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Abstract.  Meteorological drought presents considerable challenges to water supplies, agriculture, and socio -economic 15 

stability, especially in areas heavily reliant on precipitation. The Standardized Precipitation Index (SPI) is esteemed for i ts 

efficacy in drought monitoring, owing to its straightforwardness and applicability across many time scales. This study 

examines meteorological drought dynamics in the uMkhanyakude district using the Standardized Precipitation Index (SPI) at 

6-, 9-, and 12-month timescales. Trend analysis was conducted using Mann–Kendall (MK), Modified Mann–Kendall (MMK), 

and Innovative Trend Analysis (ITA) methods. The study also proposes a hybrid model that integrates the Savitzky–Golay 20 

(SG) filter, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Autoregressive 

Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM) networks, referred to as SG-CEEMDAN-

ARIMA-LSTM, for forecasting of the SPI time series. Analysis of SPI trends and variability revealed statistically significant 

declining trends at five monitoring stations, characterized by negative Z-scores and p-values, showing a marked downward 

trajectory across several SPI scales. On the other hand, the forecasting results demonstrate that the SG-CEEMDAN-ARIMA-25 

LSTM methodology outperformed benchmark models across all temporal scales, achieving high prediction accuracy with R² 

values of 0.9839 (SPI-6), 0.9892 (SPI-9), and 0.9990 (SPI-12). These findings highlight the effectiveness of decomposition 

techniques (SG, CEEMDAN) in enhancing model performance and confirm the suitability of the hybrid model for both short-

term and long-term drought forecasting. This study merges robust trend analysis with advanced hybrid forecasting techniques, 

providing a reliable framework for early warning systems and sustainable water resource management in drought -prone 30 

regions. 
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1.  Introduction  

 Drought is a complex and recurring natural hazard with significant economic, social, and environmental implications globally 

(Bagmar and Khudri, 2021; Kalisa et al., 2021; Song and Park, 2023). In contrast to other natural disasters, droughts manifest 35 

gradually, often persisting for extended periods, and their effects permeate various sectors, including agriculture, water 

resources, and socio-economic systems (Wilhite and Glantz 1985; Cunha et al. 2019). This study specifically focuses on 

meteorological drought, characterized as a sustained period of below-average precipitation (Taylan, 2024). Meteorological 

drought often serves as the initial phase that subsequently evolves into agricultural, hydrological, and socioeconomic drought 

(Malik et al., 2021; Latifoglu and Ozger, 2023). As it is solely influenced by precipitation variability, meteorological drought 40 

can be effectively quantified using precipitation-based indices. 

Several indices have been established to quantify drought conditions, including the Standardized Precipitation Index (SPI) and 

the Standardized Precipitation Evapotranspiration Index (SPEI). While the SPEI integrates both precipitation and temperature 

data , its requirement for extensive datasets and complex computations may restrict its applicability in regions with limited data  

availability (Xu et al., 2020). Conversely, the SPI depends exclusively on precipitation, rendering it widely used for analysing 45 

meteorological drought, especially in semi-arid regions. Its versatility across multiple timescales facilitates the robust 

identification of both short- and long-term drought patterns. Accordingly, given the data constraints in the uMkhanyakude 

district of South Africa, this study adopts the SPI as the primary drought index, while recognizing that its exclusive relian ce 

on precipitation constitutes a methodological limitation. Since SPI is precipitation-driven, analysing rainfall trends is a 

necessary first step before applying SPI under climate change conditions. Without first establishing rainfall trends, one risks 50 

misinterpreting SPI signals as short-term anomalies when they may actually reflect long-term climate-driven shifts. 

In this context, the escalating concerns regarding climate change and its influence on local climates have underscored the 

necessity of analyzing drought trends. Thus, trend analysis of rainfall and SPI together provides a comprehensive picture of 

rainfall trends, revealing the climatic forcing, while SPI trends quantify the standardized drought intensity and persistence,  

which is crucial for understanding drought risk in the context of climate change. Systematic evaluations of drought occurrences 55 

not only contribute to the development of evidence-based water resource management strategies but also enhance the 

calibration of early warning systems and inform climate adaptation policies at both regional and national levels. Furthermore , 

temporal analyses enable researchers to assess the effectiveness of mitigation measures and anticipate emerging risks, thereby 

bolstering resilience in vulnerable sectors such as agriculture and public water supply. In the absence of structured trend 

analyses, drought management remains predominantly reactive, constraining the transition towards proactive and sustainable 60 

adaptation strategies. Building on trend analysis, drought forecasting is essential for deepening the understanding of drought 

dynamics. Effective forecasting provides early warnings that are critical for mitigating impacts and strengthening drought 

management strategies (Balti et al., 2020; Zhang et al., 2022; Tan et al., 2024; Zhang et al., 2024). 
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Accurate forecasting of the SPI is crucial in regions such as uMkhanyakude, which is prone to recurrent and severe drought 

events. Enhanced prediction capabilities support agricultural resilience, water resource planning, and the establishment of e arly 65 

warning systems (Xu et al. 2020). Traditional statistical models, such as ARIMA or SARIMA, alongside contemporary 

machine learning methods, have been extensively employed for forecasting drought indices, including the SPI. However, each 

approach has inherent limitations. For example, Gudko et al. (2025) utilized SARIMA to analyze precipitation dynamics in 

Russia, demonstrating efficacy in short-term predictions while exhibiting constrained accuracy for long-term forecasts. 

Similarly, Hussain et al. (2025) integrated ARIMA with machine learning models to enhance SPI and SPEI predictions, 70 

achieving accuracies exceeding 92%. This highlights the advantages of combining statistical and machine learning techniques. 

Nonetheless, these methodologies often encounter challenges associated with nonlinear and complex rainfall patterns, 

particularly over short time scales. To mitigate the limitations of standalone models, hybrid approaches have gained 

prevalence, capitalizing on the complementary strengths of diverse techniques. Alquraish et al. (2021) compared hybrid models  

such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN against, such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN, 75 

with conventional HMM and ARIMA models for SPI prediction in the Arabian Peninsula, revealing that hybrid models 

consistently outperformed their standalone counterparts. Likewise, Xu et al. (2022) and Ding et al. (2022) demonstrated that 

the combination of CEEMD with ARIMA or LSTM significantly improves SPI forecasts across multiple time scales in China, 

suggesting that decomposition-based hybrid methods effectively capture intricate temporal patterns. 

Recent studies have significantly advanced hybrid methodologies through the implementation of sophisticated preprocessing 80 

and optimization techniques. Latifoglu and Ozger (2023) utilized phase transfer entropy (pTE) in conjunction with Tunable Q 

Factor Wavelet Transform (TQWT), optimized via Grey Wolf Optimization (GWO), followed by artificial neural networks 

(ANN), support vector regression (SVR), machine learning (ML), and Gaussian process regression (GPR), resulting in superior 

predictive performance. Sibiya et al. (2024) introduced the CEEMDAN-ARIMA-LSTM model for SPI predictions in Cape 

Town, demonstrating that the combination of CEEMDAN decomposition with both linear and nonlinear models can 85 

significantly improve forecast accuracy. Wei et al. (2025) adopted the Informer model and developed the VMD-JAYA-

Informer hybrid, which integrates Variational Mode Decomposition (VMD) with an optimization algorithm, thereby enhancing 

short-term Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) forecasts.  

Despite the successes achieved by hybrid models, several challenges persist. Decomposition techniques such as Empirical 

Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode 90 

Decomposition with Adaptive Noise (CEEMDAN), and Variational Mode Decomposition (VMD) are computationally 

demanding, particularly when applied to large datasets or in real-time contexts (Sibiya et al., 2024). CEEMDAN, specifically, 

can yield misleading intrinsic mode functions (IMFs) when utilized on excessively noisy or unstable time series, which 

undermines the efficiency and reliability of subsequent predictions. Furthermore, existing research has not investigated the 

synergistic application of advanced smoothing filters in conjunction with decomposition techniques to mitigate noise prior to 95 

hybrid modeling.  
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To address these limitations, this study proposes an innovative hybrid model that integrates the Savitzky -Golay (SG) filter 

with CEEMDAN for preprocessing, followed by the Autoregressive Integrated Moving Average (ARIMA) and Long Short -

Term Memory (LSTM) models for drought prediction. The SG filter is effective in smoothing high-frequency noise, thereby 

enhancing the decomposition process and alleviating the computational burden. The integration of the Savitzky -Golay 100 

smoothing filter with CEEMDAN substantially improves forecasting accuracy by enhancing the quality and interpretability of 

the input time series prior to modeling. This combination enables CEEMDAN to produce IMFs that are cleaner, more distinct, 

and less prone to spurious fluctuations, thus offering a more reliable foundation for subsequent predictive modeling . Cleaner 

IMFs facilitate the training of both linear (ARIMA) and nonlinear (LSTM) models, resulting in more accurate and robust 

forecasts. This approach capitalizes on the complementary strengths of both statistical and machine learning models, 105 

addressing noise-related issues inherent in raw data. 

Although hybrid models have demonstrated superior performance in drought forecasting, no prior study has examined:  

1. The combined use of smoothing techniques (SG filter) with CEEMDAN to enhance the quality of decomposition.  

2. The implementation of an integrated SG-CEEMDAN-ARIMA-LSTM framework for trend-based Standardized 

Precipitation Index (SPI) predictions (SPI-6, SPI-9, SPI-12). 110 

3. Forecasting efforts that explicitly incorporate both trend analysis and predictive modeling for semi-arid regions 

characterized by limited meteorological data. 

As a result, the proposed SG-CEEMDAN-ARIMA-LSTM model addresses these gaps by enhancing decomposition efficiency, 

reducing computational costs, and improving prediction accuracy across multiple SPI timescales. This methodology offers 

valuable insights for water resource management, infrastructure planning, early warning systems, and the advancement of 115 

hybrid drought prediction models. 

2. Material Methods 

This study utilizes various time series forecasting models to analyse the intricate dynamics of meteorological drought as 

indicated by the Standardized Precipitation Index (SPI). The foundational statistical model examined is the Autoregressive 

Integrated Moving Average (ARIMA), which is adept at addressing linear relationships in time series data. The Long Short-120 

Term Memory (LSTM) neural network is employed to tackle nonlinear patterns, supplemented by a hybrid ARIMA-LSTM 

framework that amalgamates the advantages of both models. Additional improvements are investigated by incorporating a 

Savitzky-Golay (SG) digital smoothing filter, which is often used to remove noise from time series or spectral data , into the 

ARIMA-LSTM model, and by utilizing the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) before ARIMA-LSTM to more effectively ma nage nonstationary signals. The work introduces a unique hybrid 125 
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model, SG-CEEMDAN-ARIMA-LSTM, which integrates decomposition and hybrid modeling techniques to enhance the 

accuracy and robustness of drought forecasts.  

