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RESPONSES TO REVIEWER ONE’S COMMENTS 

We would like to express our sincere appreciation for your professional and 
insightful remarks on our paper. The comments are valuable and helpful for us to 
improve the quality of the manuscript. All the concerns raised have been carefully 
treated and an itemized reply to the reviewer’s comments is presented in the revision 
files. 

 

COMMENT 1:  

The main objective of this study is to address the impact of spatial scale on the spatial 
heterogeneity of water use. However, this study treats water use as a whole, without 
separating the spatial heterogeneity of water use by different sectors (e.g., irrigation, 
industrial and domestic). Actually, water use by different sectors shows large spatial 
variation which I think is important in water use modelling. 

COMMENT 2:  

In the model framework, water use grid maps at different spatial scales are first prepared 
as inputs to the CA model. To generate the water use grid maps, the water use data at 
administrative survey scale is processed and downscaled to grid-based formats. Here, 
the iterative input selection algorithm is used to select the most relevant variables for 
water use, while the CNN model captures the relationships between input variables and 
water use. This step is important for the model performance, So I am wondering what 
are the most relevant variables for sectoral water use? This result should appear in this 
paper. Commonly, irrigation water use is mostly related to irrigated cropland area, and 
industrial/domestic water use are relevant to GDP/population density, as well as night 
light intensity. Whether the result of this study aligns with previous results? 

COMMENT 3: 

L145: “the appropriate spatial scale for water use simulation is identified using an end-
to-end deep learning-based spatial scale adaptive selection model”. What is the 
definition of “appropriate spatial scale”? In my view, the appropriate spatial scale 
should be a clear spatial resolution (e.g., 5km, 10km), and may vary across water use 
sectors or limited water use dataset. It is suggested to clarify the result of the appropriate 
spatial scale in gridded water use simulation. 

RESPONSE to COMMENTS 1-3: 

We appreciate the reviewer’s comments regarding the treatment of different water 
use sectors, the selection of relevant variables, and the explanation of the appropriate 
spatial scale. In the revised manuscript, we have substantially expanded Section 2.1 to 
clarify these points. In preparing the water use grid maps, we first generated separate 



maps for irrigation, domestic, and industrial water use, based on prefecture-level 
statistical survey data and sector-specific predictor variables. These sectoral grids were 
then aggregated into total water use maps for modeling. This choice is based on two 
main considerations: (1) during the study period (1998–2013), China’s total water use 
at the national scale entered a relatively stable stage in its temporal trend, with an 
average annual growth rate of only about 0.87% (from 505.53 billion m3 in 1998 to 
575.44 billion m3 in 2013), mainly due to policy interventions, technological 
improvements, and changes in industrial structure. Since the primary objective of this 
study is to investigate the effects of spatial scale on the spatial heterogeneity of water 
use, it is more appropriate to adopt a temporally stable water use indicator as the 
simulation target, minimizing the confounding effects of sector-specific temporal 
fluctuations. 

We also now explicitly list in Section 2.1 the most relevant input variables for each 
sector identified through the iterative input selection algorithm. These variables serve 
as inputs to the subsequent Convolutional Neural Network (CNN) model for 
downscaling prefecture-level data to grid-based water use maps. 

The “appropriate spatial scale” in this study is a concept proposed in our previous 
work, designed to balance simulation accuracy with the spatial information density of 
rasterized water use data. In earlier studies, fixed spatial scales were applied across 
different prefectures, which failed to reflect the variability in land area, natural 
endowments, and water use structures among cities. This often led to discrepancies in 
information density across the simulated rasters. Excessively high resolutions could 
cause over- or underestimation due to data limitations, whereas overly coarse 
resolutions could obscure critical spatial variations. To address this, we previously 
developed a deep learning-based spatiotemporal scale adaptive selection (SSAS) model, 
in which the spatial scale selection module identifies the optimal spatial resolution of 
input variables by maximizing information density, quantified using Conditional 
Entropy, while balancing simulation accuracy through Kullback-Leibler Divergence 
Loss and Relative Error. This approach enables each prefecture to have its own optimal 
spatial scale rather than adopting a uniform resolution. 

