is needed. 

For SWAN, the increased drag coefficient relationship used is as follows: 120 

𝐶𝐷 = {
2.012 × 10−30.0022, 𝑈10 < 67.5

(0.000127𝑈10 + 0.001.25) × 10−3, 𝑈10 ≥ 67.5
 (1) 

where 𝐶𝐷 is the drag coefficient and 𝑈10 is the wind speed 10 m above the surface in m/s (Deltares, 2022b; Wu, 1982).  Due 

to the difficulty in prescribing a new drag profile in SWAN, Iimplementing this increased drag profile was instead done by 

increasing the wind field speed values by 25% in the spiderweb grids used by SWAN. This 25% increase to the wind speeds , 

which is the wind speed correspondingcorresponds to the same wind wave growth due to the increased drag profile described 125 

by Eq. (1).. 

Tidal boundary conditions for the Atlantic Ocean and Gulf of Mexico are located around the northern, eastern, and western 

southern boundaries of the domain where the bed elevation is below mean sea level (MSL). Tidal constituents at these 

boundaries are generated from the Oregon State University Tidal Inversion Software (Egbert & Erofeeva, 2002), which are 

then used as astronomical forcings at the boundaries. 130 
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Figure 1: Overview of the entire model domain (a) and two locations of refinement for Collier (b) and Monroe (c) Counties. NOAA 

tide and wave stations are indicated with diamonds and squares, respectively. USGS storm tide sensors are indicated with circles. 
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2.2 Model validation 135 

The validity of the model is assessed using water level measurement from three three NOAA tide stations and five USGS 

storm tide sensors Florida locations: Naples, Key West, and Vaca Key, corresponding to NOAA tide stations 8725110, 

8724580, and 8723970, respectively (Fig. 1), which have all been previously used when validating Hurricane Irma models 

(Asher & Luettich, 2025; Dobbelaere et al., 2022; Li et al., 2021; Musinguzi et al., 2022).. The measurements from the USGS 

sensors are converted from NAVD88 to MSL using NOAA’s VDatum tool (vdatum.noaa.gov). Two USGS sensors 140 

(FLCOL03148 and FLCOL03089) are located outside valid tidal areas and are instead converted to MSL using the nearest 

valid tidal area in VDatum. Additionally, modeled wave parameters are compared to significant wave heights and peak wave 

periods measured at the National Data Buoy Center (NDBC)NOAA station 42097. First the tidal boundary conditions are 

validated by comparing the modeled water levels without meteorological forcings against the predicted water levels. Then the 

developed Irma wind and pressure fields are implemented into the model and the resulting water levels and wave parameters 145 

are validated against observations (Fig. 2). Four combinations of the symmetric and asymmetric Irma profiles are compared: 

the symmetric profile is used for both D-Flow FM and SWAN (M1), the asymmetric profile is used for both D-Flow FM and 

SWAN (M2), the symmetric profile is used for D-Flow FM and the asymmetric profile is used for SWAN (M3), and the 

asymmetric profile is used for D-Flow FM and the symmetric profile is used for SWAN (M4). The root mean square error 

(RMSE) between modeled and observed water levels and wave parameters is determined for each model at each of the NOAA 150 

stationslocations shown in Fig. 1 (Table 1). To remain consistent with the 30-minute time resolution of the model output, 

RMSE is calculated using observed data for each half hour. The difference between maximum modeled and maximum 

observed water levels and wave parameters is also determined at each station (Table 1). 

Comparison of the four different models clearly shows the symmetric Irma profile performs the best for modeling wave 

parameters, where the two models that utilize a symmetric profile for SWAN (M1 and M4) have the lowest RMSE and 155 

differences in maximum modeled and maximum observed significant wave height and peak wave period (Table 1). Assessing 

the results of the water level validation is not as straightforward.For the six locations compared in Collier County, M1 and M3 

have the strongest agreement between maximum modeled and observed water level. M1 and M3 also perform best in terms of 

RMSE at the six Collier County locations, with the exception of the Naples station.  At the Naples station, M1 has the strongest 

agreement between maximum modeled and observed water levels but the worst RMSE, while M4 has the worst agreement 160 

between maximum modeled and observed water levels but the best RMSE. At the Key West and Vaca Key stations, M2 and 

M4 performs the best for both metrics analyzed. 

Two models are selected for developing habitability functions based on these performance metrics. The M1 model is used for 

Collier County and the M4 model is used for Monroe County. The M2 and M3 models are not considered for developing the 
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habitability functions because the symmetric Irma profile performed significantly better than the asymmetric profile for 165 

modeling wave parameters in SWAN. Since the habitability functions are developed using maximum values of the model 

output, M1 is selected for Collier County to minimize the difference between the maximum modeled and maximum observed 

water levels at the six Collier County locationsNaples station. Between M1 and M4, the M4 model performed better for the 

Key West and Vaca Key stations, which is why the M4 model is used for developing habitability functions for Monroe County. 