Therefore, the subsequent Materials and Methods section will provide a detailed account of the study area, the data employed, 

and the preprocessing steps undertaken, including the trend extraction methods applied prior to forecasting. This will be 

followed by an in-depth description of each modeling approach, outlining their theoretical foundations, implementation 130 

procedures, and parameterization strategies. Such a structured presentation ensures transparency in model development and 

establishes a comprehensive methodological framework for the proposed forecasting system .  

2.1. Study Area and Data 

This study employed monthly mean precipitation records from 1980 to 2023, obtained from the South African Weather Service 

(SAWS) for the uMkhanyakude District in South Africa. The uMkhanyakude District Municipality is located in the far northern 135 

region of the KwaZulu-Natal (KZN) province (coordinates: 32.014489° S, 27.622242° E). The municipality covers a total area 

of 13,855 km², making it the second largest in the province, exceeded only by the Zululand Municipality. The uMkhanyakude 

District was formed immediately after the local government elections in December 2000 , as part of the municipal demarcation 

process, encompassing some of the most destitute and underdeveloped areas of KwaZulu -Natal. The uMkhanyakude District 

consists of four local municipalities: uMhlabuyalingana, Jozini, Big Five Hlabisa, and Mtubatuba. The municipality is 140 

geographically surrounded by Mozambique to the north, the Indian Ocean to the east, the uThungulu River to the south, 

Zululand to the west, and the Kingdom of Swaziland to the northwest. Figure 1 illustrates the spatial distribution of the sta tions. 
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Figure 1: Overview of the uMkhanyakude District, South Africa. Rain gauge stations are marked red.   

 145 

 

2.2. Modified Mann-Kendall  

The modified Mann-Kendall methodology is derived from the nonparametric Mann-Kendall method (Mann, 1945; Kendall, 

1975), which is widely used to detect trends in hydro-meteorological time series (Caloiero et al., 2011; Bard et al., 2015; Wang 

et al., 2017; Mirabbasi et al., 2020). The modified Mann–Kendall (MMK) test was employed for serially correlated data 150 

exhibiting a substantial lag-1 autocorrelation coefficient, utilising the variance correction method proposed by Yue et al. 

(2002). Hamed and Rao (1998) created this methodology to eradicate all substantial autocorrelation in the time series. Under 

the assumption that the data are independent and identically distributed, the S statistic of the Mann-Kendall test is computed 

as follows (Sharifi et al. 2024): 

 155 

𝑆 = ∑ ∑ 𝑆𝑖𝑔𝑛(𝑥𝑗− 𝑥 𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖 =1

 

 

(1) 
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where n denotes the sample size; 𝑥 𝑖 and 𝑥𝑗 denote sequential 𝑖𝑡ℎ  and 𝑗 𝑡ℎ  data points, respectively, and sign(.) is the sign 

function which can be computed as 

𝑆𝑖𝑔𝑛(𝑥𝑗− 𝑥 𝑖) = {

1,   𝑖𝑓 𝑥𝑗 −𝑥 𝑖 > 0

0,   𝑖𝑓 𝑥𝑗 −𝑥 𝑖 = 0

−1,   𝑖𝑓 𝑥𝑗− 𝑥 𝑖 < 0

 

 

(2) 

with the mean and variance of the 𝑆 statistics in the equation are as follows (Helsel and Hirsch 1993; Ma et al. 2014; Ashraf 

et al. 2023) 160 

𝐸(𝑆) = 0 (3) 

 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

𝑝
𝑖=1

18
 

(4) 

 

where 𝑝 is the number of tied groups and 𝑡𝑖 denotes the number of data points in the 𝑡𝑡ℎ group. The second term represents an 

adjustment for tied group or censored data. The standardized Z statistic is calculated as 

𝑍𝑀𝐾 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
,       𝑆 > 0

0,                      𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
,       𝑆 < 0

 

 

 

(5) 

The test statistic Z is used to measure the significance of the trends. In the modified Mann-Kendall approach, a modified 165 

variance of S is computed as follows (Hamed and Rao, 1998) 

𝑉𝑎𝑟(𝑆∗) = 𝑉𝑎𝑟(𝑆).
𝑛

𝑛∗
 

(6) 

where 𝑛∗ is the effective sample size. The 
𝑛

𝑛∗
 ratio can be calculated as follows (Hamed and Rao, 1998) 

𝑛

𝑛∗
= 1 +

2

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑛 − 𝑖)

𝑛

𝑖 =1

(𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)𝑟𝑖  
 

(7) 

 

where 𝑟𝑖  denotes the lag-𝑖 significant autocorrelation coefficient of rank 𝑖 in a time series. Then the standardized statistic of 

the S statistic, denoted as Z, can be derived as  170 

𝑍𝑀𝑀𝐾 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆∗)
,       𝑆 > 0

0,                      𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆∗)
,       𝑆 < 0

 

 

 

(8) 
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If the calculated Z values (𝑍𝑀𝐾 and 𝑍𝑀𝑀𝐾) exceed the critical values of −𝑍1−𝛼 2⁄
 or fall below 𝑍1−𝛼 2⁄

, there is no discernible 

trend in the time series at the significance level of α. If the Z value is positive and exceeds 𝑍1−𝛼 2⁄
, the trend is upward; 

conversely, if the Z value is negative and falls below −𝑍1−𝛼 2⁄
, the trend is downward. 

 175 

2.3. Innovative Trend Analysis 

The Innovative Trend Analysis (ITA) method, initially introduced by Sen (2012), has been widely employed for detecting 

patterns in precipitation time series. Since its debut, the ITA technique has experienced substantial improvements in both 

mathematical and graphical aspects, as evidenced by Şen (2017) and Alashan (2018). The ITA method does not depend on 

assumptions of serial autocorrelation, normalcy, or record length, making it appropriate for both graphical and statistical t rend 180 

analysis (Besha et al., 2022). Initially, the time series is bifurcated into two equal segments and organised in ascending order. 

The initial segment of the time series (𝑥 𝑖: 𝑖 = 1, 2, … , 𝑛 2⁄ ) is positioned along the horizontal x-axis, while the subsequent 

segment (𝑥𝑗: 𝑗 = 𝑛 2⁄ + 1, 𝑛 2⁄ + 2, … , 𝑛) is situated along the vertical y-axis in the Cartesian coordinate system (Ashraf et al. 

2023). The ITA approach visually represents trend analysis, specifically indicating monotonic growing, declining, and 

trendless circumstances (Oztopal and Şen , 2017; Likinaw et al., 2023). A monotonically growing or declining trend can be 185 

identified when the majority of points are situated above or below the 45° (1:1 line), respectively. A trendless condition ar ises 

when the data points are clustered along the 45° line (Şen, 2012). We employ the magnitude of the slope parameter to convey 

information about monotonicity. The slope parameter of the ITA technique is a stochastic property dependent on the sample 

means of the first half (𝑛1) and the second half (𝑛2 ) of the time-series mean data values. According to Şen (2017), the straight-

line trend slope (𝑆𝐼𝑇𝐴) can be estimated using the following expression: 190 

𝑆𝐼𝑇𝐴 =
2𝑥(𝑥𝑗− 𝑥 𝑖)

𝑛
 

(9) 

where n represents the total number of observations, 𝑥𝑖 and 𝑥𝑗 are the arithmetic means of the first and second halves of the 

sub-series, respectively. Given that 𝑥 𝑖 and 𝑥𝑗 are stochastic variables, the expected value of the slope can be determined by 

analysing the expectancies of both the first and second halves of the time series (Alashan , 2020; Harka et al., 2021): 

𝐸(𝑆𝐼𝑇𝐴) =
2

𝑛
[𝐸(𝑥𝑗) − 𝐸(𝑥 𝑖)] 

(10) 

For the no trend condition, 𝐸(𝑥𝑗) = 𝐸(𝑥 𝑖), the 𝐸(𝑆𝐼𝑇𝐴) = 0  and standard deviation (SD) of the two half time-series 

(𝜎𝑥𝑗 = 𝜎𝑥𝑖 = 𝜎 √𝑛⁄ ), 𝜎 is the SD is of the parent series. If 𝐸(𝑥𝑗) ≠ 𝐸(𝑥 𝑖), the differences between 𝐸(𝑥𝑗) and 𝐸(𝑥 𝑖) gives the 195 

variance 

𝜎𝑆𝐼𝑇𝐴
2 =

8

𝑛2
[𝐸(𝑥𝑗) −𝐸(𝑥𝑗𝑥𝑖) ] 

(11) 

and the SD of the slope 
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𝜎𝑆𝐼𝑇𝐴 =
2√2

𝑛√𝑛
𝜎√1 − 𝜌𝑥𝑗𝑥𝑖  

(12) 

In the stochastic processes, the term 𝜌𝑥𝑗𝑥𝑖  is the correlation coefficient between the two mean values, and can be estimated as 

𝜌𝑥𝑗𝑥𝑖 =
𝐸(𝑥𝑗𝑥 𝑖)− 𝐸(𝑥𝑗)𝐸(𝑥 𝑖)

𝜎𝑥𝑗𝜎𝑥𝑖
 

(13) 

In the end, the upper and lower confidence limit (CL) of the trend slope was calculated (Şen 2017): 

𝐶𝐿(1−𝛼) = 0 ± (𝑍1−𝛼 2⁄
)𝜎𝑆𝐼𝑇𝐴  (14) 

𝑍1−𝛼 2⁄
 denotes the crucial slope for standardised time-series at ±1.96 for a 95% significance level or ±1.645 for a 90% 200 

significance level (Alashan, 2020). If the ITA slope value is beyond the lower and upper confidence limits, the null hypothesis 

of no significant trend should be rejected at the α significance level (Şen, 2017). In a two-tailed scenario, the null hypothesis 

(𝐻0) posits the absence of a trend in time-series data, while the alternative hypothesis (𝐻1) asserts the presence of a trend in 

time-series data at a  significance level of α. If the slope, ±𝑆𝐼𝑇𝐴 > ±𝐶𝐿(1−𝛼), then (𝐻0) is discarded in favour of (𝐻1). The 

positive and negative values of 𝑆𝐼𝑇𝐴 signify an upward and downward trend in the time-series data, respectively (Şen, 2017).  205 

 

2.4. The SPI Calculation 

For the purpose of analysing the severity of drought, which is caused by a lack of water supply as a result of reduced 

precipitation in response to rising demand, the SPI was created by McKee et al. (1993) and is based on probability (Zuo, 2021 ). 

