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Abstract. Surface currents play an important role in the transport of floating materials in the Yellow Sea, a region strongly 

influenced by tidal forcing and seasonal wind variability driven by the East Asian monsoon. While diagnostic models have 15 

been widely used to estimate surface currents, due to their steady-state assumption, high frequency variations such as tides and 

inertial oscillations cannot be resolved. To address this limitation, a time-dependent diagnostic model incorporating inertial 

terms into the governing equations is proposed. The performance of the proposed method is evaluated using buoy and drifter 

observations from 2015 to 2023. The time-dependent model in this study captures not only low frequency components 

(geostrophic and Ekman currents) but also high frequency variability (inertial oscillations and tides). Compared to the 20 

traditional model assuming steady-state, it shows significant improvement, achieving a correlation of 0.76 and Root-Mean-

Square Error of 0.18 m s-1 (compared to -0.08 and 0.43 m s⁻¹ for the steady model, that caused by wrong governing equation 

ignoring inertia to describe tides) because of successful consideration of high frequency variability. The decay rate of inertial 

oscillations is analytically derived, providing insight into the time scale for past signals in surface currents to dissipate. We 

expect that this study offers a practical framework for surface current estimation considering both high and low frequency 25 

signals and can be applied for quick assessments of material transport in other coastal oceans. 

1 Introduction 

Surface currents in oceanic environments are essential to understanding the transport of momentum and surface-

floating materials. In the marginal coastal oceansea such as the Yellow Sea (Figure 1), there are many issues caused by floating 

materials such as jellyfish blooms (Wei et al., 2015; Choi et al., 2018), harmful algal blooms (Onitsuka et al., 2010; Kim et al., 30 

2016), green algae blooms (Son et al., 2015; Kwon et al., 2019), and Sargassum (Shin et al., 2022; Choi et al., 2023). Thus, 
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there is an increasing demand for estimating surface velocity fields. Numerical hydrodynamic models are widely utilized to 

generate velocity fields and simulate the transport of surface-floating materials (Onitsuka et al., 2010; Son et al., 2015; Wei et 

al., 2015; Kwon et al., 2019), with advancements in data assimilation significantly enhancing their accuracy (Storto et al., 

2019). Along with numerical hydrodynamic models, the diagnostic approach, which estimates surface velocity fields from sea 35 

surface height and wind datasets, has become a popular method due to its efficiency and accuracy (Bonjean and Lagerloef, 

2002; Rio et al., 2014; Dohan, 2017; Choi et al., 2023). 

The velocity fields from the previous diagnostic approach assumed that surface currents are primarily driven by the 

Ekman and geostrophic balance, so steady-state assumption was used. For instance, the Ocean Surface Current Analyses Real-

time (OSCAR) velocity fields, provided by the National Aeronautics and Space Administration (NASA), were based on the 40 

diagnostic approach considering geostrophic and wind-driven Ekman current components (Bonjean and Lagerloef, 2002). 

Similarly, the Global total surface Current (GlobCurrent) dataset was produced by combining satellite-based geostrophic 

current and a semi-empirical model for the Ekman current component, aiming to accurately represent surface current variability 

(Rio et al., 2014).  Recently, diagnostic velocity fields based on a simple analytical solution have been utilized and verified in 

the Yellow Sea to simulate algae transports and it was(Choi et al., 2023). Choi et al. (2023) showed that velocity fields from 45 

the diagnostic approach can have comparable (or even locally better) accuracy to those from reanalysis datasets using 

numerical models and data assimilation (Choi et al., 2023). .The seasonal Ekman currents driven by the East Asian Monsoon 

and the altimetry-based geostrophic currents, directed northeastward without a notable mean current pattern (orange arrows in 

Figure 1), successfully simulated the transport of surface floating substances in the Yellow Sea (Choi et al., 2018 and 2023). 

Consequently, these diagnostic velocity fields developed in previous studies assumed steady states and considered 50 

only two low frequency signals (Ekman and geostrophic current components), so have limitations in capturing high frequency 

signals. In the Yellow Sea, there are significant high frequency variability of surface current driven by the near-inertial 

oscillations and tides (Teague et al., 1998; Hu et al., 2023). To consider these high frequency signals of surface current, new 

approach resolving the inertia is required. Time-dependent Ekman theory was advanced by Elipot and Gille (2009), Wenegrat 

and McPhaden (2016), and Lilly and Elipot (2021). These studies introduced and discussed analytical solutions incorporating 55 

the inertial terms, extending the classical steady Ekman theory (Ekman, 1905; Welander, 1957). Elipot and Gille (2009), in 

particular, assessed transfer functions of the analytical solutions based on spectral analysis of the observations. 

Choi et al. (2023) showed that a simple analytical solution from the steady Ekman theory (Ekman, 1905; Welander, 

1957) successfully reconstructs low frequency surface current in the Yellow Sea, that motivates this study to use a simple 

analytical solution from the time-dependent Ekman theory. This study builds techniques using the time-dependent Ekman 60 

theory to generate velocity fields considering both high and low frequency signals (Section 2). We expand the solution to 

consider time-dependency in the pressure gradient terms to resolve tidal velocity components. Based on the analytical solution 

and transfer function approach, diagnostic surface current velocity fields considering inertial term, which resolve high 

frequency variability, were derived and verified by buoy and drifter observations in the Yellow Sea. The velocity fields based 

on the time-dependent Ekman theory are compared with those based on the steady Ekman theory used by Choi et al. (2023). 65 
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Figure 1: Geographic locations of the study area.  Red triangle indicates location of the Southern Jeju Island buoy from 70 

the Korea Hydrographic and Oceanographic Agency (KHOA). Yellow solid lines indicate the trajectories of 

drifterdrifters from the National Institute of Fisheries Science (NIFS) and solid circles indicate the initial launching 

positions of the drifters. The orange arrow field shows the geostrophic current fields averaged over the study period 

(2013 – 2023). 