Table 1: Goodness of fit for different combinations of symmetric and asymmetric Irma wind profiles. 170 

Station 
RMSE  Max Modeled – Max Observed 

M1 M2 M3 M4  M1 M2 M3 M4 

FLCOL03294 

(Delnor-Wiggins State Park) 
0.7399 m 0.7412 m 0.7399 m 0.7412 m  0.5231 m 1.5580 m 0.6311 m 1.4999 m 

8725110 

 (Naples) 

0.6543 

6360 m 

0.5182 

5263 m 

0.634668 

m 

0.5223170 

m 
 

0.018410

06 m 

0.9410878

4 m 

0.1624197 

m 

0.899881

2 m 

FLCOL03148 

(Hendersen Creek) 
0.7124 m 0.7147 m 0.7124 m 0.7146 m  0.5554 m 1.5808 m 0.6551 m 1.5095 m 

FLCOL03176 

(Goodland) 
0.7971 m 0.7979 m 0.7972 m 0.7978 m  -0.6510 m 0.8384 m -0.5378 m 0.7520 m 

FLCOL03089 

(Faka Union Canal) 
0.9599 m 0.9602 m 0.9599 m 0.9602 m  -0.1415 m 1.5171 m -0.0205 m 1.4179 m 

FLCOL03237 

(Everglades City) 
1.0048 m 1.0126 m 1.0049 m 1.0124 m  -0.0022 m 1.2243 m 0.0646 m 1.1682 m 

8724580 

 (Key West) 

0.3319 

3273 m 

0.2755 

2742 m 

0.3265 

3202 m 

0.2766 

2756 m 
 

-

0.498653

31 m 

-0.2728630 

m 

-0.4363638 

m 

-

0.320731

1 m 

8723970 

 (Vaca Key) 

0.3742 

3790 m 

0.3390 

3480 m 

0.3782 

3771 m 

0.3480 

3547 m 
 

0.0994 

1510 m 

-0.0187588 

m 

0.1581082

4 m 

-

0.035391

9 m 

42097 

 (Sig. Wave Height) 

1.1357 

1343 m 

1.3990 

3962 m 

1.4063 

3995 m 

1.1394 

1368 m 
 

0.2840 

2590 m 

-1.1610 

2070 m 

-1.2360400 

m 

0.287032

70 m 

42097 

 (Peak Wave Period) 

2.1597 

1652 s 

3.002305

4 s 

2.99653.0

166 s 

2.1453448 

s 
 -1.6600 s -3.5120 s -3.5120 s -1.6600 s 
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Figure 2: Storm tide comparisons between the measured and modeled water levels relative to MSL (a-hc). Comparisons between the 

measured and modeled significant wave heights (id) and peak wave periods (je). 175 
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2.3 Determining building habitability following Irma 

Whether or not a building was habitable directly following Hurricane Irma is determined using Location Based Services (LBS) 

and CoreLogic property data. LBS data is provided by Veraset, LLC and consists of “pings” that represent exchanges between 

mobile phones and a cellular network or Wi-Ffi. Each ping includes an anonymized user identification number, latitude, 

longitude, and timestamp, as well as estimates of horizontal accuracy and device type. Pings are filtered and aggregated based 180 

on frequently visited locations and time of day to identify each user’s home and workplace (Swanson, 2023; Washington et 

al., 2024). The LBS data utilized spans August 1, 2017 until October 3, 2017. In total, there are 18,505 users with identified 

home and work locations available for Collier and Monroe Counties, where 16,769 of these are for Collier County and 1,736 

are for Monroe County. 

The recovery period for each user following Hurricane Irma is determined using a Bayesian belief network (BBN) in 185 

combination with anomaly detection methods (Swanson, 2023). The BBN incorporates contextual knowledge and time-series 

data of each user’s daily location visits to estimate the joint probability of a user’s presence at home or work on a given day 

prior to Hurricane Irma’s landfall. By considering dependencies—such as the day of the week, prior appearances, and visits to 

other locations on the same day—the model identifies probabilistic patterns for all Florida users and refines these priors with 

individual user data to create personalized models of each user’s “typical” behavior. Anomaly detection methods are applied 190 

to user data during the period surrounding Hurricane Irma’s landfall to identify anomalous patterns of behavior, such as being 

absent from home or work or exclusively staying at home, that differ from their previously typical appearance behavior. 