Based on the cumulative likelihood of a specific amount of precipitation, the SPI indicator is calculated by fitting the 210 

precipitation throughout the same period with a certain distribution function. At its largest point, the SPI index represents  the 

quantile of a normal distribution. Each time axis has an estimated drought index for 6, 9, and 12 months. This is based on th e 

gamma probability density function, which accounts for the periodic distribution of precipitation for the corresponding data 

point. The expression of the density function for this distribution is as follows. 

𝑔(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥
𝛽 

(15) 

where 𝛼 is the shape parameter, 𝛽 is the scale parameter and 𝑥  is the precipitation amount, and Γ(𝛼) = ∫ 𝑦
∞

0

𝛼−1
𝑒−𝑦𝑑𝑦 is  215 

gamma function.  The maximum likelihood estimates of the parameters 𝛼 and 𝛽 are: 

𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
) 

 

(16) 

 

𝛽 =
𝑥̅

𝑛
 

(17) 
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where 𝐴 = ln(𝑥̅) −
∑ ln(𝑥)

𝑛
, 𝑥̅  is the precipitation average and 𝑛 is the sample size. The following equation applies the acquired 

parameters to the cumulative probability distribution: 

 220 

𝐺(𝑥) = ∫𝑔(𝑥)𝑑𝑥 =
1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝛼−1𝑒

−
𝑥
𝛽

𝑥

0

𝑑𝑥

𝑥

0

 

 

(18) 

 

G(x) represents the likelihood that the precipitation will be equal to or less than x.  The distribution function for precipitation 

needs to be adjusted because the real precipitation samples can contain a value of 0.  Based on this, we can calculate the 

cumulative probability as: 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥)  (19) 

where q denotes the probability when precipitation equals zero. The probability of no rainfall, q, can be articulated as q = m/r, 225 

where m represents the number of days without rainfall and r denotes the number of days with rainfall (Song and Park, 2021). 

Consequently, H(x) is converted to the conventional random variable Z of the standard normal distribution, characterised by a  

mean of 0 and a variance of 1, resulting in: 

𝑆𝑃𝐼 = 𝑍 =

{
 
 

 
 −(𝑘 −

𝑐0 +𝑐1𝑘 + 𝑐2𝑘
2

1 + 𝑑1𝑘 + 𝑑2𝑘
2+ 𝑑3𝑘

3
) , 0 < 𝐻(𝑥) ≤ 0.5

+ (𝑘 −
𝑐0 +𝑐1𝑘 + 𝑐2𝑘

2

1 + 𝑑1𝑘 + 𝑑2𝑘
2+ 𝑑3𝑘

3
) , 0 < 𝐻(𝑥) ≤ 1.0

 

 

(20) 

 

𝑘 =

{
 
 

 
 

√ln((
1

𝐻(𝑥)
)
2

) , 0 < 𝐻(𝑥) < 0.5

√ln ((
1

1 − 𝐻(𝑥)
)
2

) , 0 < 𝐻(𝑥), < 1.0

 

 

 

(21) 

where 𝑐0 = 2,515517 , 𝑐1 = 0.802853 , 𝑐2 = 0,010328 , 𝑑1 = 1,432788 , 𝑑2 = 0,189269 , 𝑑3 = 0,001308  are constants. 230 

Furthermore, the SPI indicator is a standardised normalised index, establishing a correlational relationship with likelihood.  

Table 1 presents the probability associated with each category of drought. 

 

Table 1. Drought classification using SPI values and corresponding event probability (Llyod-Hughes and Sanders 

2002). 235 

SPI Values Drought Category Probability (%) 

2.00 ≤ 𝑆𝑃𝐼   Extremely wet 2.3 
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1.50 ≤ 𝑆𝑃𝐼 ≤ 1.99  Severely wet 4.4 

1.00 ≤ 𝑆𝑃𝐼 ≤ 1.49 Moderately wet 9.2 

0.00 ≤ 𝑆𝑃𝐼 ≤ 0.99  Mildly wet 34.1 

−0.99 ≤ 𝑆𝑃𝐼 ≤ 0.00  Mild dry 34.1 

−1.49 ≤ 𝑆𝑃𝐼 ≤ −1.00  Moderate dry 9.2 

−1.99 ≤ 𝑆𝑃𝐼 ≤ −1.50  Severe dry 4.4 

𝑆𝑃𝐼 ≤ −2.00  Extreme dry 2.3 

 

2.5. The Savitzky-Golay Filter 

The Savitzky-Golay (SG) smoothing technique is a widely used method for noise filtration. Savitzky and Golay (1994) 

introduced the SG filter as an effective technique for signal smoothing. The SG technique attenuates noise utilising two 

parameters: polynomial order and window size. By flexibly adjusting these two parameters, the SG filter can  achieve 240 

exceptional performance in various pre-processing circumstances. The essence of this procedure involves fitting a low-degree 

polynomial to the samples within a sliding window using the least squares method, resulting in a new smoothed value for the 

central point derived by convolution. The SG filter is a  specific variant of a  low-pass filter that substitutes each value in the 

time series with a new value derived from a polynomial fit to 2𝑚 + 1 surrounding points, including the point to be smoothed, 

where m is equal to or larger than the polynomial's order. The polynomial is articulated as follows:  245 

𝑝(𝑛) = ∑𝑎𝑘𝑛
𝑘

𝑁

𝑘=0

 

(22) 

where 𝑁 is the power of the polynomial and 𝑁 ≤ 2𝑀 + 1. The following equation is used to determine the error between the 

estimated and original values; in order to find the desired polynomial result, this error must be minimised. 

𝜖𝑁 = ∑ (𝑝(𝑛) − 𝑥[𝑛])2
𝑀

𝑛=−𝑀

 

 

(23) 

The following form of discrete convolution can be used to express the filter's output:  

𝑦[𝑛] = ∑ ℎ[𝑚] 𝑥[𝑛 − 𝑚]

𝑀

𝑚=−𝑀

= ∑ ℎ[𝑛 −𝑚] 𝑥[𝑚]

𝑛+𝑀

𝑚=𝑛−𝑀

 

(24) 

This work employs the SG filter for two primary reasons: firstly, it enhances system performance by preserving the width and 

height of waveform peaks in noisy SPI, and secondly, it modifies the SPI while maintaining its fundamental qualities.  250 

 

2.6. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. 
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The model's ability to fit functions and converge will be constrained by the complexity and volatility of the original time 

sequence, which in turn limits the model's predictive power. To overcome this challenge, the complete ensemble empirical 

mode decomposition (CEEMDAN) technique is employed to preprocess the original nonstationary and nonlinear time series.   255 

Both empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD), have been enhanced by 

the CEEMDAN. The computational efficiency is improved, and the reconstructed sequences of both the EMD and EEMD 

algorithms are free of modal confusion and noise residuals (Zhang et al., 2023).  A residual term and a sequence of intrinsic 

mode functions (IMFs) are the building blocks of a complicated time series signal that the CEEMDAN breaks down.  

Step 1: Incorporate a constrained quantity of adaptive white noise into the original sequence  𝑥(𝑡)𝛿0𝜔
𝑖(𝑡) (𝑡 = 1,2, 3, ⋯ , 𝑁) 260 

𝑥 𝑖(𝑡) = 𝑥(𝑡) + 𝛿0𝜔
𝑖(𝑡) (25) 

where N denotes the number of trials, 𝛿0  signifies a coefficient of intensity, and 𝜔𝑖(𝑡)  indicates the ith realisation of a 

stochastic Gaussian process. 

Step 2: The residual 𝑟1 (𝑡) and the first modal component 𝐼𝑀𝐹1  are obtained by decomposing each equation (1) using EMD. 

𝐼𝑀𝐹1 (𝑡)
̅̅ ̅̅ ̅̅ ̅̅̅ ̅ =

1

𝑁
∑𝐸𝑀𝐷1

𝑁

𝑖 =1

(𝑥 𝑖(𝑡)) 
 

(26) 

 

𝑟1 (𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1 (𝑡)
̅̅ ̅̅ ̅̅ ̅̅̅ ̅ (27) 

 265 

In this context, 𝐸𝑀𝐷1 (. ) denotes the initial IMF component produced by the EMD algorithm, while 𝑟1 (𝑡) signifies the residual 

associated with the first stage. 

Step 3: Add white noise 𝛿1𝐸𝑀𝐷1 (𝜔
𝑖(𝑡) ) to the residual 𝑟1(𝑡) and further decomposed by EMD to obtain the second modal 

component 𝐼𝑀𝐹2  and residual 𝑟2 (𝑡).  

𝐼𝑀𝐹2 (𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑁
∑𝐸𝑀𝐷1 (𝑟1(𝑡) + 𝛿1𝐸𝑀𝐷1(𝜔

𝑖 (𝑡)))

𝑁

𝑖 =1

 

(28) 

 270 

𝑟2 (𝑡) = 𝑟1(𝑡) − 𝐼𝑀𝐹2 (𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (29) 

For the 𝑗 = 3, 4, ⋯ , 𝑁, the jth IMF component and the jth residual can be computed as:  

𝐼𝑀𝐹𝑗 (𝑡)
̅̅ ̅̅ ̅̅ ̅̅̅ ̅ =

1

𝑁
∑𝐸𝑀𝐷1 (𝑟𝑗−1(𝑡) + 𝛿𝑗−1𝐸𝑀𝐷𝑗−1(𝜔

𝑖(𝑡)))

𝑁

𝑖 =1

 

 

(30) 

 

𝑟𝑗 (𝑡) = 𝑟𝑗−1(𝑡) − 𝐼𝑀𝐹𝑗(𝑡)
̅̅ ̅̅ ̅̅ ̅̅̅  ̅ (31) 

where 𝐸𝑀𝐷𝑗 −1(. ) denotes the (𝑗 − 1)th intrinsic mode function component derived from the empirical mode decomposition 

technique, and 𝑟𝑗 (𝑡) represents the residual following the jth decomposition. 
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Step 3: Continue executing step 3 until the residual 𝑟𝑗 (𝑡)  meets a predetermined termination criterion. 275 

The time series 𝑥(𝑡) can ultimately be articulated as 

𝑥(𝑡) = ∑𝐼𝑀𝐹𝑁(𝑡)̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ + 𝑟𝑁 (𝑡)

𝑁

𝑖=1

 

(32) 

 

2.7. The Autoregressive Integrated Moving Average Model 

The Autoregressive Integrated Moving Average (ARIMA) model, pioneered by Box and Jenkins in the 1970s, serves as a 

robust and effective forecasting approach for time series analysis (Box et al., 2015). The ARIMA model, often known as the 280 

Box-Jenkins approach, is depicted through the concepts presented by Sibiya et al. (2024) in Figure 2. The ARIMA models 

predict future values of the time series as a linear combination of historical and residual data. This model comprises three 

components: the order of seasonal differentiation, autoregressive order, and moving average order (Montgomery et al. , 2015). 