 

5 

 

2 Theory 75 

2.1 Governing equation and the analytical solution for time-dependent Ekman theory 

The governing equation and vertical boundary conditions for time-dependent Ekman theory are given by 

∂𝑢⃗ 

∂𝑡
+ 𝑓𝑖𝑢⃗ = −𝑔

∂𝜂
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 + 𝐴𝑧
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𝑢⃗ |𝑧=−ℎ = 0          (1𝑐) 80 

where 𝑢⃗ = 𝑢 + 𝑖𝑣 represents horizontal velocities in the complex coordinates, with 𝑖 as the imaginary unit (𝑖 = √−1), 𝑡 is 

time, 𝑓 is the Coriolis parameter, 𝑔 is gravitational acceleration, 𝐴𝑧 is the vertical eddy viscosity assumed to be constant, and 

𝜕𝜂/𝜕𝑛⃗ = 𝜕𝜂/𝜕𝑥 + 𝑖𝜕𝜂/𝜕𝑦 is barotropic pressure gradient in the 𝑥 and 𝑦 direction and presumed to be a given complex time 

series. In the surface and bottom boundary conditions (1b) and (1c), 𝜏 𝑠 = 𝜏𝑥
𝑠 + 𝑖𝜏𝑦

𝑠  is the surface wind stress, 𝜌0 is a constant 

density, ℎ is water depth. The governing equation (1) is identical to that of Choi et al. (2023) except for considering the inertial 85 

term. It must be noted that assuming constant eddy viscosity is a strong idealization, which can be relaxed through more 

complex analytical solution considering spatiotemporal variability of eddy viscosity (Elipot and Gille, 2009; Wenegrat and 

McPhaden, 2016; Lilly and Elipot, 2021). Nonetheless, this assumption is retained here to focus on the impact of incorporating 

inertial terms and to ensure consistency with the formulation in Choi et al. (2023). Using simplicity of (1), the equation will 

be used to inversely estimate monthly representative 𝐴𝑧 from the velocity observations (Section 3.2.2). By using constant eddy 90 

viscosity consistent with Choi et al. (2023), where steady Ekman theory was used, impact of considering inertial terms can be 

solely assessed by the comparison between steady and time-dependent (non-steady) Ekman theory (discussed in Section 4). 

 The boundary value problem (1) is given by a linear nonhomogeneous partial differential equation. It includes an 

interior forcing term given by the barotropic pressure gradient 𝜕𝜂/𝜕𝑛⃗   and surface wind stress forcing 𝜏 𝑠 via surface boundary 

condition (1b). This partial differential equation can be solved using typical approaches using the superposition principle. 95 

Based on this principle, the total velocity can be decomposed as 𝑢⃗ =  𝑢⃗ 𝑒 + 𝑢⃗ 𝑔, where 𝑢⃗ 𝑒 represents the wind-driven (Ekman) 

component, and 𝑢⃗ 𝑔  denotes pressure-driven (geostrophic) component. The governing equations (1) can be separated into 

equations for each component: 

𝜕𝑢⃗ 𝑒
𝜕𝑡
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𝜕𝑢⃗ 𝑔
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Note that (2) was solved and analyzed by Elipot and Gille (2009). For the arbitrary wind stress that can be expressed 

as Fourier series 𝜏 𝑠(𝑡) = ∑ 𝜏̂𝑛𝑒
−𝑖𝑤𝑛𝑡∞

𝑛=−∞ , the solution at 𝑧 = 0 is given by  

𝑢⃗ 𝑒 = ∑
2

𝜌0𝐷𝑒𝑛(𝑓 − 𝑤𝑛)𝑗
tanh (

𝑗ℎ

𝐷𝑒𝑛
)

⏟                  
𝐻𝑒𝑛

∞

𝑛=−∞

𝜏̂𝑛𝑒
−𝑖𝑤𝑛𝑡           (4) 

where 𝑗 = 1 + 𝑖 and 𝐷𝑒𝑛 = √2𝐴𝑧/(𝑓 − 𝑤𝑛) indicating the Ekman depth modified by the presence of the inertial term. 𝐻𝑒𝑛 

represents the transfer function discussed by Elipot and Gille (2009). Similarly, solution to (3) can be obtained by the typical 110 

approach to solve the linear nonhomogeneous differential equation (e.g., method of undetermined coefficients). With 𝜕𝜂/𝜕𝑛⃗ =

∑ 𝜂̂𝑛
′ 𝑒−𝑖𝑤𝑛𝑡∞

𝑛=−∞ , the solution at 𝑧 = 0 is given by 

𝑢⃗ 𝑔 = ∑
𝑖𝑔

𝑓 − 𝑤𝑛
(1 −

1

cosh(𝑗ℎ/𝐷𝑒𝑛)
)

⏟                  
𝐻𝑔𝑛

𝜂̂𝑛
′ 𝑒−𝑖𝑤𝑛𝑡

∞

𝑛=−∞

         (5) 

where 𝐻𝑔𝑛
 represents the transfer function for the velocity component. The first and second terms in (5) represent the pressure 

gradient-driven (geostrophic) current and its bottom frictional response for the current. The detailed method calculating the 115 

velocity components using (4) and (5) will be illustrated in Section 3.2. 

 

2.2 Dynamics of time-dependent Ekman theory and limitation of the classic steady Ekman theory 

The solution to (1), given by the summation of (4) and (5), aligns with the steady generalized Ekman solutions (Ekman, 

1905; Welander, 1957; revisited by Choi et al., 2023), extending them to include time-dependency of the momentum (inertia 120 

term). The steady state solution is given by 

 

𝑢⃗ ∗ =
2𝜏 

𝜌0𝑓𝐷𝑒
∗𝑗
tanh (

𝑗ℎ

𝐷𝑒
∗
)

⏟          
𝑢⃗⃗ 𝑒
∗

+ 𝑖
𝑔

𝑓

𝜕𝜂

𝜕𝑛⃗ 
(1 −

1

cosh(𝑗ℎ/𝐷𝑒
∗)
)

⏟                
𝑢⃗⃗ 𝑔
∗

           (6) 

where 𝐷𝑒
∗ = √2Az/𝑓 is the traditional (steady) Ekman depth. In this steady-state solution, the first term represents the Ekman 

component (𝑢⃗ 𝑒
∗), while the second term describes the geostrophic current and its bottom Ekman component (𝑢⃗ 𝑔

∗ ). The solution 125 

of time-dependent Ekman theory, (4) and (5), are almost identical to that of steady Ekman theory, (6), except that 𝑓 in (6) is 

replaced by 𝑓 − 𝑤𝑛. Dynamics of the time-dependent Ekman theory without the pressure gradient term, (4), was discussed in 
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the study by Lilly and Elipot (2021). The time-dependent Ekman depth 𝐷𝑒𝑛  becomes a function of the forcing frequency 𝑤𝑛. 