Recovery is defined as the date when a user’s anomalous behavior ends and their visit patterns resemble their pre-landfall 

behavior for at least three consecutive days. Greater details on identifying recovery periods from LBS data is available in 

Swanson (2023). Locations where users did not recover their previous visit patterns by the end of September 28, 2017, 18 days 195 

after Irma’s landfall in Florida, are assumed to be uninhabitable due to damages caused by Irma since essential services such 

as power and schools were recovered by this point date (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema, 

2024). This assumes that the reason a user did not return to a location is solely because that location was damaged by Irma 

beyond habitability. This assumption does not account for other socioeconomic factors that may influence if and when someone 

returns to a location. From this method for estimating habitability, we find that Aabout 13.5% of the users in Monroe County 200 

and 6.0% of the users in Collier County are identified as having uninhabitable homes by the end of September 28, 2017.this 

date. 

Each location derived from the LBS data is then approximated to the nearest building by assigning it to the nearest CoreLogic 

coordinate, representing the center point of a property. This ensures each location LBS datapoint corresponds to an actual 

building and provides information on the building material. In some instances, this results in multiple LBS datapoints being 205 
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linked to the same building. For these buildings with multiple LBS datapoints, a building is assumed habitable if at least one 

LBS user returned to the building by the end of September 2017. A building is assumed uninhabitable if all corresponding 

LBS users did not return to the building by the end of September 2017.  Buildings with multiple LBS datapoints assigned to it 

are assumed habitable if at least one LBS user returned by the end of September 2017 and uninhabitable if all users assigned 

to the building did not return by the end of September 2017. LBS datapoints farther than 0.001 decimal degrees from the 210 

nearest CoreLogic coordinate are excluded.  

For each CoreLogic property location that has a habitable or uninhabitable designation from the LBS data analysis, the 

maximum depth, velocity, and significant wave height experienced are determined by matching each building’s latitude and 

longitude to the nearest cell in the computational mesh of the flood model (Figs. 3 and A1-A2). If a building’s coordinate is 

inundated at the initialization of the model, indicating its corresponding mesh cell’s bed level is below mean sea level, the 215 

building is excluded from our analysis. Additionally, buildings with a maximum depth of zero, determined from the 

hydrodynamic model, are removed. After these exclusions, there are 1,067 locations with assigned hydrodynamic parameters, 

where 408 of these locations are for Collier County and the other 659 locations are for Monroe County. From the 1,067 

locations included in our analysis, 123 of these buildings do not have any user returning by the end of September 2017, 

indicating these 123 buildings were uninhabitable due to Hurricane Irma. 85 of these uninhabitable buildings are in Monroe 220 

County and the other 38 are in Collier County. 
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Figure 3: Maximum modeled flood depths for Collier County (a) and the western (b) and eastern (c) regions of Monroe County. 

Building locations and associated maximum flood depths used for habitability functions (d-f). To preserve privacy the exact building 

locations are not identified. 225 

 

3 Results 

3.1 Developing habitability functions 

For each CoreLogic property location that has a habitable or uninhabitable designation from the LBS data analysis, the 

maximum depth, velocity, and significant wave height experienced are determined by matching each building’s latitude and 230 

longitude to the nearest cell in the computational mesh of the flood model (Figs. 3 and A1-A2). If a building’s coordinate is 

inundated at the initialization of the model, indicating its corresponding mesh cell’s bed level is below mean sea level, the 

building is excluded from our analysis. Additionally, buildings with a maximum depth of zero, determined from the 

hydrodynamic model, are removed. After these exclusions, there are 920 locations with assigned hydrodynamic parameters, 

where 350 of these locations are for Collier County and the other 747 locations are for Monroe County. 235 

From the 920 locations included in our analysis, 110 of these buildings do not have the user returning by the end of September 

2017, indicating these 110 buildings were uninhabitable due to Hurricane Irma. 84 of these uninhabitable buildings are in 

Monroe County and the other 26 are in Collier County. 
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Figure 3: Maximum modeled flood depths for Collier County (a) and the western (b) and eastern (c) regions of Monroe 240 

County. Building locations and associated maximum flood depths used for habitability functions (d-f). To preserve 

privacy the exact building locations are not identified. 

These The outputs generated from the previous section are used to develop habitability functions for Florida due to Hurricane 

Irma as a function of the modeled maximum depth, flow speed, and significant wave height (Figs. 4 and A3). Since each 

datapoint’s habitability entry is binary (habitable/uninhabitable), logistic regression is used to develop habitability functions. 245 

𝑃(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋)
 (2) 

where 𝑃(𝑦 = 1) is the probability of a building being uninhabitable, 𝑋 is the hydrodynamic hazard level, and 𝛽0 and 𝛽1 are 

the logistic regression coefficients. Maximum likelihood estimation is used to estimate the values of the coefficients. 

