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Abstract 10 

 11 

We utilized the Integrated Multi-Satellite Retrievals for Global Precipitation Mission version 6 12 

(IMERG) rainfall observation (available in real time) over India to determine the onset and 13 

withdrawal of the rainy season. The annual mean climatology derived from IMERG observations 14 

over India aligned closely with the rain gauge-based India Meteorological Department 15 

observation. The IMERG rainfall time series was randomly perturbed to generate 101 ensemble 16 

members at every grid point of the rainfall analysis to obtain a corresponding ensemble of the 17 

onset and withdrawal dates of the rainy season. The perturbations were designed to sample the 18 

uncertainty due to random synoptic or mesoscale rain events influencing the diagnosis of the 19 

onset/withdrawal dates at the granularity of the IMERG observations (available at 10 km grid). 20 

Following earlier studies, we find from the IMERG dataset that seasons with an earlier onset date 21 

are strongly related to a lengthier and wetter season, whereas seasons with a later onset date 22 

correspond to a shorter and a drier season. In contrast, the connections between El Niño-Southern 23 

Oscillation (ENSO) and Indian Ocean dipole (IOD) with the onset, withdrawal, seasonal length, 24 

and rainfall of the rainy season were comparatively weaker over most of India. The generation of 25 

ensembles in this study underscores the potential for real-time application of generating reliable, 26 

probabilistic seasonal outlooks of the rainy season over India by leveraging the local links amongst 27 

onset date, seasonal length, and seasonal rainfall anomalies. This potential is further confirmed by 28 

the high probabilistic skill scores of the seasonal outlooks using the area under the relative 29 

operating characteristic curve method.  30 

  31 
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1. Introduction 32 
 33 

India's water and agriculture sectors rely heavily on copious summer monsoon rainfall, 34 

emphasizing its critical role in defining the country's agrarian economy and water resource 35 

management (Gadgil and Gadgil 2006). The seasonal progression of the Indian Summer Monsoon 36 

(ISM) season has an impact not only on agricultural yields but also on other sectors such as 37 

economy and ecology (Lal 2000). Based on rainfall patterns, wind conditions, and outgoing 38 

longwave radiation, the India Meteorological Department (IMD) officially declare the date of 39 

monsoon onset over Kerala (MoK) each year. In a normal year, the ISM season begins in southern 40 

peninsular India on June 1st (with MoK), spreads throughout the country by mid-July, and then 41 

begins to retreat on September 1st (Pai et al. 2020). 42 

 43 

There are many different definitions for the monsoon onset; however, it is typically considered as 44 

a quick, substantial, and prolonged increase in rainfall after May 10th, accompanied by a persistent 45 

change in wind direction to southwesterlies associated with the summer monsoon flow (Pai and 46 

Rajeevan 2009). In addition to the rainfall-based definitions (e.g., Ananthakrishnan and Soman 47 

1988; Noska and Misra 2016; Misra et al. 2017b), several other atmospheric dynamical and 48 

thermodynamical variables (winds, outgoing longwave radiation, temperature, moisture flux 49 

convergence, and precipitable water) were utilized to identify the onset of summer monsoon 50 

rainfall (e.g., Fasullo and Webster 2003, Zeng and Lu 2004, Prasad and Hayashi 2005, Joseph 51 

et al. 2006, Wang et al. 2009, Walker and Bordoni 2016, Stolbova et al. 2016). These variables 52 

provide a comprehensive understanding of the atmospheric conditions and dynamics that influence 53 

the onset and total summer monsoon rainfall over India. According to Bombardi et al. (2019), 54 

monsoon onset detection methods can be grouped into local-scale and regional-to-large-scale 55 

approaches, though the latter often show weak correlation with local observations. All these 56 

approaches produce somewhat similar onset dates, but their connections with the local-scale onset 57 

of the rainfall during the ISM differ (Moron and Robertson 2014; Noska and Misra 2016; 58 

Fitzpatrick et al. 2016). 59 

 60 

Owing to variations in the onset and withdrawal date of the monsoon season there are considerable 61 

spatial and temporal variations in the availability of the rainwater and length of the rainy season 62 
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(determined solely based on rain rates) over India (Joseph et al. 1994; Lal 2000; Wang et al. 2002; 63 