When 𝑤𝑛 ≪ 𝑓 (low frequency forcing), the dynamics are dominated by Coriolis force, governing classic steady Ekman and 

geostrophic currents. Conversely, when 𝑤𝑛 ≫ 𝑓 (high frequency forcing), Coriolis force becomes negligible relative to the 130 

inertia, and the system responds primarily with acceleration in the direction of the forcing. This response cannot be described 

by the classic steady Ekman theory, but is represented in the time-dependent solution, which better explains surface current 

responses under both low and high forcing frequency. 

It is worth noting that resonance occurs when the frequency approaches the Coriolis frequency. In the limit of 𝑤𝑛 →

𝑓 (resonance condition), (4) and (5) converge, respectively, to 135 

𝑢⃗ 𝑒  =
τ̂𝑛
𝜌0

ℎ

𝐴𝑧
𝑒−𝑖𝑓𝑡           (7) 

𝑢⃗ 𝑔 = −𝜂̂𝑛
′
𝑔ℎ2

2𝐴𝑧
𝑒−𝑖𝑓𝑡           (8) 

which are the exact solutions to (2) and (3) in case of 𝑤𝑛 = 𝑓, respectively. Consequently, when 𝑤𝑛 → 𝑓, the velocity amplifies 

to specific constants rather than 𝑢⃗ → ∞ because of finite depth and the frictional bottom boundary condition. 

 140 

3 Data and methods 

3.1 Data 

In this study, the velocity fields were derived using altimetric sea surface height and the corresponding geostrophic 

current fields provided by the Copernicus Marine Environment Monitoring Service (CMEMS), as well as wind stress fields 

from the ERA5 reanalysis dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). This 145 

configuration is identical to that of Choi et al. (2023) and Globcurrent velocity fields (Rio et al., 2014). The altimetric sea 

surface height and geostrophic current fields were provided at a spatial resolution of 0.125° × 0.125° and a daily temporal 

resolution. The altimetry measurements were processed using low-pass filtering to remove high frequency components, such 

as tidal and inertial oscillations, and then gridded using an optimal interpolation technique (Saraceno et al., 2008; Pujol et al., 

2016; Taburet et al., 2019). The wind stress fields were provided at a spatial resolution of 0.25° × 0.25° and an hourly temporal 150 

resolution. Park et al. (2018) demonstrated that wind fields from the ECMWF reanalysis dataset show the highest comparability 

with in-situ observations around the Korean Peninsula. Ocean bathymetry, with a spatial resolution of 15 arc-seconds, was 

obtained from the General Bathymetric Chart of the Oceans (GEBCO) and is used as input for the steady and time-dependent 

Ekman theory models. TOPEX/Poseidon global tidal model (TPXO9) is a high-resolution global tidal model from Oregon 

State University used to estimate tidal elevation. TPXO9 has a horizontal resolution of 0.033° x 0.033°. The TPXO9 is a 155 

sophisticated inverse model from Oregon State Tidal Inversion Software (OTIS) based on numerous altimetric and tide-gauge 

measurements (Egbert and Erofeeva, 2002). 
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In addition, we validate the velocity fields using in-situ velocity measurements from buoy (Eulerian) and surface 

drifter (Lagrangian) measurements. Buoy data provided by the Korea Hydrographic and Oceanographic Agency (KHOA) 

(available at http://www.khoa.go.kr/oceangrid), which offers real-time and predictive information on oceanographic 160 

parameters. (red triangle in Figure 1). The KHOA buoy dataset covers 2012 to the present; however, due to missing and 

erroneous data before 2015, the observations from 2015 to 2023 were used in this study. Outliers were removed by excluding 

values beyond five standard deviations. Drifter data were obtained from the Jellyfish Information System (yellow lines and 

circles in Figure 1). The drifter observations were conducted from 2015 to 2017 during summer seasons. We derived drifter 

velocities from the position changes by computing successive displacements at each timestep. 165 

3.2 Methods 

3.2.1 Surface current reconstruction 

This study aims to estimate surface currents with high temporal resolution (hourly). To address this objective, the 

reconstruction process was designed to align the grids of the ERA5 wind stress and altimetric sea surface height fields. 

Therefore, ERA5 wind stress was spatially interpolated onto the grid of the altimetric sea surface height (𝜂altimetry), and 170 

𝜂altimetry was then temporally interpolated using the Fourier transform interpolation, which conserves the original spectrum 

of 𝜂altimetry. It is worth noting that spiky errors are caused when linear interpolation is used in time (not shown here), so it is 

particularly meaningful to conserve the original spectrum of the data during temporal interpolation. For the pressure gradient 

forcing, as mentioned in Section 3.1, high frequency signals were removed in the 𝜂altimetry during the gridding processes. To 

alleviate the absence of high frequency components in 𝜂altimetry, sea surface height was reconstructed by simple summation 175 

of 𝜂altimetry and tidal elevation 𝜂tide based on TPXO9, so 𝜂 = 𝜂altimetry + 𝜂tide. This is an ad hoc approach caused by lack of 

spatiotemporal sampling ability of observations. It must be noted that the reconstructed 𝜂 incorporates both low frequency and 

several high frequency components (tidal harmonics) but cannot consider entire spectrum of real sea surface height (will be 

discussed in Section 5.3). 

The surface currents are estimated based on (4) and (5) following the below steps: 𝜏̂𝑛  and 𝜂̂𝑛
′ , depending on the 180 

frequency 𝑤𝑛, are obtained by Fourier transforming time series of 𝜏 𝑠 and 𝜕𝜂/𝜕𝑛⃗ . And then, 𝐻𝑒𝑛 and 𝐻𝑔𝑛
 are multiplied by 

𝜏̂𝑛and 𝜂̂𝑛
′ , respectively. Finally, inverse Fourier transforms were performed to 𝐻𝑒𝑛𝜏̂𝑛  and 𝐻𝑔𝑛

𝜂̂𝑛
′ , that derive the surface 

current components 𝑢⃗ 𝑒 and 𝑢⃗ 𝑔, respectively, in the time domain. 

