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medek Meteorological drought presents considerable challenges to water supplies, agriculture, and socio-economic stability,

especially in areas heavily reliant on precipitation. The Standardized Precipitation Index (SPI) is esteemed for its efficacy in
drought monitoring, owing to its straightforwardness and applicability across many time scales. Broughts—defined-as-extended

This study examines meteorological drought dynamics in the uMkhanyakude district using the Standardized Precipitation

Index (SPI) at 6-, 9-, and 12-month timescales. Trend analysis was conducted using Mann—Kendall (MK), Modified Mann—

Kendall (MMK), and Innovative Trend Analysis (ITA) methods. The study also proposes a hybrid model that integrates the
Savitzky—Golay (SG) filter, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM) networks, referred to as SG-
CEEMDAN-ARIMA-LSTM, for forecasting of the SPI time series.- Analysis of SPI trends and variability revealed statistically

significant declining trends at five monitoring stations, characterized by negative Z-scores and p-values, showing a marked

downward trajectory across several SPI scales.&

demonstrate that Fhis the SG-CEEMDAN-ARIMA-LSTM methodology outperformed benchmark models across all temporal
scales, achieving high prediction accuracy with R? values of 0.9839 (SPI-6), 0.9892 (SPI-9). and 0.9990 (SPI-12). These
findings highlight the effectiveness of decomposition techniques (SG, CEEMDAN) in enhancing model performance and

confirm the hybrid model's suitability for both short- and long-term drought forecasting. This study merges robust trend

analysis with advanced hybrid forecasting techniques, providing a reliable framework for early warning systems and

sustainable water resource management in drought-prone regions

1. Introduction

[ Formatted: English (United States)
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Drought is a complex and recurrent natural hazard with significant economic, social, and environmental ramifications globally

(Bagmar and Khudri 2021; Kalisa et al. 2021; Song and Park 2023). In contrast to other natural disasters, droughts manifest

gradually, often persisting for extended periods. and their effects permeate various sectors, including agriculture, water

resources, and socio-economic systems (Wilhite and Glantz 1985; Cunha et al. 2019). This study specifically concentrates on

meteorological drought, characterized as a sustained interval of below-average precipitation (Taylan 2024). Meteorological

drought frequently serves as the initial phase that subsequently evolves into agricultural, hydrological, and socio-economic

drought (Malik et al. 2021; Latifoglu and Ozger 2023). As it is solely influenced by precipitation variability, meteorological

drought can be effectively quantified using precipitation-based indices.

Several indices have been established to quantify drought conditions, including the Standardized Precipitation Index (SPI) and
the Standardized Precipitation Evapotranspiration Index (SPEI). While the SPEI integrates both precipitation and temperature

data, its requirement for extensive datasets and complex computations may restrict its applicability in regions with limited data

availability (Xu et al., 2020). Conversely, the SPI depends exclusively on precipitation, rendering it widely utilized for the

analysis of meteorological drought, especially in semi-arid regions. Its versatility across multiple timescales facilitates the
robust identification of both short- and long-term drought patterns. Accordingly, given the data constraints in the

uMkhanyakude district of South Africa, this study adopts the SPI as the primary drought index. while recognizing that its

exclusive reliance on precipitation constitutes a methodological limitation. Since SPI is precipitation-driven, analyzing the

trends in rainfall is a necessary first step before applying SPI under climate change conditions. Without first establishing

rainfall trends, one risks misinterpreting SPI signals as short-term anomalies when they may actually reflect long-term climate-

driven shifts.

In this context, the escalating concerns regarding climate change and its influence on local climates have underscored the
necessity of analyzing drought trends. Thus, trend analysis of rainfall and SPI together provides a comprehensive picture of

rainfall trends reveal the climatic forcing, while SPI trends quantify the standardized drought intensity and persistence which

is crucial for understanding drought risk in the context of climate change. Systematic evaluations of drought occurrences not

only contribute to the development of evidence-based water resource management strategies but also enhance the calibration

of early warning systems and inform climate adaptation policies at both regional and national levels. Furthermore, temporal

analyses enable researchers to assess the effectiveness of mitigation measures and anticipate emerging risks, thereby bolstering

resilience in vulnerable sectors such as agriculture and public water supply. In the absence of structured trend analyses, drought

management remains predominantly reactive, constraining the transition towards proactive and sustainable adaptation

strategies. Building on trend analysis, drought forecasting is essential for deepening the understanding of drought dynamics.

Effective forecasting provides early warnings that are critical for mitigating impacts and strengthening drought management
strategies (Balti et al., 2020; Zhang et al., 2022; Tan et al., 2024; Zhang et al., 2024).




Accurate forecasting of the SPI is crucial in regions such as uMkhanyakude, which is prone to recurrent and severe drought

events. Enhanced prediction capabilities support agricultural resilience, water resource planning, and the establishment of early

200 warning systems (Xu et al. 2020). Traditional statistical models, such as ARIMA or SARIMA, alongside contemporary

machine learning methods, have been extensively employed for forecasting drought indices, including the SPI; however, each

approach possesses inherent limitations. For example, Gudko et al. (2025) utilized SARIMA to analyze precipitation dynamics

in Russia, demonstrating efficacy in short-term predictions while exhibiting constrained accuracy for long-term forecasts.

Similarly, Hussain et al. (2025) integrated ARIMA with machine learning models to enhance SPI and SPEI predictions

205 achieving accuracies exceeding 92%, thereby highlighting the advantages of combining statistical and machine learning

techniques. Nonetheless, these methodologies often encounter challenges associated with nonlinear and complex rainfall

patterns, particularly over short time scales. To mitigate the limitations of standalone models, hybrid approaches have gained
prevalence, capitalizing on the complementary strengths of diverse techniques. Alquraish et al. (2021) compared hybrid models
such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN against conventional HMM and ARIMA models for SPI prediction

210 in the Arabian Peninsula, revealing that hybrid models consistently outperformed their standalone counterparts. Likewise, Xu
et al. (2022) and Ding et al. (2022) demonstrated that the combination of CEEMD with ARIMA or LSTM significantl

improved SPI forecasts across multiple timescales in China, suggesting that decomposition-based hybrid methods effectively
capture intricate temporal patterns.

Recent studies have significantly advanced hybrid methodologies through the implementation of sophisticated preprocessing

215 and optimization techniques. Latifoglu and Ozger (2023) utilized phase transfer entropy (pTE) in conjunction with Tunable Q
Factor Wavelet Transform (TQWT), optimized via Grey Wolf Optimization (GWO), followed by artificial neural networks

(ANN), support vector regression (SVR), machine learning (ML), and Gaussian process regression (GPR), resulting in superior
predictive performance. Sibiya et al. (2024) introduced the CEEMDAN-ARIMA-LSTM model for SPI predictions in Cape

Town, demonstrating that the combination of CEEMDAN decomposition with both linear and nonlinear models can

220 significantly improve forecast accuracy. Wei et al. (2025) adopted the Informer model and developed the VMD-JAYA-

Informer hybrid, which integrates Variational Mode Decomposition (VMD) with an optimization algorithm, thereby enhancing

short-term Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) forecasts.

Despite the successes achieved by hybrid models, several challenges persist. Decomposition techniques such as Empirical<— { Formatted: Line spacing: 1,5 lines

Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode

225 Decomposition with Adaptive Noise (CEEMDAN), and Variational Mode Decomposition (VMD) are computationally
demanding, particularly when applied to large datasets or in real-time contexts (Sibiya et al., 2024). CEEMDAN, specifically,

can yield misleading intrinsic mode functions (IMFs) when utilized on excessively noisy or unstable time series, which

undermines the efficiency and reliability of subsequent predictions. Furthermore, existing research has not investigated the

synergistic application of advanced smoothing filters alongside decomposition techniques to mitigate noise prior to hybrid
230 modeling.
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To address these limitations, this study proposes an innovative hybrid model that integrates the Savitzky-Golay (SG) filter

with CEEMDAN for preprocessing, followed by the Autoregressive Integrated Moving Average (ARIMA) and Long Short-

Term Memory (LSTM) models for drought prediction. The SG filter is effective in smoothing high-frequency noise, thereby

enhancing the decomposition process and alleviating the computational burden. The integration of the Savitzky-Golay

smoothing filter with CEEMDAN substantially improves forecasting accuracy by enhancing the quality and interpretability of

the input time series prior to modeling. This combination enables CEEMDAN to produce IMFs that are cleaner, more distinct.

and less prone to spurious fluctuations, thus offering a more reliable foundation for subsequent predictive modeling. Cleaner

IMFs facilitate the training of both linear (ARIMA) and nonlinear (LSTM) models, resulting in more accurate and robust

forecasts. This approach capitalizes on the complementary strengths of both statistical and machine learning models while

addressing noise-related issues inherent in raw data.

Although hybrid models have demonstrated superior performance in drought forecasting, no prior study has examined:

1. The combined use of smoothing techniques (SG filter) with CEEMDAN to enhance the quality of decomposition.

2. The implementation of an integrated SG-CEEMDAN-ARIMA-LSTM framework for trend-based Standardized
Precipitation Index (SPI) predictions (SPI-6, SPI-9, SPI-12).

3. Forecasting efforts that explicitly incorporate both trend analysis and predictive modeling for semi-arid regions

characterized by limited meteorological data.