Misra et al. 2017a; Misra et al. 2018). Preenu et al. (2017) indicate from IMD archive that the 64 

earliest onset of the ISM was May 11, 1918, and the most delayed onset of ISM was Jun 18, 1972. 65 

Several studies discuss the interannual variability of monsoon onset dates in India and its 66 

teleconnection with El Niño and the Southern Oscillation (ENSO) and the Indian Ocean Dipole 67 

(IOD, Xavier et al. 2007; Sankar et al. 2010; Misra et al. 2017a; Pradhan et al. 2017; Choudhury 68 

et al. 2021). In ENSO and IOD years, the monsoon onset is altered by the modulation of the 69 

teleconnections with SST anomalies in the tropical oceans, which affect the Walker and Hadley 70 

circulations, respectively (Pradhan et al. 2017). Significant changes in the large-scale atmospheric 71 

patterns over the monsoon areas are identified during the onset of the monsoon over India (Joseph 72 

et al. 1994). According to Wang et al. (2013), the interannual variations in ocean-atmosphere 73 

interaction processes significantly influence the association between the monsoon onset and 74 

ENSO, which is driven by the meridional SST gradient across the Indian Ocean. Noska and Misra 75 

(2016) show that the variations in the onset and withdrawal date of the rainy season over India that 76 

largely overlaps with ISM are linked to the variability of the cross-equatorial upper-ocean heat 77 

transport in the Indian Ocean, variations in large-scale atmospheric and oceanic circulations, and 78 

regional ocean-atmosphere thermal gradients. In addition, internal variability of ISM arising from 79 

intraseasonal oscillations (ISOs), can significantly influence the monsoon rainfall and as well as 80 

the onset and withdrawal characteristics of the ISM (Goswami and Ajaya Mohan, 2001; Goswami 81 

and Xavier, 2005; Karmakar and Misra 2019). Monsoon ISOs are typically classified into active 82 

(above normal) and break (below normal) phases, and the frequency of these phases plays a crucial 83 

role in determining the seasonal mean monsoon rainfall (Goswami and Ajaya Mohan, 2001). 84 

Karmakar and Misra (2019) found that a majority of local onset dates (59%) occur during the 85 

positive developing phases of high-frequency ISOs, while a majority of withdrawal dates (62%) 86 

occur during the positive decaying phases of low-frequency ISOs. 87 

 88 

It may be noted that we make a subtle distinction between the ISM and rainy seasons, with the 89 

latter solely determined by rain rates which includes pre- and post-monsoon seasonal rainfall (e. 90 

g., Noska and Misra 2016) while the former is usually a fixed calendar season (June to September) 91 

and coincides additionally with the seasonal cycle of circulation features and other thermodynamic 92 

factors. Figure S1 highlights the difference between the rainy season and climatological ISM (June 93 
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to September), which makes it evident that the rainy season accumulates more rainfall in southern 94 

peninsular India and in regions east of the central monsoon region. Similarly, when compared to 95 

the ISM season, the rainy season has slightly less total rainfall over both western, northern India, 96 

and parts of northeastern India. It may be noted that the definition of the rainy season allows for a 97 

variable length compared to the fixed calendar season of, which stems from the former including 98 

pre-monsoon rainfall and rainfall from pre-monsoon and post-monsoon rainfall. For instance, 99 

tropical cyclones are also included in the rainy season defined here, and they significantly 100 

contribute to the annual rainfall in some parts of eastern India. Pre- and post-monsoon tropical 101 

cyclones can contribute up to 25% of the yearly rainfall in some parts of India, even though the 102 

southwest monsoon is the main component of our defined rainy season (Khouakhi et al. 2017). 103 

 104 

The information about the arrival of the monsoon rainfall is imperative for farmers to plan their 105 

strategy for the upcoming season. There are many attempts to predict the MoK; however, it 106 

remains a challenge due to the intricate interplay between large-scale atmospheric circulation and 107 

localized convective processes, resulting in substantial spatial variability in onset dates (Kung and 108 

