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RESPONSES TO REVIEWER TWO’S COMMENTS 

We would like to express our sincere appreciation for your professional and 
insightful remarks on our paper. The comments are valuable and helpful for us to 
improve the quality of the manuscript. All the concerns raised have been carefully 
treated and an itemized reply to the reviewer’s comments is presented in the revision 
files. 

 

COMMENT 1:  

How the water use in this study is defined? Including all human-used water? Irrigation, 
industrial, rural and urban use? From river and lake water? And underground water? 

RESPONSE to COMMENT 1: 

We appreciate the reviewer’s question regarding the definition of water use in this 
study. In this study, water use is defined as the total water consumption across three 
major sectors: irrigation, industrial, and urban domestic water use. The water use data 
considered in this study account for both groundwater and surface water sources (e.g., 
rivers, lakes, and reservoirs). The data used in this study were primarily drawn from 
Zhou et al. (2020), which compiled water use data for 341 Chinese prefectures, 
covering water use in irrigation, industry, and domestic sectors. This dataset is based 
on two major nationally coordinated surveys: The First and Second National Water 
Resources Assessment Programs (1965–2000), and Water Resources Bulletins 
published by 31 provincial governments (2001–2013). Both surveys were led by the 
Ministry of Water Resources of China, and used identical methodologies for data 
collection, including definitions, sector classifications, field surveys, and quality 
assurance procedures. These surveys provided comprehensive and consistent data on 
water use by subsector and prefecture, ensuring the robustness of the data for our study. 

We hope this clarifies the definition of water use and its data sources. In the revised 
manuscript, we have explicitly stated that the total water use includes irrigation, 
industrial, and urban domestic use, and encompasses both groundwater and surface 
water sources. 

To address the reviewer’s concern, we have revised the first paragraph in Section 
2.1 ("Water Use Grid Maps Generating") of the manuscript to explicitly define water 
use as the total water consumption across irrigation, industrial, and urban domestic use, 
sourced from both groundwater and surface water (rivers, lakes, and reservoirs). 
Additionally, we have added a detailed explanation of the Zhou et al. (2020) dataset, 
which includes water use data sourced from nationally coordinated surveys conducted 
by the Ministry of Water Resources of China. 
Revised first paragraph in Section 2.1: 

The spatial scale of water use simulation is determined by the spatial scale of the 



input data, so water use grid maps at different spatial scales were prepared as input to 
the simulation model. Here, water use refers to the total water consumption across three 
major sectors: irrigation, industrial, and urban domestic water use. The water use data 
considered in this study account for both groundwater and surface water sources (e.g., 
rivers, lakes, and reservoirs). These data were drawn from Zhou et al. (2020), which 
compiled water use data across 341 Chinese prefectures. The dataset includes water 
consumption data for irrigation, industrial, and domestic uses, incorporating both 
groundwater and surface water sources. The water use data were sourced from two 
major nationally coordinated surveys: the First and Second National Water Resources 
Assessment Programs (1965–2000) and the Water Resources Bulletins published by 31 
provincial governments (2001–2013). Both surveys were led by the Ministry of Water 
Resources of China, and followed consistent methodologies in terms of definitions, 
survey units, sector classifications, field measurements, and quality assurance. To 
obtain the water use grid maps, several steps should be done to convert the water use 
data at administrative survey scale into spatially explicit grids of varying resolutions. 

 

COMMENT 2:  

What is the values of the appropriate spatial scale? Can the model show the appropriate 
spatial scale in unit of km for each region? 

RESPONSE to COMMENT 2: 

We sincerely thank the reviewer for raising this important question. The concept 
of appropriate spatial scale is derived from our previous work (Zhang et al., 2025) and 
refers to the spatial resolution that maximizes the information density of gridded water 
use data while balancing simulation accuracy. This scale varies across prefectures based 
on the local characteristics of each region, such as land area, natural endowments, and 
water use patterns. In our earlier study, we demonstrated the appropriate spatial scale 
for each prefecture through graphical representation, where the size of each circle 
indicated the corresponding unit of kilometers. In the revised manuscript, we can 
confirm that the model is capable of outputting the appropriate spatial scale in unit of 
km for each region, as determined by the deep learning-based spatiotemporal scale 
adaptive selection model. The corresponding values for each prefecture’s appropriate 
spatial scale are available in an Excel file, which we have linked for reference. This file 
contains detailed records of the appropriate spatial scale for each prefecture across all 
water use sectors. 

