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Abstract. Meteorological drought presents considerable challenges to water supplies, agriculture, and socio-economic
stability, especially in areas heavily reliant on precipitation. The Standardized Precipitation Index (SPI) is esteemed for its
efficacy in drought monitoring, owing to its straightforwardness and applicability across many time scales. This study
examines meteorological drought dynamicsin the uMkhanyakude district using the Standardized Precipitation Index (SPI) at
6-, 9-, and 12-month timescales. Trend analysis was conducted usingMann—Kendall(MK), Modified Mann—Kendall (MMK),
and Innovative Trend Analysis (ITA) methods. The study also proposes a hybrid model that integrates the Savitzky—Golay
(SG) filter, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Autoregressive
Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM) networks, referred to as SG-CEEMDAN-
ARIMA-LSTM, for forecasting of the SPI time series. Analysis of SPI trends and variability revealed statistically significant
declining trends at five monitoring stations, characterized by negative Z-scores and p-values, showing a marked downward
trajectory across several SPI scales. On the other hand, the forecasting results demonstrate that the SG-CEEMDAN-ARIMA-
LSTM methodology outperformed benchmark models across all temporal scales, achieving high prediction accuracy with R?
values of 0.9839 (SPI-6), 0.9892 (SPI-9), and 0.9990 (SPI-12). These findings highlight the effectiveness of decomposition
techniques (SG, CEEMDAN) in enhancingmodel performance and confirm the suitability of the hybrid model forboth short-
term and long-term drought forecasting. This study merges robust trend analysis with advanced hybrid forecastingtechniques,
providing a reliable framework for early waming systems and sustainable water resource management in drought-prone

regions.
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1. Introduction

Drought is a complex and recurring naturalhazard with significant economic, social, and environmentalimplications globally
(Bagmarand Khudri, 2021; Kalisa et al., 2021; Song and Park, 2023). In contrast to other naturaldisasters, droughts manifest
gradually, often persisting for extended periods, and their effects permeate various sectors, including agriculture, water
resources, and socio-economic systems (Wilhite and Glantz 1985; Cunha et al. 2019). This study specifically focuses on
meteorological drought, characterized as a sustained period of below-average precipitation (Taylan, 2024). Meteorological
drought often serves as the initial phase that subsequently evolves into agricultural, hydrological, and socioeconomic drought
(Malik et al.,2021; Latifoglu and Ozger, 2023). As it is solely influenced by precipitation variability, meteorological drought

can be effectively quantified using precipitation-based indices.

Several indices have been established to quantify drought conditions, including the Standardized Precipitation Index (SPI) and
the Standardized Precipitation Evapotranspiration Index (SPEI). While the SPEI integrates both precipitation and temperature
data,itsrequirement for extensive datasets and complex computations may restrict its applicability in regions with limited data
availability (Xu et al.,, 2020). Conversely, the SPI depends exclusively on precipitation, rendering it widely used for analysing
meteorological drought, especially in semi-arid regions. Its versatility across multiple timescales facilitates the robust
identification of both short- and long-term drought patterns. Accordingly, given the data constraints in the uMkhanyakude
district of South Africa, this study adoptsthe SPI as the primary drought index, while recognizing thatits exclusive relian ce
on precipitation constitutes a methodological limitation. Since SPI is precipitation-driven, analysing rainfall trends is a
necessary first step before applying SPI under climate change conditions. Without first establishing rainfall trends, one risks

misinterpreting SPI signals as short-term anomalies when they may actually reflect long-term climate-driven shifts.

In this context, the escalating concerns regarding climate change and its influence on local climates have underscored the
necessity of analyzing drought trends. Thus, trend analysis of rainfall and SPI together provides a comprehensive picture of
rainfall trends, revealing the climatic forcing, while SPI trends quantify the standardized drought intensity and persistence,
which is crucial forunderstanding drought risk in the context of climate change. Systematic evaluations of drought occurrences
not only contribute to the development of evidence-based water resource management strategies but also enhance the
calibration of early warning systems and inform climate adaptation policies at both regional and nationallevels. Furthermore,
temporalanalysesenable researchers to assess the effectiveness of mitigation measures and anticipate emerging risks, thereby
bolstering resilience in vulnerable sectors such as agriculture and public water supply. In the absence of structured trend
analyses, drought management remains predominantly reactive, constraining the transition towards proactive and sustainable
adaptation strategies. Building on trend analysis, drought forecasting is essential for deepening the understandingof drought
dynamics. Effective forecasting provides early warnings that are critical for mitigating impacts and strengthening drought

management strategies (Baltiet al., 2020; Zhanget al.,, 2022; Tan et al., 2024; Zhanget al., 2024).
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Accurate forecasting of the SPI is crucial in regions such as uMkhanyakude, which is prone to recurrent and severe drought
events. Enhanced prediction capabilities support agricultural resilience, water resource planning, and the establishment of e arly
waming systems (Xu et al. 2020). Traditional statistical models, such as ARIMA or SARIMA, alongside contemporary
machine learning methods, have been extensively employed for forecastingdrought indices, including the SPI. However, each
approach has inherent limitations. For example, Gudko et al. (2025) utilized SARIMA to analyze precipitation dynamics in
Russia, demonstrating efficacy in short-term predictions while exhibiting constrained accuracy for long-term forecasts.
Similarly, Hussain et al. (2025) integrated ARIMA with machine learning models to enhance SPI and SPEI predictions,
achieving accuracies exceeding 92%. This highlights the advantages of combiningstatisticaland machine learningtechniques.
Nonetheless, these methodologies often encounter challenges associated with nonlinear and complex rainfall patterns,
particularly over short time scales. To mitigate the limitations of standalone models, hybrid approaches have gained
prevalence, capitalizingon the complementary strengths of diverse techniques. Alquraish et al. (2021) compared hybrid models
such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN against, such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN,
with conventional HMM and ARIMA models for SPI prediction in the Arabian Peninsula, revealing that hybrid models
consistently outperformed their standalone counterparts. Likewise, Xu et al. (2022) and Ding et al. (2022) demonstrated that
the combination of CEEMD with ARIMA or LSTM significantly improves SPI forecastsacross multiple time scales in China,

suggesting that decomposition-based hybrid methods effectively capture intricate temporal patterns.

Recent studies have significantly advanced hybrid methodologies through the implementation of sophisticated preprocessing
and optimization techniques. Latifoglu and Ozger (2023)utilized phase transferentropy (pTE) in conjunction with Tunable Q
Factor Wavelet Transform (TQWT), optimized via Grey Wolf Optimization (GWO), followed by artificial neural networks
(ANN), supportvectorregression (SVR), machine learning(ML), and Gaussian process regression (GPR), resulting in superior
predictive performance. Sibiya et al. (2024) introduced the CEEMDAN-ARIMA-LSTM model for SPI predictions in Cape
Town, demonstrating that the combination of CEEMDAN decomposition with both linear and nonlinear models can
significantly improve forecast accuracy. Wei et al. (2025) adopted the Informer model and developed the VMD-JAYA-
Informerhybrid, which integrates Variational Mode Decomposition (VMD) with an optimization algorithm, thereby enhancing
short-term Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) forecasts.
Despite the successes achieved by hybrid models, several challenges persist. Decomposition techniques such as Empirical
Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN), and Variational Mode Decomposition (VMD) are computationally
demanding, particularly when applied to large datasets or in real-time contexts (Sibiya et al., 2024). CEEMDAN, specifically,
can yield misleading intrinsic mode functions (IMFs) when utilized on excessively noisy or unstable time series, which
undermines the efficiency and reliability of subsequent predictions. Furthermore, existing research has not investigated the
synergistic application of advanced smoothing filters in conjunction with decomposition techniques to mitigate noise prior to

hybrid modeling.
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To address these limitations, this study proposes an innovative hybrid model that integrates the Savitzky -Golay (SG) filter
with CEEMDAN for preprocessing, followed by the Autoregressive Integrated Moving Average (ARIMA) and Long Short -
Term Memory (LSTM) models for drought prediction. The SG filter is effective in smoothing high-frequency noise, thereby
enhancing the decomposition process and alleviating the computational burden. The integration of the Savitzky -Golay
smoothing filter with CEEMDAN substantially improves forecasting accuracy by enhancingthe quality and interpretability of
the input time series prior to modeling. This combination enables CEEMDAN to produce IMFs that are cleaner, more distinct,
and less prone to spurious fluctuations, thus offering a more reliable foundation forsubsequent predictive modeling. Cleaner
IMFs facilitate the training of both linear (ARIMA) and nonlinear (LSTM) models, resulting in more accurate and robust
forecasts. This approach capitalizes on the complementary strengths of both statistical and machine learning models,

addressing noise-related issues inherent in raw data.
Although hybrid models have demonstrated superior performance in drought forecasting, no prior study has examined:
1. The combined use of smoothing techniques (SG filter) with CEEMDAN to enhance the quality of decomposition.