Shariff 1980; Rajeevan and Dubey 1995; Pai and Rajeevan 2007; Pradhan et al. 2017). Many 109 

studies have shown that variations of the MoK have very little influence on the mean rainfall 110 

anomalies of the ISM (Dhar et al. 1980; Mooley and Parthasarthy 1984; Mooley and Shukla 1987; 111 

Misra and DiNapoli 2014). Furthermore, MoK is known to have insignificant relationship with 112 

subsequent progression of the onset isochrones of the ISM (Bansod et al. 1991; Fasullo and 113 

Webster 2003; Pai and Rajeevan 2007). Noska and Misra (2016) proposed an objective method to 114 

define the onset and withdrawal of the rainy season based on area averaged all India daily rainfall, 115 

and they found that mean anomalies of the rainy season are closely linked with variations in the 116 

onset and withdrawal dates of the rainy season. In addition, they validated the defined onset and 117 

withdrawal of the rainy season for consistency by comparing them with the seasonal evolution of 118 

key dynamic and thermodynamic variables associated with the ISM. In a following study, Misra 119 

et al. (2018) obtained local onset (withdrawal) dates of the Indian rainy season at the granularity 120 

of the rainfall analysis and showed that they are negatively (positively) correlated with rainfall 121 

anomalies of the rainy season across the Indian region. These studies suggest that monitoring the 122 

local onset date of the rainy season provides a good indication of the evolution of the seasonal 123 

length and rainfall of the forthcoming rainy season (i.e., the entire duration of the rainy season at 124 
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each grid points) and supporting its use in predictability studies. Bhardwaj and Misra (2019) found 125 

that Remotely Sensed Rainfall Products such as Tropical Rainfall Measuring Mission (TRMM) 126 

Multi-satellite Precipitation Analysis (TMPA) produce local onset and withdrawal dates similar to 127 

IMD observations. In comparison to traditionally identified onset of ISM, which are often limited 128 

to defining the onset over Kerala (e.g., MoK), the proposed method enables the generation of 129 

spatially continuous maps of onset date evolution. By capturing regional heterogeneity, it provides 130 

a more nuanced understanding of the spatiotemporal progression of onset of the rainy season 131 

across India. This simple rainfall-based definition was found useful for monitoring the onset of the 132 

rainy season in real-time and issuing the outlook of the rainy season over various regions such as 133 

Florida (Misra et al. 2022), and Central America (Rodgers et al. 2024).  134 

 135 

Many studies have used the IMERG data set as one of their primary dataset for the analysis of the 136 

ISM (Bushair et al. 2019; Thakur et al. 2020; Saikrishna et al. 2021; Phadtare et al. 2023). In this 137 

study, we employ a rainfall-based objective method to define the local onset and withdrawal of the 138 

rainy season, leveraging the high-resolution IMERG dataset available since January 2001. Our 139 

approach captures the actual arrival and retreat of persistent rainfall at each grid point by 140 

identifying the onset and withdrawal of the rainy season. This approach also accounts for pre- and 141 

post-monsoon rainfall, providing a more complete representation of the rainy season—particularly 142 

in regions where events such as tropical cyclones contribute significantly to seasonal rainfall totals. 143 

In this study, utilizing IMERG’s 12-hour latency product, we demonstrate the potential for real-144 

time monitoring of the onset of the rainy season, which aids in anticipating the anomalies of the 145 

seasonal length and seasonal accumulated rainfall (hereafter referred to as seasonal rainfall) across 146 

India. Motivated from the grid-point level definition of onset and withdrawal dates established by 147 

Misra et al. (2018) and Bhardwaj and Misra (2019), this study advances this framework by how 148 

the IMERG 12-hour latency product can be effectively used to monitor these parameters at fine 149 

spatial scales, enabling better anticipation of anomalies of the seasonal length and seasonal rainfall. 150 