For further transparency, we have provided a link to the Excel file that lists the 
appropriate spatial scales for each prefecture, broken down by sector (irrigation, 
industrial, and domestic use). This provides a clear, quantitative representation of the 
spatial scales used in our study, which will help readers understand the variability of 
spatial scales across regions. 
Added data link in the last paragraph in Section 2.1: 

Earlier studies often applied a fixed spatial resolution in different regions, which 



could not account for differences in land area, natural endowments, and water use 
structures, and leaded to the discrepancies in information density and potential over- or 
underestimation of water use. To address this issue, an appropriate spatial scale can be 
determined by the deep learning-based spatiotemporal scale adaptive selection model 
(Liu et al., 2021; Zhang et al., 2025). And the model can balance the accuracy of the 
simulation based on the spatial information density of gridded water use data, and its 
results vary across prefectures. The spatial scale selection module in the selection model 
figures out the appropriate spatial scale by maximizing information density while 
balancing simulation accuracy in terms of the Conditional Entropy, Kullback–Leibler 
Divergence Loss and Relative Error performance metrics. This selection module 
enables each prefecture to adopt its own appropriate spatial scale rather than a fix 
resolution. The detailed values of the appropriate spatial scale (in km) for each 
prefecture and water use sector (irrigation, industrial, and domestic) are provided in an 
accompanying Excel file, which can be accessed and downloaded via the data link: 
10.6084/m9.figshare.30445157. This file allows users to examine the spatial 
heterogeneity of the appropriate scale across regions in detail. Finally, total water use 
grid maps are generated at three spatial resolutions: the small scale (e.g., 1 km), the 
appropriate spatial scale as determined by the selection module, and the prefecture scale 
as the statistical survey water use data. 

 

COMMENT 3: 

What is the difference between water use grid maps and water use simulation results? 
It seems that water use grid maps from CNN model has relatively good performances, 
why we need continue to estimate water use at grid-scales using CA model? 

RESPONSE to COMMENT 3: 

We thank the reviewer for this insightful question. The water use grid maps and 
the water use simulation results serve different purposes in our framework and operate 
at distinct stages of the modeling process. 

The CNN-generated water use grid maps represent the spatial distribution of water 
use that has been downscaled from prefecture-level statistical survey data for a given 
year. These maps are constructed based on multiple physical and socioeconomic 
predictors (e.g., NDVI, GDP, precipitation, population) and provide the initial spatial 
state for subsequent simulations. Their role is therefore static: they depict the observed 
or reconstructed spatial pattern of water use at a single point in time. 

In contrast, the Cellular Automata (CA) model is designed to simulate the temporal 
evolution of water use at the grid level. It updates each grid cell iteratively according 
to its own state and the states of its neighboring cells through predefined transition rules 
(probability rule or linear rule). This enables the CA model to capture the dynamic 
interactions among neighboring spatial units and to reproduce how spatial 
heterogeneity and uncertainty evolve over time and across scales. 

While the CNN model effectively downscales statistical data to produce realistic 



spatial patterns, it does not explicitly model spatial dependence or local interactions 
among grid cells—each cell is estimated largely independently based on its predictors. 
The CA model complements this limitation by incorporating spatial adjacency effects 
and feedback mechanisms, which are essential for representing how water use in one 
location is influenced by surrounding conditions (e.g., industrial clustering, shared 
irrigation systems, or regional policy spillovers). Furthermore, the CA model introduces 
temporal dynamics that CNN cannot capture, allowing multi-year simulations and the 
quantification of scale effects and uncertainty propagation across spatial resolutions. In 
summary, the CNN model provides the baseline spatial distribution, while the CA 
model extends it into a dynamic, spatially interactive simulation framework. 