2. The implementation of an integrated SG-CEEMDAN-ARIMA-LSTM framework for trend-based Standardized
Precipitation Index (SPI) predictions (SPI-6, SPI-9, SPI-12).

3. Forecasting efforts that explicitly incorporate both trend analysis and predictive modeling for semi-arid regions

characterized by limited meteorological data.

As aresult, the proposed SG-CEEMDAN-ARIMA-LSTM modeladdresses these gaps by enhancingdecomposition efficiency,
reducing computational costs, and improving prediction accuracy across multiple SPI timescales. This methodology offers
valuable insights for water resource management, infrastructure planning, early warning systems, and the advancement of

hybrid drought prediction models.

2. Material Methods

This study utilizes various time series forecasting models to analyse the intricate dynamics of meteorological drought as
indicated by the Standardized Precipitation Index (SPI). The foundational statistical model examined is the Autoregressive
Integrated Moving Average (ARIMA), which is adeptataddressing linear relationships in time series data. The Long Short-
Term Memory (LSTM) neural network is employed to tackle nonlinear patterns, supplemented by a hybrid ARIMA-LSTM
framework that amalgamates the advantages of both models. Additional improvements are investigated by incorporating a
Savitzky-Golay (SG) digital smoothing filter, which is often used to remove noise from time series or spectral data, into the
ARIMA-LSTM model, and by utilizing the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) before ARIMA-LSTM to more effectively manage nonstationary signals. The work introduces a unique hybrid
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model, SG-CEEMDAN-ARIMA-LSTM, which integrates decomposition and hybrid modeling techniques to enhance the
accuracy and robustness of drought forecasts.

Therefore, the subsequent Materials and Methods section will provide a detailed account of the study area, the dataemployed,
and the preprocessing steps undertaken, including the trend extraction methods applied prior to forecasting. This will be
followed by an in-depth description of each modeling approach, outlining their theoretical foundations, implementation
procedures, and parameterization strategies. Such a structured presentation ensures transparency in model development and

establishes a comprehensive methodological framework for the proposed forecasting system .

2.1. Study Area and Data

This study employed monthly meanprecipitation records from 1980 to 2023, obtained from the South African Weather Service
(SAWS) for theuMkhanyakude District in South Africa. The uMkhanyakude District Municipality is located in the farnorthem
region of the KwaZulu-Natal (KZN) province (coordinates: 32.014489°S,27.622242°E). The municipality covers a totalarea
0f 13,855 km?, makingit the second largest in the province, exceeded only by the Zululand Municipality. The uMkhanyakude
District was formed immediately afterthe localgovernment elections in December2000, aspart of the municipaldemarcation
process, encompassingsome of the most destitute and underdeveloped areas of KwaZulu-Natal. The uMkhanyakude District
consists of four local municipalities: uMhlabuyalingana, Jozini, Big Five Hlabisa, and Mtubatuba. The municipality is
geographically surrounded by Mozambique to the north, the Indian Ocean to the east, the uThungulu River to the south,

Zululand to the west, and the Kingdom of Swaziland to the northwest. Figure 1 illustrates the spatialdistribution of the sta tions.
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Figure 1: Overview of the uMkhanyakude District, South Africa. Rain gauge stations are marked red.

2.2. Modified Mann-Kendall

The modified Mann-Kendall methodology is derived from the nonparametric Mann-Kendall method (Mann, 1945; Kendal,
1975), which is widely used to detect trends in hydro-meteorologicaltime series (Caloiero etal., 2011; Bardetal.,2015; Wang
et al, 2017; Mirabbasi et al., 2020). The modified Mann—Kendall (MMK) test was employed for serially correlated data
exhibiting a substantial lag-1 autocorrelation coefficient, utilising the variance correction method proposed by Yue et al.
(2002). Hamed and Rao (1998) created this methodology to eradicate all substantial autocorrelation in the time series. Under
the assumption that the data are independent and identically distributed, the S statistic of the Mann-Kendall test is computed
as follows (Sharifi et al. 2024):

n—1 n
S = Z Z Sign(xj—xi) (1)
i=1j=i+1
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where n denotes the sample size; x; and x; denote sequential it and j™* data points, respectively, and sign(.) is the sign
function which can be computed as
1, lf x]- _xi > 0

Sign(xj—x;) =4 0, if =%, =0 @)
—1, lfx]_xl<0

with the mean and variance of the S statistics in the equation are as follows (Helsel and Hirsch 1993; Ma et al. 2014; Ashraf
etal. 2023)
ES) =0 G)

ntn—1)@2n +5) - X_ t;(t; — 1)@2¢; + 5) “)

Var(S) =
ar(S) s

tth

where p is the numberoftied groups and t; denotes the numberof data pointsin the t*"* group. The second term represents an

adjustment for tied group or censored data. The standardized Z statistic is calculated as

S—-1
(\/ﬁ, §>0

ZMK={O,S+1 §=0 )
L\/ﬁ, §<0

The test statistic Z is used to measure the significance of the trends. In the modified Mann-Kendall approach, a modified

variance of S is computed as follows (Hamed and Rao, 1998)
n
Var(§*) = Var($).— (6)
n
where n* is the effective sample size. The nl ratio can be calculated as follows (Hamed and Rao, 1998)

n

2 N . . .
n*=1+m;(n—1)(n—l—l)(n—1—2)n ™

where 7; denotes the lag-i significant autocorrelation coefficient of rank i in a time series. Then the standardized statistic of

the S statistic, denoted as Z, can be derived as

(S-1 <o,
{lﬁ/Var(S*)' ~
Zymk =13 0, S=0
®)
JVar(S*)
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If the calculated Z values (Z and Zy k) exceed the critical values of —Z;_a, or fallbelow Z;_a, , there is no discernible
trend in the time series at the significance level of a. If the Z valueis positive and exceeds Z,_a/ , the trend is upward;

conversely, if the Zvalue is negative and falls below —Z,_a/, , the trend is downward.

2.3. Innovative Trend Analysis

The Innovative Trend Analysis (ITA) method, initially introduced by Sen (2012), has been widely employed for detecting
patterns in precipitation time series. Since its debut, the ITA technique has experienced substantial improvements in both
mathematical and graphical aspects, as evidenced by Sen (2017) and Alashan (2018). The ITA method does not depend on
assumptions of serial autocorrelation, normalcy, orrecord length, making it appropriate forboth graphicaland statisticaltrend
analysis (Besha et al, 2022).Initially, the time series is bifurcated into two equalsegments and organised in ascending order.
The initial segment of the time series (x;:i = 1,2, ...,n/2) is positioned along the horizontal x-axis, while the subsequent
segment (x;: j = n/2 +1,n/2 + 2,...,n) is situated alongthe vertical y-axis in the Cartesian coordinate system (Ashrafet al.
2023). The ITA approach visually represents trend analysis, specifically indicating monotonic growing, declining, and
trendless circumstances (Oztopaland Sen, 2017; Likinaw et al., 2023). A monotonically growing or declining trend can be
identified when the majority of points are situated above or below the 45° (1:1 line), respectively. A trendless condition arises
when the data points are clustered along the 45° line (Sen, 2012). We employ the magnitude of the slope parameterto convey
information about monotonicity. The slope parameterofthe ITA techniqueis a stochastic property dependent on the sample
means of the first half (n,) and the second half (n, ) of the time-series mean data values. According to Sen (2017), the straight-

line trend slope (S;74) can be estimated using the following expression:

2x (x —X; ) )

ITA= n
where n represents the total number of observations, x; and x; are the arithmetic means of the first and second halves of the

sub-series, respectively. Given thatx; and x; are stochastic variables, the expected value of the slope can be determined by

analysing the expectancies of both the first and second halves of the time series (Alashan, 2020; Harka et al.,2021):
E(Sypy) = [E(x ) — E(x)] (10)
For the no trend condition, E(xj) =E(x;), the E(S;;4) =0 and standard deviation (SD) of the two half time-series

(ax]. =0, = 0/\/5), o is the SD is of the parent series. IfE(x}-) # E(x,), the differences between E(xj) and E (x;) gives the

variance
8 11
= —[8() —E(xx)] a

and the SD of the slope

2
Osira
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o =——=0 [1—py.x;
SiTA n\/z XjXi
In the stochastic processes, the term Pxjx; is the correlation coefficient between the two mean values,and canbe estimated as

E(xx) = E())E(x) (13)

xXjxi —

Oy Ox;
In the end, the upper and lower confidence limit (CL) of the trend slope was calculated (Sen 2017):

CLoay =0+ (21, ) o5y, (14)
Z,_a;, denotes the crucial slope for standardised time-series at £1.96 fora 95% significance level or +£1.645 for a 90%
significance level (Alashan, 2020).1fthe ITA slope value is beyond the lower and upper confidence limits, the null hypothesis
of no significant trend should be rejected atthe a significance level (Sen, 2017). Ina two-tailed scenario, the null hypothesis
(H,) posits the absence of a trend in time-series data, while the alternative hypothesis (H,) asserts the presence of a trend in
time-series data at a significance level of a. If the slope, £8;74 > £CL(;_), then (H,) is discarded in favourof (H,). The

positive and negative values of S, signify an upward and downward trend in the time-series data, respectively (Sen, 2017).