3.2.2 Optimal eddy viscosity parameter estimation 

It is worth noting that more generalized analytical solutions resolving variability in the eddy viscosity are known 185 

(Elipot and Gille, 2009; Wenegrat and McPhaden, 2016; and Lilly and Elipot, 2021). Nevertheless, we used the solution 

assuming constant eddy viscosity, (4) and (5), because this study does not aim to examine the variability of eddy viscosity in 



 

9 

 

the region, but to study influence of the inertia that was not considered in previous diagnostic velocity fields (Bonjean and 

Lagerloef, 2002; Rio et al., 2014; Choi et al., 2023). As mentioned above (Section 2), constant eddy viscosity was assumed 

for simplicity and consistency with the previous study, as a result, but it cannot consider the seasonal variation of the eddy 190 

viscosity in the Yellow Sea (Hwang et al., 2014) influenced by the East Asian monsoon. To alleviate this issue, it is assumed 

that the eddy viscosity is a piecewise constant function, so the eddy viscosity is defined to be same constant value within a 

month. The value of the month was inversely estimated through sensitivity experiments by optimizing the eddy viscosity in 

𝑢⃗ 𝑒  to minimize discrepancies with the buoy observations. The observation for 𝑢⃗ 𝑒  is defined as observed velocities minus 

altimetric geostrophic and tidal current components 𝑢⃗ tide that was calculated by T_TIDE algorithm (Pawlowicz et al., 2002). 195 

The eddy viscosity was optimized within the tested range of 0.001 – 0.2 m² s-1 with 0.001 m² s-1 interval. For each 

month, the analytical solution was computed using the predefined eddy viscosity. The Root-Mean-Square Error (RMSE) was 

calculated to measure the difference between the observed and estimated velocities and was then used as the objective function 

for optimizing the best-fit eddy viscosity estimation. Median values of the eddy viscosity estimated within each month (Figure 

3) are used to calculate velocity fields in this study. 200 

4 Results 

4.1 Estimation of eddy viscosity based on the optimization approach 

Figure 2 presents the optimized vertical eddy viscosity (𝐴𝑧) values, revealing distinct seasonal variability. The results 

indicate higher 𝐴𝑧 values during winter (December – February), with a median value of approximately 0.17 m2 s-1 and a 

maximum reaching 0.2 m2 s-1. In contrast, summer (June – August) exhibits lower 𝐴𝑧 values, with a median around 0.02 m2 s-205 

1 and minimal fluctuations. This seasonal variation is closely linked to the East Asian monsoon system, where stronger winter 

north-westerly winds enhancing vertical mixing, rather than weaker southerly winds during summer (Hwang et al., 2014). The 

results align with previous parameterization studies (Csanady, 1981; Cushman-Roisin and Beckers, 2011), which suggest that 

Ekman depth—and consequently 𝐴𝑧 is strongly modulated by wind stress. Note that Csanady (1981) and Cushman-Roisin and 

Beckers (2011) parameterized the Ekman depth (𝐷𝑒
∗) as a function of wind stress, where eddy viscosity can be expressed as 210 

𝐴𝑧 = 𝑓𝐷𝑒
∗2/2. Additionally, Choi et al. (2023) showed that this parameterization effectively applies to the Yellow Sea, 

reinforcing the robustness of these estimates. The performance of this optimization approach was similar with Choi et al. (2023) 

using the Ekman depth parameterization, that will be shown and further assessed in Section 4.2 through comparisons with 

observational data. 
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 215 

Figure 2: Box plots for the optimal eddy viscosity parameter for each month, minimizing the Root-Mean-Square Error 

(RMSE) between surface velocities derived from (3) and buoy velocities. The whiskers (plus symbols) indicate 

variability outside the upper and lower quartiles, and the blue line in the blue box shows the median value, that were 

used as representative values to calculate surface current. 

 220 

4.2 Verification of time-dependent Ekman theory model with observation and comparison with the steady Ekman 

theory model 

The comparison between velocities estimated using the time-dependent Ekman theory model and observed velocities 

is presented in Figure 3. Figures 3a and b show the comparison with buoy-observed velocities, showing correlation coefficients 

(𝑅) of 0.70 and 0.66 for zonal and meridional components, respectively, and corresponding RMSE values of 0.15 m s⁻¹ for 225 

both components. Figures 4c and d show the comparison results with drifter-observed velocities. In this case, the correlation 

coefficients were higher than those for the buoy observations, with 0.78 for the zonal component and 0.82 for the meridional 

component. The RMSE for each component are 0.23 m s-1 and 0.24 m s-1, respectively. As shown in Figure 1, the buoy 

observations (red triangle) are located in deeper ocean than the drifter trajectories (yellow circles and lines) concentrated in 

the shallower central and western Yellow Sea. The buoy location can be characterized by a stronger influence of the Kuroshio 230 

current branch (stronger geostrophic current component; Liu and Gan, 2012) and a weaker tidal current component (Hwang et 

al., 2014). This difference in measurement locations suggests that different hydrodynamic processes influence each observation 

dataset. Despite these regional differences, the model performs consistently across both observation locations, indicating its 

capability to represent surface current variability in the Yellow Sea. It is worth noting that the correlation with drifter 
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observations is notably higher than that with buoy observations (Figure 3), likely due to the stronger tidal components, which 235 

are periodic so relatively easier to estimate accurately using a reliable 𝜂tide.  
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Figure 3: Comparison between time-dependent Ekman velocities with observations. (a) and (b) show comparisons with 

buoy-observed velocities for the zonal and meridional components, respectively. (c) and (d) display comparisons with 240 
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drifter-observed velocities for the zonal and meridional components. The color scale indicates data density in 

logarithmic scale. 

 

The steady Ekman theory model (𝑢⃗ ∗) based on Choi et al. (2023) and the time-dependent Ekman theory model (𝑢⃗ ) 

proposed in this study were compared to assess their performance in reconstructing surface currents (Figure 4). The results 245 

indicate that 𝑢⃗  much more accurately represents observed surface currents, particularly in capturing high frequency variability, 

whereas 𝑢⃗ ∗ shows notable limitations in this regard. This is reflected in the correlation coefficient of 0.78 and RMSE of 0.18 

m s-1, whereas the steady model shows a significantly lower correlation of -0.08 and a higher RMSE of 0.43 m s-1 (Figures 4a 

and b). Uncorrelated signals between the steady model and observation are because high frequency signals are not properly 

resolved by the governing equation ignoring inertia (Figure 4c and d), discussed in Section 2.2. It is worth noting that the 250 

previous studies considered only low frequency signal (Bonjean and Lagerloef, 2002; Rio et al., 2014; Choi et al., 2023). These 

results indicate that the 𝑢⃗  properly represents high frequency variability in surface current, while the steady model has notable 

limitations. 