To clarify the conceptual distinction between the CNN-generated water use grid 
maps and the CA-based simulation results, we have substantially revised Section 2.2. 
In the updated version, we emphasize that the CNN model provides the initial spatial 
distribution of water use downscaled from prefecture-level statistical data, while the 
CA model extends this into a dynamic simulation framework that captures spatial 
interactions and temporal evolution. 
Revised first paragraph in Section 2.2: 

The CA model, grounded in complexity theory, is widely used in land use and 
urban growth modeling. It provides a robust platform for simulating spatial phenomena 
governed by local interactions and transition rules (Sapino et al. 2023, Tariq et al. 2023). 
Each cell in a CA model represents a discrete spatial unit that updates its state over time 
based on predefined rules and the states of its neighboring cells. It’s decentralized, 
bottom-up modeling structure enables the simulation of complex global behaviors 
emerging from simple local dynamics (Al-Shaar et al. 2022, Wang et al. 2020). The CA 
model is introduced to simulate the temporal evolution of water use at the grid scale, 
complementing the static spatial distribution obtained from the Convolutional Neural 
Network (CNN) downscaling. While the CNN model effectively reconstructs the 
spatial pattern of water use for each prefecture based on physical and socioeconomic 
predictors (Zhang et al., 2023), it does not explicitly account for the spatial dependence 
and interactions among adjacent grid cells. The CA model addresses this limitation by 
incorporating spatial adjacency effects and feedback mechanisms, allowing each cell’s 
water use to be influenced by its neighbors. This enables the model to represent the 
diffusion and clustering behaviors of water use, which are essential for capturing the 
spatial heterogeneity and dynamic interactions of human water activities. 

Both the probability and the linear update rules are designed and tested to capture 
the dual nature of water use dynamics. The probability rule has been widely applied in 
significant spatial and temporal variation areas in land use simulation and other fields. 
It will be designed here for the water use at different scales. Rather than assuming 
temporal stability, the probability rule explicitly incorporates the variations through 
calibrating the state transition matrix and probability distributions for each prefecture 
independently by the own historical water use record. This rule enables the simulation 
to capture both the structured temporal dependence and the inherent randomness in 
water use, ensuring adaptability to local conditions. The linear update rule assumes that 
changes in water use are more deterministic and can be approximated as a linear 



combination of the cell’s own state and those of its neighbors. This rule is more 
appropriate for long-term, high spatial autocorrelation, and persistent patterns. After 
implementing and comparing the water use simulation results of the two rules in the 
CA framework, their results can assess the relative effectiveness of stochastic versus 
deterministic update mechanisms across different spatial scales. These two rules not 
only strengthen the robustness of the modeling framework but also provide insights into 
the dominant processes shaping water use dynamics in different regions. 

 

COMMENT 4: 

The method part shows that CV, Moran’s I, AIC are used for analyzing the model 
performance, but I did not find their resulting values in the Result or other part. Please 
provide more details about the analysis on spatial Heterogeneity of water use. 

RESPONSE to COMMENT 4: 

We thank the reviewer for this valuable comment. In the original version, we are 
very sorry not to provide sufficient details on the quantitative results of CV, Moran’s I, 
and AIC analyses. In the revised manuscript, these components have been substantially 
clarified and expanded in both the Methods and Results sections. 

A new table (Table 4) and corresponding text have been added to Section 5.3 to 
summarize the national-average CV and Moran’s I values across different spatial scales 
(1 km, appropriate scale, prefecture scale) and under the two update rules (probability 
and linear). These results show a clear trend: CV values decrease with coarser spatial 
scales, indicating smoother and more homogeneous water-use distributions; Moran’s I 
values increase with scale, reflecting stronger regional clustering. The “appropriate 
spatial scale” achieves the best trade-off between detail and stability. Between update 
rules, the probability rule tends to yield higher CV (greater local variability) and 
comparable or slightly higher Moran’s I (stronger clustering), implying that it better 
captures localized stochastic variations while maintaining coherent spatial patterns. 
Additional discussion was added to Section 5.3 to analyze these differences, 
particularly highlighting how the probability rule better preserves local stochasticity, 
whereas the linear rule yields smoother, more deterministic spatial patterns. 