The backward shift operator B is employed to eliminate nonstationarity. A time series, 𝑦𝑡 , is called homogeneous nonstationary 

if it first order difference, 𝜔𝑦 = (1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 or the dth difference 𝜔𝑡 = (1 − 𝐵)
𝑑𝑦𝑡  is also stationary time series. 285 

Furthermore, 𝑦𝑡  is referred to as an ARIMA model with orders 𝑝, 𝑑  and 𝑞 , noted 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑 ,𝑞). Hence, an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) 

is often expressed as 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + 𝜃(𝐵)𝜀𝑡 (33) 

 

𝜙(𝐵) = 1 −∑𝜙𝑖𝐵
𝑖

𝑝

𝑖 =1

     and    𝜃(𝐵) = 1 −∑𝜃𝑖𝐵
𝑖

𝑞

𝑖 =1

 

(34) 

 

The backward shift operators for 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) are defined as 𝜙(𝐵)𝑦𝑡 = 𝑐 + 𝜀𝑡 and 𝑦𝑡 = 𝜇 + 𝜃(𝐵)𝜀𝑡  with 𝑐 = 𝜇 − 𝜙𝜇, 290 

where 𝜇 and 𝜀𝑡  are the mean and white noise, respectively and the 𝜀𝑡  is independent and normal distributed with mean 0 and 

variance of 𝜎𝜀
2. 
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Figure 2: The Box-Jenkins Steps Approach. 

 295 

2.8. The Long Short-Term Memory 

Long short-term memory (LSTM) algorithms represent a category of recurrent neural network (RNN) designs that are 

proficient in handling sequential input and identifying temporal relationships (Hochreiter and Schmidhuber , 1997). LSTM 

networks incorporate specific memory cells and gates for the efficient management and regulation of information flow over 

various time steps. Consequently, they can effectively represent the data input while maintaining essential dependencies and 300 

patterns. The LSTM methodology addresses the problem of vanishing gradients encountered by RNN algorithms. This occurs 

when the gradient diminishes to a level insufficient for effectively updating the weights throughout prolonged sequences. The 
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LSTM facilitates the flow of gradients across time by employing memory cells and gates. The model's foundational design 

primarily consists of three control gates: input, forget, and output. The activation function is represented by σ, whereas th e cell 

states at time 𝑡 − 1 and 𝑡 are designated as 𝐶𝑡−1 and 𝐶𝑡 respectively. At time 𝑡 and time 𝑡 − 1, the cell possesses two concealed 305 

states, ℎ𝑡  and ℎ𝑡−1 . Figure 3 illustrates the building of the LSTM unit, and the mathematical equations (35) to (40) for the 

LSTM method are provided below. Initially, by employing the model's forget gate, we may determine the current hidden state 

ℎ𝑡−1 and the degree to which the input 𝑥𝑡 has been preserved. The formula is 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1+ 𝑏𝑓) (35) 

Secondly, the input gate allows us to ascertain the volume of content from the input variable that can be retained in the cell 

state 𝐶𝑡 310 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (36) 

𝐶𝑡 = 𝜎𝑐(𝑊𝑐 𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 +𝑏𝑖) (37) 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1+ 𝑖𝑖⨀𝐶𝑡 (38) 

The output gate of the LSTM produces outputs, and the hidden state of each cell is represented by the formula:  

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 +𝑏𝑜) (39) 

ℎ𝑡 = 𝑂𝑡⨀𝜎ℎ(𝐶𝑡) (40) 

In the aforementioned formulas, 𝑊𝑓 , 𝑊𝑖 , and 𝑊𝑜  represent the weight matrices associated with the various control gates. The 

terms 𝑏𝑓, 𝑏𝑖, and 𝑏𝑜 correspond to the bias terms for each respective control gate. The notation 𝐶𝑡 signifies the complete input 

activation vector, while the operator ⨀ (Hadamard product) indicates the element-wise multiplication of the elements between 

two vectors. The 𝜎 activation function quantifies the amount of information that is transmitted through the various control 315 

gates. 
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Figure 3: Structure diagram of LSTM model. 

 

2.9. The ARIMA-LSTM hybrid Model 320 

Achieving accurate estimates of SPI index values through a forecasting model is essential for informed decision -making. 

Zhang (2003) offers a hybrid model wherein the ARIMA model extracts and predicts linear components, while the residuals, 

representing nonlinear data subcomponents, are then modelled by the LSTM approach. This study employs a hybrid model 

that integrates ARIMA and LSTM to predict both linear and nonlinear behaviours with optimal accuracy.  

ℋ𝑡 = ℒ𝑡 + ℵ𝑡  (41) 

where ℒ𝑡  and ℵ𝑡  denote the linear and nonlinear components, respectively, for the hybrid technique which are computed using 325 

the initial time series (𝑦𝑡 ). Consider the original dataset at time t and the forecast results obtained from applying the ARIMA 
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model as ℒ̂𝑡  the prediction results. Thus, ℰ𝑡 = 𝑦𝑡 − ℒ̂𝑡  is the definition of the residual ℰ𝑡  that is derived by removing ℒ̂𝑡  from 

𝑦𝑡 . Subsequently we compute the value ℵ̂𝑡  by feeding the series of residuals into the LSTM model, which predicts the nonlinear 

component of the values. This equation may be written as  

ℵ̂𝑡 = 𝑓𝐿𝑆𝑇𝑀(ℰ𝑡−1, ℰ𝑡−2,… ,ℰ𝑡−𝑛) + 𝜖𝑡 , (42) 

  

where ℵ̂𝑡  is a  nonlinear expression associated with the LSTM model and 𝜖𝑡  is the random error. The combined forecasts from 330 

the two steps were then used to determine the value for the ARIMA-LSTM hybrid model.  As illustrated in Figure 4, the 

equation ℋ̂𝑡 = ℒ̂𝑡 + ℵ̂𝑡  predicts the linearity and nonlinearity values, respectively, using ARIMA and LSTM models. 

 

Figure 4: Predictive flowchart of the ARIMA-LSTM hybrid model. 

 335 

2.10. The development of the proposed SG-CEEMDAN-ARIMA-LSTM hybrid model 

Due to the great uncertainty of the drought data and the existence of complexity, nonlinearity , and nonstationary trends, the 

single prediction model is greatly limited; however, the hybrid method has better prediction accuracy. The SG-CEEMDAN-

ARIMA-LSTM algorithm that combines different techniques for improved accuracy in predicting drought based on the 

standardised precipitation index is proposed this study. This hybrid model is designed as a sequential framework where each 340 

step refines the data for subsequent modelling. The SG-CEEMDAN pre-processing stage enhances the data by smoothing and 
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decomposing it into the meaningful components. The benefits of integrating the Savitzky–Golay smoothing filter with 

CEEMDAN significantly contribute to the enhancement of forecasting accuracy by improving the quality and interpretability 

of the input time series prior to modeling. The Savitzky–Golay filter acts as a noise suppression mechanism that preserves 

essential features of the time series, while eliminating high-frequency noise. This step ensures that the input to the CEEMDAN 345 

decomposition process is already denoised, leading to more stable and physically meaningful decomposed components. The 

CEEMDAN generates IMFs that are cleaner, more distinct, and less affected by spurious fluctuations. This results in better 

mode separation, reduces signal leakage across IMFs, and enhances the stationarity and regularity of each component. This 

hybrid preprocessing pipeline can enhances model generalization, reduces overfitting, and ultimately leads to more reliable 

and accurate forecasts. The components fed to the ARIMA-LSTM model that involves two-step process: the ARIMA for initial 350 

prediction utilising the Box-Jekins methodology and the LSTM model for refining and enhancing predictions. The hybrid 

model combines the ARIMA and the LSTM predictions to form the final hybrid forecasts. Figure 5 illustrates the proposed 

hybrid model algorithm. The process of SPI prediction based on ARIMA-LSTM combined with SG and CEEMDAN as is 

shown in Figure 5. The process of the data smoothing, decomposition and prediction include four main steps. 

 Step 1: Data Preprocessing Phase: To enhance the quality of the data and prepare it for decomposition, the original SPI time 355 

series undergo a data preprocessing phase: 

• Savitzky–Golay Filter: This filter is applied to smooth the SPI data and preserves the essential shape and trends of 

the original time series while minimizing high-frequency noise. This step ensures that important signal patterns are 

retained during further processing. The smoothed signal becomes the input signal for decomposition technique. 

 360 

• CEEMDAN Parameter Settings:  CEEMDAN is used to break the smoothed signal into several IMFs and a residual 

component. Before decomposition, the necessary parameters for CEEMDAN are configured. These parameters 

control the number of realizations, noise amplitude, and stopping criteria for decomposition. 

 

 Step 2: Model Development Phase: Each IMF, including the residual, is independently modelled using a hybrid ARIMA–365 

LSTM approach. This process involves several steps: 

a) Data Partitioning 

• The data for each IMF is split into: Training set (80%) and Testing set (20%). This split ensures that model learning 

and evaluation are based on separate subsets to avoid overfitting. 

b) Normalization 370 

• Prior to model training, the data is normalized using Min-Max normalization to ensure that input features fall within 

a similar scale, which improves training stability and convergence speed. 

c) Modelling Each IMF with ARIMA–LSTM 

• The two models are integrated so that both linear (ARIMA) and nonlinear (LSTM) dependencies within each IMF 

are effectively captured. The modelling process follows the algorithm shown in Figure 4. 375 

d) Feature Selection and Hyperparameter Tuning 
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• The performance of ARIMA and LSTM models heavily depends on the feature selection and hyperparameters. The 

𝑎𝑢𝑡𝑜 _𝑎𝑟𝑖𝑚𝑎( )  function and Bayesian Optimization were used to automate and optimize the search for best-

performing hyperparameters for the ARIMA-LSTM model by evaluating model performance over a probabilistic 

space. 380 

e) Model Training 

• Each IMF is trained individually using the selected features and optimized hyperparameters, resulting in a trained 

model for each component. 

 

 Step 3: Forecast Reconstruction Phase 385 

• After training, each IMF is forecasted individually. The final forecasted SPI value is obtained by summing the 

predictions of all individual IMFs, including the residual component:  

𝑆𝑃𝐼(𝑡) = ∑ 𝐼𝑀𝐹𝑖 (𝑡) +𝑅𝑒𝑠𝑡

𝑛

𝑖 =1

 

This additive reconstruction ensures that the original structure and dynamics of the SPI series are preserved in the forecast, 

improving overall accuracy. 390 

 

 Step 4: Model Evaluation Phase 

The reconstructed SPI prediction is then evaluated using multiple performance metrics: RMSE, DS, and coefficient of 

determination. The Taylor diagram is also utilised to evaluate the model performance. These metrics help quantify the 

predictive accuracy and reliability of the hybrid framework. 395 
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Figure 5: Procedure of proposed SG-CEEMDAN-ARIMA-LSTM hybrid model. 