2.4. The SPI Calculation

For the purpose of analysing the severity of drought, which is caused by a lack of water supply as a result of reduced
precipitation in response to rising demand, the SPI was created by McKee etal. (1993)and is based on probability (Zuo, 2021).
Based on the cumulative likelihood of a specific amount of precipitation, the SPI indicator is calculated by fitting the
precipitation throughout the same period with a certain distribution function. At its largest point, the SPI index represents the
quantile of a normaldistribution. Each time axis hasan estimated drought index for 6,9, and 12 months. This is basedon the
gamma probability density function, which accounts for the periodic distribution of precipitation for the corresponding data

point. The expression of the density function for this distribution is as follows.

N S (15)
g(x)—ﬁar(a)x le B

a-1
where a is the shape parameter, £ is the scale parameter and x is the precipitation amount, and I'(a) = fom y e Ydyis

gamma function. The maximum likelihood estimates of the parameters a and £ are:

1 1 1 4A
a= A + + 3 (16)

)

=
Il
S| xR
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where A = In(x) — , X is the precipitation average and n is the sample size. The following equation applies the acquired

parameters to the cumulative probability distribution:

X

G(x) = fg(x)dx __! fx“‘le_%dx
0

BT (a) (18)

0

G(x) represents the likelihood thatthe precipitation will be equalto or less thanx. The distribution function for precipitation
needs to be adjusted because the real precipitation samples can contain a value of 0. Based on this, we can calculate the
cumulative probability as:

Hx) =q+0-q96ck) (19)

where q denotes the probability when precipitation equals zero. The probability of norainfall, g, can be articulatedasq = m/r,
where m represents the number of dayswithoutrainfall and r denotes the numberof days with rainfall(Song and Park, 2021).
Consequently, H(x) is converted to the conventionalrandom variable Z of the standard normaldistribution, characterised by a

mean of 0 and a variance of 1, resulting in:

|{—<k— Co + 1k + ¢ k? ) 0<H@) <05

SP1=Z={ 14+dk+dk?2+d;k3)’ -
co + ¢k + ¢ k? (20)

+(k_1+d1k+d2k2+d3k3>’ 0<Hx)=10

[ 1n<(ﬁ)z> ,  0<H(k <05
-f >
Um ((m) ) 0<HMX),< 10 1)

where ¢, = 2,515517 , ¢, = 0.802853, ¢, = 0,010328, d, = 1,432788, d, = 0,189269, d, = 0,001308 are constants.

Furthermore, the SPI indicator is a standardised normalised index, establishing a correlational relationship with likelihood.

Table 1 presents the probability associated with each category of drought.

Table 1. Drought classification using SPI values and corresponding event probability (Llyod-Hughes and Sanders
2002).

SPI Values Drought Category Probability (%)

2.00 < SPI Extremely wet 2.3

10
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1.50 < SPI <1.99 Severely wet 44

1.00 <SPl <£1.49 Moderately wet 9.2
0.00 <SPI <£0.99 Mildly wet 34.1
—0.99 <SPl £0.00 Mild dry 34.1
—1.49 <SP] <£-1.00 Moderate dry 9.2
—1.99 <SPl <-1.50 Severe dry 4.4
SPI <-2.00 Extreme dry 2.3

2.5. The Savitzky-Golay Filter

The Savitzky-Golay (SG) smoothing technique is a widely used method for noise filtration. Savitzky and Golay (1994)
introduced the SG filter as an effective technique for signal smoothing. The SG technique attenuates noise utilising two
parameters: polynomial order and window size. By flexibly adjusting these two parameters, the SG filter can achieve
exceptional performance in various pre-processing circumstances. The essence of this procedure involves fitting a low-degree
polynomialto the samples within a sliding window using the least squares method, resulting in a new smoothed value for the
central point derived by convolution. The SG filter is a specific variant of a low-pass filter that substitutes each value in the
time series with a new value derived from a polynomialfit to 2m + 1 surrounding points, including the point to be smoothed,
where m is equalto or larger than the polynomial's order. The polynomial is articulated as follows:

o 22)

p(n) = z a,nk

k=0
where N is the power of the polynomialand N < 2M + 1. The following equation is used to determine the error between the

estimated and original values; in order to find the desired polynomial result, this error must be minimised.

ey = Z (™) — x[n])?

(23)
The following form of discrete convolution can be used to express the filter's output:
M n+M (24)
yln] = Z hlm] x[n —m] = z hln —m] x[m]
m=-M m=n—-M

This work employsthe SG filter for two primary reasons: firstly, it enhances system performance by preserving the width and

height of waveform peaks in noisy SPI, and secondly, it modifies the SPI while maintaining its fundamental qualities.

2.6. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.

11
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The model's ability to fit functions and converge will be constrained by the complexity and volatility of the original time
sequence, which in turn limits the model's predictive power. To overcome this challenge, the complete ensemble empirical
mode decomposition (CEEMDAN) technique is employed to preprocess the original nonstationary and nonlineartime series.
Both empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD), have been enhanced by
the CEEMDAN. The computational efficiency is improved, and the reconstructed sequences of both the EMD and EEMD
algorithms are free of modalconfusion and noise residuals (Zhanget al., 2023). A residual term and a sequence of intrinsic
mode functions (IMFs) are the building blocks of a complicated time series signal that the CEEMDAN breaks down.

Step 1: Incorporate a constrained quantity of adaptive white noise into the original sequence x(t)§,w'(t) (t = 1,2,3,+,N)

xH(t) = x(t) + S0 (t) (25)

where N denotes the number of trials, &, signifies a coefficient of intensity, and w‘(t) indicates the ith realisation of a
stochastic Gaussian process.

Step 2: The residual r; (t) and the first modal component IMF, are obtained by decomposing each equation (1) using EMD.

N
1 .
IMF, @ = NZ EMD, (x'(t)) (26)
i=1

r, () = x(t) — IMF, () 27)

In this context, EMD;, (.) denotes the initial IMF component produced by the EMD algorithm, while 7, (t) signifies the residual
associated with the first stage.
Step 3: Add white noise 8, EMD, (w'(t)) to the residual r; (t) and further decomposed by EMD to obtain the second modal

component IMF, and residualr, (t).

N
_ 1 , 28)
IMF, (t) = Nz EMD, (r,(®) + §,EMD, (0 (1))

i=1
() =) — IME,(t) (29)
For the j = 3,4, -+, N, the jth IMF component and the jth residual can be computed as:
L
IME (t) = NZ EMD, (1,_,(®) +6;_,EMD;_, («'(®))) (30)
i=1
5(t) = 1_,() — IME(t) GD

where EMD; _, () denotes the (j — 1)th intrinsic mode function component derived from the empirical mode decomposition

technique, and 7; (t) represents the residual following the jth decomposition.

12
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Step 3: Continue executing step 3 until the residual 7;(¢t) meets a predetermined termination criterion.

The time series x(t) can ultimately be articulated as

N (32)
x(®) = ZIMFN(t) + 1y (t)
i=1

2.7. The Autoregressive Integrated Moving Average Model

The Autoregressive Integrated Moving Average (ARIMA) model, pioneered by Box and Jenkins in the 1970s, serves asa
robust and effective forecasting approach for time series analysis (Box et al., 2015). The ARIMA model, often known as the
Box-Jenkins approach, is depicted through the concepts presented by Sibiya et al. (2024) in Figure 2. The ARIMA models
predict future values of the time series as a linear combination of historical and residual data. This model comprises three
components: the order of seasonaldifferentiation, autoregressive order, and movingaverage order (Montgomery etal., 2015).
The backward shift operator B isemployed to eliminate nonstationarity. A time series, Y, , is called homogeneous nonstationary
if it first order difference, w, = (1 — B)y, =y, — ¥, or the dth difference w, = (1 — B)?y, is also stationary time series.
Furthermore, y, is referred toas an ARIMA model with orders p,d and g, noted ARIMA(p,d,q). Hence,anARIMA (p,d, q)
is often expressed as

¢(B)(1 - B)y, =c +6(B)e, (33)

p q (34)
¢(B)=1—Z¢i3i and 9(3)=1—Zei3i
i=1 i=1

The backward shift operators for AR(p) and MA(q) are definedas ¢ (B)y, =c + e,and y, = p+ 6(B)e, with ¢ = u — pp,
where p and €, are the mean and white noise, respectively and the ¢, is independent and normal distributed with mean 0 and

variance of 2.

13
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Figure 2: The Box-Jenkins Steps Approach.