Despite limitation of 𝑢⃗ ∗ in capturing high frequency variability, 𝑢⃗ ∗ remains effective in reconstructing low frequency 

surface current. Figures 4c and d compares the daily-averaged velocity from each model (𝑢⃗  and 𝑢⃗ ∗) and that from observation. 255 

The steady model 𝑢⃗ ∗ shows a correlation of 0.53 and RMSE of 0.10 m s-1, while time-dependent model 𝑢⃗  shows a correlation 

of 0.62 and RMSE of 0.09 m s-1 that is slightly improved than steady model. This similarity is expected, as the time-dependent 

Ekman model (4) and (5) mathematically converges to the steady Ekman model (6) when 𝑤𝑛 ≪ 𝑓. This explains that the 

reasonwhy the steady Ekman theory can be used to simulate transport of the surface floating disturbances in the Yellow Sea 

(Choi et al., 2018 and 2023), of which time scale is order of a month much longer than 1/𝑓, so expected to be governed by the 260 

low frequency dynamics (typical steady Ekman dynamics and predominant geostrophic balance). Consequently, the ability of 

the time-dependent Ekman model to represent both low and high frequency components stands out as the most significant. 

While the steady model can resolve only low frequency variability. We expect that the approach in this study can be applicable 

to the regions like the Yellow Sea where stress effect is dominant. 
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Figure 4: Comparison between observation (buoy and drifters) and velocity fields based on the time-dependent (left 

panels) and steady theory model (right panels). The upper panels compare observation with (a) time-dependent and (b) 

steady Ekman model velocities in hourly temporal resolution. The lower panels show comparisons for daily-averaged 
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observation and (c) time-dependent and (d) steady models. The color scale indicates data density in logarithmic scale. 270 

Circles and triangles indicate zonal and meridional velocity components, respectively. 

5 Discussions 

5.1 Limitation of the steady model 

This study demonstrates that the steady Ekman theory model fails to represent high frequency variability in the 

observed velocities, whereas the time-dependent theory model provides a closer representation of the observations in both high 275 

and low frequencies. Figure 5 presents variance ellipses showing spatial patterns of surface current variability in observations 

(black solid ellipses), the steady theory models (𝑢⃗ ∗; blue ellipses), and the time-dependent theory model (𝑢⃗ ; red dashed ellipses) 

within 0.5° × 0.5° bins. The colormap within the grid represents the number of observations. The variance ellipse represents 

current variability: its orientation indicates the dominant direction of variability, and the lengths of the major and minor axes 

correspond to the variances along those directions. These ellipses highlight keyreveal the differences between observed and 280 

modelledmodeled surface current variability. The ellipses estimated from the 𝑢⃗ ∗ deviate from the observed patterns in both the 

magnitude and directional variability. This deviation becomes more pronounced toward the western coast of Korean Peninsula, 

where the ellipses appear enlarged and misaligned. In contrast, 𝑢⃗  produces ellipses that more closely match observed ellipses, 

both in size and orientation, suggesting its improved capability in representing current variability. It is worth noting that the 

drifter observations are predominantly collected during the summer, leading to a seasonal bias, but the buoy observations 285 

include data from all seasons. The observed variance ellipses exhibit patterns that closely resemble the tidal characteristics, 

particularly the M2 tidal component, as reported by Hwang et al. (2014). This consistency further reinforces the dominant 

influence of tides on current variability in the study area. This suggests that 𝑢⃗  effectively simulates tidal currents from the 

reconstructed 𝜂, shown in Section 3.2.1. Importantly, this underscores the role of the inertial term in representing tidal currents, 

as it enables the model to better represent high frequency variations. 290 
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Figure 5: Spatial distribution of observed (black solid line) and modeled variance ellipses by the steady Ekman model 

(𝒖⃗⃗ ∗; blue lines) and the time-dependent Ekman model (𝒖⃗⃗ ; red dashed lines). The color scale indicates the number of 

observations in each bin. All variance ellipses are scaled consistently to represent the velocity magnitudes and directions 

within the respective grids. The steady model fails to resolve proper current variability, on the other hand, the 295 

variabilities are successfully considered by the time-dependent model. 

These diagnostic models (𝑢⃗  and 𝑢⃗ ∗) derive each surface current component, enabling a quantitative evaluation of their 

contributions to the observed velocity. Figure 6 shows Taylor diagrams for both the zonal and meridional velocity components, 

comparing the contributions of each current component, derived from 𝑢⃗  and 𝑢⃗ ∗, to observations. The diagram provides a 

statistical evaluation of model performance using three key metrics: correlation, Standard Deviation (STD), and Root-Mean-300 

Square-Difference (RMSD). The black lined circle markers represent observed velocities from drifters and buoys. Red markers 

represent components derived from 𝑢⃗ , while blue markers indicate those from 𝑢⃗ ∗.  

When the wind-driven components from each model are compared, the time-dependent model (𝑢⃗ 𝑒; red squaresquares 

in Figure 7) shows a higher contribution than the steady models (𝑢⃗ 𝑒
∗ ; blue squaresquares in Figure 6) so time-dependent model 

shows slightly improved agreement with observations. This implies that incorporating the inertial term enhances the model 305 

ability to represent wind-driven currents, particularly in response to high frequency wind forcing. The contribution of the time-

dependency in the wind-driven component can be locally significant (e.g., typhoon event), that will be discussed in Section 

5.2. The pressure-gradient component (upward-pointing triangles in Figure 6) is the dominant contributor to surface current 

variability and its variability, mostly due to the tidal components (downward-pointing triangles). It also shows the most 

significant difference between the two models (red and blue triangles) andlimitation of the steady model is uncorrelated tidal 310 

components from 𝑢⃗ 𝑡𝑖𝑑𝑒
∗  (blue(blue downward-pointing triangles), on the other hand, the time-dependent model successfully 
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resolves the tidal components 𝑢⃗ 𝑡𝑖𝑑𝑒 (red downward-pointing triangles). This alludes that the poor performance in the hourly 

steady model (Figure 4b) is due to misrepresentation for tides. In Figure 6, 𝑢⃗ 𝑔 (red upward-pointing triangletriangles) is located 

closer to the observations with reasonable correlation coefficients (0.69 and 0.72 for the zonal and meridional components, 

respectively). In contrast, 𝑢⃗ 𝑔
∗  (blue upward-pointing triangletriangles) is uncorrelated with observation (-0.18 and -0.09 for the 315 

zonal and meridional components, respectively) due to the issues in tides. These results explain the limitation of the steady 

model ignoring inertia that plays a key role in tides. 