And the complete prefecture-level AIC results for each probability distribution 
type are now provided as an openly accessible Excel dataset. This dataset enables 
readers to review the model calibration outcomes and distributional fits in detail. The 
file is available at the following link: 10.6084/m9.figshare.30445157. 
Added data link about AIC results in Section 4.1.1: 

After determining the optimal 𝑘 values at each scale, the next step is to characterize 
the statistical nature of water use within each state interval. The Akaike Information 
Criterion (AIC) is taken as performance metric to select the most suitable probability 
distribution for each interval in every prefecture. The AIC can balance the model fitness 
and the complexity through penalizing excessive parameters, it can reduce the risk of 
overfitting. The selected distribution types not only fit the historical data well but also 



is used to generate the future scenarios. The complete AIC values and corresponding 
best-fitting distribution types for each prefecture are provided in an open-access Excel 
file, which can be downloaded from: 10.6084/m9.figshare.30445157. The results of the 
optimal probability distributions for water use grids at the three different spatial scales 
(i.e., 1 km scale, appropriate spatial scale, and prefecture scale) are shown in Figure 4. 
These distributions, combined with the calibrated 𝑘 values, form the basis of the 
probability rule CA model’s ability to reproduce the spatial and temporal heterogeneity 
of water use. 
Revised Section 5.3: 

To better understand the spatial heterogeneity of simulated water use, the 
Coefficient of Variation (CV) and Moran’s I were applied to quantify the variability and 
spatial autocorrelation of water use across three spatial scales — 1 km, the appropriate 
spatial scale, and the prefecture scale. These two metrics together reveal how spatial 
scale and model design influence the representation of water-use heterogeneity. 

At the 1 km scale, the highest CV values are observed among the three scales, 
indicating the greatest variability in water use across grid cells. This fine resolution 
captures the most detailed local differences, especially in areas with intensive 
agricultural or industrial activities. Moran’s I results also reveal strong positive spatial 
autocorrelation, suggesting distinct clustering of high- or low-water-use regions, 
particularly around large urban centers and irrigation districts. 

At the appropriate spatial scale, both the CV and Moran’s I values indicate a 
moderated heterogeneity pattern. Compared with the 1 km scale, the variability 
decreases as small-scale noise is smoothed out, while the spatial clustering remains 
evident but less fragmented. This scale provides a balanced representation by capturing 
regional heterogeneity without introducing excessive spatial detail or instability. The 
appropriate spatial scale therefore achieves the optimal trade-off between capturing 
local patterns and maintaining spatial coherence. 

At the prefecture scale, the lowest CV values are recorded, showing that much of 
the local variability has been smoothed. Moran’s I values remain moderately positive, 
reflecting that some regional clustering persists but overall spatial dependence becomes 
less pronounced. At this coarser scale, water-use patterns become generalized, reducing 
the granularity of spatial differences. 

To further quantify these relationships, Table 4 presents the average CV and 
Moran’s I values under different spatial scales and update rules. 
 

Table 4 Comparison of CV and Moran’s I under different spatial scales and update 
rules 

Spatial scale Update rule 
CV 

(mean) 

Moran’s I 

(mean) 
Interpretation 

1 km Probability rule 0.82 0.59 
Highest heterogeneity; strong 

clustering in high-use regions. 

1 km Linear rule 0.78 0.56 
Slightly smoother than the probability 

rule; still high local variation. 



Spatial scale Update rule 
CV 

(mean) 

Moran’s I 

(mean) 
Interpretation 

Appropriate scale Probability rule 0.71 0.72 

Balanced heterogeneity and spatial 

dependence; optimal trade-off 

between detail and stability. 

Appropriate scale Linear rule 0.68 0.70 

Slightly lower variability, indicating 

smoother transitions among 

neighboring cells. 

Prefecture scale Probability rule 0.60 0.74 
Variability largely smoothed; 

moderate clustering remains. 

Prefecture scale Linear rule 0.57 0.73 
Lowest heterogeneity; strong regional 

aggregation of water-use patterns. 

In addition to the influence of spatial scale, the choice of update rule also affects 
the spatial heterogeneity of simulated water use. Across all scales, the probability rule 
yields slightly higher CV values than the linear rule, indicating that it better preserves 
local variability and stochastic fluctuations of water use. This difference stems from the 
probabilistic state-transition mechanism, which allows grid-level water use to fluctuate 
around its expected trajectory, capturing year-to-year uncertainty that is smoothed out 
in the deterministic linear formulation. 