 

2.11. Performance Evaluation 400 

To establish the predictive superiority of the SG-CEEMDAN-ARIMA-LSTM model, a  comparison was conducted against 

other models, including ARIMA, LSTM, ARIMA-LSTM, SG-ARIMA-LSTM, and CEEMDAN-ARIMA-LSTM models. The 

performance of the proposed hybrid-based model is evaluated using three indicators namely, root mean square error (RMSE), 

coefficient of determination (𝑅2) and directional symmetry (DS). The high value of 𝑅2 and DS reflects the better performance 

of the forecasting model while the lower the value of RMSE illustrates better forecasting performance. 405 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑎𝑣𝑔)

2
𝑛

𝑖 =1

 

 

(43) 

𝑅2 =
[∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑔)(𝑦𝑖 − 𝑦̂𝑎𝑣𝑔)

𝑛
𝑖=1 ]

2

∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑔)
2

𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑔)
2

𝑛
𝑖=1

 
(44) 
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𝐷𝑆 =
100

𝑛 − 1
∑𝑑𝑖

𝑛

𝑖 =2

 
(45) 

where  

𝑑𝑖 = {
1, (𝑦𝑖 − 𝑦𝑖−1)(𝑦𝑖 − 𝑦𝑖−1) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(46) 

𝑛  is number of data points, 𝑦𝑖  and 𝑦𝑖  observed and forecasted, respectively. 𝑦𝑎𝑣𝑔  and 𝑦𝑎𝑣𝑔  an average of the actual and 

forecasted values, respectively. Furthermore, this study conducts a qualitative evaluation of the prediction model's performance 

using a Taylor diagram (Taylor, 2001). The Taylor diagram offers a statistical evaluation of the degree of agreement between 

the models in terms of their SD, RMSE, and R2, while providing a concise summary of the correspondence between predicted 410 

and observed values. The differences in DS, RMSE, and R2 values among the prediction models are depicted as individual 

points on a two-dimensional plot within the Taylor diagram. This diagram, though it follows a common structure, proves 

especially valuable when evaluating intricate models. 

3. Results and Discussion 

3.1. Rainfall Data Series  415 

Figure 6 illustrates the daily and monthly cumulative precipitation data recorded at the uMkhanyakude district meteorological 

stations in KwaZulu-Natal province, South Africa, from the early 1980s to 2023. The data comprising 20% was employed for 

prediction, whereas the data representing 80% was applied for training. The SPI was computed utilising rainfall data from 

meteorological stations in the uMkhanyakude district, which provide sufficiently extensive records and a consistent structure 

(Hırca et al., 2022). 420 
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Figure 6: Time series plots of daily and monthly total rainfall data for uMkhanyakude district from early 1980’s to 2023. The (left) 

plot shows the daily rainfall data in millimeters (mm), illustrating the high variability and intermittent nature of daily rainfall events 

over the years. The (right) plot presents the monthly total rainfall data (mm), which smooths out the daily variability and reveals 

clearer patterns of rainfall distribution over time. 425 
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3.2. SPI Time Series and Trend Analysis 

This study SPI values for the 6-, 9-, and 12-month intervals were computed using the monthly mean time series shown in 

Figure 6. Figure 7 illustrates the time series of the SPI calculated for the 6-month (SPI-6), 9-month (SPI-9), and 12-month 430 

(SPI-12) intervals. All SPIs (SPI-6, SPI-9, and SPI-12) demonstrate numerous occurrences of moderate to severe droughts in 

the studied area. A significant drought episode was reported from late 2004 to 2009. Moreover, SPI -12 exhibits a persistent 

drought spell that commenced between 2014 and 2016, resulting in  a decline in water supply conditions in the region  

(Bukhosini and Moyo, 2023). The statistics across all timelines indicate a troubling trend of extended and intense drought 

conditions in recent years. This underscores the pressing necessity for efficient water management and drought readiness in 435 

the area. Initially, we assess the trend throughout the research area employing nonparametric techniques. The ensuing 

conclusions will be obtained via advanced trend analysis methods employed to investigate SPI trends.  
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Figure 7: Standardized Precipitation Index (SPI) time series plots for  uMkhanyakude  district over 6-month (SPI-6), 9-month (SPI-

9), and 12-month (SPI-12) periods from early 1980’s to 2023. Positive SPI values (blue bars) indicate wetter-than-normal conditions, 440 

while negative SPI values (red bars) indicate drier-than-normal conditions. 
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Figure 8 illustrates the regional outcomes of the ITA methodology used on the 6-, 9-, and 12-month SPI series to ascertain the 

potential meteorological drought trend in the uMkhanyakude district. Figure 8 includes two vertical bands to elucidate the 

potential trends of arid and humid conditions: a red band indicating the drought threshold (SPI = -1.5) and a blue band denoting 445 

the wet threshold (SPI = 1.5). The zone between the two bands signifies normal conditions, hence facilitating the depiction o f 

both low and high SPI trends using the ITA methodology. Each plot compares the first and second halves of the data series to 

identify trends.   

 

In general, both Figure 8 and Table 3 show that all stations, except Riverview, indicate a downward trend for all time scales, 450 

in terms of the ITA. For example, the ITA results obtained using 6-month SPI values exhibit a  slightly decreasing trend in 

precipitation, moving toward the upper right quadrant, indicating the detection of drier conditions over the 6-month timescale. 

Some points approach the severely wet threshold but do not cross it, indicating that there were no extreme wet periods, though 

some drier periods are evident near the severe dry line. The ITA results obtained using 9 -month SPI values show a more 

pronounced decreasing trend, indicating a relatively weaker increase in wet conditions over a 9-month timescale. Several 455 

points approach the severe dry threshold, but the data remains mostly within the 95% confidence bounds, indicating moderate 

variability in precipitation trends. On the other hand, the SPI -12 plot demonstrates a noticeable decreasing trend toward 

dryness, as many points fall below the no-trend line and approach the severe dry region. Riverview indicates the increasing 

trend across all time scales. The increasing distance between the black dots and the no -trend line highlights a shift toward drier 

conditions in the second half of the series. In general, the analysis suggests a gradual increase in precipitation for shorter 460 

periods (SPI-6), moderate upward trends for medium-term periods (SPI-9), and a more substantial shift toward dry conditions 

over longer periods (SPI-12) for Riverview. The variability is evident, but a clear progression toward drier conditions is 

evident, particularly in the SPI-12 plot. This observation could be indicative of changing precipitation patterns, which is crucial 

for understanding drought risk and informing water resource management strategies. 
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 465 
Figure 8: Results of  Innovative trend analysis applied to different time scales values (SPI-6 (left), SPI-9 (middle), SPI-12 (right)). 

The blue shaded area represents the 95% confidence level area. The red and blue vertical lines represent the severe drought and 

severely wet, respectively. 
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Table 2 presents the results of the Mann-Kendall (MK) and Modified Mann-Kendall (MMK) trend tests for the Standardized 470 

Precipitation Index (SPI) over 6-month (SPI-6), 9-month (SPI-9), and 12-month (SPI-12) periods. The results indicate that 

across five stations all time scales both MK and MMK methods showed significant decreasing trend with negative Z-score 

values. For example, False Bay Park, Z_MK are 𝑍𝑆𝑃𝐼−6 = −10.89 𝑍𝑆𝑃𝐼−9 = −12.89, 𝑍𝑆𝑃𝐼−12 = −13.82 and Z_MMK are 

𝑍𝑆𝑃𝐼−6 = −6.27, 𝑍𝑆𝑃𝐼−9 = −6.28, 𝑍𝑆𝑃𝐼−12 = −6.29. The p-values of MK and MMK show the significance of the trends, with 

values way below 0.05 confirming statistically significant trends. In all cases except Riverview, the p-values are extremely 475 

low (<< 0.05), indicating strong evidence of significant decreasing trends in precipitation for all SPI periods. Both the MK 

and MMK tests confirm decreasing trends across all time scales, with the Z_MK and Z_MMK values becoming more negative 

as the SPI period increases, reflecting an intensifying downward trend over longer periods (from SPI -6 to SPI-12). For 

Riverview station, the results indicate an increasing trend  with positive Z-score values, i.e. Z_MK are 𝑍𝑆𝑃𝐼−6= 2.85, 𝑍𝑆𝑃𝐼−9 =

3.84 , 𝑍𝑆𝑃𝐼−12 = 4.59  and Z_MMK are 𝑍𝑆𝑃𝐼−6 = 1.19 , 𝑍𝑆𝑃𝐼−9 = 2.16 , 𝑍𝑆𝑃𝐼−12 = 2.29 . In general, all these results are 480 

consistent with those shown using the ITA (see Table 3). The Riverview station experience increasing trend because it is 

located closer to the coast, hence it is influenced by a combination of geographic, oceanic and climatic factors. For an exam ple, 

this station could be influenced by the Agulhas Current, which flows southwards along the east coast of South Africa, bringing 

warm, moist air from the Indian Ocean, and thus enhancing evaporation that brings constant availability of moisture in the 

atmosphere.     485 

 

Table 2: Statistical summary of trend analysis for SPI-6, SPI-9, and SPI-12 using Mann-Kendall (MK) and Modified Mann-Kendall 

(MMK) tests. 