Additionally, the 95% confidence interval is determined to assess the uncertainty of each function (Fig. 4). Goodness of fit for 

the developed habitability functions is determined with the Akaike information criterion (AIC) and Bayesian information 250 

criterion (BIC) (Akaike, 1974; Schwarz, 1978), where lower values of AIC and BIC indicate a better fit. 

 

 

Figure 4: Building habitability as a function of maximum depth (a), flow speed (b), and significant wave height (c) for buildings 

analyzed in Collier and Monroe Counties. 255 
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All three habitability functions developed show positive relationships between hazard level and uninhabitable probability that 

are significant at the 95% confidence level (Table 2). This indicates that buildings that experienced larger flood depths, flow 

speeds, and wave heights were more likely to be uninhabitable following Hurricane Irma. Of the three habitability functions 

developed, the one dependent on flow speed performs the best, having the lowest AIC and BIC values. Conversely, using 

significant wave height to predict building uninhabitability shows the worst fit. Another apparent detail of these functions is 260 

that some buildings are uninhabitable at relatively low hazard levels and others are habitable at relatively high hazard levels. 

This highlights some of the uncertainty in estimating building habitability using just hazard levels. 

Table 2: Coefficients for maximum depth, flow speed, and significant wave height for buildings in Collier and Monroe Counties. 

 Depth Flow Speed Sig. Wave Height 

𝛽0 -2.60888** -2.558454** -2.490278** 

𝛽1 0.648803** 1.3360.486** 1.1220.864* 

AIC 751660.843521 7476.54066.073 756.925671.668 

BIC 761.789670.170 757.485675.722 766.871681.317 

𝜒2 test p-value 1.1563.689e-045 1.1987.060e-054 0.002153 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

All three habitability functions developed show positive relationships between hazard level and uninhabitable probability that 

are significant at the 95% confidence level (Table 2). This indicates that buildings that experienced larger flood depths, flow 265 

speeds, and wave heights were more likely to be uninhabitable following Hurricane Irma. Of the three habitability functions 

developed, the one dependent on depth performs the best, having the lowest AIC and BIC values. Conversely, using significant 

wave height to predict building uninhabitability shows the worst fit. 

3.2 Influence of building material on habitability 

The exterior wall material listed for each building is the building material information available for locations in Monroe 270 

County. Collier County does not have any relevant building material information from the CoreLogic dataset used; therefore, 

only Monroe County locations are included in this section’s analysis. The listed exterior wall materials are aggregated into 

three categories: “Concrete”, “Wood”, and “Other” (Fig. 5a). Habitability functions are then developed for the concrete and 

wood categories as functions of maximum water depth, flow speed, and significant wave height (Fig. 5b-g). Habitability 

functions are not generated for the other category since there is no similar defining feature within the group. 275 
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Figure 5: Histogram of the exterior wall descriptions from CoreLogic for buildings analyzed in Monroe County and the three 

aggregated categories: concrete, wood, and other (a). Building habitability as a function of maximum depth, flow speed, and 

significant wave height for concrete (b-d) and wood (e-g). b-g use the same legend as Fig. 4. 280 

The only significant trends revealed from this analysis are for the habitability functions developed for the wood category (Table 

3). The habitability functions developed for the concrete group are not significant at the 95% confidence interval. This can be 

interpreted to mean that wooden buildings are less likely to be habitable after sustaining a relatively larger maximum depth, 

flow speed, or significant wave height, while the uninhabitable probability of concrete structures is not influenced by the level 

of hazard. For these wooden buildings, the depth-dependent habitability function has the greatest fit.. 285 
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Table 3: Coefficients for different building materials for buildings in Monroe County. 

 Concrete  Wood 

 Depth Flow Speed Sig. Wave Height  Depth Flow Speed Sig. Wave Height 

𝛽0 -2.00765** -2.239267** -2.0561.854**  -3.801586** -2.9643.286** -3.473305** 

𝛽1 0.151217 0.8940.349 0.426-0.080  1.526504* 1.6900.958* 2.780751* 

AIC 2094.825809 208.3093.814 209.7205.108  1201.695550 1246.063857 1223.855930 

BIC 2161.961915 215.44510.920 216.85712.214  127.0027.845 131.16332.358 129.23630.150 

𝜒2 test p-value 0.666579 0.192254 0.590924  8.118e-040.001 0.00818 0.0035 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