In addition, the novelty of this work lies in the use of a perturbation technique applied in the 151 

diagnosis of onset/withdrawal dates of the rainy season over India following Misra et al. (2023) 152 

and Rodgers et al. (2024) to generate 101 ensembles of daily rainfall data. This approach is the 153 

first of its kind over the Indian region and allows us to define an ensemble of local onset and 154 

withdrawal dates, aiding in the probabilistic estimate of the evolution of the rainy season that 155 
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accounts for observational and analysis uncertainties. Hereafter, the term ‘onset’ refers to local or 156 

grid point-specific onset dates of the rainy season.  157 

 158 

Additionally, this study explores the interannual variation of the evolution of the rainy season and 159 

its link to large-scale forcing such as ENSO and IOD and compares their viability as predictors of 160 

the rainy seasons to the local links we establish with the variations of the onset dates. We believe 161 

that the insights from this study will have significant potential applications in agricultural planning 162 

and water resource management. 163 

 164 

2. Data and Methodology 165 

2.1 Data 166 

The analysis performed in this study utilized daily precipitation data from the IMERG version 6 167 

(Huffman et al. 2019). This dataset is part of the Global Precipitation Measurement (GPM) 168 

mission, which was launched in 2014 and is co-operated by NASA and the Japan Aerospace 169 

Exploration Agency (JAXA). The 0.1° grid resolution (~10 km) IMERG data are available at half-170 

hourly intervals from June 2000 to the present. The dataset comprises early, late, and final run 171 

products, which have latencies of approximately 4 hours (Early), 12 hours (Late), and 3.5 months 172 

(Final). The IMERG late run incorporates data from multiple sources, such as satellite microwave 173 

and infrared estimations, precipitation gauge analysis, and other potential precipitation estimators. 174 

This dataset provides detailed temporal and spatial coverage for both the TRMM and GPM eras 175 

worldwide. However, in this study, we used the daily 12-hour latency product (daily averages were 176 

estimated from half-hourly products), which has great potential for monitoring the rainy season in 177 

real-time. To assess the fidelity of the 12-hour latency product of IMERG over India, we have 178 

compared it with the corresponding Final product of IMERG and also used rain gauge-based IMD 179 

gridded rainfall data for the period 2001 - 2023 at 0.25° × 0.25° resolution (Pai et al. 2014) as a 180 

validation dataset. Additionally, we defined the onset and withdrawal dates of the rainy season 181 

using the daily NOAA Climate Prediction Center (CPC) precipitation data set (Xie et al. 2007) 182 

and compared them with IMERG. 183 

 184 

2.2 Methodology 185 

2.2.1 Onset and Retreat 186 
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This study uses a simple objective definition to identify the onset and cessation dates of the wet 187 

season over India which are determined by finding the minima and maxima of the cumulative 188 

rainfall anomaly curve (Liebmann and Marengo 2001). The cumulative anomaly of the daily 189 

rainfall at a day J (𝑖. 𝑒., 𝐶!(𝐽)) for a year i at each grid point is estimated as: 190 

 191 

𝐶!(𝐽) = * (𝑅!(𝑗) −	𝑅/)
"
#$%        (1) 192 

 193 

where 𝑅!(𝑗)	is the rainfall for day j of year i, 𝑅/	is the climatology of the annual mean rainfall for a 194 

given grid point. The 𝐶!(𝐽) for 365/366 days in a year represents the cumulative rainfall anomaly 195 

curve. After the onset and withdrawal dates of the season are determined, we count the number of 196 

days between them to define the seasonal length. Seasonal rainfall of the rainy season refers to the 197 

daily rainfall that accumulates from the day of onset date to the withdrawal date. 198 