In the revised manuscript, we have substantially expanded Section 2.1 (“Water 
Use Grid Maps Generating”) to address these points. The revised section now reads: 
Revised Section 2.1: 

The spatial scale of water use simulation is determined by the spatial scale of the 
input data, so water use grid maps at different spatial scales were prepared as input to 
the simulation model. To obtain the water use grid maps, several steps should be done 
to convert the water use data at administrative survey scale into spatially explicit grids 
of varying resolutions. 

The grid maps of irrigation, domestic, and industrial water use are generated from 
the prefecture-level statistical survey data and water use sector-specific predictor 
variables. For each sector, the most relevant input variables are identified through an 
iterative input variables selection algorithm (Zhang et al., 2023; Zhang et al. 2025). 
Specifically, irrigation water use was modeled by the potential evapotranspiration, 
normalized difference vegetation index (NDVI), rainfall and soil moisture; domestic 



water use was modeled by population, rainfall, temperature and night-light; industrial 
water use was modeled by GDP, night-light, population and rainfall. And then these 
sectoral gird maps were aggregated to form total water use grid maps for modeling. 
This aggregation is done for two reasons: the first one is that the temporal trend of the 
total water use has become stable during the study period (1998–2013) and future. The 
average annual growth rate is only about 0.87% (from 505.53 billion m3 in 1998 to 
575.44 billion m3 in 2013) due to the policy interventions, technological improvements, 
and industrial structure changes. Since the primary objective of our study is to examine 
the influence of spatial scale on the spatial heterogeneity of water use, a temporally 
stable indicator helps minimize the confounding effects of sector-specific temporal 
fluctuations; the second reason is that the total water use can figure out the scale effects 
across regions instead of the sector-level temporal variability while the sectoral 
differences are implicitly in the inputs before the aggregation. 

Earlier studies often applied a fixed spatial resolution in different regions, which 
could not account for differences in land area, natural endowments, and water use 
structures, and leaded to the discrepancies in information density and potential over- or 
underestimation of water use. To address this issue, an appropriate spatial scale can be 
determined by the deep learning-based spatiotemporal scale adaptive selection model 
(Liu et al., 2021; Zhang et al., 2025). And the model can balance the accuracy of the 
simulation based on the spatial information density of gridded water use data, and its 
results vary across prefectures. The spatial scale selection module in the selection model 
figures out the appropriate spatial scale by maximizing information density while 
balancing simulation accuracy in terms of the Conditional Entropy, Kullback–Leibler 
Divergence Loss and Relative Error performance metrics. This selection module 
enables each prefecture to adopt its own appropriate spatial scale rather than a fix 
resolution. Finally, total water use grid maps are generated at three spatial resolutions: 
the small scale (e.g., 1 km), the appropriate spatial scale as determined by the selection 
module, and the prefecture scale as the statistical survey water use data. 

 

COMMENT 4: 

Water use simulation from the probability rule CA model (Section 4.1.1) are not 
validated. This part uses the Akaike Information Criterion (AIC) to determine the most 
suitable probability distributions for water use grids across various prefectures. 
However, the optimal probability distributions also rely on the input data (e.g., the long-
term gridded water use data). As water use in China shows significant spatial and 
temporal variation between different periods, it is doubtable that the probability rule 
CA model can used for water use prediction. 

RESPONSE: 

We appreciate the reviewer’s attention to the use of the probability rule in CA-
based water use simulation and the concern that significant spatial and temporal 
variation in water use across different periods may challenge its applicability. In our 



CA-based simulation, the probability rule is designed to represent the stochastic state 
transitions of water use at the grid level, and this choice is both theoretically and 
practically justified for the following reasons. 