As aresult, the proposed SG-CEEMDAN-ARIMA-LSTM model addresses these gaps by enhancing decomposition efficiency

reducing computational costs, and improving prediction accuracy across multiple SPI timescales. This methodology offers

valuable insights for water resource management, infrastructure planning, early warning systems, and the advancement of

hybrid drought prediction models.

2. —Material Methods «

This study utilizes various time series forecasting models to analyze the intricate dynamics of meteorological drought as

indicated by the Standardized Precipitation Index (SPI). The foundational statistical model examined is the Autoregressive

Integrated Moving Average (ARIMA), which is adept at addressing linear relationships in time series data. The Long Short-

Term Memory (LSTM) neural network is employed to tackle nonlinear patterns, supplemented by a hybrid ARIMA -LSTM

framework that amalgamates the advantages of both models. Additional improvements are investigated by incorporating a

Savitzky-Golay (SG), digital smoothing filter that is often used to remove noise from time series or spectral data, into the

ARIMA-LSTM model, and by utilizing the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) before ARIMA-LSTM to more effectively manage nonstationary signals. The work introduces a unique hybrid
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260 model, SG-CEEMDAN-ARIMA-LSTM, which integrates decomposition and hybrid modeling techniques to enhance the

accuracy and robustness of drought forecasts.

Therefore, the subsequent Materials and Methods section will provide a detailed account of the study area, the data employed, <+ [ Formatted: Normal, Line spacing: single

and the preprocessing steps undertaken, including the trend extraction methods applied prior to forecasting. This will be

followed by an in-depth description of each modeling approach, outlining their theoretical foundations, implementation

265 procedures, and parameterization strategies. Such a structured presentation ensures transparency in model development and

establishes a comprehensive methodological framework for the proposed forecasting system.

2.1. PataStudy Area and Data

This study employed monthly precipitation records from 1980 to 2023, obtained from the South African Weather Service
(SAWS) for the uMkhanyakude District in South Africa. The uMkhanyakude District Municipality is located in the far northern
270 region of the KwaZulu-Natal (KZN) province (coordinates: 32.014489° S, 27.622242° E). The municipality covers a total area
of 13,855 km?, making it the second largest in the province, exceeded only by the Zululand Municipality. The uMkhanyakude
District was formed immediately after the local government elections in December 2000 as part of municipal demarcation,
encompassing some of the most destitute and underdeveloped areas of KwaZulu-Natal. The uMkhanyakude District consists
of four local municipalities: uMhlabuyalingana, Jozini, Big Five Hlabisa, and Mtubatuba. The municipality is geographically
275  surrounded by Mozambique to the north, the Indian Ocean to the east, the uThungulu River to the south, Zululand to the west,

and the Kingdom of Swaziland to the northwest. Figure 1 illustrates the spatial distribution of the stations.



SRTM Elevation (Umkhanyakude District)
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Figure 1: Overview of the uMkhanyakude District, South Africa. Rain gauge stations are marked red. (meteorelogical stations).

280
2.2. Modified Mann-Kendall

The modified Mann-Kendall methodology derives from the nonparametric Mann-Kendall method (Mann, 1945; Kendall,
1975), which is extensively employed to detect trends in hydro-meteorological time series (Caloiero et al., 2011; Bard et al.,
2015; Wang et al., 2017; Mirabbasi et al., 2020). The modified Mann—Kendall (MMK) test was employed for serially correlated

285  data exhibiting a substantial lag-1 autocorrelation coefficient, utilising the variance correction method proposed by Yue et al.
(2002). Hamed and Rao (1998) created this methodology to eradicate all substantial autocorrelation in the time series. Under
the assumption that the data are independent and identically distributed, the S statistic of the Mann-Kendall test is computed
as follows (Sharifi et al. 2024):

n-1 n
S= Z Z Sign(x; — x;) )
i=1 j=i+1

290
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where n denote the sample size; x; and x; denote sequential ith and jth data points, respectively, and sign(.) is the sign
function which can be computed as
1 ifxp—x;>0
Sign(x; — x;) = 0, ifxj—x;=0 o)
-1, ifxj—x;<0
with the mean and variance of the S statistics in equation are as follows (Helsel and Hirsch 1993; Ma et al. 2014; Ashraf et al.
2023)
ES)=0 3

nn—1)2n+5) - Ele t;(t; — 1)(2t; + 5) “4)

Var(S) = 18

tth

where p is the number of tied groups and ¢t; denotes the number of data points in the group. The second term represents an

adjustment for tied group or censored data. The standardized Z statistic is calculated as

, 5-1
(2 ___ s>o0
JVar(S)

ZMK=I0.S+1 S=0 ®)
(Var(s)’

The test statistic Z is used to measure the significance of the trends. In the modified Mann-Kendall approach, a modified

variance of S is computed as follows (Hamed and Rao, 1998)
n
Var(s') = Var($).— ©)
where n” is the effective sample size. The % ratio can be calculated as follows (Hamed and Rao, 1998)

n

=1 2 i i—1)(n—i—2
—= +m;(n—l)(n—l— Yn—i-2)n o

where 7; denotes the lag-i significant autocorrelation coefficient of rank i in a time series. Then the standardized statistic of

the S statistic, denoted as Z, can be derived as

, S-1
— S§>0
\/Var(S*)

Zymx =1 0, s=0
L S+1 ®
(\/Var(S*)'
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If the calculated Z values (Zyx and Zy; k) exceed the critical values of —Zl_ot/2 or fall below Z;_a, , there is no discernible
trend in the time series at the significance level of a. If the Z value is positive and exceeds Zl,a/z, the trend is upward;

conversely, if the Z value is negative and falls below —Zl,a/z, the trend is downward.

2.3. Innovative Trend Analysis

The Innovative Trend Analysis (ITA) method, initially introduced by Sen (2012), has been widely employed for detecting
patterns in precipitation time series. Since its debut, the ITA technique has experienced substantial improvements in both
mathematical and graphical aspects, as evidenced by Sen (2017) and Alashan (2018). The ITA method does not depend on
assumptions of serial autocorrelation, normalcy, or record length, making it appropriate for both graphical and statistical trend
analysis (Besha et al., 2022). Initially, the time series is bifurcated into two equal segments and organised in ascending order.
The initial segment of the time series (x;:i = 1,2,...,n/2) is positioned along the horizontal x-axis, while the subsequent
segment (x;: j =n/2 + 1,n/2 + 2,...,n) is situated along the vertical y-axis in the Cartesian coordinate system (Ashraf et al.
2023). The ITA approach visually represents trend analysis, specifically indicating monotonic growing, declining, and
trendless circumstances (Oztopal and Sen, 2017; Likinaw et al., 2023). A monotonically growing or declining trend can be
identified when the majority of points are situated above or below the 45° (1:1 line), respectively. A trendless condition arises
when the data points are clustered along the 45° line (Sen, 2012). We employ the magnitude of the slope parameter to convey
information about monotonicity. The slope parameter of the ITA technique is a stochastic property dependent on the sample
means of the first half (n,) and the second half (n,) of the time-series mean data values. According to Sen (2017), the straight-
line trend slope (S;74) can be estimated using the following expression:

2x(x — x;) )

Siga = ———=
ITA n
where n represents the total number of observations, x; and x; are the arithmetic means of the first and second halves of the
sub-series, respectively. Given that x; and x; are stochastic variables, the expected value of the slope can be determined by

analysing the expectancies of both the first and second halves of the time series (Alashan, 2020; Harka et al., 2021):

2
E(Sma) = = [E(xy) — ECoo)] (1

For the no trend condition, E(xj) = E(x;), the E(S;r4) = 0 and standard deviation (SD) of the two half time-series
(ij =0y = a/\/g), o is the SD is of the parent series. If E(x;) # E(x;), the differences between E(x;) and E (x;) gives the
variance
, _ 8
OSira = n2 [E(xf) - E(xfxi) ]

and the SD of the slope

(I
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0z (12)
Osira = n\/go—\/l ~ Prjx

In the stochastic processes, the term Pxjx; is the correlation coefficient between the two mean values, and can be estimated as

_ E(xx;) — E(x%)E(x) (13)
Pxjx; = —ij O,
In the end, the upper and lower confidence limit (CL) of the trend slope was calculated (Sen 2017):

CLa-ay = 0% (Z1-a),) 05,r, (14)
Z1—‘1/2 denotes the crucial slope for standardised time-series at +1.96 for a 95% significance level or +1.645 for a 90%
significance level (Alashan, 2020). If the ITA slope value is beyond the lower and upper confidence limits, the null hypothesis
of no significant trend should be rejected at the a significance level (Sen, 2017). In a two-tailed scenario, the null hypothesis
(Hy) posits the absence of a trend in time-series data, while the alternative hypothesis (H,) asserts the presence of a trend in

time-series data at a significance level of a. If the slope, +S;74 > +CL(1_q), then (Hy) is discarded in favour of (H;). The

positive and negative values of S;r, signify an upward and downward trend in the time-series data, respectively (Sen, 2017).

2.4. The SPI Calculation

For the purpose of analysing the severity of drought which is caused by a lack of water supply as a result of reduced
precipitation in response to rising demand, the SPI was created by McKee et al. (1993) and is based on probability (Zuo, 2021).
Based on the cumulative likelihood of a specific amount of precipitation, the SPI indicator is calculated by fitting the
precipitation throughout the same period with a certain distribution function. At its largest point, the SPI index represents the
quantile of a normal distribution. Each time axis has an estimated drought index for 6, 9, and 12 months. This is based on the
gamma probability density function, which considers the periodic distribution of precipitation for the corresponding data point.