False Bay Park 

Variables SPI-6 SPI-9 SPI-12 

𝑍𝑀𝐾 -10.89 -12.89 -13.82 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  < 0.00 < 0.00 < 0.00 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾 -6.27 -6.28 -6.29 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  3.66× 10−10 3.35× 10−10 3.13 ×10−10 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

Hlabisa Mbazwana 

𝑍𝑀𝐾 -2.89 -3.88 -5.31 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  3.77 × 10−3 3.05 × 10−4 1.10 × 10−7 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾 -2.26 -2.12 -2.20 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  2.39 × 10−2 3.36 × 10−2 2.78 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 
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Pongolapoort Dam 

𝑍𝑀𝐾 -7.19 -8.74 -9.83 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  6.12× 10−13 < 0.00 < 0.00 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾 -8.22 -5.44 -6.51 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  2.22× 10−16 5.40 × 10−8 7.41 ×10−11 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

Mkuze Game Reserve 

𝑍𝑀𝐾 -3.66 -5.54 -6.67 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  2.48 × 10−4 2.99 × 10−8 2.55 ×10−11 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾 -2.44 -2.79 -2.22 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  1.46 × 10−2 5.13 × 10−3 2.64 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

Ingwavuma Manguzi 

𝑍𝑀𝐾 -2.38 -3.72 -4.92 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  1.72 × 10−2 1.98 × 10−4 8.72 × 10−7 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

𝑍𝑀𝑀𝐾 -1.61 -2.48 -2.27 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  1.08 × 10−1 1.31 × 10−2 2.29 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Decreasing Decreasing Decreasing 

Riverview 

𝑍𝑀𝐾 2.85 3.84 4.59 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑘  4.34 × 10−3 1.25 × 10−4 4.25 × 10−6 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Increasing Increasing Increasing 

𝑍𝑀𝑀𝐾 1.94 2.16 2.29 

𝑝 −𝑣𝑎𝑙𝑢𝑒𝑀𝑀𝑘  5.12 × 10−2 3.07 × 10−2 2.19 × 10−2 

Decision (𝑇𝑟𝑒𝑛𝑑𝑀𝐾 ) Increasing Increasing Increasing 

 

 490 
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Table 3: The results of the trend analysis for SPI-6, SPI-9, and SPI-12 obtained through a two-tailed test at a significance level of 495 

5% using ITA technique. 

False Bay Park 

Variables SPI-6 SPI-9 SPI-12 

Slope −3.51× 10−3  −1.14× 10−3  −4.49 × 10−3 

Indicator -20.08 -20.12 -20.07 

±CI at 95% ±9.24× 10−5  ±7.52× 10−5  ±6.82 × 10−5 

Hlabisa Mbazwana 

Slope −1.68× 10−3  −2.31× 10−3  −1.86 × 10−3 

Indicator −20.52 −20.72 −20.64 

±CI at 95% ±6.81× 10−5  ±9.35× 10−5  ±7.15 × 10−5 

Pongolapoort Dam 

Slope 2.26× 10−3  −2.88× 10−3  −3.34 × 10−3 

Indicator −19.27 −19.40 −19.55 

±CI at 95% ±2.22× 10−5  ±3.62× 10−5  ±6.72 × 10−5 

Mkuze Game Reserve 

Slope −2.00× 10−3  −3.04× 10−3  −3.80 × 10−3 

Indicator −20.09 −20.22 −20.25 

±CI at 95% ±2.81× 10−3  ±4.67× 10−3  ±4.40 × 10−3 

Ingwavuma Manguzi 

Slope −1.61× 10−3  −2.26× 10−3  −2.88 × 10−3 

Indicator −21.96 −21.05 −20.77 

±CI at 95% ±6.81× 10−5  1.01±× 10−5  ±1.19 × 10−5 

Riverview 

Slope 1.69× 10−3  2.19× 10−3  2.37 × 10−3 

Indicator 22.54 22.22 21.86 

±CI at 95% ±1.54× 10−5  ±1.35× 10−5  ±1.56 × 10−5 

 

3.3. SPI Time Series Forecasting Results 

The study proposes a hybrid model that applies the Savitzky-Golay (SG) filter to process raw SPI data, thereby reducing noise 

and enhancing forecasting analysis. To demonstrate the effectiveness of the SG filter, appropriate parameters such as window 500 

size and polynomial order were selected through trial and error using data from the study sites (Sibiya et al. , 2024). A window 

size of 21 and a polynomial order of 5 were chosen for smoothing. Figure 9 shows how the SG filter effectively tracks the 

general trend while preserving the shape of peaks and minimizing noise. This filter was applied to different time scales of the 

SPI time series. It autonomously calibrates according to peak distribution, exhibiting optimal performance, particularly with 

asymmetric peaks, while preserving peak height integrity. The application of the SG filter effectively mitigates short-term 505 

fluctuations and eliminates noise from the time series, resulting in cleaner data, thereby enhancing the reliability of the 
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subsequent decomposition process. By reducing noise, decomposition techniques can more accurately capture the authentic 

underlying patterns and components within the data. 

 

Figure 9: SPI signals smoothed by Savitzky-Golay (SG). 510 

 

After applying a Savitzky-Golay filter to the series, the CEEMDAN algorithm decomposes the filtered SPI series into six 

subseries with different amplitudes and frequencies. The results from the False Bay Park station are utilized here as an 

illustration to prevent repetition. In these results, the decomposed set of time series consists of five IMF components and a 

residual component, as shown in Figure 10 (for all time scales). During the decomposition process, white Gaussian noise is 515 

added to create noisy signals. The original sequence exhibits high nonlinearity and nonstationarity, with the frequency of th e 

IMF components gradually decreasing. Figure 10 depicts this gradual decrease in frequency as the order of the IMF 

components increases. As each IMF is further decomposed, it becomes less volatile and cyclical, which aligns with the 

characteristics of the decomposed IMF. Therefore, by predicting each IMF and the residual, the forecast precision can be 
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enhanced. A forecasting model is then constructed for each component, and the prediction results are obtained by summing up 520 

the outputs of all predicted components. 

 

Figure 10: Decomposition of Smoothed SPI-6, SPI-9 and SPI-12 Index Using CEEMDAN: Each IMF represents different frequency 

components of the SPI index, from high-frequency oscillations (IMF1) to low-frequency trends (IMF5), showing the variability in 

precipitation patterns over the years from 1980 to 2023. 525 

 

In predictive modeling, this study employed Bayesian optimization for hyperparameter tuning because of its effectiveness in 

improving model performance for complex, black-box, and non-differentiable functions. The hyperparameter configuration 

space comprises an n-dimensional functional space that encompasses all possible combinations of hyperparameters for the 

specified model. The benchmark analysis began with the ARIMA model, using the Box–Jenkins methodology. This process 530 

started with an assessment of stationarity through the augmented Dickey –Fuller (ADF) test. The series showed p-values 

exceeding the 5% significance threshold, indicating non-stationarity (see Table 4). As a result, differencing was applied to 

achieve stationarity. This study employed a stepwise approach using the 𝑎𝑢𝑡𝑜_𝑎𝑟𝑖𝑚𝑎( )  function within the ARIMA 

framework to identify the optimal parameters (see Table 5). Table 6 delineates the hyperparameter search space employed for 
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tuning the LSTM model utilizing a Bayesian optimization approach. Each hyperparameter is presented alongside its respective 535 

range or selected value, which delineates the parameters within which the Bayesian search investigated optimal configurations. 

 

 

Table 4: ADF Test Results for SPI Values (SPI-6, SPI-9, SPI-12) at Different Stations 

Station Name SPI ADF Statistic p-value Critical Value (5%) 

 

False Bay Park 

SPI-6 -2.1926 0.2089 -2.8925 

SPI-9 -3.2142 0.0192 -2.8915 

SPI-12 -1.4829 0.5419 -2.8949 

 

Hlabisa Mbazwana 

SPI-6 -1.9314 0.3175 -2.8925 

SPI-9 -1.5629 0.5022 -2.8939 
SPI-12 -1.1867 0.6793 -2.8946 

 

Pongolapoort Dam 

SPI-6 -2.8759 0.0482 -2.8925 

SPI-9 -2.7909 0.0596 -2.8909 

SPI-12 -2.1864 0.2112 -2.8909 

 
Mkuze Game Reserve 

SPI-6 -3.1136 0.0256 -2.8949 
SPI-9 -1.6134 0.4762 -2.8939 

SPI-12 -2.5689 0.0996 -2.8949 

 

Ingwavuma Manguzi 

SPI-6 -2.1418 0.2281 -2.8994 

SPI-9 -3.6158 0.0055 -2.9026 

SPI-12 -1.9049 0.3298 -2.9026 
 

Riverview 

SPI-6 -1.7509 0.4051 -2.9051 

SPI-9 -1.1840 0.6804 -2.9079 

SPI-12 -2.0298 0.2737 -2.9015 

 540 

Table 5: Accuracy criteria for different model parameters of the ARIMA model applied in SPI-6, SPI-9 and SPI-12 at different 

meteorological stations of uMkhanyakude district. 

 

Station Name 

SPI-6 SPI-9 SPI-12 

Model AIC Model AIC Model AIC 

False Bay Park ARIMA(5,0,3) 517.757 ARIMA(3,1,1) 333.328 ARIMA(1,1,0) 183.988 

Hlabisa Mbazwana ARIMA(5,1,5) 322.514 ARIMA(3,0,5) 248.815 ARIMA(2,1,2) 152.295 

Pongolapoort Dam ARIMA(4,1,3) 438.230 ARIMA(3,1,2) 350.618 ARIMA(1,1,0) 254.076 

Mkuze Game Reserve ARIMA(4,1,2) 432.320 ARIMA(3,0,3) 330.540 ARIMA(0,1,1) 164.170 

Ingwavuma Manguzi ARIMA(4,0,5) 417.071 ARIMA(3,1,1) 350.196 ARIMA(0,1,1) 153.087 

Riverview ARIMA(4,1,5) 435.687 ARIMA(3,1,0) 365.509 ARIMA(2,1,1) 168.812 

 

Table 6: Hyperparameter ranges in LSTM–Bayesian search Method. 

Hyperparameters Values Hyperparameters Values 

Number of LSTM units (32, 256) Activation function (ReLu, Sigmoid, Tanh,) 

Number of LSTM hidden size (32, 256) Optimizer Adam 

Batch size (16,128) Loss function Mean Square error 

Epoch (50,300) Dropout (0.05, 0.1) 

LSTM learning rate (0.0001, 0.001) Regularization Early stopping 

 545 
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The models in Table 7 were compared for their prediction ability before and after time series decomposition in this research. 

The objective was to determine if smoothing and decomposing time series improve the model's prediction performance. 