2.8. The Long Short-Term Memory

Long short-term memory (LSTM) algorithms represent a category of recurrent neural network (RNN) designs that are
proficient in handling sequential input and identifying temporal relationships (Hochreiter and Schmidhuber, 1997). LSTM
networks incorporate specific memory cells and gates for the efficient management and regulation of information flow over
various time steps. Consequently, they can effectively represent the data input while maintaining essential dependencies and
patterns. The LSTM methodology addresses the problem of vanishing gradients encountered by RNN algorithms. This occurs

when the gradient diminishes to a level insufficient foreffectively updatingthe weights throughout prolonged sequences. The

14




305

310

315

LSTM facilitates the flow of gradients across time by employing memory cells and gates. The model's foundational design
primarily consists of three control gates: input, forget, and output. The activation function is represented by o, whereas the cell
statesattimet — 1 and t are designated as C,_; and C, respectively. Attime t and time t — 1, the cell possesses two concealed
states, h, and h,_, . Figure 3 illustrates the building of the LSTM unit, and the mathematical equations (35) to (40) for the
LSTM method are provided below. Initially, by employing the model's forget gate, we may determine the current hidden state
h._, and the degree to which the input x, has been preserved. The formula is

fi = c(Wex, + Uph,_y + by) 33)

Secondly, the input gate allows us to ascertain the volume of content from the input variable that can be retained in the cell

state C,
i,=ocWx,+ Uh,_, +b) (36)
Co=0.W.x,+ Uh,_, +b;) (37)
C,=f,OC,_,+1i;0C, (38)

The output gate of the LSTM produces outputs, and the hidden state of each cell is represented by the formula:
0p = o(W,x, + Uyhy_y +b,) (39)

h, = 0,00,(C,) (40)

In the aforementioned formulas, W, W;, and W, represent the weight matrices associated with the various control gates. The
terms by, b;, and b, correspond to the bias terms for each respective control gate. The notation C, signifies the complete input
activation vector, while the operator © (Hadamard product) indicates the element-wise multiplication of the elements between

two vectors. The o activation function quantifies the amount of information that is transmitted through the various control

gates.
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Figure 3: Structure diagram of LSTM model.

2.9. The ARIMA-LSTM hybrid Model

Achieving accurate estimates of SPI index values through a forecasting model is essential for informed decision -making.
Zhang (2003) offersa hybrid model wherein the ARIMA model extracts and predicts linear components, while the residuals,
representing nonlinear data subcomponents, are then modelled by the LSTM approach. This study employs a hybrid model
that integrates ARIMA and LSTM to predict both linear and nonlinear behaviours with optimal accuracy.

H, =L, + X, 41)

where £, and X, denote the linear and nonlinear components, respectively, forthe hybrid technique which are computed using

the initial time series (y, ). Consider the original datasetattimet and the forecast results obtained from applying the ARIMA
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model as £, the prediction results. Thus, & =y, — £, is the definition of theresidual &, thatis derived by removing £, from
¥: . Subsequently we compute the value &, by feeding the series of residuals into the LSTM model, which predicts the nonlinear

component of the values. This equation may be written as

N, = ﬁ,STM(Et—l' Etoopenn 'Sc—n) + €, 42)

where &, is a nonlinearexpression associated with the LSTM model and ¢, is the random error. The combined forecasts from
the two steps were then used to determine the value for the ARIMA-LSTM hybrid model. As illustrated in Figure 4, the

equation 7, = £, + &, predicts the linearity and nonlinearity values, respectively, using ARIMA and LSTM models.

hY
] | Model Development :
Data Processing | ARIMA and LSTM development |
_ Original Time ——pl includes Box-Jenkins approach, :<_
e Data preprocessing series (i.e. SPI-6, 1 | data normalization, parameter 1 I
e The three time scale SPI SPI-9, SPI-12) H i optimization and applicability |} |
values were calculated. 1 : Test. 1
1 [
- T ————————————— - - 1
l“‘t i 1
1 1
! :
o ARIMA Model Development e ¢ LSTM Model Development :
t
!
ARIMA on the input time LSTM on the residual
series generated by ARIMA model
v h 4
ARIMA predicted Residual predicted
values values generated
by LSTM model
LII‘ ‘f-/- ““\‘ N lr
—> <
¥,
Model Accuracy The results predicted by
i.e. RMSE, DS, R° hybrid ARIMA-LSTM model

Figure 4: Predictive flowchart of the ARIMA-LSTM hybrid model.

2.10.  The development of the proposed SG-CEEMDAN-ARIMA-LSTM hybrid model

Due to the great uncertainty of the drought data and the existence of complexity, nonlinearity, and nonstationary trends, the
single prediction model is greatly limited; however, the hybrid method hasbetter prediction accuracy. The SG-CEEMDAN-
ARIMA-LSTM algorithm that combines different techniques for improved accuracy in predicting drought based on the
standardised precipitation index is proposed this study. This hybrid modelis designed asa sequential framework where each

step refines the data forsubsequent modelling. The SG-CEEMDAN pre-processing stage enhances the data by smoothingand
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decomposing it into the meaningful components. The benefits of integrating the Savitzky—Golay smoothing filter with
CEEMDAN significantly contribute to the enhancement of forecastingaccuracy by improvingthe quality and interpretability
of the input time series prior to modeling. The Savitzky—Golay filter acts as a noise suppression mechanism that preserves
essential features of the time series, while eliminating high-frequency noise. This step ensures that the input to the CEEMDAN
decomposition process is already denoised, leading to more stable and physically meaningful decomposed components. The
CEEMDAN generates IMFs that are cleaner, more distinct, and less affected by spurious fluctuations. This results in better
mode separation, reduces signal leakage across IMFs, and enhances the stationarity and regularity of each component. This
hybrid preprocessing pipeline can enhances model generalization, reduces overfitting, and ultimately leads to more reliable
and accurate forecasts. The components fed to the ARIMA-LSTM modelthat involves two-step process: the ARIMA forinitial
prediction utilising the Box-Jekins methodology and the LSTM model for refining and enhancing predictions. The hybrid
model combines the ARIMA and the LSTM predictions to form the final hybrid forecasts. Figure 5 illustrates the proposed
hybrid model algorithm. The process of SPI prediction based on ARIMA-LSTM combined with SG and CEEMDAN as is
shown in Figure 5. The process of the data smoothing, decomposition and prediction include four main steps.

Step 1: Data Preprocessing Phase: To enhance the quality of the data and prepare it for decomposition, the original SPI time

series undergo a data preprocessing phase:

e Savitzky—Golay Filter: This filter is applied to smooth the SPI data and preserves the essential shape and trends of
the original time series while minimizing high-frequency noise. This step ensures that importantsignal patterns are
retained during further processing. The smoothed signal becomes the input signal for decomposition technique.

e CEEMDAN Parameter Settings: CEEMDAN is used to break the smoothed signal into several IMFs and a residual

component. Before decomposition, the necessary parameters for CEEMDAN are configured. These parameters
control the number of realizations, noise amplitude, and stopping criteria for decomposition.

Step 2: Model Development Phase: Each IMF, including the residual, is independently modelled using a hybrid ARIMA—
LSTM approach. This process involves several steps:

a) Data Partitioning

e The data foreach IMF is split into: Training set (80%) and Testing set (20%). This split ensures that model learning
and evaluation are based on separate subsets to avoid overfitting.

b) Normalization

e  Prior to model training, the data isnormalized using Min-Max normalization to ensure that input features fall within
a similar scale, which improves training stability and convergence speed.

¢) Modelling Each IMF with ARIMA-LSTM

e The two models are integrated so that both linear (ARIMA) and nonlinear (LSTM) dependencies within each IMF
are effectively captured. The modelling process follows the algorithm shown in Figure 4.

d) Feature Selection and Hyperparameter Tuning

18



e The performance of ARIMA and LSTM models heavily depends on the feature selection and hyperparameters. The
auto _arima () function and Bayesian Optimization were used to automate and optimize the search for best-
performing hyperparameters for the ARIMA-LSTM model by evaluating model performance over a probabilistic

380 space.
¢) Model Training

e Each IMF is trained individually using the selected features and optimized hyperparameters, resulting in a trained
model for each component.

385  Step 3: Forecast Reconstruction Phase

e After training, each IMF is forecasted individually. The final forecasted SPI value is obtained by summing the
predictions of all individual IMFs, including the residual component:

SPI(o) = z IMF;(¢) + Res,

i=1
This additive reconstruction ensures that the original structure and dynamics of the SPI series are preserved in the forecast,

390 improving overallaccuracy.

Step 4: Model Evaluation Phase
The reconstructed SPI prediction is then evaluated using multiple performance metrics: RMSE, DS, and coefficient of

determination. The Taylor diagram is also utilised to evaluate the model performance. These metrics help quantify the

395 predictive accuracy and reliability of the hybrid framework.
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Figure 5: Procedure of proposed SG-CEEMDAN-ARIMA-LSTM hybrid model.