 199 

2.2.2 Perturbation 200 

The motivation to perturb the timeseries is to account for the uncertainty of random synoptic or 201 

mesoscale events that is potentially unrelated to the seasonal cycle, which could affect the 202 

diagnosis of the onset/withdrawal date of the rainy season. The threat of false diagnosis of 203 

onset/withdrawal dates of the rainy season is acute from the proposed methodology since this 204 

diagnosis is computed at the granularity of the rainfall analysis. Therefore, generating an ensemble 205 

of onset/withdrawal dates of the rainy season that accounts for this uncertainty is essential. The 206 

perturbations are generated randomly by replacing the rainfall of each day in the original timeseries 207 

for a given grid point by rainfall in the range of ± 3 days. The range of ± 3 days used in the 208 

generation of the perturbed timeseries covers the uncertainty in the occurrence of the synoptic (1 209 

to 7 days) to meso-scale (1 to 3 days) rain features of the rainy season. In this manner, an ensemble 210 

of 101 (100 perturbations + 1 original) timeseries are generated. The diagnosis of the 211 

onset/withdrawal date of the rainy season will converge or diverge amongst the ensemble members 212 

if it is found to be insensitive or sensitive to these random rain events, respectively. 213 

 214 

2.2.3 Signal-to-noise Ratio 215 

We estimated the signal-to-noise ratio of the four quantities by utilizing the 101 ensemble 216 

members. 217 
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𝑆&'!()* =
1

𝐴(𝐵 − 1)55(𝑋+, − 𝑋/,)*
-

,$%

.

+$%

																																															(2) 218 

𝑆(!/&+0* = 𝑆)1* −
1
𝑏 𝑆&'!()

* 																																																																																			(3) 219 

Where,  𝑋 belongs to any of the four quantities such as onset date, withdrawal date, seasonal length, 220 

and seasonal rainfall anomalies of the varying rainy season, 𝑎 and 𝑏 are indices for 𝐴 years and 𝐵 221 

ensemble members, respectively. 𝑆)1*  represents the measured total signal variance in the data over 222 

A years and which is defined as; 223 

𝑆)1* =
1

(𝐴 − 1)5;𝑋/+ − 𝑋<=
*

.

+$%

,		 224 

And 𝑋/+ =
%

(-3%)
∑ 𝑋+,-
,$% ,  𝑋< = %

(.3%)
∑ 𝑋/+.
+$% ,   225 

The signal-to-noise ratio is then given by: 226 

𝑟𝑎𝑡𝑖𝑜 =
𝑆(!/&+0*

𝑆&'!()* 																																																							(4) 227 

When 𝑟𝑎𝑡𝑖𝑜 < 1 then it indicates that noise (or chaotic variations) is dominant, and the signal 228 

dominates when 𝑟𝑎𝑡𝑖𝑜 > 	1. A strong signal indicates that perturbing the rainfall time series will 229 

not substantially influence the diagnostics of the onset date, withdrawal date, seasonal length, and 230 

seasonal rainfall anomalies. 231 

 232 

2.2.4 Significance test 233 

In this study, we first estimate the two-tailed p-values of the correlation coefficients using the t-234 

statistic. Further, following Benjamini and Hochberg (1995), we conduct a test for false rejection 235 

on all temporal correlations to assess its robustness, which is necessary because of the large number 236 

of simultaneous statistical significance tests conducted across all grid points of the domain. This 237 

process involves adjusting the p-value (Benjamini and Hochberg 1995) to control the false 238 

rejection of the null hypothesis, also known as the false discovery rate. By controlling the false 239 

discovery rate, we enhance the confidence in the significance of the findings.  240 

 241 

3. Results 242 
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The seasonal mean rainfall over India observed from IMERG is found to be comparable with IMD 243 

observation and superior to other satellite products over the region (Saikrishna et al., 2021). This 244 

is further confirmed in Figs. 1a-c which compares the 23-year annual mean rainfall climatology 245 

between IMERG observations and the corresponding IMD rainfall dataset. It may be noted that in 246 

Equation (1), the annual mean rainfall climatology ( 𝑅/	) at each grid point is used to determine 247 

onset dates and withdrawal dates of the rainy season over India (e.g., Misra et al., 2018). Overall, 248 

the annual mean rainfall climatology from IMERG compares well with the IMD rain gauge dataset. 249 

However, the overestimation of rainfall in the Indo-Gangetic plains and parts of northeast India 250 

and underestimation of rainfall over the northern Western Ghats, northern sections of northeast 251 

India, and the bulk of Jammu and Kashmir by IMERG relative to IMD dataset is apparent (Fig. 1). 252 