The expression of the density function for this distribution is as follow.

R g+ 15)
g(")—mx te P

. . . o a-1 .
where « is the shape parameter, 8 is the scale parameter and x is the precipitation amount, and T'(a) = fom y eYdyis

gamma function. The maximum likelihood estimates of the parameters a and f§ are:

_ 1 4A

a={ 1+ [1+5 (16)
_x 17
ﬁ_n
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_— X is the precipitation average and n is the sample size. The following equation applies the acquired

where A = In(¥) —

parameters to the cumulative probability distribution:

x

1 7 x
669 = [ 90 = ges [ oo P ax (18)
0 0

G(x) represents the likelihood that the precipitation will be equal to or less than x. The distribution function for precipitation
needs to be adjusted because the real precipitation samples can contain a value of 0. Based on this, we can calculate the
cumulative probability as:

HxX)=q+ (1 -6 19
where q denotes the probability when precipitation equals zero. The probability of no rainfall, q, can be articulated as q = m/r,
where m represents the number of days without rainfall and r denotes the number of days with rainfall (Song and Park, 2021).
Consequently, H(x) is converted to the conventional random variable Z of the standard normal distribution, characterised by a

mean of 0 and a variance of 1, resulting in:

,—<k— co + 1k + e k? ) 0<H(x) <05
SPI=Z=J 1+ dik +dyk2+dsk3)’ -
\ co + cik + ¢, k? (20)
[+<k_1+d1k+dzk2+d3k3)' 0<HX <10
[ 1 \?
© | (m) . 0<H@x) <05
k =

| 1y
\ ln((l——H(X)) ) 0 < H(x),< 1.0 @1

where ¢, = 2,515517, ¢; = 0.802853, ¢, = 0,010328, d, = 1,432788, d, = 0,189269, d; = 0,001308 are constants.
Furthermore, the SPI indicator is a standardised normalised index, establishing a correlational relationship with likelihood.

Table 1 presents the probability associated with each category of drought.

Table 1. Drought classification using SPI values and corresponding event probability (Llyod-Hughes and Sanders

2002).
SPI Values Drought Category Probability (%)
2.00 < SPI Extremely wet 23
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1.50 < SPI <1.99 Severely wet 44
1.00 < SPI <149 Moderately wet 9.2
0.00 < SPI £0.99 Mildly wet 34.1
—0.99 < SPI <£0.00 Mild dry 34.1
—1.49 < SPI < -1.00 Moderate dry 9.2
-1.99 < SPI £ -1.50 Severe dry 44
SPI < -2.00 Extreme dry 23

2.5. The Savitzky-Golay Filter

The Savitzky-Golay (SG) smoothing technique is a prevalent method employed for noise filtration. Savitzky and Golay (1994)
introduced the SG filter as an effective technique for signal smoothing. The SG technique attenuates noise utilising two
parameters: polynomial order and window size. By flexibly adjusting these two parameters, the SG filter can achieve
exceptional performance in various pre-processing circumstances. The essence of this procedure involves fitting a low-degree
polynomial to the samples within a sliding window using the least squares method, resulting in a new smoothed value for the
central point derived by convolution. The SG filter is a specific variant of low-pass filter that substitutes each value in the time
series with a new value derived from a polynomial fit to 2m + 1 surrounding points, including the point to be smoothed, where
m is equal to or larger than the polynomial's order. The polynomial is articulated as follows:
u (22)

P = an*

k=0
where N is the power of the polynomial and N < 2M + 1. The following equation is used to determine the error between the

estimated and original values; in order to find the desired polynomial result, this error must be minimised.

M
ev= ) @M~ x[n)?
n=-M

(23)
The following form of discrete convolution can be used to express the filter's output:
M n+M (24)
y[n] = Z h[m]x[n—m] = Z h[n —m] x[m]
m=-M m=n-M

This work employs the SG filter for two primary reasons: firstly, it enhances system performance by preserving the width and

height of waveform peaks in noisy SPI, and secondly, it modifies the SPI while maintaining its fundamental qualities.

2.6. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.

15
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The model's ability to fit functions and converge will be constrained by the complexity and volatility of the original time
sequence, which in turn limits the model's predictive power. To overcome this challenge, the complete ensemble empirical
mode decomposition (CEEMDAN) technique is used to pre-process the original nonstationary and nonlinear time sequence.
Both empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD), have been enhanced by
the CEEMDAN. The computational efficiency is improved, and the reconstructed sequences of both the EMD and EEMD
algorithms are free of modal confusion and noise residuals (Zhang et al., 2023). A residual term and a sequence of intrinsic
mode functions (IMFs) are the building blocks of a complicated time series signal that the CEEMDAN breaks down.

Step 1: Incorporate a constrained quantity of adaptive white noise into the original sequence x(t)Sow!(t) (t = 1,2,3,---,N)

xH(t) = x(t) + Sow'(t) (25)

where N denotes the number of trials, &, signifies a coefficient of intensity, and a)i(t) indicates the ith realisation of a
stochastic Gaussian process.

Step 2: The residual 4 (t) and the first modal component IMF; are obtained by decomposing each equation (1) using EMD.
N

1 .
IMF{(t) =— ) EMD; (x'(t))

! N ; ! (26)
1 (t) = x(t) — IMFy(t) (27)

In this context, EMD; (.) denotes the initial IMF component produced by the EMD algorithm, while r; (t) signifies the residual
associated with the first stage.

Step 3: Add white noise §; EMD, (wi(t)) to the residual r; (t) and further decomposed by EMD to obtain the second modal
component IMF, and residual 1, (t).

N
1 . (28)
IMF,(t) = NZ EMD; (11 (t) + 8;EMD; (w'(t)))
=1

7y (t) = 1y (t) — IMF,(t) (29)
For the j = 3,4, -+, N, the jth IMF component and the jth residual can be computed as:
1 N
IME(¢) = NZ EMD, (rj_1(t) + 6j_1 EMD;_ (w'(t))) 30)
=1
75(6) = 1721 (6) — IME (D) 3D

where EMD;_;(.) denotes the (j — 1)th intrinsic mode function component derived from the empirical mode decomposition

technique, and 7;(¢) represents the residual following the jth decomposition.
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Step 3: Continue executing step 3 until the residual 7;(t) meets a predetermined termination criterion.
410  The time series x(t) can ultimately be articulated as

N (32)
x(t) = IMFy(t) + 1y (t)

=1

2.7. The Autoregressive Integrated Moving Average Model

The Autoregressive Integrated Moving Average (ARIMA) model, pioneered by Box and Jenkins in the 1970s, serves as a
robust and effective forecasting approach for time series analysis (Box et al., 2015). The ARIMA model, often known as the

415 Box-Jenkins approach, is depicted through the concepts presented by Sibiya et al. (2024) in Figure 2. The ARIMA models
predict future values of the time series as a linear combination of historical and residual data. This model comprises three
components: the order of seasonal differentiation, autoregressive order, and moving average order (Montgomery et al., 2015).
The backward shift operator B is employed to eliminate nonstationarity. A time series, y;, is called homogeneous nonstationary
if it first order difference, w, = (1 — B)y; = ¥; — y;—4 or the dth difference w, = (1 — B)dyt is also stationary time series.

420  Furthermore, y, is referred to as an ARIMA model with orders p, d and q, noted ARIMA(p, d, q). Hence, an ARIMA(p, d, q)
is often expressed as

dBY(L = B)'y, = c+0(B)z, (33)

y X (34)
¢(B)=1_Z¢"Bi and 9(3):1_29i3i
=1 =1

The backward shift operators for AR(p) and MA(q) are defined as ¢p(B)y; = c + &, and y, = u + 0(B)e, withc = u — ¢u,
425  where p and €, are the mean and white noise, respectively and the ¢, is independent and normal distributed with mean 0 and

variance of 62.
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Figure 2: The Box-Jenkins Steps Approach.

2.8. The Long Short-Term Memory

Long short-term memory (LSTM) algorithms represent a category of recurrent neural network (RNN) designs that are
proficient in handling sequential input and identifying temporal relationships (Hochreiter and Schmidhuber, 1997). LSTM
networks incorporate specific memory cells and gates for the efficient management and regulation of information flow over
various time steps. Consequently, they can effectively represent the data input while maintaining essential dependencies and
patterns. The LSTM methodology addresses the problem of vanishing gradients encountered by RNN algorithms. This occurs

when the gradient diminishes to a level insufficient for effectively updating the weights throughout prolonged sequences. The
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LSTM facilitates the flow of gradients across time by employing memory cells and gates. The model's foundational design
primarily consists of three control gates: input, forget, and output. The activation function is represented by o, whereas the cell
states attime ¢t — 1 and t are designated as C;_, and C, respectively. Attime t and time t — 1, the cell possesses two concealed
states, h, and h,_,. Figure 3 illustrates the building of the LSTM unit, and the mathematical equations (35) to (40) for the
LSTM method are provided below. Initially, by employing the model's forget gate, we may determine the current hidden state
h;_, and the degree to which the input x; has been preserved. The formula is

fe = a(Wexe + Ushe_y + bf) (3%5)

Secondly, the input gate allows us to ascertain the volume of content from the input variable that can be retained in the cell

state C;
iy = a(Wix, + Uih,_y + b)) (36)
C; = o.(Wox, + Ushe_y + b)) (37)
C = ftOCt—l + iioét (38)

The output gate of the LSTM produces outputs, and the hidden state of each cell is represented by the formula:
o = o(Woxy + Ushy—y + by) (39)

he = 0,00, (Cy) (40)

In the aforementioned formulas, W, W;, and W, represent the weight matrices associated with the various control gates. The
terms by, b;, and b, correspond to the bias terms for each respective control gate. The notation C, signifies the complete input
activation vector, while the operator ® (Hadamard product) indicates the element-wise multiplication of the elements between
two vectors. The o activation function quantifies the amount of information that is transmitted through the various control

gates.
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Figure 3: Structure diagram of LSTM model.