400 2.11. Performance Evaluation

To establish the predictive superiority of the SG-CEEMDAN-ARIMA-LSTM model, a comparison was conducted against
othermodels, including ARIMA, LSTM, ARIMA-LSTM, SG-ARIMA-LSTM, and CEEMDAN-ARIMA-LSTM models. The
performance of the proposed hybrid-based modelis evaluated using three indicators namely,root mean square error (RMSE),
coefficient of determination (R?) and directional symmetry (DS). The high value of R? and DS reflects the better performance

405 of the forecasting model while the lower the value of RMSE illustrates better forecasting performance.

1i( R )2
RMSE = n 4 Vi = Yavg (43)
i=1

R2 — [Z?:l(yi - yavg)(y\i - y\avg)]z (44)
2:?:1(311' - yavg)z Z?:1(y\i - y\avg)z
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100 < 45)

d.
n—1: L
=2
where

d. = {1' Wi = -Gy = 9i2) > 0 (46)
i .
0, otherwise

n is number of data points, y; and ¥; observed and forecasted, respectively. ¥, and ¥,,, an average of the actualand
forecasted values, respectively. Furthermore, this study conducts a qualitative evaluation ofthe prediction model's performance
using a Taylordiagram (Taylor, 2001). The Taylor diagram offers a statistical evaluation of the degree of agreement between
the models in terms of their SD, RMSE, and R?, while providing a concise summary of the correspondence between predicted
and observed values. The differences in DS, RMSE, and R? values among the prediction models are depicted as individual
points on a two-dimensional plot within the Taylor diagram. This diagram, though it follows a common structure, proves

especially valuable when evaluating intricate models.

3. Results and Discussion
3.1. Rainfall Data Series

Figure 6 illustrates the daily and monthly cumulative precipitation data recorded at the uMkhanyakude district meteorological
stations in KwaZulu-Natal province, South Africa, from the early 1980sto 2023. The data comprising 20% was employed for
prediction, whereas the data representing 80% was applied for training. The SPI was computed utilising rainfall data from
meteorological stations in the uMkhanyakude district, which provide sufficiently extensive records and a consistent structure

(Hirca et al.,, 2022).
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Figure 6: Time series plots of daily and monthly total rainfall data for uMkhanyakude district from early 1980°s to 2023. The (left)
plot shows the daily rainfall data in millimeters (mm), illustrating the high variability and intermittent nature of daily rainfall events
over the years. The (right) plot presents the monthly total rainfall data (mm), which smooths out the daily variability and reveals

425  clearer patterns of rainfall distribution over time.
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3.2. SPI Time Series and Trend Analysis

This study SPI values for the 6-, 9-, and 12-month intervals were computed using the monthly mean time series shown in
Figure 6. Figure 7 illustrates the time series of the SPI calculated for the 6-month (SPI-6), 9-month (SPI-9), and 12-month
(SPI-12) intervals. All SPIs (SPI-6, SPI-9, and SPI-12) demonstrate numerous occurrences of moderate to severe droughts in
the studied area. A significant drought episode was reported from late 2004 to 2009. Moreover, SPI-12 exhibits a persistent
drought spell that commenced between 2014 and 2016, resulting in a decline in water supply conditions in the region
(Bukhosini and Moyo, 2023). The statistics across all timelines indicate a troubling trend of extended and intense drought
conditions in recent years. This underscores the pressing necessity for efficient water management and drought readiness in
the area. Initially, we assess the trend throughout the research area employing nonparametric techniques. The ensuing

conclusions will be obtained via advanced trend analysis methods employed to investigate SPI trends.
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Figure 7: Standardized Precipitation Index (SPI) time series plots for uMkhanyakude district over 6-month (SPI-6), 9-month (SPI-
440 9), and 12-month (SPI-12) periods from early 1980’s to 2023. Positive SPI values (blue bars) indicate wetter-than-normal conditions,

while negative SPI values (red bars) indicate drier-than-normal conditions.
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Figure 8 illustrates theregional outcomesofthe ITA methodology used on the 6-, 9-, and 12-month SPI series to ascertain the
potential meteorological drought trend in the uMkhanyakude district. Figure 8 includes two vertical bands to elucidate the
potentialtrends of arid and humid conditions: a red band indicatingthe drought threshold (SPI = -1.5) and a blue band denoting
the wet threshold (SPI = 1.5). The zone between the two bands signifies normalconditions, hence facilitating the depiction o f
both low and high SPI trends using the ITA methodology. Each plot compares the first and second halves of the data series to

identify trends.

In general, both Figure 8 and Table 3 show thatall stations, except Riverview, indicate a downward trend for all time scales,
in terms of the ITA. For example, the ITA results obtained using 6-month SPI values exhibit a slightly decreasing trend in
precipitation, moving toward the upper right quadrant, indicatingthe detection of drier conditions over the 6-month timescale.
Some points approach the severely wet threshold but do not cross it, indicating that there were no extreme wet periods, though
some drier periods are evident near the severe dry line. The ITA results obtained using 9-month SPI values show a more
pronounced decreasing trend, indicating a relatively weaker increase in wet conditions over a 9-month timescale. Several
points approach the severe dry threshold, but the data remains mostly within the 95% confidence bounds, indicating moderate
variability in precipitation trends. On the other hand, the SPI-12 plot demonstrates a noticeable decreasing trend toward
dryness, as many points fall below the no-trend line and approach the severe dry region. Riverview indicates the increasing
trend across all time scales. The increasing distance between the black dotsand the no-trend line highlights a shift toward drier
conditions in the second half of the series. In general, the analysis suggests a gradual increase in precipitation for shorter
periods (SPI-6), moderate upward trends for medium-term periods (SPI-9), and a more substantialshift toward dry conditions
over longer periods (SPI-12) for Riverview. The variability is evident, but a clear progression toward drier conditions is
evident, particularly in the SPI-12 plot. This observation could be indicative of changing precipitation patterns, which is crucial

for understanding drought risk and informing water resource management strategies.
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Figure 8: Results of Innovative trend analysis applied to different time scales values (SPI-6 (left), SPI-9 (middle), SPI-12 (right)).

The blue shaded area represents the 95% confidence level area. The red and blue vertical lines represent the severe drought and

severely wet, respectively.
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Table 2 presents the results of the Mann-Kendall(MK) and Modified Mann-Kendall MMK) trend tests for the Standardized
Precipitation Index (SPI) over 6-month (SPI-6), 9-month (SPI-9), and 12-month (SPI-12) periods. The results indicate that
across five stations all time scales both MK and MMK methods showed significant decreasing trend with negative Z-score
values. For example, False Bay Park, Z MK are Zgp;_ = —10.89 Zgp;_g = —12.89, Zgp;_;, = —13.82and Z MMK are
Zspi—g=—6.27,Zgp;_g= —6.28,Zgp;_1, = —6.29. The p-values of MK and MMK show the significance of the trends, with
values way below 0.05 confirming statistically significant trends. In all cases except Riverview, the p-values are extremely
low (<< 0.05), indicating strong evidence of significant decreasing trends in precipitation for all SPI periods. Both the MK
and MMK tests confirm decreasing trends across all time scales, with theZ MK andZ MMKvalues becoming more negative
as the SPI period increases, reflecting an intensifying downward trend over longer periods (from SPI-6 to SPI-12). For
Riverview station, the results indicate an increasingtrend with positive Z-score values,i.e. Z MKare Zgp;_o = 2.85, Zgp;_g =
3.84, Zgp;_1, =4.59 and Z MMK are Zgp;_ = 1.19, Zgp;_g = 2.16, Zgp;_1, = 2.29 . In general, all these results are
consistent with those shown using the ITA (see Table 3). The Riverview station experience increasing trend because it is
located closer to the coast, hence it is influenced by a combination of geographic, oceanic and climatic factors. Foran exam pl,
this station could be influenced by the Agulhas Current, which flows southwards alongthe east coast of South Africa, bringing
warm, moist air from the Indian Ocean, and thus enhancing evaporation that brings constant availability of moisture in the

atmosphere.

Table 2: Statistical summary of trend analysis for SPI-6, SPI-9, and SPI-12 using Mann-Kendall (MK) and Modified Mann-Kendall
(MMK) tests.