 

Figure 6: Taylor diagram between observations (drifters and buoy, black lined circles), time-dependent Ekman 

components (red markers) and steady Ekman components (blue markers) for the zonal components (a) and meridional 320 

component (b). 𝒖⃗⃗  (red circlecircles) represents the total velocity, 𝒖⃗⃗ 𝒈 (red upward-pointing triangletriangles) indicates 

the pressure-gradient component, 𝒖⃗⃗ 𝐭𝐢𝐝𝐞 (red downward-pointing triangletriangles) indicates tidal component, and 𝒖⃗⃗ 𝒆 
(red squaresquares) indicates wind-driven component, all from the time-dependent Ekman model. 𝒖⃗⃗ ∗  (blue 

circlecircles) represents the total velocity, 𝒖⃗⃗ 𝒈
∗  (blue upward-pointing triangletriangles) indicates the pressure-gradient 

component, 𝒖⃗⃗ 𝐭𝐢𝐝𝐞
∗  (blue downward-pointing triangletriangles) indicates tidal component, and 𝒖⃗⃗ 𝒆

∗  (blue squaresquares) 325 

indicates wind-driven component, all from the steady Ekman model. 

 

It is worth noting that the contribution of each surface current component, explaining variance of the observation, can 

be quantified by the squared values of the correlation in Figure 6. The pressure-gradient component (red upward-pointing 

triangles in Figure 6), especially, tidal component (red downward-pointing triangles in Figure 6), is the most dominant 330 

contributor to surface current variability, and other components have relatively minor role in explaining the variance of the 
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observation. However, in the longer time scales than the periods of tidal components (e.g., daily averaged velocity fields; 

Figure 7), contribution of the tidal components (red downward-pointing triangles in Figure 7) dramatically decreases and those 

of the other components, such as geostrophic current (𝑢⃗ 𝑎𝑙𝑡; yellow upward-pointing triangles in Figure 7) and wind-driven 

current components (red squares in Figure 7), become considerable. Note that the geostrophic current component 𝑢⃗ 𝑎𝑙𝑡  is 335 

defined by the geostrophic balance equation and estimated by only altimetric sea surface height. 

 This is not surprising because the tidal components are purely periodic sinusoidal functions, whose means over their 

periods are intrinsically zero. Consequently, contribution of the velocity components varies with the time scale. For currents 

associated with the transport of the floating substances across the Yellow Sea, with a time scale on the order of months, non-

tidal low frequency current components (geostrophic and Ekman currents) play the dominant role (Figure 7), even though tides 340 

outperform the other components on the short time scale (Figure 6). Based on the correlation shown in Figure 7, Ekman current 

components contribute slightly more than geostrophic currents in the Yellow Sea, that is consistent with Choi et al. (2018). 

 

Figure 7: Taylor diagram comparing observed daily-averaged surface velocities (drifters and buoy, black-lined circles) 

with time-dependent Ekman model components (red markers) for (a) zonal and (b) meridional. 𝒖⃗⃗  (red circles) 345 

represent the time-dependent Ekman total velocity. 𝒖⃗⃗ 𝒆  (red squares) indicates wind-driven component, 𝒖⃗⃗ 𝒈  (red 

upward-pointing triangles) indicates the pressure-gradient component, 𝒖⃗⃗ 𝐭𝐢𝐝𝐞  (red downward-pointing triangles) 

indicates tidal component. 𝒖⃗⃗ 𝐚𝐥𝐭  (yellow upward-pointing triangles) indicates the geostrophic current component 

derived from altimetry (𝜼𝐚𝐥𝐭𝐢𝐦𝐞𝐭𝐫𝐲). 
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5.2 Damped inertial oscillation caused by a typhoon 350 

It is shown that tidal currents are the most dominant component in the variation of surface currents, but other 

components contribute to reconstructing more realistic surface currents in the study area (Figure 6). In this section, cases where 

other components (wind- and friction-driven components including inertial oscillations) become locally significant are shown 

and discussed. Figure 78 presents the time series of surface current responses to Typhoon Chanthu in 2021 (KMA, 2021) at 

the buoy site, including wind stress (Figures 7a8a and b), observed velocities from the buoy (black solid lines), and diagnostic 355 

velocities estimates derived from approaches with (time-dependent theory model 𝑢⃗ ; red solid lines) and without (steady theory 

model 𝑢⃗ ∗; blue solid lines) the inertial term. 

The M2 tidal constituent is dominant (Figures 7c8c and d) and the time-dependent model properly captures the signals 

from M2 tidal component, on the other hand, steady model exhibits poor phase agreement with observation. In addition, 

considerable wind-driven component is also shown during the typhoon event (blue-shaded area in Figure 78). Between 360 

September 16 and 20, which includes the typhoon-affected period, non-tidal components became even more dominant than 

tidal component; correlation coefficients between observed (black solid line in Figure 7c8c and d) and reconstructed currents 

without tides (red solid line in Figure 7e8e and f) reached 0.73, which is notably higher than correlation of tidal component, 

0.45, based on T_TIDE. This indicates that, although tide generally dominates, the other (wind-driven) components play a 

significant role under strong wind events like typhoons. 365 

Removing the tidal component from observation (𝑢⃗  − 𝑢⃗ tide) reveals clear identification of typhoon-induced inertial 

oscillations after the typhoon event (Figures 7e8e and f). The steady model fails to represent the inertial oscillation, as it only 

reflects low frequency variations. This limitation is evident as the steady model neglecting inertia cannot consider the inertial 

oscillation, governed by balance between the Coriolis force and inertia. In contrast, the time-dependent model clearly resolves 

the inertial oscillation and also its damping (Figure 7e8e and f). Following the abrupt perturbation from the typhoon, inertial 370 

oscillations are developed as the current responds to the typhoon and then gradually decay over time, reflecting dissipative 

processes in post-storm currents (Figures 7e8e and f). Owing to the simplicity of the governing equation (1), the decay rate 

can be analytically determined by expanding boundary value problem (1) to initial-boundary value problem with initial 

condition 𝑢⃗ (𝑧, 𝑡 = 0) = 𝑢⃗ 0(𝑧) where 𝑢⃗ 0(𝑧) is arbitrary initial velocity profile. Detailed mathematical derivations are in the 

Appendix. Considering an arbitrary initial condition to (1) yields additional velocity component 𝑢⃗ 𝑖 associated with the initial 375 

condition is given by 

𝑢⃗ 𝑖 =∑𝑒−𝑖𝑓𝑡
∞

n=0

𝑒−𝛾𝑛𝑡𝑈⃗⃗ 𝑛 cos(𝑘𝑛𝑧)           (9) 

where 𝛾𝑛 = 𝐴𝑧𝑘𝑛
2 indicates the decay rate of n-th mode and 𝑢⃗ 𝑖(𝑧, 𝑡 = 0) = 𝑢⃗ 0(𝑧) − 𝑢⃗ 𝑒(𝑧, 0) − 𝑢⃗ 𝑔(𝑧, 0) = ∑ 𝑈⃗⃗ 𝑛 𝑐𝑜𝑠(𝑘𝑛𝑧)

∞
𝑛=0 . 