Conversely, Moran’s I values under the linear rule are comparable to or slightly 
lower than those from the probability rule, suggesting smoother and more spatially 
continuous water-use patterns. This indicates a stronger spatial-averaging effect of the 
deterministic update mechanism, which may be advantageous for long-term or 
regionally aggregated assessments but less effective in representing local variability. 
Overall, both spatial scale and update rule jointly shape the representation of spatial 
heterogeneity in water-use simulation. The 1 km scale captures the most detailed 
variability, the appropriate spatial scale provides a balanced and realistic depiction of 
regional patterns, and the prefecture scale generalizes spatial differences. Meanwhile, 
the probability rule emphasizes local randomness and uncertainty, whereas the linear 
rule accentuates deterministic spatial continuity. 

 

COMMENT 5: 

Figure 4 and Figure 6, it seems not necessary to show all plots from 1998 to 2013, and 
it is not easy to recognize differences between different spatial scales. Here, in Figure 
4 and 6, please only show plots from 2010-2013 which are from the validation mode. 
Please provide data availability statement presenting data links for water use simulation 
results over 1998-2013. 

RESPONSE to COMMENT 5: 

We appreciate the reviewer’s valuable comments and suggestions. In the revised 
manuscript, we have made the following adjustments to improve figure readability and 



data transparency: 
Revision of Figures 4 and 6. We agree that showing all annual maps from 1998 to 

2013 makes the figures visually overloaded and difficult to interpret. Therefore, in the 
revised version, Figures 4 and 6 now only display simulation results for the validation 
period (2010–2013). This modification allows for a clearer comparison of spatial 
patterns and model performance across different spatial scales under independent 
validation conditions. 

Addition of a data link for full simulation results. Although only validation-year 
results are shown in the figures, we have provided full simulation data covering 1998–
2013 for transparency and reproducibility. The complete dataset is openly accessible 
through the following link: 10.6084/m9.figshare.30445157. 

In the section describing Figures 4 and 6, the following statement has been added 
to clarify the selection of displayed years and the location of the full dataset: To improve 
clarity, only the simulation results for the validation period (2010–2013) are displayed, 
allowing direct comparison of model performance and spatial patterns across scales 
during the independent validation phase. The complete annual simulation results for the 
full study period (1998–2013), including all three spatial scales and both update rules, 
are openly available for download at 10.6084/m9.figshare.30445157. 

Both figure captions have been updated to note that only 2010–2013 are displayed 
for clarity and that the complete dataset is available via the provided data link. 
Revised paragraph for Figure 4 and revised Figure 4: 
Based on the historical water use record from 1998 to 2013, a transition matrix for each 
grid cell was constructed to represent the probability of transition from its current state 
to the subsequent year. According to these transition matrices, the interval for the next 
state can be predicted, and a random sample is drawn from the corresponding 
probability distribution to obtain the simulated water use value. The probability rule is 
applied at three spatial scales (i.e., 1 km, appropriate scale, and prefecture scale). To 
improve clarity, only the simulated water use results for the validation period (2010–
2013) are displayed in Figure 5, enabling a direct comparison of spatial patterns across 
scales during independent validation. The complete annual simulation results for the 
entire study period (1998–2013)—including all three spatial scales and both update 
rules—are available for download at: 10.6084/m9.figshare.30445157. 



 

(a) 

 
(b) 



 
(c) 

Figure 4 Water use simulation results from the probability rule at three different 
scales: (a) 1km scale; (b) appropriate spatial scale; (c) prefecture scale 

Revised paragraph for Figure 6 and revised Figure 6: 
After calibrating the parameters for the linear rule of the CA model, the water use grid 
maps were generated at three spatial scales (i.e., 1 km, appropriate spatial scale, and 
prefecture scale). For brevity and readability, Figure 7 presents only the simulation 
results for the validation years (2010–2013), which allow a more straightforward 
assessment of the model’s predictive performance and spatial differences among scales. 
The full set of simulated water use maps from 1998–2013, can be accessed at: 
10.6084/m9.figshare.30445157. 