False Bay Park

Variables SPI-6 SPI-9 SPI-12
Z vk -10.89 -12.89 -13.82

p —value,,,, <0.00 < 0.00 < 0.00
Decision (Trend ) Decreasing Decreasing Decreasing
Zmk -6.27 -6.28 -6.29

p —value i 3.66 X 10710 335x 107" 3.13 x1071°
Decision (Trend ) Decreasing Decreasing Decreasing

Hlabisa Mbazwana

Zux 2.89 3.88 531
p —value,y;, 3.77 x 1073 3.05x10™* 1.10 x 1077
Decision (Trend ) Decreasing Decreasing Decreasing
Zumx -2.26 -2.12 -2.20

p —value 239 x1072 336 x1072 2.78 x 1072
Decision (Trendyy) Decreasing Decreasing Decreasing
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Pongolapoort Dam

Zux -7.19 -8.74 -9.83

p —valuey; 6.12x 10713 < 0.00 < 0.00

Decision (Trend ) Decreasing Decreasing Decreasing

Z vk -8.22 -5.44 -6.51

p —value i 222 %1071 540 x 1078 741 x107 1

Decision (Trend ) Decreasing Decreasing Decreasing
Mkuze Game Reserve

A -3.66 -5.54 -6.67

p —value,,,, 248 x10™* 299 x 1078 255 x107*

Decision (Trend ) Decreasing Decreasing Decreasing

Z MK -2.44 -2.79 -2.22

p —value 146 x 1072 513 x 1073 2,64 x1072

Decision (Trend,,) Decreasing Decreasing Decreasing
Ingwavuma Manguzi

Zux -2.38 -3.72 -4.92

p —value,y;, 1.72 x 1072 198 x 10™* 8.72 x 1077

Decision (Trend ) Decreasing Decreasing Decreasing

Zyumk -1.61 -2.48 227

p —value i 1.08 x 10™* 131 x 1072 229 x107?

Decision (Trend ) Decreasing Decreasing Decreasing

Riverview

Z vk 2.85 3.84 4.59

p —value 434 %1073 1.25 x10™* 425 %x107°

Decision (Trend ) Increasing Increasing Increasing

VAT 1.94 2.16 2.29

p —value i 5.12 x 1072 3.07 x 1072 219 x 1072

Decision (Trend ) Increasing Increasing Increasing
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495  Table 3: The results of the trend analysis for SPI-6, SPI-9, and SPI-12 obtained through a two-tailed test at a significance level of
5% using ITA technique.

False Bay Park

Variables SPI-6 SPI-9 SPI-12
Slope —351x1073 -1.14x 1073 —4.49 x 1073
Indicator -20.08 -20.12 -20.07
+Clat95% +9.24x 1075 +7.52%x 1075 +6.82 x 1075

Hlabisa Mbazwana

Slope —-1.68x 1073 —-231x%x1073 —1.86 x 1073
Indicator —20.52 —20.72 —20.64
+CI at 95% +6.81x 1075 +9.35x 1075 +7.15 x 1075

Pongolapoort Dam

Slope 226x 1073 —2.88x 1073 —3.34 x 1073
Indicator —-19.27 —19.40 —19.55
+CIl at95% +222x 1075 +3.62x 1075 +6.72 x 107°

Mkuze Game Reserve

Slope —2.00x 1073 —3.04x 1073 —3.80 x 1073
Indicator —20.09 —20.22 —20.25
+CI at 95% +2.81x 1073 +4.67 x 1073 +4.40 x 1073

Ingwavuma Manguzi

Slope -1.61x1073 -226%x1073 —-2.88x1073

Indicator —-21.96 —21.05 -20.77

+CI at 95% +6.81x 10°° 1.01+x 1075 +1.19 x 10°°
Riverview

Slope 1.69x 1073 2.19%x 1073 237 x 1073

Indicator 22.54 22.22 21.86

+CIl at95% +1.54%x 1075 +135%x107° +1.56 x 10~°

3.3. SPI Time Series Forecasting Results

The study proposes a hybrid model that applies the Savitzky-Golay (SG) filter to process raw SPI data, thereby reducingnoise
500 andenhancingforecastinganalysis. To demonstrate the effectiveness of the SG filter, appropriate parameters such as window
size and polynomialorder were selected through trial and error using data from the study sites (Sibiya et al., 2024). A window
size of 21 and a polynomial order of 5 were chosen for smoothing. Figure 9 shows how the SG filter effectively tracks the
general trend while preserving the shape of peaks and minimizing noise. This filter was applied to different time scales of'the
SPI time series. It autonomously calibrates according to peak distribution, exhibiting optimal performance, particularly with
505 asymmetric peaks, while preserving peak height integrity. The application of the SG filter effectively mitigates short-term

fluctuations and eliminates noise from the time series, resulting in cleaner data, thereby enhancing the reliability of the
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subsequent decomposition process. By reducing noise, decomposition techniques can more accurately capture the authentic

underlying patterns and components within the data.
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Figure 9: SPI signals smoothed by Savitzky-Golay (SG).

After applying a Savitzky-Golay filter to the series, the CEEMDAN algorithm decomposes the filtered SPI series into six
subseries with different amplitudes and frequencies. The results from the False Bay Park station are utilized here as an
illustration to prevent repetition. In these results, the decomposed set of time series consists of five IMF components and a
residual component, as shown in Figure 10 (for all time scales). During the decomposition process, white Gaussian noise is
added to create noisy signals. The original sequence exhibits high nonlinearity and nonstationarity, with the frequency of the
IMF components gradually decreasing. Figure 10 depicts this gradual decrease in frequency as the order of the IMF
components increases. As each IMF is further decomposed, it becomes less volatile and cyclical, which aligns with the

characteristics of the decomposed IMF. Therefore, by predicting each IMF and the residual, the forecast precision can be
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enhanced. A forecasting modelis then constructed foreach component,andthe prediction results are obtained by summingup

the outputs of all predicted components.
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Figure 10: Decomposition of Smoothed SPI-6, SPI-9 and SPI-12 Index Using CEEMDAN: Each IMF represents different frequency

components of the SPI index, from high-frequency oscillations (IMF1) to low-frequency trends (IMFS), showing the variability in

precipitation patterns over the years from 1980 to 2023.

In predictive modeling, this study employed Bayesian optimization for hyperparametertuning because of its effectiveness in

improving model performance for complex, black-box, and non-differentiable functions. The hyperparameter configuration

space comprises an n-dimensional functional space that encompasses all possible combinations of hyperparameters for the

specified model. The benchmark analysisbegan with the ARIMA model, using the Box—Jenkins methodology. This process

started with an assessment of stationarity through the augmented Dickey—Fuller (ADF) test. The series showed p-values

exceeding the 5% significance threshold, indicating non-stationarity (see Table 4). As a result, differencing was applied to

achieve stationarity. This study employed a stepwise approach using the auto_arima () function within the ARIMA

framework to identify the optimalparameters (see Table 5). Table 6 delineates the hyperparametersearch space employed for
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535 tuning the LSTM modelutilizing a Bayesian optimization approach. Each hyperparameter is presented alongside its respective

range or selected value, which delineates the parameters within which the Bayesian search investigated optimal configurations.

Table 4: ADF Test Results for SPI Values (SPI-6, SPI-9, SPI-12) at Different Stations