Figures 11–16 show a comparison of the various models' prediction outcomes using the Taylor diagram. In general, all the 

models accurately replicate the original SPI time series at all timescales (refer to Figure 11 - 16) in terms of the time series 

plot. However, the SG-CEEMDAN-ARIMA-LSTM model (shown in red) appears to have the closest fit to the data, displaying 550 

superior accuracy across different phases, particularly in extreme values. Nonetheless, the hybrid models (SG-ARIMA-LSTM, 

CEEMDAN-ARIMA-LSTM, and SG-CEEMDAN-ARIMA-LSTM) show better precision in capturing peaks, rapid transitions 

and troughs compared to the standalone LSTM or ARIMA models. Table 7 displays an assessment of the predictive 

performance metrics of several models utilising RMSE, 𝑅2, and DS. As the period extends, the RMSE values decrease; 

however, the DS and cap R-squared values typically enhance (see Table 7). This indicates that the models' predictive accuracy 555 

progressively enhances with an extended duration, reaching its highest point at the 12 -month interval. In terms of RMSE, the 

SG-CEEMDAN-ARIMA-LSTM model outperforms the others, exhibiting the lowest error values across all indices. For 

example, Riverview station,  0.2165 for SPI-6, 0.0921 for SPI-9, and 0.0566 for SPI-12. This indicates that this model has the 

smallest prediction error, making it the most accurate in terms of error reduction. Concerning 𝑅2, which measures how well 

the model explains the variance in the data, SG-CEEMDAN-ARIMA-LSTM again leads with the highest values: 0.9602 for 560 

SPI-6, 0.9846 for SPI-9, and 0.9939 for SPI-12. This shows that the model provides the best fit to the data. The CEEMDAN -

ARIMA-LSTM model is the second-best performer, also exhibiting impressive results, particularly in 𝑅2, where it achieves 

higher values of 0.9483 for SPI-6, 0.9751 for SPI-9, and 0.9933 for SPI-12. The SG-ARIMA-LSTM model is the third-best 

hybrid performer, with RMSE values of 0.2262 for SPI -6, 0.1051 for SPI-9, and 0.05639 for SPI-12. The SG-ARIMA-LSTM 

model is the third-best performer, also exhibiting impressive results, particularly in 𝑅2, where it achieves higher values of 565 

0.9392 for SPI-6, 0.9763 for SPI-9, and 0.9904 for SPI-12. The SG-ARIMA-LSTM model is the third-best hybrid performer, 

with RMSE values of 0.2597 for SPI-6, 0.1157 for SPI-9, and 0.0567 for SPI-12. In general, these results highlight the efficacy 

of hybrid models, particularly those incorporating SG and CEEMDAN processes, in improving predictive accuracy across 

multiple timescales of SPI, particularly for the SG-CEEMDAN-ARIMA-LSTM model. These results are consistent with the 

Taylor diagram (see Figure 11 - 16), which indicates a significant improvement in prediction accuracy after incorporating the 570 

SG and CEEMDAN signal decomposition technique as the hybrid model exhibits superior performance in terms of prediction 

accuracy across all timescales, surpassing other models. This suggests that the inclusion of these techniques enhances the 

models' ability to capture both short-term and long-term dependencies, thus making them more robust for drought prediction 

purposes. Therefore, this hybrid model appears to be the most effective for drought prediction in this analysis. These findin gs 

highlight the superiority of the proposed hybrid model in enhancing drought prediction accuracy compared to standalone 575 

approaches. 
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Table 7. Performance measures for the comparison of observed and forecasted data of the models for SPI-6, SPI-9 and SPI-12 across 

various lead times using statistical criteria. 

False Bay Park 

Model SPI-6 SPI-9 SPI-12 

RMSE 𝑹𝟐 DS RMSE 𝑹𝟐 DS RMSE 𝑹𝟐 DS 

ARIMA 0.3504 0.8435 0.8426 0.2431 0.8976 0.8525 0.1689 0.9421 0.8426 

LSTM 0.3128 0.9111 0.8327 0.2416 0.9521 0.8723 0.1626 0.9821 0.8519 

ARIMA-LSTM 0.2476 0.9194 0.8327 0.1650 0.9531 0.8723 0.0507 0.9952 0.9009 

SG- ARIMA-

LSTM 

0.2056 0.9458 0.8030 0.1348 0.9687 0.8218 0.0571 0.9940 0.9009 

C-A-L 0.2182 0.9375 0.8713 0.0978 0.9834 0.8218 0.0496 0.9953 0.8911 

SG-C-A-L 0.1835 0.9650 0.8416 0.1631 0.9836 0.8317 0.0349 0.9957 0.8941 

Mkuze Game Reserve 

ARIMA 0.3752 0.8642 0.8419 0.3475 0.8957 0.8792 0.2202 0.9697 0.8730 

LSTM 0.3474 0.9121 0.8822 0.3354 0.9178 0.8030 0.1523 0.9890 0.8733 

ARIMA-LSTM 0.3160 0.9273 0.8416 0.1561 0.9823 0.8218 0.1079 0.9926 0.8730 

SG- ARIMA-

LSTM 

0.2307 0.9624 0.8515 0.1548 0.9825 0.8317 0.08252 0.9951 0.8019 

C-A-L 0.1969 0.9726 0.8317 0.1430 0.9850 0.8515 0.04497 0.9986 0.9208 

SG-C-A-L 0.1818 0.9742 0.8515 0.1232 0.9892 0.8617 0.04217 0.9990 0.9208 

Pongolapoort Dam 

ARIMA 0.4470 0.8797 0.8624 0.2993 0.9668 0.8119 0.1918 0.9763 0.8733 

LSTM 0.4470 0.8962 0.8732 0.2873 0.9467 0.8238 0.1824 0.9851 0.8829 

ARIMA-LSTM 0.4121 0.8969 0.8822 0.2599 0.9588 0.8921 0.1638 0.9862 0.8432 

SG- ARIMA-

LSTM 

0.2224 0.9617 0.8019 0.2064 0.9803 0.8515 0.0686 0.9969 0.8119 

C-A-L 0.2132 0.9649 0.8822 0.1572 0.9850 0.8218 0.0639 0.9975 0.8019 

SG-C-A-L 0.1453 0.9839 0.8824 0.1429 0.9858 0.8911 0.0635 0.9978 0.8921 

Hlabisa Mbazwana 

ARIMA 0.4704 0.8347 0.8624 0.4234 0.8698 0.8921 0.2321 0.9556 0.8142 

LSTM 0.3617 0.9041 0.8327 0.2163 0.9672 0.8119 0.1566 0.9806 0.8317 
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ARIMA-LSTM 0.3269 0.9369 0.8515 0.2139 0.9677 0.8218 0.1457 0.9813 0.8426 

SG- ARIMA-

LSTM 

0.3011 0.9355 0.8416 0.1829 0.9747 0.8317 0.08540 0.9935 0.8218 

C-A-L 0.2497 0.9592 0.8218 0.1662 0.9792 0.8218 0.0825 0.9949 0.9009 

SG-C-A-L 0.1921 0.9795 0.8614 0.1332 0.9866 0.8218 0.07416 0.9952 0.9029 

Ingwavuma Manguzi 

ARIMA 0.4123 0.8716 0.8571 0.2706 0.9442 0.8750 0.2052 0.9784 0.8619 

LSTM 0.3843 0.8931 0.8738 0.2524 0.2524 0.8691 0.1614 0.9828 0.8095 

ARIMA-LSTM 0.3458 0.9044 0.8095 0.2428 0.9695 0.8541 0.8541 0.9847 0.8215 

SG- ARIMA-

LSTM 

0.2767 0.9397 0.8076 0.2001 0.9724 0.8809 0.0815 0.9958 0.8929 

C-A-L 0.2536 0.9503 0.8095 0.1945 0.9719 0.8214 0.0739 0.9972 0.9167 

SG-C-A-L 0.2314 0.9565 0.8214 0.1575 0.9823 0.8809 0.0634 0.9978 0.8809 

Riverview 

ARIMA 0.4375 0.8132 0.8106 0.1708 0.9474 0.8038 0.1137 0.9570 0.7973 

LSTM 0.3212 0.8510 0.8108 0.1537 0.9400 0.8108 0.0982 0.9705 0.8273 

ARIMA-LSTM 0.2874 0.8767 0.8378 0.1314 0.9706 0.9595 0.0558 0.9934 0.9189 

SG- ARIMA-

LSTM 

0.2262 0.9392 0.8243 0.1051 0.9763 0.8243 0.05639 0.9904 0.8108 

C-A-L 0.2597 0.9483 0.8738 0.1157 0.9751 0.9324 0.05674 0.9933 0.9459 

SG-C-A-L 0.2165 0.9602 0.8919 0.09214 0.9846 0.9324 0.05664 0.9939 0.9189 

Note: C-A-L = CEEMDAN-ARIMA-LSTM 585 
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Figure 11: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Riverview meteorological station. 590 
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Figure 12: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Hlabisa Mbazwana meteorological station. 
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Figure 13: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 595 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Ingwavuma Manguzi meteorological station. 
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Figure 14: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Mkuze Game Reserve meteorological station. 
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 600 

Figure 15: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Pongolapoort dam meteorological station 



41 

 

 

Figure 16: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots 

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of False Bay Park meteorological station. 605 

 

4. Discussion 

In this study, we utilized the Mann-Kendall and Modified Mann-Kendall tests to determine the drought trend index in 

meteorological variables within the basin. The MK and MMK trend methods showed a significant decrease in all SPI time 

scales based on rainfall data from five stations; however, the district, except for the Riverview station, showed an increasing 610 

trend in the uMkhanyakude district. The study's findings align with prior research by Kganvago et al. (2021) and Ngwenya et 

al. (2024). Ngwenya et al. (2024) conducted a study using the Mann-Kendall test to assess the SPI values at a  5% significance 

level, revealing sustained drought conditions in the Western Cape region . Kganvago et al. (2021) indicated a notable decline 

in drought conditions in the Western Cape area of South Africa. We have also employed the ITA, which enhances the MK and 

MMK tests in identifying trends, and the results underscore the importance of comp rehending drought conditions. The findings 615 
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of our analysis validate previous research by Naik and Abiodun (2020), highlighting the need to conduct trend studies on 

drought indicators to investigate the impacts of climate change. The study highlights the crucial role of SPI as a primary 

variable in monitoring and forecasting droughts in the region, and its potential to mitigate the adverse  impacts of droughts and 

water scarcity in the uMkhanyakude district in the future. The objective was to determine if the model's predictive performance 

is enhanced by smoothing and deconstructing time series data. 620 

 

According to the statistical metrics in Table 7 and the Taylor diagram (see Figures 11 - 16), the effectiveness of hybrid models 

that incorporate filter and signal decomposition techniques (SG and CEEMDAN) in improving prediction accuracy, 

particularly for drought forecasting, is highlighted. These findings support other research (Taylan et al., 2021; Elbeltagi et al., 

2023; Rezaiy and Shabri, 2024b), which highlights the superior accuracy of hybrid drought forecasting models compared to 625 

individual models. For example, Taylan et al. (2021) developed a hybrid model to forecast drought using precipitation data 

from Çanakkale, Gökçeada, and Bozcaada stations between 1975 and 2010. The study found that the hybrid models, which 

incorporated preprocessing techniques, performed better. Elbeltagi et al. (2023) utilized a hybrid model to estimate the SPI for 

3, 6, and 12-month drought periods from 2000 to 2019. The findings demonstrated that RSS-M5P model yielded the most 

precise SPI predictions, with MAE = 0.497, RMSE = 0.682, RAE = 81.88, RRSE = 87.22, and 𝑅2  = 0.507 for SPI-3; 630 

MAE = 0.452, RMSE = 0.717, RAE = 69.76, RRSE = 85.24, and 𝑅2  = 0.402 for SPI-6 and MAE = 0.294, RMSE = 0.377, 

RAE = 55.79, RRSE = 59.57, and 𝑅2   = 0.783 for SPI-12. The models employed to analyse drought in Jaisalmer, Rajasthan, 

yielded the most effective results, exceeding those of RSS-RF and RSS-RT. Additionally, Rezaiy and Shabri (2024b) 

introduced a W-EEMD-ARIMA model for drought prediction. This model utilises monthly precipitation data from Kabul 

spanning 1970 to 2019. The 𝑅2  value was 0.9946, the MAPE was 18.9674, the RMSE was 0.0736, the MAE was 0.0575, and 635 

the SPI-12 validation indicated that our model was accurate. The outcomes obtained here surpassed those of the ARIMA, 

Wavelet-ARIMA, and EEMD-ARIMA models in terms of raw data (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, 𝑅2  : 

0.9925), analytical method (MAE: 0.1874, MAPE: 60.0220, 𝑅2  : 0.9361), and maximum likelihood estimation (RMSE: 

0.1002, MAE: 0.0691, MAPE: 23.7122, 𝑅2  : 0.9898). During the SPI-3, SPI-6, and SPI-9 periods, our hybrid model 

consistently outperformed other models. Our proposed hybrid model surpasses ARIMA, Wavelet -ARIMA, and EEMD-640 

ARIMA in enhancing the precision of drought predictions, as evidenced by this data. 