OO0 6

2.9. The ARIMA-LSTM hybrid Model
Achieving accurate estimates of SPI index values through a forecasting model is essential for informed decision-making.
Zhang (2003) offers a hybrid model wherein the ARIMA model extracts and predicts linear components, while the residuals,
representing nonlinear data subcomponents, are then modelled by the LSTM approach. This study employs a hybrid model
that integrates ARIMA and LSTM to predict both linear and nonlinear behaviours with optimal accuracy.

He =L, + R, (41)

where L, and X, denotes the linear and nonlinear components, respectively, for the hybrid technique which are computed using

the initial time series (y,). Consider the original dataset at time t and the forecast results obtained from applying the ARIMA
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model as £, the prediction results. Thus, & = y, — L, is the definition of the residual &, that is derived by removing £, from
¥¢. Subsequently we compute the value K, by feeding the series of residuals into the LSTM model, which predicts the nonlinear

component of the values. This equation may be written as

Q: = frstm(Ee-1,Et—2, ) Et—n) + €, (42)

where R, is a nonlinear expression associated with the LSTM model and e, is the random error. The combined forecasts from
the two steps were then used to determine the value for the ARIMA-LSTM hybrid model. As illustrated in Figure 4, the

equation H, = L, + R, predicts the linearity and nonlinearity values, respectively, using ARIMA and LSTM models.

r A}
. 1 Model Development :
Data Processing : ARIMA and LSTM development |
) Original Time —p! includes Box-Jenkins approach, {1_
eDara preprocessing series (ie. SPI-6, i ! data normalization, parameter I 1
e The three time scale SPI SPI-9, SPI-12) : 1 optimization and applicability : :
values were calculated. 1 : test. 1
1 11
- 1 - - - 1
Vi H H
A 4 ! H
= 1
« ARTMA Model Development e © LSTM Model Development :
T
_l
ARIMA on the input time LSTM on the residual
series generated by ARIMA model
v
ARTMA predicted Re51dllal predicted
values values generated
by LSTM model
L ',:" \"‘. N,
> + I
v
Model Accuracy The results predicted by
ie. RMSE, DS, R” hybrid ARIMA-LSTM model

Figure 4: Predictive flowchart of the ARIMA-LSTM hybrid model.

2.10.  The development of the proposed SG-CEEMDAN-ARIMA-LSTM hybrid model

Due to the great uncertainty of the drought data and the existence of complexity, nonlinearity and nonstationary trends, the
single prediction model is greatly limited, however the hybrid method has better prediction accuracy. The SG-CEEMDAN-
ARIMA-LSTM algorithm that combines different techniques for improved accuracy in predicting drought based on the
standardised precipitation index is proposed this study. This hybrid model is designed as a sequential framework where each

step refines the data for subsequent modelling. The SG-CEEMDAN pre-processing stage enhances the data by smoothing and
21
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decompose into the meaningful components. The benefits of utilizing the integration of the Savitzky—Golay smoothing filter

with CEEMDAN contributes significantly to the enhancement of forecasting accuracy by improving the quality and

interpretability of the input time series prior to modeling. The Savitzky—Golay filter acts as a noise suppression mechanism

that preserves essential features of the time series, while eliminating high-frequency noise. This step ensures that the input to

the CEEMDAN decomposition process is already denoised, leading to more stable and physically meaningful decomposed

components. The CEEMDAN generates IMFs that are cleaner, more distinct, and less affected by spurious fluctuations. This

results in better mode separation, reduces signal leakage across IMFs, and enhances the stationarity and regularity of each

component. This hybrid preprocessing pipeline can enhances model generalization, reduces overfitting, and ultimately leads

to more reliable and accurate forecasts. The components fed to the ARIMA-LSTM model that involves two-step process: the
ARIMA for initial prediction_utilising the Box-Jekins methodology and the LSTM model for refining and enhancing
predictions. The hybrid model combines the ARIMA and the LSTM predictions to form the final hybrid forecasts. Figure 5
illustrates the proposed hybrid model algorithm. The process of SPI prediction based on ARIMA-LSTM combined with SG
and CEEMDAN as is shown in Figure 5. The process of the data smoothing, decomposition and prediction inehsdes-include

four main steps.

and-residualk: Step 1: Data Preprocessing Phase: To enhance the quality of the data and prepare it for decomposition, the original

SPI time series undergo a data preprocessing phase:

o Savitzky—Golay Filter: This filter is applied to smooth the SPI data and preserves the essential shape and trends of
the original time series while minimizing high-frequency noise. This step ensures that important signal patterns are
retained during further processing. The smoothed signal becomes the input signal for decomposition technique.

e CEEMDAN Parameter Settings: CEEMDAN is used to break the smoothed signal into several IMFs and a residual

component. Before decomposition, the necessary parameters for CEEMDAN are configured. These parameters
control the number of realizations, noise amplitude, and stopping criteria for decomposition.

- Step 2: Model Development Phase:

Each IMF, including the residual, is independently modelled using a hybrid ARIMA—LSTM approach. This process involves

several steps:
a) Data Partitioning

e The data for each IMF is split into: Training set (80%) and Testing set (20%). This split ensures that model learning
and evaluation are based on separate subsets to avoid overfitting.

b) Normalization

e Prior to model training, the data is normalized using Min-Max normalization to ensure that input features fall within
a similar scale, which improves training stability and convergence speed.

¢) Modelling Each IMF with ARIMA-LSTM
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e The two models are integrated so that both linear (ARIMA) and nonlinear (LSTM) dependencies within each IMF

are effectively captured. The modelling process follows the algorithm of Figure 4.

d) Feature Selection and Hyperparameter Tuning

e The performance of ARIMA and LSTM models heavily depends on the feature selection and hyperparameters. The
auto_arima() function and Bayesian Optimization was used to automate and optimize the search for best-performing
hyperparameters for the ARIMA-LSTM model by evaluating model performance over a probabilistic space.

¢) Model Training

e Each IMF is trained individually using the selected features and optimized hyperparameters, resulting in a trained
model for each component.

Step-3+Create-the SG-CEEMDAN-ARIMA-LESTM-predietion-meodel: Step 3: Forecast Reconstruction Phase

e After training, each IMF is forecasted individually. The final forecasted SPI value is obtained by summing the
predictions of all individual IMFs, including the residual component:

n
SPI(t) = Z IFF,(t) + Res,
=1

This additive reconstruction ensures that the original structure and dynamics of the SPI series are preserved in the forecast

improving overall accuracy.

TFaylor-diagram: Step 4: Model Evaluation Phase

The reconstructed SPI prediction is then evaluated using multiple performance metrics: RMSE, DS and coefficient of

determination. The Taylor diagram is also utilised to evaluate the model performance. These metrics help quantify the

predictive accuracy and reliability of the hybrid framework.
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Figure 5: Procedure of proposed SG-CEEMDAN-ARIMA-LSTM hybrid model.

2.11.  Performance Evaluation

To establish the predictive superiority of the SG-CEEMDAN-ARIMA-LSTM model, a comparison was conducted against
other models, including ARIMA, LSTM, ARIMA-LSTM, SG-ARIMA-LSTM, and CEEMDAN-ARIMA-LSTM models. The
performance of the proposed hybrid-based model is evaluated using three indicators namely, root mean square error (RMSE),

coefficient of determination (R?) and directional symmetry (DS). The high value of R? and DS reflects the better performance

Performance Metrics:

RMSE, DS and R®

i

of the forecasting model while the lower the value of RMSE illustrates better forecasting performance.

n
1
RMSE = ;Z(yi - yavg)z
=1
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[Z?:l(Yi - yavg)(j}i - yavg)]z (44)

R? = 2 z
Z;L=1(yi - yaug) 2?:1(3/1' - yavg)
b = 100 . 4 (45)
Tn-1 Z L
=2
where
L, 0i=y-)@i = i) >0 (46)

di = {0, otherwise

n is number of data points, y; and ¥; observed and forecasted, respectively. Yavg and qug an average of the actual and
forecasted values, respectively. Furthermore, this study conducts a qualitative evaluation of the prediction model's performance
using a Taylor diagram (Taylor, 2001). The Taylor diagram offers a statistical evaluation of the degree of agreement between
the models in terms of their SD, RMSE, and R?, while providing a concise summary of the correspondence between predicted
and observed values. The differences in DS, RMSE, and R? values among the prediction models are depicted as individual
points on a two-dimensional plot within the Taylor diagram. This diagram, though it follows a common structure, proves

especially valuable when evaluating intricate models.