Station Name SPI ADF Statistic p-value Critical Value (5%)
SPI-6 -2.1926 0.2089 -2.8925
False Bay Park SPI-9 -3.2142 0.0192 -2.8915
SPI-12 -1.4829 0.5419 -2.8949
SPI-6 -1.9314 0.3175 -2.8925
Hlabisa Mbazwana SPI-9 -1.5629 0.5022 -2.8939
SPI-12 -1.1867 0.6793 -2.8946
SPI-6 -2.8759 0.0482 -2.8925
Pongolapoort Dam SPI-9 -2.7909 0.0596 -2.8909
SPI-12 -2.1864 0.2112 -2.8909
SPI-6 -3.1136 0.0256 -2.8949
Mkuze Game Reserve SPI-9 -1.6134 0.4762 -2.8939
SPI-12 -2.5689 0.0996 -2.8949
SPI-6 -2.1418 0.2281 -2.8994
Ingwavuma Manguzi SPI-9 -3.6158 0.0055 -2.9026
SPI-12 -1.9049 0.3298 -2.9026
SPI-6 -1.7509 0.4051 -2.9051
Riverview SPI-9 -1.1840 0.6804 -2.9079
SPI-12 -2.0298 0.2737 -2.9015
540
Table 5: Accuracy criteria for different model parameters of the ARIMA model applied in SPI-6, SPI-9 and SPI-12 at different
meteorological stations of uMkhanyakude district.
SPI-6 SPI-9 SPI-12
Station Name Model AIC Model AIC Model AIC
False Bay Park ARIMA(5,0,3) 517.757 ARIMA(3,1,1) 333.328 ARIMA(1,1,0) 183.988
Hlabisa Mbazwana ARIMA(5,1,5) 322514  ARIMA(3,0,5) 248.815 ARIMA(2,1,2) 152.295
Pongolapoort Dam ARIMA(4,1,3) 438.230 ARIMA(3,1,2) 350.618 ARIMA(1,1,0) 254.076
Mkuze Game Reserve ARIMA(4,1,2) 432320 ARIMA(3,0,3) 330.540 ARIMA(0,1,1) 164.170
Ingwavuma Manguzi ARIMA(4,0,5) 417.071  ARIMA(3,1,1) 350.196 ARIMA(0,1,1)  153.087
Riverview ARIMA(4,1,5) 435.687 ARIMA(3,1,0) 365.509 ARIMA(2,1,1) 168.812
Table 6: Hyperparameter ranges in LSTM—Bayesian search Method.
Hyperparameters Values Hyperparameters Values
Number of LSTM units (32, 256) Activation function (ReLu, Sigmoid, Tanh,)
Number of LSTM hidden size (32, 256) Optimizer Adam
Batch size (16,128) Loss function Mean Square error
Epoch (50,300) Dropout (0.05,0.1)
LSTM learning rate (0.0001, 0.001) Regularization Early stopping
545
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The models in Table 7 were compared fortheir prediction ability before and aftertime series decomposition in this research.
The objective was to determine if smoothing and decomposing time series improve the model's prediction performance.
Figures 11-16 show a comparison of the various models' prediction outcomes using the Taylor diagram. In general, all the
models accurately replicate the original SPI time series at all timescales (refer to Figure 11 - 16) in terms of the time series
plot. However, the SG-=CEEMDAN-ARIMA-LSTM model(shown in red) appearsto have the closest fit to the data, displaying
superior accuracy across different phases, particularly in extreme values. Nonetheless, the hybrid models (SG-ARIMA-LSTM,
CEEMDAN-ARIMA-LSTM, and SG-CEEMDAN-ARIMA-LSTM) show betterprecision in capturingpeaks, rapid transitions
and troughs compared to the standalone LSTM or ARIMA models. Table 7 displays an assessment of the predictive
performance metrics of several models utilising RMSE, R?, and DS. As the period extends, the RMSE values decrease;
however, the DS and cap R-squared values typically enhance (see Table 7). This indicates that the models' predictive accuracy
progressively enhanceswith an extended duration, reaching its highest point atthe 12 -month interval. In terms of RMSE, the
SG-CEEMDAN-ARIMA-LSTM model outperforms the others, exhibiting the lowest error values across all indices. For
example, Riverview station, 0.2165 for SPI-6, 0.0921 for SPI-9, and 0.0566 for SPI-12. This indicates that thismodel hasthe
smallest prediction error, making it the most accurate in terms of error reduction. Concerning R?, which measures how well
the model explains the variance in the data, SG-CEEMDAN-ARIMA-LSTM again leads with the highest values: 0.9602 for
SPI-6, 0.9846 for SPI-9, and 0.9939 for SPI-12. This shows thatthe model provides the best fit to the data. The CEEMDAN -
ARIMA-LSTM model is the second-best performer, also exhibiting impressive results, particularly in R?, where it achieves
higher values of 0.9483 for SPI-6, 0.9751 for SPI-9, and 0.9933 for SPI-12. The SG-ARIMA-LSTM modelis the third-best
hybrid performer, with RMSE values 0f0.2262 for SPI-6, 0.1051 for SPI-9, and 0.05639 for SPI-12. The SG-ARIMA-LSTM
model is the third-best performer, also exhibiting impressive results, particularly in R%, where it achieves higher values of
0.9392 for SPI-6, 0.9763 for SPI-9, and 0.9904 for SPI-12. The SG-ARIMA-LSTM model s the third-best hybrid performer,
with RMSE values 0f0.2597 for SPI-6, 0.1157 for SPI-9, and 0.0567 for SPI-12.In general, these results highlight the efficacy
of hybrid models, particularly those incorporating SG and CEEMDAN processes, in improving predictive accuracy across
multiple timescales of SPI, particularly for the SG-CEEMDAN-ARIMA-LSTM model. These results are consistent with the
Taylor diagram (see Figure 11 - 16), which indicates a significant improvement in prediction accuracy afterincorporatingthe
SG and CEEMDAN signal decomposition technique as the hybrid model exhibits superior performance in terms of prediction
accuracy across all timescales, surpassing other models. This suggests that the inclusion of these techniques enhances the
models' ability to capture both short-term and long-term dependencies, thus making them more robust for drought prediction
purposes. Therefore, this hybrid model appearsto be the most effective for drought prediction in this analysis. These findin gs
highlight the superiority of the proposed hybrid model in enhancing drought prediction accuracy compared to standalone

approaches.

33



580

Table 7. Performance measures for the comparison of observed and forecasted data of the models for SPI-6, SPI-9 and SPI-12 across

various lead times using statistical criteria.

False Bay Park

Model SPI-6 SPI-9 SPI-12

RMSE R? DS RMSE R? DS RMSE R? DS
ARIMA 0.3504 0.8435  0.8426 | 0.2431 0.8976  0.8525 | 0.1689 0.9421  0.8426
LSTM 0.3128 09111  0.8327 | 0.2416 0.9521  0.8723 | 0.1626 0.9821  0.8519

ARIMA-LSTM  0.2476 09194  0.8327 | 0.1650 0.9531  0.8723 | 0.0507 0.9952  0.9009
SG- ARIMA- 0.2056 0.9458  0.8030 | 0.1348 0.9687  0.8218 | 0.0571 0.9940  0.9009

LST™M

C-A-L 0.2182 0.9375  0.8713 | 0.0978 0.9834  0.8218 | 0.0496 0.9953  0.8911

SG-C-A-L 0.1835 0.9650  0.8416 | 0.1631 0.9836  0.8317 | 0.0349 0.9957  0.8941
Mkuze Game Reserve

ARIMA 0.3752 0.8642  0.8419 | 0.3475 0.8957  0.8792 | 0.2202 0.9697  0.8730

LSTM 0.3474 09121  0.8822 | 0.3354 09178  0.8030 | 0.1523 0.9890  0.8733

ARIMA-LSTM  0.3160 0.9273  0.8416 | 0.1561 0.9823  0.8218 | 0.1079 0.9926  0.8730
SG- ARIMA- 0.2307 0.9624  0.8515 | 0.1548 0.9825  0.8317 | 0.08252  0.9951  0.8019

LSTM

C-A-L 0.1969 09726  0.8317 | 0.1430 0.9850  0.8515 | 0.04497  0.9986  0.9208

SG-C-A-L 0.1818 09742  0.8515 | 0.1232 0.9892  0.8617 | 0.04217  0.9990  0.9208
Pongolapoort Dam

ARIMA 0.4470 0.8797  0.8624 | 0.2993 0.9668  0.8119 | 0.1918 0.9763  0.8733

LSTM 0.4470 0.8962  0.8732 | 0.2873 0.9467  0.8238 | 0.1824 0.9851  0.8829

ARIMA-LSTM 04121 0.8969  0.8822 | 0.2599 0.9588  0.8921 0.1638 0.9862  0.8432
SG- ARIMA- 0.2224 09617  0.8019 | 0.2064 0.9803  0.8515 | 0.0686 0.9969  0.8119

LST™M

C-A-L 0.2132 0.9649  0.8822 | 0.1572 0.9850  0.8218 | 0.0639 0.9975  0.8019

SG-C-A-L 0.1453 0.9839  0.8824 | 0.1429 0.9858  0.8911 0.0635 0.9978  0.8921
Hlabisa Mbazwana

ARIMA 0.4704 0.8347  0.8624 | 0.4234 0.8698  0.8921 0.2321 0.9556  0.8142

LST™M 0.3617 0.9041  0.8327 | 0.2163 0.9672  0.8119 | 0.1566 0.9806  0.8317
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ARIMA-LSTM  0.3269 0.9369  0.8515 | 0.2139 0.9677  0.8218 | 0.1457 09813  0.8426
SG- ARIMA- 0.3011 0.9355  0.8416 | 0.1829 09747  0.8317 | 0.08540  0.9935  0.8218
LST™M

C-A-L 0.2497 0.9592  0.8218 | 0.1662 0.9792  0.8218 | 0.0825 0.9949  0.9009
SG-C-A-L 0.1921 09795  0.8614 | 0.1332 09866  0.8218 | 0.07416  0.9952  0.9029

Ingwavuma Manguzi

ARIMA 0.4123 0.8716  0.8571 | 0.2706 0.9442  0.8750 | 0.2052 0.9784  0.8619
LSTM 0.3843 0.8931  0.8738 | 0.2524 0.2524  0.8691 0.1614 0.9828  0.8095
ARIMA-LSTM  0.3458 0.9044  0.8095 | 0.2428 0.9695  0.8541 0.8541 0.9847  0.8215
SG- ARIMA- 0.2767 0.9397  0.8076 | 0.2001 0.9724  0.8809 | 0.0815 0.9958  0.8929
LSTM

C-A-L 0.2536 0.9503  0.8095 | 0.1945 09719  0.8214 | 0.0739 0.9972  0.9167
SG-C-A-L 0.2314 0.9565  0.8214 | 0.1575 0.9823  0.8809 | 0.0634 0.9978  0.8809

Riverview

ARIMA 0.4375 0.8132  0.8106 | 0.1708 0.9474  0.8038 | 0.1137 0.9570  0.7973
LSTM 0.3212 0.8510  0.8108 | 0.1537 0.9400  0.8108 | 0.0982 0.9705  0.8273
ARIMA-LSTM  0.2874 0.8767  0.8378 | 0.1314 0.9706  0.9595 | 0.0558 0.9934  0.9189
SG- ARIMA- 0.2262 0.9392  0.8243 | 0.1051 09763  0.8243 | 0.05639  0.9904  0.8108
LST™M

C-A-L 0.2597 0.9483  0.8738 | 0.1157 09751  0.9324 | 0.05674  0.9933  0.9459
SG-C-A-L 0.2165 0.9602  0.8919 | 0.09214  0.9846  0.9324 | 0.05664  0.9939  0.9189

585 Note: C-A-L = CEEMDAN-ARIMA-LSTM
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Figure 11: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

590 at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Riverview meteorological station.
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Figure 12: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Hlabisa Mbazwana meteorological station.
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Figure 14: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots
at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Mkuze Game Reserve meteorological station.
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Figure 15: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Pongolapoort dam meteorological station
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Figure 16: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of False Bay Park meteorological station.