First, the evolution of water use is influenced by both deterministic drivers and 
inherent variability. A purely deterministic CA update rule risks over-smoothing or 
ignoring this randomness, whereas the probability rule allows structured temporal 
dependence and stochastic variation to be represented in a unified framework. This is 
particularly important in China, where substantial variations between periods exist—
rather than assuming temporal stability, the probability rule directly incorporates these 
variations by deriving transition probabilities from observed historical changes in each 
prefecture. Second, the method is locally adaptive. The state transition matrix is 
calibrated independently for each prefecture, so local variation patterns are preserved. 
Equal-frequency categorization ensures the 𝑘 intervals reflect each cell’s own historical 
variability, and the most suitable probability distribution for each interval is selected 
using the Akaike Information Criterion (AIC) from candidates including normal, 
lognormal, exponential, gamma, and uniform. This ensures that both the magnitude and 
volatility of water use in different regions and periods are reflected in the fitted 
distributions. Third, the calibrated parameter 𝑘 controls the granularity of the state 
representation and is tuned using Root Mean Squared Error (RMSE) and Relative Error 
(RE) in an independent validation period, balancing resolution and generalizability. 
This calibration, conducted for each prefecture, ensures the model captures temporal 
changes without overfitting. 

As for validation, we compared the simulated gridded water use against observed 
water use for prefectures and years, using RE and RMSE as metrics. The results showed 
good agreement in both distributional shape and spatial patterns, though localized 
deviations exist in some regions. 

In the revised manuscript, we have clarified these point both in Section 2.2 
(overview of the CA framework) and in Section 2.2.1 (details of the probability rule), 
ensuring that the theoretical basis and empirical support are both addressed. And the 
validation procedure and results are included in Section 4.1.1. 
Revised First Paragraph in Section 2.2: 
The CA model, grounded in complexity theory, is widely used in land use and urban 
growth modeling. It provides a robust platform for simulating spatial phenomena 
governed by local interactions and transition rules (Sapino et al. 2023, Tariq et al. 2023). 
Each cell in a CA model represents a discrete spatial unit that updates its state over time 
based on predefined rules and the states of its neighboring cells. It’s decentralized, 
bottom-up modeling structure enables the simulation of complex global behaviors 
emerging from simple local dynamics (Al-Shaar et al. 2022, Wang et al. 2020). Both 
the probability and the linear update rules are designed and tested to capture the dual 
nature of water use dynamics. The probability rule has been widely applied in 
significant spatial and temporal variation areas in land use simulation and other fields. 
It will be designed here for the water use at different scales. Rather than assuming 
temporal stability, the probability rule explicitly incorporates the variations through 
calibrating the state transition matrix and probability distributions for each prefecture 



independently by the own historical water use record. This rule enables the simulation 
to capture both the structured temporal dependence and the inherent randomness in 
water use, ensuring adaptability to local conditions. The linear update rule assumes that 
changes in water use are more deterministic and can be approximated as a linear 
combination of the cell’s own state and those of its neighbors. This rule is more 
appropriate for long-term, high spatial autocorrelation, and persistent patterns. After 
implementing and comparing the water use simulation results of the two rules in the 
CA framework, their results can assess the relative effectiveness of stochastic versus 
deterministic update mechanisms across different spatial scales. These two rules not 
only strengthen the robustness of the modeling framework but also provide insights into 
the dominant processes shaping water use dynamics in different regions. 
Revised Section 2.2.1: 

The probability rule in the CA model is designed to represent the stochastic state 
transitions of water use over time. It abstracts the temporal dynamics of water use at 
the grid level into a probabilistic transition framework that can be applied consistently 
across different spatial scales and regions, while remaining adaptable to significant 
spatial and temporal variations. This adaptability is achieved by calibrating the update 
rule separately for each prefecture by its own historical water use record for 
appropriately capturing both long-term trends and localized fluctuations. In this 
approach, the state of each grid cell (i.e., representing the amount of water use) is 
divided into 𝑘 distinct intervals using equal-frequency categorization based on the cell’s 
historical water use record. This categorization ensures that the intervals reflect the 
variations in water use over time. For each interval, the most suitable statistical 
distribution is selected using the Akaike Information Criterion (AIC). The selection 
process enables the model to represent the probabilistic characteristics of water use 
within each intensity class. And the distribution is chosen from a set of candidate 
distributions, including normal, lognormal, exponential, gamma, and uniform. 

Once the optimal distribution is found for each interval, a state transition matrix is 
constructed based on observed transitions of grid cells between intervals from one year 
to the next. The transition matrix captures the likelihood of a grid cell moving from its 
current water use state to another in the subsequent time step. The model first generates 
the next state probabilistically through the transition matrix, and then the water use 
samples are generated from the corresponding probability distribution. These two steps 
incorporate both the structured temporal dependence and the inherent randomness in 
future water use patterns. 