The inertial oscillations and attenuations are described by 𝑒−𝑖𝑓𝑡 and 𝑒−𝛾𝑛𝑡  in (9), respectively. It is worth noting that the decay 

rate 𝛾𝑛 depends on the wavenumber 𝑘𝑛 of vertical velocity profile. Therefore, it is difficult to determine precise decay rate of 380 

the surface current without information about the vertical velocity profile. Nevertheless, the slowest (minimum) decay rate 
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occurs when 𝑛 = 0, so 𝛾0 = 𝐴𝑧𝑘0
2 = 𝐴𝑧(𝜋/(2ℎ))

2, which is not only applicable to surface current but also the most important 

value because its reciprocal indicates the longest time scale for the signals to arrive. In Figures 7e8e and f, the red dashed line 

indicates exponential decay using the slowest decay rate and 𝐴𝑧 value for September (shown in Figure 2). It successfully 

explains decay of the inertial oscillation shown in the time-dependent theory model 𝑢⃗ . 385 

The time-dependent model shows slightly stronger damping compared to the observation (Figure 7e8e and f). Despite 

the overestimated damping, it must be highlighted that the time-dependent model successfully reconstructs the overall surface 

currents in the Yellow Sea (Figure 3). The time-dependent model plausibly captures the damped inertial oscillation, that is 

totally ignored by the steady model (Figure 7e8e and f). The simplicity of theory model provides valuable insight into the 

attenuation of inertial oscillations. It can be explained how vertical eddy viscosity and bottom friction attenuates signals that 390 

occurred in the past: the decay rate depends on the wavenumber of vertical velocity profile but the slowest damping rate can 

be applicable to surface current. Ultimately, this study underscores the advancement of diagnostic approaches in high 

frequency processes with the inclusion of the inertial term. 
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Figure 78: Time series comparison of buoy-observed velocities (black lines) and modeled velocities from the time-395 

dependent (red lines) and steady (blue lines) Ekman theory models during Typhoon Chanthu in September 2021. The 

period when the typhoon passed over the buoy observation location is highlighted by blue shading. Upper panel (a) and 

(b) show time series of wind stress at the buoy site. Middle panel (c) and (d) show direct comparison between observed 

and modeled velocities. Lower panel (e) and (f) show comparison of de-tided velocity time series, where the red-dashed 

line represents the arbitrary exponential function using 𝛄𝟎 = 𝑨𝒛(𝝅/(𝟐𝒉))
𝟐 , with 𝑨𝒛 corresponding to the September 400 

eddy viscosity shown in Figure 2. 
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5.3 Resolved and unresolved spectrums by the time-dependent Ekman theory model 

Figure 89 presents the spectrum of zonal (upper panels) and meridional (lower panels) velocity components. The left 405 

panels (Figure 8a9a and c) show buoy-observed velocities while the right panels (Figure 8b9b and d) show reconstructed 

velocities from the time-dependent Ekman model. The red vertical dashed line indicates the local Coriolis frequency (𝑓/2𝜋), 

and the labeled peaks correspond to dominant tidal constituents: the diurnal (O1 and K1), and semidiurnal (M2, S2 and N2) 

tidal components. To highlight the dominant spectral patterns, band-averaged spectrum (bold solid lines) is also shown. 

The time-dependent model (right panels) clearly represents tidal components, showing distinct spectral peaks at 410 

specific constituents in observation (left panels). In addition to low-frequency signals, the model spectrum also represents the 

resonant response near the inertial oscillation frequency. As discussed by Kim and Crawford (2014) and Elipot and Lumpkin 

(2008), resonance occurs when the frequency of external forcing is close to the 𝑓/2𝜋, amplifying the ocean's response to the 

forcing. This spectral peak near the 𝑓/2𝜋 is shown in the observation (black solid lines in left panels) and resolved by the 

model (red solid lines in right panels). Consequently, the time-dependent Ekman theory model 𝑢⃗  accurately resolves the 415 

resonant signals near the 𝑓/2𝜋 although the model underestimates high frequency signals. 
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Figure 89: Spectrum amplitude of observed (left panels (a) and (c)) and modeled (right panels; (b) and (d)) velocity for 

the zonal (upper panels; (a) and (b)) and meridional (lower panels; (c) and (d)) components. Blue lines represent the 

raw spectra. The bold solid lines represent the band-averaged spectra with 100-point window from observations (bold 420 

black lines in left panels) and the time-dependent model (bold red lines in right panels), respectively. Major tidal 

constituents (O1, K1, M2, S2, and N2) are indicated by yellow markers, and the vertical dashed red line denotes the 

local Coriolis frequency (𝒇/𝟐𝝅).  

 

This underestimation can be attributed to the uncertainties in the reconstruction of 𝜂 using the ad hoc approach shown 425 

in Section 3.2.1. Since the pressure-gradient component   is calculated by the reconstructed 𝜂, its accuracy directly impacts 

spectral characteristics. The spectrum of 𝜕𝜂/𝜕𝑥  (Figure 9a10a) and 𝜕𝜂/𝜕𝑦  (Figure 9b10b) reveals a limitation in the 

reconstruction approach, that considers only low frequency signals estimated from altimetry and several high frequency modes 

corresponding tidal harmonics. The simple summation of the low frequency component 𝜂altimetry and the tidal component 

𝜂tide fails to fully capture high frequency variability and misses many intermediate and high frequency modes (Figure 910). 430 

Consequently, the ad hoc 𝜂 reconstruction is not sufficientlysufficient to resolve entire spectrum. We expect that this limitation 
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can be alleviated as availability for 𝜂 observation increases, for example, by using blended sea surface height field by tide 

gauge data. Nonetheless, this study remains valuable as it demonstrates the ability to capture high frequency variability 

including tides and inertial oscillations, which are predominant in the study area. 