3. Results and Discussion

3.1. Rainfall Data Series

Figure 6 illustrates the daily and monthly cumulative precipitation data recorded at the uMkhanyakude district meteorological
stations in KwaZulu-Natal province, South Africa, from the early 1980s to 2023. The data comprising 20% was employed for
prediction, whereas the data representing 80% was applied for training. The SPI computed utilising rainfall data from
meteorological stations in the uMkhanyakude district, which provide sufficiently extensive records and a consistent structure

(Hirca et al., 2022).
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Figure 6: Time series plots of daily and monthly total rainfall data for uMkhanyakude district from early 1980’s to 2023. The (left)
plot shows the daily rainfall data in millimeters (mm), illustrating the high variability and intermittent nature of daily rainfall events
over the years. The (right) plot presents the monthly total rainfall data (mm), which smooths out the daily variability and reveals

clearer patterns of rainfall distribution over time.

3.2. SPI Time Series and Trend Analysis
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This study SPI values for the 6-, 9-, and 12-month intervals were computed using the monthly mean time series shown in
Figure 6. Figure 7 illustrates the time series of the SPI calculated for the 6-month (SPI-6), 9-month (SPI-9), and 12-month
(SPI-12) intervals. All SPIs (SPI-6, SPI-9, and SPI-12) demonstrate numerous occurrences of moderate to severe droughts in
the studied area. A significant drought episode was reported from late 2004 to 2009. Moreover, SPI-12 demonstrates a
persistent drought spell that began between 2014 and 2016, leading to a decline in water supply conditions in the region
(Bukhosini and Moyo, 2023). The statistics across all timelines indicate a troubling trend of extended and intense drought
conditions in recent years. This underscores the pressing necessity for efficient water management and drought readiness in
the area. Initially, we assess the trend throughout the research area employing nonparametric techniques. The ensuing

conclusions will be obtained via advanced trend analysis methods employed to investigate SPI trends.
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Figure 7: Standardized Precipitation Index (SPI) time series plots for uMkhanyakude district over 6-month (SPI-6), 9-month (SPI-
9), and 12-month (SPI-12) periods from early 1980’s to 2023. Positive SPI values (blue bars) indicate wetter-than-normal conditions,
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while negative SPI values (red bars) indicate drier-than-normal conditions.

28



585

590

595

600

Figure 8 illustrates the regional outcomes of the ITA methodology used to the 6-, 9-, and 12-month SPI series to ascertain the
potential meteorological drought trend in the uMkhanyakude district. Figure 8 includes two vertical bands to elucidate the
potential trends of arid and humid conditions: a red band indicating the drought threshold (SPI = -1.5) and a blue band denoting
the wet threshold (SPI = 1.5). The zone between the two bands signifies normal conditions, hence facilitating the depiction of
both low and high SPI trends using the ITA methodology. Each plot compares the first and second halves of the data series to
identify trends.

In general, both Figure 8 and Table 3 all stations except Riverview indicate downwards trend for all time scales, in terms of
the ITA. For an example, the ITA results obtained using 6-month SPI values exhibit a slightly decreasing trend in precipitation,
moving toward the upper right quadrant, indicating the detection of dryer conditions over the 6-month timescale. Some points
approach the severely wet threshold but do not cross it, indicating that there were no extreme wet periods, though some drier
periods are evident near the severe dry line. The ITA results obtained using 9-month SPI values shows a more pronounced
decreasing trend, indicates a relatively weaker increase in wet conditions over a 9-month timescale. Several points come close
to the severe dry threshold, but the data remains mostly within the 95% confidence bounds, indicating moderate variability in
precipitation trends. On the other hand, the SPI-12 plot demonstrates a noticeable decreasing trend toward dryness, as many
points fall below the no-trend line and approach the severe dry region. Riverview indicates the increasing trend across all time
scales. The increasing distance between the black dots and the no-trend line highlights a shift toward drier conditions in the
second half of the series. In general, the analysis suggests a gradual increase in precipitation for shorter periods (SPI-6),
moderate upward trends for medium-term periods (SPI-9), and a more substantial shift toward dry conditions over longer
periods (SPI-12) for Riverview. The variability is evident, but there is a clear progression toward drier conditions, particularly
in the SPI-12 plot. This observation could be indicative of changing precipitation patterns, which is crucial for understanding

drought risk and informing water resource management strategies.
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Figure 8: Results of Innovative trend analysis applied to different time scales values (SPI-6 (left), SPI-9 (middle), SPI-12 (right)).
The blue shaded area represents the 95% confidence level area. The red and blue vertical lines represent the severe drought and

severely wet, respectively.
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Table 2 presents the results of the Mann-Kendall (MK) and Modified Mann-Kendall (MMK) trend tests for the Standardized
Precipitation Index (SPI) over 6-month (SPI-6), 9-month (SPI-9), and 12-month (SPI-12) periods. The results indicate that
across five stations all time scales both MK and MMK methods showed significant decreasing trend with negative Z-score
values. For example, False Bay Park, Z MK are Zsp;_¢ = —10.89 Zgp;_g = —12.89, Zgp;_1, = —13.82 and Z_MMK are
Zspr—¢ = —6.27, Zspj_g = —6.28, Zsp;_1, = —6.29. The p-values of MK and MMK show the significance of the trends, with
values way below 0.05 confirming statistically significant trends. In all cases except Riverview, the p-values are extremely
low (<< 0.05), indicating strong evidence of significant decreasing trends in precipitation for all SPI periods. Both the MK
and MMK tests confirm decreasing trends across all time scales, with the Z MK and Z MMK values becoming more negative
as the SPI period increases, reflecting an intensifying downward trend over longer periods (from SPI-6 to SPI-12). For
Riverview station, the results indicate an increasing trend with positive Z-score values, i.e. Z MK are Zgp;_¢ = 2.85, Zgp;_g =
3.84, Zsp;_1, = 4.59 and Z MMK are Zgp;_¢ = 1.19, Zgp;_g = 2.16, Zgp;_1, = 2.29. In general, all these results are
consistent with those shown using the ITA (see Table 3). The Riverview station experience increasing trend because it is
located closer to the coast, hence it is influenced by a combination of geographic, oceanic and climatic factors. For an example,
this station could be influenced by the Agulhas Current, which flows southwards along the east coast of South Africa, bringing
warm, moist air from the Indian Ocean, and thus enhancing evaporation that brings constant availability of moisture in the

atmosphere.

Table 2: Statistical summary of trend analysis for SPI-6, SPI-9, and SPI-12 using Mann-Kendall (MK) and Modified Mann-Kendall
(MMK) tests.

False Bay Park

Variables SPI-6 SPI-9 SPI-12
Zux -10.89 -12.89 -13.82
p — valuey; < 0.00 < 0.00 < 0.00
Decision (Trend ) Decreasing Decreasing Decreasing
Zumk -6.27 -6.28 -6.29
p — valueyuy 3.66 x 10710 3.35x 10710 3.13x 10710
Decision (Trend ) Decreasing Decreasing Decreasing

Hlabisa Mbazwana
Zuk -2.89 -3.88 -5.31
p — valuey, 3.77 x 1073 3.05%x107* 1.10 x 1077
Decision (Trend ) Decreasing Decreasing Decreasing
Zumk -2.26 -2.12 -2.20
p — valueyy 239 %1072 3.36 x 1072 2.78 x 1072
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Decision (Trend )

Decreasing

Decreasing

Decreasing

Pongolapoort Dam

Zuk -7.19 -8.74 -9.83

p — valuey,, 6.12 x 10713 < 0.00 < 0.00

Decision (Trendy) Decreasing Decreasing Decreasing

Zumi -8.22 -5.44 -6.51

P — valueyy, 2.22x1071© 540 x 10°° 7.41x 1011

Decision (Trend ) Decreasing Decreasing Decreasing
Mkuze Game Reserve

Zux -3.66 -5.54 -6.67

p — valuey, 248 x 107* 2.99 x 1078 2.55x 107

Decision (Trend ) Decreasing Decreasing Decreasing

Zumk -2.44 -2.79 -2.22

p — valueyy, 1.46 x 1072 513 x 1073 2.64x 1072

Decision (Trend ) Decreasing Decreasing Decreasing
Ingwavuma Manguzi

Zuk -2.38 -3.72 -4.92

p — valueyy, 1.72x 1072 1.98 x 107* 8.72x 1077

Decision (Trend ) Decreasing Decreasing Decreasing

VA -1.61 -2.48 227

p — valueyyy 1.08 x 107* 1.31x 1072 229 x 1072

Decision (Trend ) Decreasing Decreasing Decreasing

Riverview

Zuk 2.85 3.84 4.59

p — valueyy 434% 1072 125x10°* 425%10°°

Decision (Trendy ) Increasing Increasing Increasing

Zymk 1.94 2.16 2.29

p — valueyuy, 512x 1072 3.07 x 1072 219 x 1072

Decision (Trendy ) Increasing Increasing Increasing

Table 3: The results of the trend analysis for SPI-6, SPI-9, and SPI-12 obtained through a two-tailed test at a significance level of

5% using ITA technique.