In the probability rule, the calibrated parameter is the number of state intervals and 
is denoted as k. The value of k directly affects the granularity of the state categorization 
and the accuracy of the state transition matrix. A larger k increases the resolution of the 
state representation and captures the finer variations in water use, but a larger k can also 
lead to overfitting. And a smaller k oversimplifies the demand pattern. To calibrate the 
parameter k, the historical and observed water use data is divided into a calibration and 
a validation sets. And the performances of the model with different k values is then 
evaluated by the Root Mean Squared Error (RMSE) and Relative Error (RE) metrics. 
The optimal k can be calibrated by the minimums of the RMSE and RE in the validation 



period, ensuring a balance between model accuracy and generalizability. 
Added Validation Procedure and Results in Section 4.1.1: 

In the CA model with the probability rule, the number of state intervals (k) is the 
only parameter to be calibrated. The dataset from 1998–2009 is used for calibration and 
2010–2013 for validation, with RMSE and RE as performance metrics. The optimal 
value of k at three spatial scales (1 km, appropriate scale, prefecture scale) for each 
prefecture is determined by minimizing RMSE and RE in the validation period. The 
calibrated k values for each prefecture, along with the corresponding RMSE and RE 
during the calibration (1998–2009) and validation (2010–2013) periods at the three 
spatial scales, are presented in Figure 3. 
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Figure .3 Optimal parameters of the probability rule CA model and the model 
performances at: (a) 1km scale; (b) appropriate spatial scale; (c) prefecture scale 

According to the results shown in Figure 3, the calibrated parameter 𝑘 exhibits 
clear spatial heterogeneity across prefectures and varies with spatial scales. At the 1 km 
scale (Figure 3(a)), most prefectures show 𝑘 values concentrated around 5–6, 
corresponding to relatively low RMSE and RE values. This suggests that a moderate 
number of state intervals can effectively capture local water use variability while 
avoiding overfitting. In these areas, the probability distributions and transition 
probabilities appear to reflect stable temporal patterns, resulting in more accurate 
simulations. At the appropriate spatial scale (Figure 3(b)), the distribution of 𝑘 becomes 
more diversified among prefectures. Some regions require larger 𝑘 values (>=7) to 
preserve finer distinctions in water use states, while others perform better with smaller 
𝑘 values (<=4) that smooth out excessive variability. Different from the results at the 1 
km scale, the overall RMSE and RE values are slightly higher, indicating that while the 
appropriate scale balances detail and generalization, it may not fully capture abrupt 
local changes in some prefectures. At the prefecture scale (Figure 3(c)), 𝑘 values are 
generally smaller (mostly 3–4), reflecting the reduced spatial detail at coarser resolution. 
Thus, their accuracies of the simulation decrease, with higher RMSE and RE values. 
When the input variability of small scale is strongly aggregated at large scales, fewer 
state intervals oversimplify the temporal transitions, leading to greater deviations from 
observed water use patterns. 

After determining the optimal 𝑘 values at each scale, the next step is to characterize 
the statistical nature of water use within each state interval. The Akaike Information 
Criterion (AIC) is taken as performance metric to select the most suitable probability 
distribution for each interval in every prefecture. The AIC can balance the model fitness 
and the complexity through penalizing excessive parameters, it can reduce the risk of 
overfitting. The selected distribution types not only fit the historical data well but also 
is used to generate the future scenarios. The results of the optimal probability 
distributions for water use grids at the three different spatial scales (i.e., 1 km scale, 
appropriate spatial scale, and prefecture scale) are shown in Figure 4. These 
distributions, combined with the calibrated 𝑘 values, form the basis of the probability 



rule CA model’s ability to reproduce the spatial and temporal heterogeneity of water 
use. 
 
 

COMMENT 5: 

This study calibrates the parameters in the linear rule CA model for the 1998–2009 
while the dataset from 2010–2013 is for its validation. However, the calibration and 
validation processes are not clear. Which datasets are used for model evaluation, the 
prefecture water use data or the gridded water use maps? 