 435 

 

Figure 910: Spectrum amplitude of the reconstructed sea surface height gradients: (a) 𝝏𝜼/𝝏𝒙 and (b) 𝝏𝜼/𝝏𝒚. Blue lines 

indicate raw spectra and black bold lines represent band-averaged spectra using a 100-point window. Major tidal 

constituents (O1, K1, M2, S2, and N2) are marked with yellow triangles, and the vertical red dashed line indicates the 

local Coriolis frequency (𝒇/𝟐𝝅). These spectra show limitation of the simple sea surface height reconstruction that 440 

resolves only low frequency signals from altimetry and several high frequency modes from tides. Many intermediate 

and higher frequency signals are not resolved.   

6 Conclusion 

The usefulness of the diagnostic surface velocity field was reported by many previous studies (Bonjean and Lagerloef, 

2002; Rio et al., 2014; Choi et al., 2018; Choi et al., 2023), but steady models considering only geostrophic and Ekman current 445 

components have been used. To the best of our knowledge, this is one of the first studystudies developing the diagnostic 

velocity field considering the inertial terms in the momentum equations., along with Ubelmann et al. (2025). Although their 

response function approach, in time domain, is equivalent to our transfer function method, in frequency domain, based on the 

convolution theorem, there are key differences. To be specific, they used data-driven empirical modeling approaches for the 

response function, whereas we adopted a stricter formulation based on the analytical solution to the momentum equation. It is 450 

worth noting that Ubelmann et al. (2025) used a slab model, which is vertically averaged, for their rationale and discussion. 

On the other hand, the governing equations of this study are not vertically averaged. The fact that we generalized the time-

dependent Ekman theory to incorporate pressure gradient term, thereby resolving tides, is our unique contribution. 

 This study evaluates the performance of the time-dependent Ekman theory model and compares the model with the 

steady Ekman theory model (explicitly and implicitly used by the previous studies) in the Yellow Sea. The time-dependent 455 
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model successfully considers not only low frequency velocity components (geostrophic and Ekman currents) but also high 

frequency components (inertial oscillations and tides). The tidal currents outperform the other velocity components, such as 

geostrophic and Ekman current components, at short time scales described by the hourly diagnostic velocity fields (Figure 6). 

On the other hand, the contribution of tides in longer time scales becomes negligible because averaged values over their periods 

are zero (Figure 7). This implies that the dominant current component transporting a subject is determined by the time scale: 460 

surface floating substances crossing the Yellow Sea, whose time scale is order of months, are dominantly determined by low 

frequency velocity components including geostrophic and Ekman current components. Once position of the subject should be 

forecasted as quickly as possible on short time scale (e.g., search and rescue), tides become considerably important. This study 

also highlights the role of the simple analytical solutions improving our understanding for the high frequency surface current 

variability and provides a pathway for future advancements in surface current estimation. 465 

 

Appendix  

 This appendix provides the mathematical formulation of the expanded initial-boundary value problem given by 

∂𝑢⃗ 

∂𝑡
+ 𝑓𝑖𝑢⃗ = −𝑔

∂𝜂

∂𝑛⃗ 
 + 𝐴𝑧

∂2𝑢⃗ 

∂𝑧2
, (𝐴1𝑎) 

𝐴𝑧
𝜕𝑢⃗ 

𝜕𝑧
|
𝑧=0

=
𝜏 𝑠

𝜌0
, (𝐴1𝑏) 470 

𝑢⃗ |𝑧=−ℎ = 0          (𝐴1𝑐) 

𝑢⃗ |𝑡=0 = 𝑢⃗ 0(𝑧).       (𝐴1𝑑) 

It must be noted that the solution (4) and (5) discussed in Section 2 are from the boundary value problem (1), so there is no 

consideration of specific initial condition. The only difference from (1) is the inclusion of the initial condition (A1d), which 

defines an arbitrary initial velocity profile. The total velocity 𝑢⃗  is decomposed as 𝑢⃗ = 𝑢⃗ 𝑏 + 𝑢⃗ 𝑖 , where 𝑢⃗ 𝑏  and 𝑢⃗ 𝑖  are the 475 

component associated with forcings and initial condition, respectively. The governing equation and boundary condition for 𝑢⃗ 𝑏 

are identical to (1) so given by 

∂𝑢⃗ 𝑏
∂𝑡

+ 𝑓𝑖𝑢⃗ 𝑏 = −𝑔
∂𝜂

∂𝑛⃗ 
 + 𝐴𝑧

∂2𝑢⃗ 𝑏
∂𝑧2

, (𝐴2𝑎) 

𝐴𝑧
𝜕𝑢⃗ 𝑏
𝜕𝑧
|
𝑧=0

=
𝜏 𝑠

𝜌0
, (𝐴2𝑏) 

𝑢⃗ 𝑏|𝑧=−ℎ = 0          (𝐴2𝑐) 480 

Therefore, solution to (A2) is the time-dependent theory model 𝑢⃗ 𝑏 = 𝑢⃗ 𝑒 + 𝑢⃗ 𝑔  where 𝑢⃗ 𝑒  and 𝑢⃗ 𝑔  are given by (4) and (5). 

Subtracting (A1) and (A2) yields the governing equation and boundary conditions for 𝑢⃗ 𝑖 given by 

∂𝑢⃗ 𝑖
∂𝑡
+ 𝑓𝑖𝑢⃗ 𝑖 = 𝐴𝑧

∂2𝑢⃗ 𝑖
∂𝑧2

, (𝐴3𝑎) 
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𝐴𝑧
𝜕𝑢⃗ 𝑖
𝜕𝑧
|
𝑧=0

= 0, (𝐴3𝑏) 

𝑢⃗ 𝑖|𝑧=−ℎ = 0.          (𝐴3𝑐) 485 

 The initial condition for 𝑢⃗ 𝑖 can be obtained by rewriting (A1d) and given by 

𝑢⃗ 𝑖(𝑧, 𝑡 = 0) = 𝑢⃗ 0(𝑧) − 𝑢⃗ 𝑏(𝑧, 0).          (𝐴4) 

Consequently, (A3) and (A4) become a problem without forcing terms, 𝜏 𝑠/𝜌0 and −𝑔𝜕𝜂/𝜕𝑛⃗ . Solution to (A3) with the initial 

condition (A4) is given by (9) and can be obtained by typical approach to solve the heat equation. 

Data availability 490 

Sea surface height data are freely available at https://doi.org/10.48670/moi-00148. ERA5 wind stress data can be accessed at 

https://doi.org/10.24381/cds.adbb2d47. TPXO9-atlas barotropic tidal solution are provided by the Oregon State University 

(USA) and is available online for academic research and other noncommercial uses under previous registration 
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Compilation (2024) at https://download.gebco.net/. The surface current algorithm and drifter data utilized in this study will be 495 
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