False Bay Park
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Variables SPI-6 SPI-9 SPI-12
Slope —3.51x 1073 -1.14x 1073 —4.49 x 1073
Indicator -20.08 -20.12 -20.07
+CI at 95% +9.24 x 1075 +7.52x 1075 +6.82 x 107°
Hlabisa Mbazwana
Slope —1.68 x 1073 —231x107° —1.86 x 1073
Indicator —20.52 -20.72 —20.64
+CI at 95% +6.81 x 10™° +9.35x 107° +7.15x 107°
Pongolapoort Dam
Slope 226 x 1073 —2.88x 1073 —3.34x 1073
Indicator —19.27 —19.40 —19.55
+CI at 95% +2.22x 1075 +3.62x107° +6.72 x 107°
Mkuze Game Reserve
Slope —2.00x 1073 —3.04x 1073 —3.80x 1073
Indicator —20.09 —20.22 —20.25
+CI at 95% +2.81x 1073 +4.67 x 1073 +4.40 x 1073
Ingwavuma Manguzi
Slope -1.61x 1073 —2.26x 1073 —2.88x 1073
Indicator —-21.96 —21.05 —20.77
+CI at 95% +6.81 x 10™° 1.01+x107° +1.19 x 1075
Riverview
Slope 1.69 x 1073 219 %1073 237%x1073
Indicator 22.54 2222 21.86
+CI at 95% +1.54 x 1075 +1.35x 1075 +1.56 x 1075

3.3. SPI Time Series Forecasting Results

The study proposes a hybrid model that applies the Savitzky-Golay (SG) filter to raw SPI data to reduce noise and improve
forecasting analysis. To demonstrate the effectiveness of the SG filter, appropriate parameters such as window size and
polynomial order were selected through trial and error using data from the study sites (Sibiya et al., 2024). A window size of
21 and a polynomial order of 5 were chosen for smoothing. Figure 9 shows how the SG filter effectively tracks the general
trend while preserving the shape of peaks and minimizing noise. This filter was applied to different time scales of the SPI time
series. It autonomously calibrates according to peak distribution, exhibiting optimal performance, particularly with asymmetric
peaks, while preserving peak height integrity. The application of the SG filter effectively mitigates short-term fluctuations and
eliminates noise from the time series resulting in cleaner data, thereby enhancing the reliability of the subsequent

decomposition process. By reducing noise, decomposition techniques can more accurately capture the authentic underlying

patterns and components within the data.
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Figure 9: SPI signals smoothed by Savitzky-Golay (SG).

After applying a Savitzky-Golay filter to the series, the CEEMDAN algorithm decomposes the filtered SPI series into six
subseries with different amplitudes and frequencies. The results from the False Bay Park station are utilized here as an

illustration to prevent repetition. In these results, the decomposed set of time series consists of five IMF components and a

residual component, as shown in Figure 10 (for all

added to create noisy signals. The original sequence exhibits high nonlinearity and nonstationarity, with the frequency of the
IMF components gradually decreasing. Figure 10 depicts this gradual decrease in frequency as the order of the IMF
components increases. As each IMF is further decomposed, it becomes less volatile and cyclical, which aligns with the
characteristics of the decomposed IMF. Therefore,

enhanced. A forecasting model is then constructed for each component, and the prediction results are obtained by summing up

the outputs of all predicted components.

time scales). During the decomposition process, white Gaussian noise is

34

by predicting each IMF and the residual, the forecast precision can be
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Figure 10: Decomposition of Smoothed SPI-6, SPI-9 and SPI-12 Index Using CEEMDAN: Each IMF represents different frequency
components of the SPI index, from high-frequency oscillations (IMF1) to low-frequency trends (IMF5), showing the variability in
precipitation patterns over the years from 1980 to 2023.

In predictive modeling, this study utilized Bayesian optimization for hyperparameter tuning because of its effectiveness in

improving model performance for complex, black-box, and non-differentiable functions. The hyperparameter configuration

space consists of an n-dimensional functional space that includes all possible combinations of hyperparameters for the specified
model. The benchmark analysis began with the ARIMA model, using the Box—Jenkins methodology. This process started with
an assessment of stationarity through the augmented Dickey—Fuller (ADF) test. The series showed p-values exceeding the 5%

significance threshold, indicating non-stationarity (see Table 4). As a result, differencing was applied to achieve stationarity.
This study employed a stepwise approach using the auto_arima() function within the ARIMA framework to identify the

optimal parameters (see Table 5). Table 6 delineates the hyperparameter search space employed for tuning the LSTM model

utilizing a Bayesian optimization approach. Each hyperparameter is presented alongside its respective range or selected value,
which delineates the parameters within which the Bayesian search investigated optimal configurations.
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Table 4: ADF Test Results for SPI Values (SPI-6, SPI-9, SPI-12) at Different Stations { Formatted: Font: (Default) +Body (Times New Roman), 9 pt, }
Station Name SPI ADF Statistic p-value Critical Value (5%) ‘ Boid
N SPI-6 -2.1926 0.2089 -2.8925 N [Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
False Bay Park SPI-9 -3.2142 0.0192 -2.8915 ‘ [ Formatted Table ]
SPI-12 -1.4829 0.5419 -2.8949
N SPI-6 19314 0.3175 2.8925 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Hlabisa Mbazwana SPI-9 -1.5629 0.5022 -2.8939 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
SPI-12 -1.1867 0.6793 -2.8946
. SPI-6 -2.8759 0.0482 -2.8925 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Pongolapoort Dam SPI-9 -2.7909 0.0596 -2.8909
SPI-12 -2.1864 0.2112 -2.8909
N SPI-6 -3.1136 0.0256 -2.8949 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Mkuze Game Reserve SPI-9 -1.6134 0.4762 -2.8939
SPI-12 -2.5689 0.0996 -2.8949
. SPI-6 -2.1418 0.2281 -2.8994 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Ingwavuma Manguzi SPI-9 -3.6158 0.0055 -2.9026
SPI-12 -1.9049 0.3298 -2.9026
N SPI-6 -1.7509 0.4051 -2.9051 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Riverview SPI-9 -1.1840 0.6804 -2.9079
SPI-12 -2.0298 0.2737 -2.9015

Jable 5: Accuracy criteria for different model parameters of the ARIMA model applied in SPI-6, SPI-9 and SPI-12 at different

meteorological stations of uMkhanyakude district.

Formatted:

Bold

Font: (Default) +Body (Times New Roman), 9 pt,

The models in Table 74 were compared for their prediction ability before and after time series decomposition in this research.
The objective was to determine if smoothing and decomposing time series improves the model's prediction performance.
Figures 11-16 show a comparison of the various models' prediction outcomes using the Taylor diagram. In general, all the

models accurately replicate the original SPI time series at all timescales (refer to Figure 11 - 16) in terms of the time series
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N SPI-6 SP1-9 SPI-12 [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Station Name Model AIC Model AIC Model AIC ( Formatted Table )

alse Bay Park ARIMA(5.0.3) | 517.757 | ARIMA(3.1.1) 333.328 ARIMA(1,1.0) | 183.988 N
—— [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]

1 Mbazwana ARIMAC(5.1,5) | 322.514 | ARIMA(3.0.5) 248.815 ARIMA(2.1.2) | 152.295 N
. [ Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]

X 38.23 3.1, 350. . -
ARIMA(.L3) | 438.230 | ARIMAG.L2) 20.618 ARIMA(LLOD) | 224.076 [Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Mkuze Game Reserve ARIMA(4.1.2) | 432.320 | ARIMA(3.0.3) | 330.540 ARIMA(0.1.1) | 164.170 [F tted: Font: (Default) +Body (Ti New R ), 9 pt ]

| Formatted: Font: (Defaul ody (Times New Roman), 9 pf
Jngwavuma Manguzi ARIMA(4.0.5) | 417.071 ARIMA(3.1.1) 350.196 ARIMA(0.,1.1) | 153.087 [Formatted: Font: (Default) +Body (Times New Roman), 9 pt ]
Riverview ARIMA(4.1.5) | 435.687 | ARIMA(3.1.0) | 365509 | ARIMA(2.1.1) | 168.812 [Formmed: Font: (Default) +Body (Times New Roman), 9 pt ]
Table 6: Hyperparameter ranges in LSTM—Bayesian search Method. [ Formatted: Font: 9 pt, Bold ]
Hyperparameters Values Hyperparameters Values [ Formatted: Font: 9 pt ]
Number of LSTM units 32,256 Activati i i ( Formatted: Font: 9 pt )
Number of LSTM hidden size (32,256) Optimizer [ F 4 F ]
Batch size (16.128) Loss function Mean Square error ormatted: Font: 9 pt