3.3 Habitability functions based on additional hydrodynamic parameters 

Habitability functions are also developed using the maximum unit discharge (ℎ𝑣), flow momentum flux (𝜌ℎ𝑣2), total water 

depth (ℎ + 𝐻𝑠𝑖𝑔), wave energy flux (
1

16
𝜌𝑔𝐻𝑠𝑖𝑔

2 √𝑔ℎ), and total force (
1

16
𝜌𝑔𝐻𝑠𝑖𝑔

2 + 𝜌ℎ𝑣2) as the hazard level (Figs. 6 and A3), 

where ℎ is the water depth, 𝑣 is the flow speed, 𝜌 is the density of water (1,000 kg/m3), 𝐻𝑠𝑖𝑔 is the significant wave height, 290 

and 𝑔 is gravitational acceleration (9.81 m/s2) . These additional hydrodynamic parameters have been shown to be significant 

drivers of flood damage in addition to the basic hazard parameters of depth, flow speed, and significant wave height (Diaz 

Loaiza et al., 2022; Xu et al., 2023), motivating the following analysis on their influence of building habitability. 

The additional habitability functions generated for maximum unit discharge, flow momentum flux, total water depth, wave 

energy flux, and total force all exhibit significant positive relationships with the probability of a building being uninhabitable 295 

(Table 4). Of these five parameters, the habitability function dependent on maximum wave energy flux has the worst fit with 

an AIC of 670754.560685 and BIC of 680764.506.334. This is partially due to the outlying habitable building with a modeled 

maximum wave energy flux of about 6,000 kW/m; however, even if this point is excluded the values of the AIC and BIC are 

still the worst at 668.044 and 677.690, respectively. Visually, the confidence interval is also the largest for the wave energy 

flux habitability function.   300 

While the habitability function developed for maximum wave energy flux performs relatively poorly, the other functions 

developed based on the additional hydrodynamic parameters are comparable to those developed for depth and flow speed.  

Habitability functions based on unit discharge, total depth, flow momentum flux, and total force all exhibit better fits than the 

functions generated based on flow speed (Tables 2 and 4). However, none of the habitability functions for the additional 

hydrodynamic parameters have a better fit than the depth-dependent habitability function. 305 
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Habitability functions based on unit discharge, momentum flux, and total force all exhibit better fits than the functions 

generated based on either depth or flow speed (Tables 2 and 4). The function dependent on total depth performs worse than 

the depth or flow speed habitability functions.
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 310 

Figure 6: Building habitability as a function of maximum unit discharge (a), total depth (b), flow momentum flux (c), wave energy 

flux (d), and total force (e) for buildings analyzed in Collier and Monroe Counties.. The legend is the same as in Fig. 4. 

Table 4: Coefficients for buildings in Monroe and Collier Counties as a function of maximum unit discharge, total depth, flow 

momentum flux, wave energy flux, and total force. 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.397370** -2.61135** -2.26483** -2.164277** -2.289319** 

𝛽1 0.867388** 0.455546** 71.830904e-04** 4.942604e-04** 61.830857e-04** 

AIC 742661.701171 752662.527692 742661.780888 754670.560685 743661.131919 

BIC 670.820752.646 762.637672.176 752671.833429 764.506680.334 753.077671.567 

𝜒2 test p-value 9.6085.196e-075 1.814064e-04 17.167059e-065 4.920e-040.009 1.2027.712e-065 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

Habitability functions for these additional hydrodynamic parameters are also developed for the concrete and wood building 315 

material categories described in the previous section (Figs. B1-B42). None of these habitability functions for concrete buildings 

are significant at the 95% confidence level (Table B1), but all those for wood buildings show significant positive relationships 
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(Table B2). Furthermore, the wooden structure habitability function dependent on total depth (ℎ + 𝐻𝑠𝑖𝑔) has the greatest fit of 

all habitability functions developed for wooden buildings, including the one developed for just depth. Therefore, predicting 

habitability can be improved by incorporating information on both inundation depths and significant wave heights at a building 320 

for wooden structures for the buildings analyzed. 

3.4 Habitability functions derived from multivariable logistic regression 

Rather than combining the three basic parameters of depth, flow speed, and significant wave height into additional 

hydrodynamic parameters to develop habitability functions as in the previous section, multivariable logistic regression can be 

used as an alternative to derive habitability functions. This expands Eq. (2) into the following: 325 

𝑃(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑖𝑋𝑖)
 (3) 

where the 𝑖 subscript indicates the 𝑖-th parameter in the regression model. Including multiple independent variables has been 

shown to improve traditional depth dependent fragility functions (Charvet et al., 2015; De Risi et al., 2017), making it an 

important consideration for the habitability functions developed in this study. Four multivariable logistic regression models 

are considered (R1-R4), and Table 5 lists the hydrodynamic parameters considered for each model. The three basic parameters 330 

of maximum depth (ℎ), flow speed (𝑣), and significant wave height (𝐻𝑠𝑖𝑔) are considered for these models. To check for 

multicollinearity in these models, the variance inflation factor (VIF) is computed. All VIF values for these models are between 

1.74 and 32.42, which is generally accepted as an indicator that multicollinearity problems are small (Sheather, 2009). 