In terms of term forecasting accuracy, the hybrid models, particularly SG-CEEMDAN-ARIMA-LSTM, consistently 

outperformed all other models across all SPI timescales, according to a comparison of this study's results with previous 

research. All models successfully reproduced the original SPI time series. With the range values of  RMSE of 0.1453 - 0.2314 

for SPI-6, 0.0921 – 0.1631 for SPI-9, and 0.0349 – 0.07416 for SPI-12, and the highest 𝑅2 values of 0.9565 - 0.9839 for SPI-645 

6, 0.9836 - 0.9892 for SPI-9, and 0.9939 - 0.9990 for SPI-12 across all timescales, the SG-CEEMDAN-ARIMA-LSTM model 

showed the most proficiency in capturing extreme values and rapid transitions. That these methods, when combined, improve 

the models' capacity to represent drought in the uMkhanyakude district, both in the short and long term, is supported by the 

data. This makes the models far better at foretelling when droughts will occur. In light of the foregoing, our study provides  
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useful information regarding the use of the hybrid SG-CEEMDAN-ARIMA-LSTM model to the forecasting of meteorological 650 

droughts. 

 

5. Conclusion 

This study examined the trends in the Standardised Precipitation Index (SPI) over different timescales (SPI-6, SPI-9, and SPI-

12) utilising the Mann-Kendall (MK), modified Mann-Kendall (MMK) test, and the innovative trend analysis (ITA) protocol. 655 

The monthly rainfall data from the uMkhanyakude district, South Africa, covering the years 1980 to 2023, was used for these 

calculations. Rainfall has been trending downward at a  95% confidence level, according to the MK and MMK tests. The ITA 

results supported these findings as well, revealing a declining trend with most of the data points going below the 1:1 line. To 

predict SPI data over various timescales, this research employed  LSTM and autoregressive integrated moving average 

(ARIMA) models. Researchers used a hybrid model that combines the SG-CEEMDAN processing method with the ARIMA-660 

LSTM model to enhance the precision of SPI forecasts. They also used SG filtering and full ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN). Figures 11–16 and Table 4 display the results of a thorough comparison 

examination of the forecast outcomes. The results revealed that the inclusion of preprocessing techniques (SG filtering, 

CEEMDAN, and SG-CEEMDAN) significantly improved the model performance in forecasting SPI at all timescales. The 

performance consistently increased with higher timescales, potentially due to lower noise levels. Across different timescales, 665 

the SG and CEEMDAN combined hybrid model consistently outperformed the individual models. Notably, the CEEMDAN -

ARIMA-LSTM model outperformed the SG-ARIMA-LSTM model at all timescales, while the SG-CEEMDAN-ARI MA-

LSTM model consistently exhibited the lowest root mean square error (RMSE) values across all indices. These results 

demonstrate that combining SG-CEEMDAN with ARIMA-LSTM has the potential to significantly enhance the accuracy of 

meteorological drought forecasting. 670 

The principal conclusion of the study is that ARIMA-LSTM, in conjunction with SG, CEEMDAN, and SG-CEEMDAN, 

serves as an effective instrument for early warning systems and meteorological drought prediction. The proposed methodology 

in this paper serves as a  framework for modeling complex meteorological phenomena such as drought, which is particularly 

pertinent in semi-arid regions. Enhancing model performance and creating efficient models for weather forecasting can be 

achieved through techniques that address data noise, nonlinearity, and nonstationarity. To enhance water resource 675 

management, make informed decisions regarding agricultural output and tourism management, and establish regulations, it is 

essential to acquire extremely effective models for drought prediction. The omission of exogenous environmental variables in 

the SG-CEEMDAN-ARIMA-LSTM model represents a significant drawback of the study. The model's forecast accuracy and 

real-world application are limited by disregarding these exogenous effects, which can substantially affect drought conditions. 

Future studies should a im to include external variables, including temperature, soil moisture, vegetation indices, and 680 

anthropogenic factors such as land use and water management, to improve the model's efficacy. This integration would provide 
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a more thorough comprehension of drought dynamics, hence improving the model's accuracy and dependability in drought 

predictions. Additionally, it is essential to investigate alternate decomposition methods, such as enhanced CEEMDAN 

(iCEEMDAN), which may provide significant insights. 
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Katipoğlu, O. M., Acar, R., Şenocak, S., and Şengül, S.: Assessment of meteorological drought trends in the Euphrates Basin, 

Turkey, Arab. J. Geosci., 15, 555, https://doi.org/10.1007/s12517-022-09994-4, 2022. 

Kganvago, M., Mukhawana, M. B., Mashalane, M., Mgabisa, A., and Moloele, S.: Recent trends of drought using remotely 805 

sensed and in-situ indices: Towards an integrated drought monitoring system for South Africa, in: 2021 IEEE International 

Geoscience and Remote Sensing Symposium IGARSS , 6225–6228, https://doi.org/10.1109/IGARSS47720.2021.9553994, 

2021. 

Labudová, L., Labuda, M., and Takáč, J.: Comparison of SPI and SPEI applicability for drought impact assessment on crop 

production in the Danubian Lowland and the East Slovakian Lowland, Theor. Appl. Climatol., 128, 491 –506, 810 

https://doi.org/10.1007/s00704-015-1716-9, 2017. 

Latifoğlu, L. and Özger, M.: A novel approach for high -performance estimation of SPI data in drought prediction, 

Sustainability, 15, 14046, https://doi.org/10.3390/su151914046, 2023. 

https://doi.org/10.1007/s00704-021-03856-3
https://doi.org/10.1016/j.jhydrol.2021.126948
https://doi.org/10.3390/rs13245067
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000024
https://doi.org/10.1007/s00704-021-03779-1
https://doi.org/10.1109/IGARSS47720.2021.9553994
https://doi.org/10.1007/s00704-015-1716-9
https://doi.org/10.3390/su151914046


49 

 

Likinaw, A., Alemayehu, A., and Bewket, W.: Trends in extreme precipitation indices in Northwest Ethiopia: Comparative 

analysis using the Mann–Kendall and innovative trend analysis methods, Climate, 11, 164, 815 

https://doi.org/10.3390/cli11080164, 2023. 

Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int. J. Climatol., 22, 1571 –1592, 

https://doi.org/10.1002/joc.846, 2002. 

Ma, X., He, Y., Xu, J., van Noordwijk, M., and Lu, X.: Spatial and temporal variation in rainfall erosivity in a Himalayan 

watershed, Catena, 121, 248–259, https://doi.org/10.1016/j.catena.2014.05.012, 2014. 820 

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945. 

Marengo, J. A., Torres, R. R., and Alves, L. M.: Drought in Northeast Brazil—past, present, and future, Theoretical and 

Applied Climatology, 129, 1189–1200, https://doi.org/10.1007/s00704-016-1840-8, 2017. 

Mathivha, F. I., Mabala, L., Matimolane, S., and Mbatha, N.: El Niño-induced drought impacts on reservoir water resources 

in South Africa, Atmosphere, 15, 249, https://doi.org/10.3390/atmos15030249, 2024. 825 

McKee, T. B., Doesken, N. J., and Kleist, J.: Drought monitoring with multiple time scales, in: Proceedings of the Conference 

on Applied Climatology, Boston, MA, USA, American Meteorological Society, 1995. 

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings 

of the 8th Conference on Applied Climatology , Anaheim, California, American Meteorological Society, 17(22), 179–183, 

1993. 830 

Millington, N. and Scheba, S.: Day zero and the infrastructures of climate change: Water governance, inequality, and 

infrastructural politics in Cape Town's water crisis, Int. J. Urban Reg. Res., 45, 116 –132, https://doi.org/10.1111/1468-

2427.12979, 2021. 

Mirabbasi, R., Ahmadi, F., and Jhajharia, D.: Comparison of parametric and non -parametric methods for trend identification 

in groundwater levels in Sirjan plain aquifer, Iran, Hydrol. Res., 51, 1455–1477, https://doi.org/10.2166/nh.2020.157, 2020. 835 

Montgomery, D. C., Jennings, C. L., and Kulahci, M.: Introduction to time series analysis and forecasting, 2nd Edn., Wiley , 

Hoboken, NJ, 2015. 

https://doi.org/10.3390/cli11080164
https://doi.org/10.1016/j.catena.2014.05.012
https://doi.org/10.1007/s00704-016-1840-8
https://doi.org/10.3390/atmos15030249
https://doi.org/10.1111/1468-2427.12979
https://doi.org/10.1111/1468-2427.12979


50 

 

Ngwenya, M., Gidey, E., and Simatele, M. D.: Agroecological-based modeling of meteorological drought at 12-month time 

scale in the Western Cape Province of South Africa, Earth Sci. Inform., 17, 1851–1865, https://doi.org/10.1007/s12145-023-

01131-7, 2024. 840 

Olagunju, A., Thondhlana, G., Chilima, J. S., Sène-Harper, A., Compaoré, W. N., and Ohiozebau, E.: Water governance 

research in Africa: progress, challenges and an agenda for research and action, Water International, 44, 382–407, 

https://doi.org/10.1080/02508060.2019.1617950, 2019. 
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