RESPONSE: 

We appreciate the reviewer’s request for clarification. The calibration and 
validation were based on prefecture-level statistical water use data collected from water 
resources bulletins and related surveys, which were used as reference (truth) values. 
The CA model simulations were run at the gridded scale, and the simulated water use 
was subsequently aggregated to prefecture boundaries to produce prefecture-level totals. 
These aggregated totals were then compared with the observed prefecture-level 
statistics to compute RMSE and RE. The calibration period (1998–2009) was used to 
optimize the model parameters by minimizing these metrics, while the validation period 
(2010–2013) applied the calibrated parameters without modification for independent 
evaluation. This clarification will be explicitly added to Section 4.1.2 in the revised 
manuscript. 
Revised Section 4.1.2: 

There are three parameters to be calibrated in the linear rule CA model: the self-
influence coefficient 𝛼, the neighboring influence coefficient 𝛽, and the spatial decay 
exponent 𝑝. The calibration and validation are taken the statistics water use at the 
prefecture-level as the reference (i.e., observed water use data). Specifically, for a given 
parameter set, the gridded water use is firstly simulated. The simulated grids are then 
aggregated into the total water use at each prefecture scale along their boundaries. These 
total water uses are assessed by the observed water use data from water resources 
bulletins and related statistical surveys. The calibration period covers 1998–2009 and 
the parameter values are determined by minimizing RMSE and RE between the 
simulated and observed total water use at the prefecture scale. The validation period 
covers 2010–2013 and the performance of the model is also assessed by RMSE and RE. 
The optimal parameters at three spatial scales during the calibration and validation 
periods, are illustrated in Figure 5. 

 

COMMENT 6: 

The main objective of the model framework is to generate water use data at multiple 
spatial scale. There are many gridded water use products at both global or country scale 
for China (e.g., Hou et al., 2024, ESSD; Huang et al., 2018, HESS; Zhang et al., 2025, 



Scientific Data),a s well as the high-resolution hydrological model simulations. It is 
necessary to compare the water use simulation with previous products, which helps to 
evaluate the reliability of the model framework of this study. 

RESPONSE: 

We appreciate the reviewer’s suggestion regarding the comparison with existing 
gridded water use datasets. We fully agree that such a comparison is important to assess 
the reliability and added value of our model framework. We downloaded the water use 
raster datasets from the three previous studies mentioned by the reviewer for 
examination. Huang et al. (2017) provides global-scale water use data at a 0.5° 
resolution; Hou et al. (2024) focuses only on industrial water use at a 0.1° resolution; 
and Zhang et al. (2025) provides water use data at a 0.1° resolution. In contrast, our 
water use simulation is at a finer spatial resolution (1km × 1km, appropriate spatial 
scale), enabling more detailed representation of spatial heterogeneity in water use.Due 
to these substantial differences in spatial resolution, direct comparison of spatial 
distribution patterns is not feasible. So we conducted comparisons in terms of statistical 
performance metrics. We have added comparison with previous studies in section 5.3 
in the Discussion section to present these performance-based comparisons and 
elaborate on the implications of the differences in spatial resolution. 
Added Comparison with Previous Studies in Section 5.3: 

There had been some water use simulation results at previous studies. Fox example, 
Huang et al. (2018) produced a global-scale monthly water withdrawal dataset at 0.5° 
resolution, distinguishing six sectors (e.g., irrigation, domestic, electricity generation, 
livestock, mining, manufacturing) over the period 1971–2010; Hou et al. (2024) 
developed China’s industrial water withdrawal dataset (CIWW), providing gridded 
monthly data from 1965 to 2020 at 0.1° and 0.25° resolutions; Zhang et al. (2025) 
presented a high-resolution sectoral water use dataset (HSWUD) for mainland China, 
covering irrigation, manufacturing, thermal power cooling, and domestic use at 0.1° × 
0.1° resolution, with strong consistency to prefecture-level statistics (R²≈0.88). As the 
results shown in the previous sections, our dataset is generated at different spatial 
resolutions (e.g., 1 km×1 km, appropriate spatial scale), enabling detailed 
representation of spatial heterogeneity within prefectures. Due to the substantial 
differences in spatial resolutions between these datasets, it is not easy to compare the 
differences of the spatial distribution patterns. But the relative values of performance 
metrics such as RMSE and RE can figure out the better one among them. The values of 
RMSE within 0.1 (i.e., normalized by mean water use) and a RE within −20 % to +30 % 
are found across all prefectures according to the results of our simulation. And all these 
results are consistent.  