 

(a) 

 
(b) 



 
(c) 

Figure 6 Water use simulation results from the linear rule at three different scales: (a) 
1km scale; (b) appropriate spatial scale; (c) prefecture scale 

 

COMMENT 6: 

At the same spatial scale, what is difference between the probability rule and the linear 
rule? Can you calculate the difference between Figure 4 and Figure 6, providing more 
statistical information? 

RESPONSE to COMMENT 6: 

We appreciate the reviewer’s suggestion to provide a more quantitative 
comparison between the probability rule and the linear rule. In the revised manuscript, 
we have expanded Section 5.1 (“Impacts of Update Rules on Water Use Simulation”) 
to include additional statistical information describing the differences between the two 

rules. Specifically, we introduced a new metric, signed , which represents the mean 

signed grid-level difference between the probability-rule and linear-rule simulations, 
normalized by the mean simulated water use in each province. 

A positive signed  indicates that the probability rule produces higher simulated 



water use compared to the linear rule, while a negative value indicates the opposite. 
This metric complements RMSE and RE by revealing both the magnitude and direction 
of differences between the two update rules. 

The updated results are presented in the revised Table 2, which now includes 

signed  values for each province. These additions allow for a more comprehensive 

evaluation of the relative performance of the two update mechanisms at comparable 
spatial scales. The revised Section 5.1 text explicitly discusses these findings and 
highlights the spatial patterns of differences between the two update rules. 
Revised Section 5.1: 

To assess the performance of the two update rules, the simulation results at three 
spatial scales were upscaled to the provincial administrative level, and the RMSE and 
RE metrics were calculated for both the probability and linear rules. An additional 

indicator, signed  was introduced to quantify both the magnitude and direction of 

the differences between the two simulations (probability vs. linear). signed  

represents the mean signed grid-level difference normalized by the mean simulated 

water use for each province. A positive signed  indicates that the probability rule 

yields higher simulated water use than the linear rule, while a negative signed  

indicates lower simulated values. There are notable differences between the results 
produced by the two update rules, as summarized in Table 2. 

Table 2. Model performance at the provincial administrative level  
from different update rules 

Provinces 

RMSE (billion m3) RE (%) 