Epoch (50.300) Dropout (0.05.0.1) | Formatted: Font: 9 pt )
LSTM learning rate (0.0001, 0.001) Regularization Early stopping [ Formatted: Font: 9 pt ]
[ Formatted: Font: 9 pt ]
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plot. However, the SG-CEEMDAN-ARIMA-LSTM model (shown in red) appears to have the closest fit to the data, displaying
superior accuracy across different phases, particularly in extreme values. Nonetheless, the hybrid models (SG-ARIMA-LSTM,
CEEMDAN-ARIMA-LSTM, and SG-CEEMDAN-ARIMA-LSTM) show better precision in capturing peaks, rapid transitions
and troughs compared to the standalone LSTM or ARIMA models. Table 4- 7 displays an assessment of the predictive
performance metrics of several models utilising RMSE, R?, and DS. As the period extends, the RMSE values decrease,
however the DS and R? values typically enhance (see Table 4 7). This indicates that the models' predictive accuracy
progressively enhances with an extended duration, reaching its highest point at the 12-month interval. In terms of RMSE, the
SG-CEEMDAN-ARIMA-LSTM model outperforms the others, exhibiting the lowest error values across all indices. For
example, Riverview station, 0.2165 for SPI-6, 0.0921 for SPI-9, and 0.0566 for SPI-12. This indicates that this model has the
smallest prediction error, making it the most accurate in terms of error reduction. Concerning R?, which measures how well
the model explains the variance in the data, SG-CEEMDAN-ARIMA-LSTM again leads with the highest values: 0.9602 for
SPI-6, 0.9846 for SPI-9, and 0.9939 for SPI-12. This shows that the model provides the best fit to the data. The CEEMDAN-
ARIMA-LSTM model is the second-best performer, also exhibiting impressive results, particularly in R?, where it achieves
higher values of 0.9483 for SPI-6, 0.9751 for SPI-9, and 0.9933 for SPI-12. The SG-ARIMA-LSTM model is the third-best
hybrid performer, with RMSE values of 0.2262 for SPI-6, 0.1051 for SPI-9, and 0.05639 for SPI-12. The SG-ARIMA-LSTM
model is the third-best performer, also exhibiting impressive results, particularly in R?, where it achieves higher values of
0.9392 for SPI-6, 0.9763 for SPI-9, and 0.9904 for SPI-12. The SG-ARIMA-LSTM model is the third-best hybrid performer,
with RMSE values of 0.2597 for SPI-6, 0.1157 for SPI-9, and 0.0567 for SPI-12. In general, these results highlight the efficacy
of hybrid models, particularly those incorporating SG and CEEMDAN processes, in improving predictive accuracy across
multiple timescales of SPI, particularly for the SG-CEEMDAN-ARIMA-LSTM model. These results are consistent with
Taylor diagram (see Figure 11 - 16) which indicates a significant improvement in prediction accuracy after incorporating the
SG and CEEMDAN signal decomposition technique as the hybrid model exhibits superior performance in terms of prediction
accuracy across all timescales, surpassing other models. This suggests that the inclusion of these techniques enhances the
models' ability to capture both short-term and long-term dependencies, thus making them more robust for drought prediction
purposes. Therefore, this hybrid model appears to be the most effective for drought prediction in this analysis. These findings
highlight the superiority of the proposed hybrid model in enhancing drought prediction accuracy compared to standalone

approaches.

Table 4 7. Performance measures for the comparison of observed and forecasted data of the models for SPI-6, SPI-9 and SPI-12

across various lead times using statistical criteria.

False Bay Park
Model SPI-6 SPI-9 SPI-12
RMSE | R? ‘ DS RMSE | R? ‘ DS RMSE | R? | DS
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ARIMA 0.3504 0.8435 | 0.8426 | 0.2431 0.8976 | 0.8525 | 0.1689 0.9421 | 0.8426
LSTM 0.3128 09111 | 0.8327 | 0.2416 0.9521 | 0.8723 | 0.1626 0.9821 | 0.8519
ARIMA-LSTM | 0.2476 0.9194 | 0.8327 | 0.1650 0.9531 | 0.8723 | 0.0507 0.9952 | 0.9009
SG- ARIMA- | 0.2056 0.9458 | 0.8030 | 0.1348 0.9687 | 0.8218 | 0.0571 0.9940 | 0.9009
LSTM

C-A-L 0.2182 0.9375 | 0.8713 | 0.0978 0.9834 | 0.8218 | 0.0496 0.9953 | 0.8911
SG-C-A-L 0.1835 0.9650 | 0.8416 | 0.1631 0.9836 | 0.8317 | 0.0349 0.9957 | 0.8941

Mkuze Game Reserve

ARIMA 0.3752 0.8642 | 0.8419 | 0.3475 0.8957 | 0.8792 | 0.2202 0.9697 | 0.8730
LSTM 0.3474 09121 | 0.8822 | 0.3354 0.9178 | 0.8030 | 0.1523 0.9890 | 0.8733
ARIMA-LSTM | 0.3160 0.9273 | 0.8416 | 0.1561 0.9823 | 0.8218 | 0.1079 0.9926 | 0.8730
SG- ARIMA- | 0.2307 0.9624 | 0.8515 | 0.1548 0.9825 | 0.8317 | 0.08252 | 0.9951 | 0.8019
LSTM

C-A-L 0.1969 0.9726 | 0.8317 | 0.1430 0.9850 | 0.8515 | 0.04497 | 0.9986 | 0.9208
SG-C-A-L 0.1818 0.9742 | 0.8515 | 0.1232 0.9892 | 0.8617 | 0.04217 | 0.9990 | 0.9208

Pongolapoort Dam

ARIMA 0.4470 0.8797 | 0.8624 | 0.2993 0.9668 | 0.8119 | 0.1918 0.9763 | 0.8733
LSTM 0.4470 0.8962 | 0.8732 | 0.2873 0.9467 | 0.8238 | 0.1824 0.9851 | 0.8829
ARIMA-LSTM | 0.4121 0.8969 | 0.8822 | 0.2599 0.9588 | 0.8921 | 0.1638 0.9862 | 0.8432
SG- ARIMA- | 0.2224 0.9617 | 0.8019 | 0.2064 0.9803 | 0.8515 | 0.0686 0.9969 | 0.8119
LSTM

C-A-L 0.2132 0.9649 | 0.8822 | 0.1572 0.9850 | 0.8218 | 0.0639 0.9975 | 0.8019
SG-C-A-L 0.1453 0.9839 | 0.8824 | 0.1429 0.9858 | 0.8911 | 0.0635 0.9978 | 0.8921

Hlabisa Mbazwana

ARIMA 0.4704 0.8347 | 0.8624 | 0.4234 0.8698 | 0.8921 | 0.2321 0.9556 | 0.8142
LSTM 0.3617 0.9041 | 0.8327 | 0.2163 0.9672 | 0.8119 | 0.1566 0.9806 | 0.8317
ARIMA-LSTM | 0.3269 0.9369 | 0.8515 | 0.2139 0.9677 | 0.8218 | 0.1457 0.9813 | 0.8426
SG- ARIMA- | 0.3011 0.9355 | 0.8416 | 0.1829 0.9747 | 0.8317 | 0.08540 | 0.9935 | 0.8218
LSTM

C-A-L 0.2497 0.9592 | 0.8218 | 0.1662 0.9792 | 0.8218 | 0.0825 0.9949 | 0.9009
SG-C-A-L 0.1921 0.9795 | 0.8614 | 0.1332 0.9866 | 0.8218 | 0.07416 | 0.9952 | 0.9029

Ingwavuma Manguzi

ARIMA

| 0.4123

| 0.8716

‘ 0.8571 ‘ 0.2706 | 0.9442

‘ 0.8750

‘ 0.2052 | 0.9784

| 0.8619
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LSTM 0.3843 0.8931 | 0.8738 | 0.2524 0.2524 | 0.8691 | 0.1614 0.9828 | 0.8095
ARIMA-LSTM | 0.3458 0.9044 | 0.8095 | 0.2428 0.9695 | 0.8541 | 0.8541 0.9847 | 0.8215
SG- ARIMA- | 0.2767 0.9397 | 0.8076 | 0.2001 0.9724 | 0.8809 | 0.0815 0.9958 | 0.8929
LSTM

C-A-L 0.2536 0.9503 | 0.8095 | 0.1945 0.9719 | 0.8214 | 0.0739 0.9972 | 0.9167
SG-C-A-L 0.2314 0.9565 | 0.8214 | 0.1575 0.9823 | 0.8809 | 0.0634 0.9978 | 0.8809

Riverview

ARIMA 0.4375 0.8132 | 0.8106 | 0.1708 0.9474 | 0.8038 | 0.1137 0.9570 | 0.7973
LSTM 0.3212 0.8510 | 0.8108 | 0.1537 0.9400 | 0.8108 | 0.0982 0.9705 | 0.8273
ARIMA-LSTM | 0.2874 0.8767 | 0.8378 | 0.1314 0.9706 | 0.9595 | 0.0558 0.9934 | 0.9189
SG- ARIMA- | 0.2262 0.9392 | 0.8243 | 0.1051 0.9763 | 0.8243 | 0.05639 | 0.9904 | 0.8108
LSTM

C-A-L 0.2597 0.9483 | 0.8738 | 0.1157 0.9751 | 0.9324 | 0.05674 | 0.9933 | 0.9459
SG-C-A-L 0.2165 0.9602 | 0.8919 | 0.09214 | 0.9846 | 0.9324 | 0.05664 | 0.9939 | 0.9189

Note: C-A-L = CEEMDAN-ARIMA-LSTM
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Figure 11: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Riverview meteorological station.
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Figure 12: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots
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at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Hlabisa Mbazwana meteorological station.
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Figure 13: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

at different timescales (Right) for SP1-6, SPI-9, and SPI-12 of Ingwavuma Manguzi meteorological station.
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Figure 14: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots

SPI-6 (MKUZE GAME RESERVE)

TYTT T I rprorrproT

FTT T[T T r T gororrpoT

=)

-4

I O T T T

T
-2+
T T T PR TR T ST T
2015 2016 2017 2018 2019 2020 2021 2022 2023

Date
SPI-9 (MKUZE GAME RESERVE)