Table 5: Hydrodynamic parameters considered for each multivariable logistic regression model. 

 R1 R2 R3 R4 

𝑋1 ℎ ℎ 𝑣 ℎ 

𝑋2 𝑣 𝐻𝑠𝑖𝑔 𝐻𝑠𝑖𝑔 𝑣 

𝑋3 - - - 𝐻𝑠𝑖𝑔 

Of the four multivariable models developed, R1 displays the best fit and R23 displays the worst fit (Table 6). While the AIC 335 

of R1 is very closeslightly smaller than to the AIC of the flow speeddepth--dependent habitability function, the best forming 

univariable model, the BIC shows a greater preference for the depthflow speed--dependent function over R1. Furthermore, a 

likelihood ratio test to statistically determine if R1 offers significant improvements over the nested flow speed-depth-dependent 

habitability functions is performed. This likelihood ratio test accepts the null hypothesis, the nested depthhabitability function 
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dependent on just flow speed-dependent function, over the alternative of R1 (p-value = 0.184130). Therefore, it can be 340 

concluded that the habitability function developed that dependsdepending solely on maximum depth flow speed is the best 

estimator for predicting building habitability.a better predictor of habitability than any of the multivariable models. 

Table 6: Coefficients for each multivariable logistic regression model for buildings in Monroe and Collier Counties. 

 R1 R2 R3 R4 

𝛽0 -2.707760** -2.60486** -2.628464** -2.679776** 

𝛽1 0.320635* 0.672823** 1.1810.454* 0.488750* 

𝛽2 0.996*0.230 -0.063060 0.323124 1.057*0.352 

𝛽3 - - - -0.495608 

AIC 747.243660.754 753.835662.504 668749.053.013 748.802661.667 

BIC 762.161675.227 768.753676.977 763.971682.486 768.692680.964 

𝜒2 test p-value 28.184302e-055 5.8991.992e-04 5.400e-050.003 6.8281.798e-054 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

Habitability functions based on the four multivariable models are also developed for the buildings in the concrete and wood 

categories (Table B3). However, none of the functions for concrete or wood structures based on these four models offer any 345 

serious improvement over those developed with the univariable models presented in Table 3. 

4 Discussion 

Overall, many of the habitability functions developed show that hydrodynamic hazard level significantly increases the 

probability of a building being uninhabitable following Hurricane Irma. This holds true for the first functions developed based 

on the three basic hazards of maximum flood depth, flow speed, and significant wave height, where the flow speeddepth-350 

dependent habitability function shows the best fit (Fig. 4 and Table 2). In an effort to improve upon this these depth-dependent 

functionhabitability functions dependent on the three basic hazards, two methods for combining the basic hazard levels are 

explored. The first method creates new habitability functions based on five additional hydrodynamic parameters used 

previously to generate damage functions (Diaz Loaiza et al., 2022; Xu et al., 2023): maximum unit discharge, flow momentum 

flux, total water depth, wave energy flux, and total force. Not only does the probability of uninhabitability exhibit a significant 355 

positive dependency on these additional hydrodynamic parameters, but the habitability functions dependent on unit discharge, 

flow momentum flux, and total force offer greater fits than the flow speed-dependent function (Tables 2 and 4). Specifically, 

the unit discharge-dependent habitability function shows the greatest performance for predicting building habitability of the 



24 

 

univariable models. The second method aimed at improving the developed habitability functions expands the univariable 

regression to multivariable regression based on depth, flow speed, and significant wave height. The multivariable model R1 360 

(depth and flow speed) performs best of the multivariable models and shows a slightly improved AIC value to the solely flow 

speed-dependent function. While the probability of uninhabitability has a significant positive dependency on these additional 

hydrodynamic parameters, none of these five new habitability functions have a better fit than the depth-dependent one (Table 

4). This leads to the second method aimed at improving the habitability function dependent on depth, which is expanding the 

univariable regression to multivariable regression based on depth, flow speed, and significant wave height. The multivariable 365 

model R1 (depth and flow speed) shows a comparable AIC value to the solely depth-dependent function. This potentially 

aligns with previous studies that have shown including flow velocity in multivariable models improves fragility functions 

based on a single variable based on just depth (Charvet et al., 2015; De Risi et al., 2017). However, comparison of the BIC 

values shows a clearer preference for the univariable flow speeddepth-dependent function. This questions whether including 

maximum flow speeddepth with depth flow speed in a multivariable model actually improves the ability to estimate building 370 

habitability. Results from the likelihood ratio test agree with those from comparing BIC values, suggesting the depthflow 

speed-dependent function is superior to the multivariable models. This leads back to the function dependent on unit discharge 

as being the best habitability function developed in this study..  