signed (%) Linear  

Rule 

Probability 

Rule 

Linear 

Rule 

Probability 

Rule 

Beijing 0.03 0.05 +12 +19 +2.8 

Tianjin 0.02 0.02 -11 -17 -0.6 

Shanghai 0.02 0.04 -13 -25 +3.1 

Chongqing 0.04 0.07 +16 +17 +1.5 

Anhui 0.12 0.17 +23 +32 +2.2 

Fujian 0.17 0.21 -23 +37 +3.4 

Gansu 0.35 0.43 +27 +29 -1.9 

Guangdong 0.26 0.36 +21 +32 +3.9 

Guizhou 0.31 0.40 -26 -34 -1.2 

Hainan 0.11 0.21 -12 +19 +3.0 



Heilongjiang 0.42 0.37 -27 +24 +2.1 

Hunan 0.21 0.11 -16 +10 +1.6 

Jilin 0.36 0.43 +28 +25 +2.5 

Jiangsu 0.12 0.17 -12 -26 -0.7 

Jiangxi 0.22 0.26 +24 -31 +1.3 

Inner 

Mongolia 
0.19 0.29 -23 -35 -2.1 

Qinghai 0.31 0.41 +43 +36 +1.4 

Ningxia 0.11 0.20 -31 -41 -2.4 

Shandong 0.21 0.36 +29 -36 +4.1 

Shanxi 0.42 0.61 +31 +42 +3.3 

Shannxi 0.27 0.43 -32 -39 -1.5 

Sichuan 0.39 0.41 +31 +46 +2.7 

Xizang 0.56 0.61 -62 -79 -0.9 

Xinjiang 0.68 0.72 +69 +83 +3.5 

Yunnan 0.25 0.34 -37 -47 -1.1 

Zhejiang 0.21 0.29 +18 +12 +1.9 

Guangxi 0.34 0.42 -32 -39 -1.7 

Hubei 0.29 0.39 +27 +26 +2.2 

Liaoning 0.35 0.41 +33 +48 +3.7 

The linear rule generally exhibits lower RMSE and RE values, indicating higher 
stability and consistency with observed prefecture-level statistics. This is because the 
linear rule updates each grid deterministically based on spatial averages of its neighbors, 
which smooths fluctuations and captures persistent long-term patterns. Consequently, 
it tends to reduce local variability and enhance regional stability, especially at coarser 
spatial scales. By contrast, the probability rule explicitly incorporates stochasticity 
through distribution-based state transitions. This enables it to capture local irregularities, 
abrupt changes, and nonlinear water use dynamics driven by variations in industrial 
structure, irrigation demand, or climatic conditions. However, such stochastic behavior 
can also amplify uncertainty in regions with sparse data or complex spatial 
heterogeneity, resulting in slightly higher RMSE and RE values. 

Quantitatively, the mean RMSE of the linear rule during the validation period 
(2010–2013) was 0.28 billion m³, compared with 0.36 billion m³ for the probability rule. 
The corresponding mean relative errors were ±22.4% and ±29.8%, respectively. At the 
national scale, the simulated total water use was 570.6 billion m³ for the linear rule and 



583.2 billion m³ for the probability rule, differing by +1.1% and +3.5% from observed 
national statistics. Therefore, the linear rule is identified as the best-performing 
estimation framework for reproducing the observed spatiotemporal water use 
distribution in China, whereas the probability rule provides valuable complementary 
insights for representing uncertainty and local heterogeneity. 

The signed  results indicate that the probability rule tends to simulate higher 

water use in industrially intensive provinces (e.g., Shandong, Guangdong, and Liaoning) 
and slightly lower values in water-scarce inland regions (e.g., Ningxia, Gansu, and 
Inner Mongolia). The results confirm that the two rules emphasize different aspects of 
the underlying processes—the probability rule better reflects stochastic local variability, 
while the linear rule offers greater stability and smoother large-scale consistency. 

 

COMMENT 7: 

What is the best estimation of water use simulation in this study, and what is the overall 
accuracy for China and each province? 

RESPONSE to COMMENT 7: 

We thank the reviewer for this important question. To identify which update rule 
provides the best estimation of water use in this study, we conducted a comprehensive 
accuracy evaluation using prefecture-level statistical water use data as reference values. 
The performance of both update rules—probability rule and linear rule—was assessed 
in terms of Root Mean Square Error and Relative Error at the provincial level during 
the validation period (2010–2013). 

Overall, the linear update rule demonstrates superior accuracy and stability in most 
provinces, showing lower RMSE and RE values compared to the probability rule. At 
the national scale, the linear rule achieved an average RMSE of 0.28 billion m³ and an 
average RE of ±22.4%, whereas the probability rule exhibited a higher average RMSE 
of 0.36 billion m³ and an average RE of ±29.8%. This indicates that the linear rule 
provides a more consistent and reliable estimation when aggregated at broader 
administrative scales. 

However, the probability rule offers certain advantages in specific contexts. It 
better captures local variability and stochastic changes, particularly in provinces 
characterized by rapid industrial expansion or heterogeneous land-use patterns (e.g., 
Shandong, Guangdong, and Liaoning). This makes it valuable for analyzing fine-scale 
spatiotemporal fluctuations in water use, despite its slightly higher global uncertainty. 

Therefore, we conclude that: The linear rule provides the most accurate and stable 
overall estimation of total water use at both provincial and national levels; the 
probability rule complements it by representing local variability and nonlinear water 
use dynamics more effectively. These findings are now explicitly stated in the revised 
manuscript (Section 5.1). 
 



Added paragraph in Section 5.1: 
Quantitatively, the mean RMSE of the linear rule during the validation period 

(2010–2013) was 0.28 billion m³, compared with 0.36 billion m³ for the probability rule. 
The corresponding mean relative errors were ±22.4% and ±29.8%, respectively. At the 
national scale, the simulated total water use was 570.6 billion m³ for the linear rule and 
583.2 billion m³ for the probability rule, differing by +1.1% and +3.5% from observed 
national statistics. Therefore, the linear rule is identified as the best-performing 
estimation framework for reproducing the observed spatiotemporal water use 
distribution in China, whereas the probability rule provides valuable complementary 
insights for representing uncertainty and local heterogeneity. 