Thus, the results show that, relative to the three reference datasets, our model’s 
prefecture-level water use estimates achieve a RMSE within 0.1 (normalized by mean 
water use) and a RE within −20 % to +30 % across all prefectures. These results within 
the range generally are considered acceptable for large-scale water use modeling, 
indicating that our estimates are consistent with these previous studies while offering 
finer spatial details. 



COMMENT 7: 

Figure 4 & 6: water use is high in many irrigated areas. However, water use in the North 
China Plain which is marked with intensive irrigation and population, shows moderate 
level of water use, lower than that of the northeastern China. This result is contrary with 
previous estimates. 

RESPONSE: 

We appreciate the reviewer’s observation and understand the concern regarding 
the relatively moderate water use estimates for the North China Plain (NCP) compared 
to northeastern China in our results. Several factors may explain this phenomenon: 

(1) Statistical survey data trends – Our model is calibrated and validated against 
prefecture-level statistical survey data (e.g., water resources bulletins). In recent years, 
a decreasing trend of agricultural water use has been reported in many NCP prefectures, 
partly due to improvements in irrigation efficiency, the implementation of water-saving 
policies, and adjustments in cropping structures. These changes are reflected in our 
gridded estimates. 

(2) Sectoral aggregation effects – Total water use in our study is the aggregation 
of irrigation, industrial, and domestic sectors. While water use in the NCP remains 
dominated by irrigation, many northeastern prefectures show a growing contribution 
from industrial water use, particularly heavy industries and thermal power generation, 
which elevate their overall totals relative to the NCP. 

(3) Climatic and water availability factors – Despite a shorter growing season, 
northeastern China often supports water-intensive crops and benefits from relatively 
abundant local water resources, resulting in higher water use per unit area. 

In addition, some previous studies that reported higher water use in the NCP were 
sector-specific (mainly irrigation) or based on different temporal baselines, which 
partly explains the discrepancy with our aggregated, multi-sector results. We have 
added a paragraph in Section 4.1.2 to clarify these points, so that readers can understand 
the reasons for the observed differences. 
Added Paragraph in Section 4.1.2: 

Moderate water use levels have been found in the North China Plain (NCP), 
compared with northeastern China, even though the NCP features intensive irrigation 
and high population density. Several factors contribute to this pattern. First, the 
calibration and validation rely on prefecture-level statistical survey data (e.g., water 
resources bulletins). In recent years, a decreasing trend of agricultural water use has 
been reported in many NCP prefectures, partly due to improvements in irrigation 
efficiency, the implementation of water-saving policies, and adjustments in cropping 
structures. Second, total water use in our study is an aggregate of irrigation, domestic, 
and industrial sectors. While total water use in the NCP remains dominated by irrigation, 
many northeastern prefectures show a growing contribution from industrial water use, 
particularly heavy industries and thermal power generation, leading to higher overall 
totals. Third, climatic and water availability differences also play a role. Despite a 
shorter growing season, northeastern China often supports water-intensive crops and 



benefits from relatively abundant local water resources, which result in higher water 
use per unit area. In addition, some previous studies that reported higher water use in 
the NCP were sector-specific (mainly irrigation) or based on different temporal 
baselines, which partly explains the discrepancy with our aggregated results. 

 

COMMENT 8: 

L39: Key words: This study is all about water demand/water use, and “water resources 
management” and “water scarcity assessment” are not suitable for the keywords. 

RESPONSE: 

We appreciate the reviewer’s suggestion regarding the keywords. We have revised 
the keywords in the manuscript, replacing “water resources management” and “water 
scarcity assessment” with more appropriate terms directly related to water demand and 
water use.  
Updated keywords: water use; spatial scale; cellular automata; multi-scale simulation 

 

COMMENT 9: 

L145：I don’t find the reference for Liu et al., 2022. 

RESPONSE: 

We thank the reviewer for pointing this out. We have corrected the citation year 
for Liu et al. to ensure consistency between the in-text citation and the reference list.  

We have also carefully checked all other references to avoid similar 
inconsistencies.  
 