Furthermore, using other hazard parameters besides depth increases the overall complexity of predicting habitability, which 

again points to the utility of the univariable depth-dependent habitability function. 375 

This study also revealed significant differences in how varying hazard levels impact habitability probability for wooden and 

concrete buildings. None of the habitability functions developed for concrete buildings exhibit significant relationships 

between hazard level and uninhabitable probability. This indicates that other factors besides hydrodynamic hazards strongly 

influenced whether people returned to concrete structures after Irma. Conversely, the habitability functions developed for 

wooden structures display significant positive relationships between hazard level and uninhabitable probability, showing that 380 

hydrodynamic hazards strongly influenced if a wooden building became uninhabitable due to Hurricane Irma. These 

differences between wooden and concrete structures are understandable since flood hazards typically result in greater damage 

to wooden buildings than concrete ones (Charvet et al., 2015; De Risi et al., 2017; Suppasri et al., 2013).  

While the habitability functions developed generally show the expected dependency of hazard level on building uninhabitable 

probability, there is still a good degree of uncertainty in estimating which buildings people return to. This is evident when 385 

visually inspecting the habitability functions, where some buildings are habitable at relatively high hazard levels and 

uninhabitable at lower hazard levels (Figs. 4-6).  This shows a major difference between traditional damage and fragility 

functions and these new habitability functions, where many socioeconomic factors can also influence if and when people return 
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to a building after a flood event. For example, someone may not return to a completely undamaged building if they are able to 

stay with friends or family for an elongated period, and for others, returning to a highly damaged building may be the best 390 

option, which may bias these functions against people with fewer recovery options. (Hodge & Lee, 2017; Mitsova et al., 2018; 

Swanson & Guikema, 2024) While previous studies have looked at some of these factors influencing post-flood building 

habitability (Nofal et al., 2024; Paprotny et al., 2021; Paul et al., 2024; Yabe et al., 2020), this is the first study, to our 

knowledge, that directly quantifies how flood hazards influence habitability. 

Besides uncertainties associated with socioeconomic factors, there are other assumptions and uncertainties in this study that 395 

could be addressed in the future. Firstly, the confidence intervals of the developed habitability functions typically widen at 

larger hazard levels due to a smaller number of buildings experiencing these large hazard levels, which could be improved by 

including areas that experienced greater flood impacts in future studies. Uncertainty in the developed Hurricane Irma model is 

highly influenced by grid and DEM resolution, and higher resolutions are known to improve the flood model accuracy (Diaz 

Loaiza et al., 2022; Luppichini et al., 2019; Muñoz et al., 2024). The spatially varying Manning’s roughness coefficients and 400 

parameterization of Hurricane Irma’s wind and pressure fields also introduce uncertainties in the flood model that influence 

the developed habitability functions (Asher & Luettich, 2025). Aside from the flood model, the LBS data used to determine 

buildings that were uninhabitable due to Hurricane Irma bring their own uncertainties. For example, spatial inaccuracies of the 

LBS data could lead to misidentification of the associated building. Additional uncertainties could arise if the LBS data used 

is not representative of the study areas and populations (Swanson & Guikema, 2024). Another important assumption for our 405 

definition of building habitability is that essential services such as power and schools are recovered 18 days after Irma’s landfall 

in Florida. While this assumption is appropriate for Irma (Hodge & Lee, 2017; Mitsova et al., 2018; Swanson & Guikema, 

2024), flood events that cause longer recovery periods for essential services may create difficulties in estimating building 

habitability the same way. Finally, these habitability functions could be improved if additional building information such as 

the number of stories or whether a building is elevated was available. 410 

5 Conclusions 

This study utilizes a Hurricane Irma flood model and LBS data to develop habitability functions for buildings in two Florida 

counties. First, we show that of the habitability functions dependent on maximum depth, flow speed, or significant wave height, 

the depthflow speed-dependent function performs the best. Five additional hydrodynamic parameters are also investigated to 

see if improvements can be made to the depthflow speed-dependent habitability function, but none of these additional 415 

parameters show increased performanceand we find that the habitability function dependent on maximum unit discharge offers 

the greatest improvement. Then multivariable regression is employed, showing potential improvements to the univariable 

depth flow speed function with model R1 (depth and flow speed). However, additional analysis indicates these multivariable 
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models do not offer significant improvements to the univariable depthflow speed-dependent function. Furthermore, buildings 

are grouped by material to evaluate how habitability functions compare for wooden and concrete structures, showing that the 420 

uninhabitable probability of concrete buildings is not influenced by hazard level while wooden buildings’ uninhabitable 

probability increase with hazard level. These findings provide novel quantifications of the influence of flood hazards on 

whether a building becomes uninhabitable due to a flood event. This can be used in applications like HAZUSHazus, which 

currently assumes buildings become uninhabitable for any nonzero flood depth (FEMA, 2024b). 