4. Discussion

In this study, we utilized the Mann-Kendall and Modified Mann-Kendall tests to determine the drought trend index in
meteorological variables within the basin. The MK and MMK trend methods showed a significant decrease in all SPI time
scales based on rainfall data from five stations; however, the district, except for the Riverview station, showed an increasing
trend in the uMkhanyakude district. The study's findings align with prior research by Kganvago et al. (2021) and Ngwenya et
al. (2024). Ngwenya et al. (2024) conducted a study using the Mann-Kendalltest to assess the SPI valuesata 5% significance
level, revealing sustained drought conditions in the Western Caperegion. Kganvago et al. (2021) indicated a notable decline
in drought conditions in the Western Capearea of South Africa. We have also employed the ITA, which enhances the MK and

MMK testsin identifying trends, and the results underscore the importance of comprehending drought conditions. The findings
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of our analysis validate previous research by Naik and Abiodun (2020), highlighting the need to conduct trend studies on
drought indicators to investigate the impacts of climate change. The study highlights the crucial role of SPI as a primary
variable in monitoring and forecastingdroughts in the region, and its potentialto mitigate the adverse impacts of droughts and
waterscarcity in the uMkhanyakude district in the future. The objective was to determine if the model's predictive performance

is enhanced by smoothing and deconstructing time series data.

According to the statisticalmetrics in Table 7 and the Taylor diagram (see Figures 11 - 16), the effectiveness of hybrid models
that incorporate filter and signal decomposition techniques (SG and CEEMDAN) in improving prediction accuracy,
particularly for drought forecasting, is highlighted. These findings support other research (Taylanetal., 2021; Elbeltagi et al,,
2023; Rezaiy and Shabri, 2024b), which highlights the superior accuracy of hybrid drought forecasting models compared to
individual models. For example, Taylan et al. (2021) developed a hybrid model to forecast drought using precipitation data
from Canakkale, Gok¢eada, and Bozcaada stations between 1975 and 2010. The study found that the hybrid models, which
incorporated preprocessing techniques, performed better. Elbeltagi etal. (2023) utilized a hybrid modelto estimate the SPI for
3, 6, and 12-month drought periods from 2000 to 2019. The findings demonstrated that RSS-M5P model yielded the most
precise SPI predictions, with MAE=0.497, RMSE =0.682, RAE=81.88, RRSE =87.22, and R? =0.507 for SPI-3;
MAE =0.452, RMSE=0.717, RAE =69.76, RRSE =85.24, and R? =0.402 for SPI-6 and MAE =0.294, RMSE =0.377,
RAE =55.79, RRSE =59.57, and R? =0.783 for SPI-12. The models employed to analyse drought in Jaisalmer, Rajasthan,
yielded the most effective results, exceeding those of RSS-RF and RSS-RT. Additionally, Rezaiy and Shabri (2024b)
introduced a W-EEMD-ARIMA model for drought prediction. This model utilises monthly precipitation data from Kabul
spanning 1970to 2019. The R? value was 0.9946, the MAPE was 18.9674,the RMSE was 0.0736, the MAE was 0.0575, and
the SPI-12 validation indicated that our model was accurate. The outcomes obtained here surpassed those of the ARIMA,
Wavelet-ARIMA, and EEMD-ARIMA models in terms of raw data (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, R? :
0.9925), analytical method (MAE: 0.1874, MAPE: 60.0220, R? : 0.9361), and maximum likelihood estimation (RMSE:
0.1002, MAE: 0.0691, MAPE: 23.7122, R? : 0.9898). During the SPI-3, SPI-6, and SPI-9 periods, our hybrid model
consistently outperformed other models. Our proposed hybrid model surpasses ARIMA, Wavelet-ARIMA, and EEMD-
ARIMA in enhancing the precision of drought predictions, as evidenced by this data.

In terms of term forecasting accuracy, the hybrid models, particularly SG-CEEMDAN-ARIMA-LSTM, consistently
outperformed all other models across all SPI timescales, according to a comparison of this study's results with previous
research. All models successfully reproduced the original SPI time series. With the range valuesof RMSE 0f0.1453- 0.2314
for SPI-6, 0.0921 — 0.1631 for SPI-9, and 0.0349 — 0.07416 for SPI-12, and the highest R? values of 0.9565 - 0.9839 for SPI-
6,0.9836-0.9892 forSPI-9, and 0.9939 -0.9990 for SPI-12 across all timescales, the SG-CEEMDAN-ARIMA-LSTM model
showed the most proficiency in capturingextreme values and rapid transitions. That these methods, when combined, improve
the models' capacity to represent drought in the uMkhanyakude district, both in the short and long term, is supported by the

data. This makes the models far better at foretelling when droughts will occur. In light of the foregoing, our study provides
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usefulinformation regarding the use of the hybrid SG-CEEMDAN-ARIMA-LSTM modelto the forecastingof meteorological
droughts.

5. Conclusion

This study examined the trends in the Standardised Precipitation Index (SPI) over different timescales (SPI-6, SPI-9, and SPI-
12) utilising the Mann-Kendall(MK), modified Mann-Kendall(MMK) test, and the innovative trend analysis (ITA) protocol.
The monthly rainfall data from the uMkhanyakude district, South Africa, covering the years 1980 to 2023, was used for these
calculations. Rainfall hasbeen trending downward ata 95% confidence level, according to the MK and MMK tests. The ITA
results supported these findings aswell, revealing a declining trend with most of the data points going below the 1:1 line. To
predict SPI data over various timescales, this research employed LSTM and autoregressive integrated moving average
(ARIMA) models. Researchers used a hybrid model that combines the SG-CEEMDAN processing method with the ARTMA-
LSTM model to enhance the precision of SPI forecasts. They also used SG filtering and full ensemble empirical mode
decomposition with adaptive noise (CEEMDAN). Figures 11-16 and Table 4 display the results of a thorough comparison
examination of the forecast outcomes. The results revealed that the inclusion of preprocessing techniques (SG filtering,
CEEMDAN, and SG-CEEMDAN) significantly improved the model performance in forecasting SPI at all timescales. The
performance consistently increased with higher timescales, potentially due to lower noise levels. Across different timescales,
the SG and CEEMDAN combined hybrid model consistently outperformed the individual models. Notably, the CEEMDAN -
ARIMA-LSTM model outperformed the SG-ARIMA-LSTM model at all timescales, while the SG-CEEMDAN-ARIMA -
LSTM model consistently exhibited the lowest root mean square error (RMSE) values across all indices. These results
demonstrate that combining SG-CEEMDAN with ARIMA-LSTM has the potential to significantly enhance the accuracy of

meteorological drought forecasting.

The principal conclusion of the study is that ARIMA-LSTM, in conjunction with SG, CEEMDAN, and SG-CEEMDAN,
serves as an effective instrument for early warning systems and meteorological drought prediction. The proposed methodology
in this paper serves as a framework for modeling complex meteorological phenomena such as drought, which is particularly
pertinent in semi-arid regions. Enhancing model performance and creating efficient models for weather forecasting can be
achieved through techniques that address data noise, nonlinearity, and nonstationarity. To enhance water resource
management, make informed decisions regarding agricultural output and tourism management, and establish regulations, it is
essential to acquire extremely effective models for drought prediction. The omission of exogenous environmentalvariables in
the SG-CEEMDAN-ARIMA-LSTM model represents a significant drawback of the study. The model's forecast accuracy and
real-world application are limited by disregarding these exogenous effects, which can substantially affect drought conditions.
Future studies should aim to include external variables, including temperature, soil moisture, vegetation indices, and

anthropogenic factors such asland use and watermanagement, to improve the model's efficacy. This integration would provide
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a more thorough comprehension of drought dynamics, hence improving the model's accuracy and dependability in drought
predictions. Additionally, it is essential to investigate alternate decomposition methods, such as enhanced CEEMDAN

(iICEEMDAN), which may provide significant insights.
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