T T N T T Y |

4
2015 2016 2017 2018 2019 2020 2021 2022 2023
Date

SPI-12 (MKUZE GAME RESERVE)

-

o

LI RRRRNR AR R R R R R RN R AR

wralaiea b liaasliinilae

Gloiateiadbaoabonaidaoalanidoiaidiiali
2015 2016 2017 2018 2019 2020 2021 2022 2023
Date

FHEEY SRERE

CHEEES

Data

ARIMA

LSTM

ARIMA-LSTM
SG-ARIMA-LSTM
CEEMDAN-ARIMA-LSTM
SG-CEEMDAN-ARIMA-LSTM

Data

ARIMA

LSTM

ARIMA-LSTM
SG-ARIMA-LSTM
CEEMDAN-ARIMA-LSTM
SG-CEEMDAN-ARIMA-LSTM

Data

ARIMA

LSTM

ARIMA-LSTM
SG-ARIMA-LSTM
CEEMDAN-ARIMA-LSTM
SG-CEEMDAN-ARIMA-LSTM

oal/

o3 v o8 10 7 1%
Normalizea Starndar Deviation

spLaz

L

@i ae s 16 13 14
Normalized Standard Doviatian

at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of Mkuze Game Reserve meteorological station.
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Figure 16: The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots
at different timescales (Right) for SPI-6, SPI-9, and SPI-12 of False Bay Park meteorological station.

4. Discussion

In this study, we utilized the Mann-Kendall and Modified Mann-Kendall tests to determine the drought trends index in
meteorological variables within the basin. The MK and MMK trend methods showed a significant decrease in all SPI time
scales based on rainfall data from five stations; however, the district, except for the Riverview station, showed an increasing
trend in the uMkhanyakude district. The study's findings align with prior research by Kganvago et al. (2021) and Ngwenya et
al. (2024). Ngwenya et al. (2024) performed a study employing the Mann-Kendall test to evaluate the SPI values at a 5%
significance level, revealing sustained drought conditions in the Western Cape area. Kganvago et al. (2021) indicated a notable
decline in drought conditions in the Western Cape area of South Africa. We have also employed the ITA, which enhances the

MK and MMK tests in identifying trends, and the results underscore the importance of comprehending drought conditions.
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The findings of our analysis validate previous research by Naik and Abiodun (2020), highlighting the necessity of performing
trend studies on drought indicators to investigate the impacts of climate change. The study underscores the essential function
of SPI as a primary variable in monitoring and forecasting droughts in the region, and its potential to mitigate the detrimental
impacts of droughts and water scarcity in the uMkhanyakude district in the future. The objective was to determine if the model's

predictive performance is enhanced by smoothing and deconstructing time series data.

According to the statistical metrics in Table 4- 7 and Taylor diagram (see Figure 11 - 16), highlight the effectiveness of hybrid
models that incorporate filter and signal decomposition techniques (SG and CEEMDAN) in improving prediction accuracy,
particularly for drought forecasting. These findings support other research (Taylan et al., 2021; Elbeltagi et al., 2023; Rezaiy
and Shabri 2024b) highlighting the superior accuracy of hybrid drought forecasting models relative to an individual models.
For example, Taylan et al. (2021) developed a hybrid model to forecast drought using precipitation data from Canakkale,
Gokgeada, and Bozcaada stations between 1975 and 2010. The study found that the hybrid models, which incorporated
preprocessing techniques, performed better. Elbeltagi et al. (2023) utilized a hybrid model to estimate the SPI for 3, 6, and 12-
month drought periods from 2000 to 2019. The findings demonstrated that RSS-M5P model yielded the most precise SPI
predictions, with MAE=0.497, RMSE =0.682, RAE =81.88, RRSE=87.22, and R? =0.507 for SPI-3; MAE =0.452,
RMSE=0.717, RAE =69.76, RRSE =85.24, and R? =0.402 for SPI-6 and MAE =0.294, RMSE =0.377, RAE =55.79,
RRSE =59.57, and R? =0.783 for SPI-12. The models employed to analyse drought in Jaisalmer, Rajasthan, yielded the most
effective results, exceeding those of RSS-RF and RSS-RT. Additionally, Rezaiy and Shabri (2024b) introduced a W-EEMD-
ARIMA model for drought prediction. This model utilises monthly precipitation data from Kabul spanning 1970 to 2019. The
R? value was 0.9946, the MAPE was 18.9674, the RMSE was 0.0736, the MAE was 0.0575, and the SPI-12 validation
indicated that our model was accurate. The outcomes obtained here surpassed those of the ARIMA, Wavelet-ARIMA, and
EEMD-ARIMA models in terms of raw data (RMSE: 0.0858, MAE: 0.0660, MAPE: 24.5411, R? : 0.9925), analytical method
(MAE: 0.1874, MAPE: 60.0220, R? : 0.9361), and maximum likelihood estimation (RMSE: 0.1002, MAE: 0.0691, MAPE:
23.7122, R? : 0.9898). During the SPI-3, SPI-6, and SPI-9 periods, our hybrid model consistently outperformed other models.
Our proposed hybrid model surpasses ARIMA, Wavelet-ARIMA, and EEMD-ARIMA in enhancing the precision of drought
predictions, as evidenced by this data.

In terms of term forecasting accuracy, the hybrid models, SG-CEEMDAN-ARIMA-LSTM in particular consistently surpassed
all other models across all SPI timescales, according to a comparison of this study's results with previous research. All models
successfully reproduced the original SPI time series. With the range values of RMSE of 0.1453 - 0.2314 for SPI-6, 0.0921 —
0.1631 for SPI-9, and 0.0349 — 0.07416 for SPI-12, and the highest R? values of 0.9565 - 0.9839 for SPI-6, 0.9836 - 0.9892
for SPI-9, and 0.9939 - 0.9990 for SPI-12 across all timescales, the SG-CEEMDAN-ARIMA-LSTM model showed the most
proficiency in capturing extreme values and rapid transitions. That these methods, when combined, improve the models'

capacity to represent drought in uMkhanyakude district, both in the short and long term, is supported by the data. This makes
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the models far better at foretelling when droughts will occur. In light of the foregoing, our study provides useful information

regarding the use of the hybrid SG-CEEMDAN-ARIMA-LSTM model to the forecasting of meteorological droughts.

5. Conclusion

This study examined the trends in the Standardised Precipitation Index (SPI) over different timescales (SPI-6, SPI-9, and SPI-
12) utilising the Mann-Kendall (MK), modified Mann-Kendall (MMK) test, and the innovative trend analysis (ITA) protocol.
The monthly rainfall data from uMkhanyakude district, South Africa, covering the years 1980 to 2023, was used for these
calculations. Rainfall has been trending downward at a 95% confidence level, according to the MK and MMK tests. The ITA
results supported these findings as well, revealing a declining trend with the most of data points going below the 1:1 line. In
order to predict SPI data over various timescales, this research also used LSTM and autoregressive integrated moving average
(ARIMA) models. Researchers used a hybrid model that combines the SG-CEEMDAN processing method with the ARIMA-
LSTM model to enhance the precision of SPI forecasts. They also used SG filtering and full ensemble empirical mode
decomposition with adaptive noise (CEEMDAN). Figures 11-16 and Table 4 display results of a thorough comparison
examination of the forecast outcomes. The results revealed that the inclusion of preprocessing techniques (SG filtering,
CEEMDAN, and SG-CEEMDAN) significantly improved the model performance in forecasting SPI at all timescales. The
performance consistently increased with higher timescales, potentially due to lower noise levels. Across different timescales,
SG and CEEMDAN combined hybrid model consistently outperformed the individual models. Notably, the CEEMDAN -
ARIMA-LSTM model outperformed the SG-ARIMA-LSTM model at all timescales, while the SG-CEEMDAN-ARIMA-
LSTM model consistently exhibited the lowest root mean square error (RMSE) values across all indices. These results
demonstrate that combining SG-CEEMDAN with ARIMA-LSTM has the potential to significantly enhance the accuracy of

meteorological drought forecasting.

The principal conclusion of the study is that ARIMA-LSTM, in conjunction with SG, CEEMDAN, and SG-CEEMDAN,
serves as an effective instrument for early warning systems and meteorological drought prediction. The proposed methodology
in this paper serves as a framework for modeling complex meteorological phenomena such as drought, particularly pertinent
in semi-arid regions. Enhancing model performance and creating efficient models for weather forecasting can be achieved
through techniques that address data noise, nonlinearity, and nonstationarity. To enhance water resource management, make
informed decisions regarding agricultural output and tourism management, and establish regulations, it is essential to acquire
extremely effective models for drought prediction. The omission of exogenous environmental variables in the SG-CEEMDAN-
ARIMA-LSTM model represents a significant drawback of the study. The model's forecast accuracy and real-world application
are limited by disregarding these exogenous effects, which can substantially affect drought conditions. Future study should
aim to include external variables, including temperature, soil moisture, vegetation indices, and anthropogenic factors such as

land use and water management, to improve the model's efficacy. This integration would provide a more thorough
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comprehension of drought dynamics, hence improving the model's accuracy and dependability in drought predictions.
Additionally, it is essential to investigate alternate decomposition methods, such as enhanced CEEMDAN (iCEEMDAN),

which may provide significant insights.
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