 Future work could be done to incorporate socioeconomic factors into these habitability functions to increase the accuracy of 425 

estimating which buildings become uninhabitable during Irma due to flooding. Developing habitability curves for different 

regions and flood events is another area of future research that should be explored. Given this study focuses on two Florida 

counties, it would be insightful to investigate other regions both inside and outside the United States. Differences in building 

codes, zoning laws, and other policies may significantly change how flood hazards influence building habitability, which could 

be compared against the habitability functions developed here for Collier and Monroe Counties.  430 
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Figure A1: Maximum modeled flow speeds for Collier County (a) and the western (b) and eastern (c) regions of Monroe County. 

Building locations and associated maximum flow speeds used for habitability functions (d-f). To preserve privacy the exact building 585 
locations are not identified. 
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Figure A2: Maximum modeled significant wave heights for Collier County (a) and the western (b) and eastern (c) regions of Monroe 

County. Building locations and associated maximum significant wave heights used for habitability functions (d-f). To preserve 590 
privacy the exact building locations are not identified. 



38 

 

 

 

Figure A3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Collier and Monroe Counties. 595 

 

Appendix BB 

Table B1: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, 

flow momentum flux, wave energy flux, and total force for buildings in the concrete category. 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.088050** -2.02114** -2.03413** -2.0051.911** -2.06411** 

𝛽1 0.510161 0.11407 5.9738.259e-045 2.6226.385e-045 4.7797.655e-045 

AIC 208.2314.438 209.8094.978 207.0664.405 209.2075.089 207.3864.463 

BIC 215.3681.544 216.9462.084 214.20311.511 216.3442.195 214.52311.569 

𝜒2 test p-value 0.182410 0.653709 0.086399 0.370867 0.105419 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 
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Table B2: Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, 

flow momentum flux, wave energy flux, and total force for buildings in the wood category. 

 Unit Discharge Total Depth Momentum Flux Wave Energy Flux Total Force 

𝛽0 -2.899978** -4.0353.716** -2.513675** -2.766632** -2.682708** 

𝛽1 1.269*0.659* 1.202141* 9.2612.808e-04* 0.0010.001* 9.2692.776e-04** 

AIC 1220.757709 11921.104615 1224.364000 123.0474.187 1204.384078 

BIC 127.0159.052 125.9217.399 128.30730.659 129.35430.482 126.69130.373 

𝜒2 test p-value 8.176e-040.003 4.543e-040.001 0.0027 0.0036 6.866e-040.006 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 
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Figure B1: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow 

momentum flux (c), wave energy flux (d), and total force (e) for buildings in the concrete category. The legend is the same as in Fig. 

4. 
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 610 

Figure B2: Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow 

momentum flux (c), wave energy flux (d), and total force (e) for buildings in the wood category. The legend is the same as in Fig. 4. 
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Figure B3: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in 615 
the concrete category. 

 

Figure B4: Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow 

momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in 

the wood category. 620 
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Table B3: Coefficients for each multivariable logistic regression model for buildings in the concrete or wood categories in Monroe 

County. 

 Concrete  Wood 

 R1 R2 R3 R4  R1 R2 R3 R4 

𝛽0 

-

2.173254

** 

-

2.0531.95

9** 

-

2.193118

** 

-

2.18950*

* 

 

-

4.3.84805

9** 

-

4.0513.75

3** 

-

3.9223.83

2** 

-43.955277** 

𝛽1 -0.139035 

-

0.0360.59

7 

0.9800.47

8 

-

0.2120.42

5 

 
1.232285

* 

1.0141.06

3 

1.1830.56

0 
0.816929 

𝛽2 
1.0400.36

3 

0.494-

1.065 
-0.187736 

1.0220.42

6 
 

1.0230.36

0 
1.571309 

2.279229

* 
0.9250.301 

𝛽3 - - - 
0.207-

1.403 
 - - - 1.4041.167 

AIC 
210.1960

5.808 

211.7170

6.186 

210.2700

5.260 

212.1790

6.865 
 

1203.049

983 

1212.932

638 

122.1664.

384 
1224.593236 

BIC 
220.9011

6.467 

222.4221

6.845 

220.9751

5.919 

226.4532

1.077 
 

1302.491

443 

131.0982.

374 

131.6263.

827 
134.8507.183 

𝜒2 test p-value 0.404520 0.863628 0.419395 0.608522  0.0025 0.0025 0.00310 0.00311 

For individual coefficients: * p-value < 0.05, ** p-value < 0.001 

 