Bushair et al., (2019) noted that IMERG underestimates the rainfall over high-altitude regions 253 

compared to IMD observations, which are rain gauge based. Further, Fig. 1d shows the cumulative 254 

rainfall anomaly curve generated from the 23-year (2001 - 2023) daily rainfall climatology area 255 

averaged over all of India for IMERG (blue) and IMD (red) observations. The onset (inflection at 256 

the nadir of the cumulative anomaly curve) and withdrawal (inflection at the zenith of the 257 

cumulative anomaly curve) dates estimated from IMERG and IMD closely match each other, with 258 

the onset dates being 31st May and 3rd June, and the withdrawal dates being 7th October and 8th 259 

October, respectively. 260 

 261 
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 262 
Figure 1: Spatial pattern of the 23-year climatology of the mean annual rainfall (mm/day) during 263 

the period 2001-2023 from a) IMERG observation, b) IMD observation, and c) the difference 264 

between the IMERG and IMD (only differences significant at 5% percentile level on t-test is 265 

shaded). d) The cumulative rainfall anomaly curve generated from the 23-year daily rainfall 266 

climatology of IMERG (blue) and IMD (red) observations. The onset dates (filled circles) and 267 

withdrawal dates (filled diamonds) obtained from both datasets are marked. 268 

 269 

Figures 2a-d depict the 23-year local climatological onset date, withdrawal date, seasonal length, 270 

and seasonal accumulated rainfall from IMERG, with the associated standard deviation displayed 271 

in Figs. 2e-h. The spatial distribution of the climatology of the onset dates (Fig. 2a) shows the 272 

earliest onset occurs over northeast regions of India followed by southern Kerala, and then it 273 

gradually advances to the other parts of the country and looks like the typical isochrone evolution 274 

of the ISM (Ramage 1971; Rao 1976; Janowiak and Xie 2003). The delayed onset occurs over the 275 

east coast of Tamil Nadu followed by Jammu and Kashmir. The onset dates over Kerala and 276 
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adjacent regions mostly start from early May and do not coincide with the MoK, and this is because 277 

this methodology detects the onset dates relatively early due to strong and continuous spells of 278 

pre-monsoon rainfall. Similarly, the earliest withdrawal (Fig. 2b) of the ISM occurs over 279 

northwestern India such as Rajasthan, Punjab, Haryana, and Himachal Pradesh. The withdrawal 280 

date is delayed over southern peninsular India, with the most delayed withdrawal occurring over 281 

the southeast coast of Tamil Nadu. The seasonal length (Fig. 2c) is shorter in the west and 282 

northwest regions of India, with the shortest season in Jammu and Kashmir. The longer season 283 

over the peninsular India, as well as the coastal regions of Odisha and West Bengal, is linked to 284 

the season's earlier start date. The spatial distribution of the seasonal accumulated rainfall (Fig. 285 

2d) closely follows the typical seasonal mean ISM distribution. The standard deviation patterns of 286 

the onset dates show central parts of India have less variability than other regions, such as southern 287 

peninsular India, northeast, and northwest regions. Similar patterns of variability are observed in 288 

the withdrawal dates and seasonal length with the largest variations found over southern peninsular 289 

India and northwest India and least over central India. On the other hand, the seasonal rainfall 290 

exhibits a significant range of variability across most of India, whereas comparatively less 291 

variability is observed over Rajasthan and Jammu and Kashmir. 292 

 293 
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Figure 2: The climatological a) onset date (Julian day), b) withdrawal date (Julian day), c) 294 

seasonal length, and d) seasonal accumulated rainfall (mm) of the rainy season from IMERG. The 295 

corresponding standard deviation of e) onset date (days), f) withdrawal date (days), g) seasonal 296 

length (days), and h) seasonal accumulated rainfall (mm). The contour intervals in panels (a) and 297 

(b) are at 7-day interval. 298 

 299 

The IMERG dataset, with its 23-year record, was compared to the IMD and CPC datasets spanning 300 

1979–2023 (limited to this period in order for CPC and IMD to have a common period) to evaluate 301 

onset and withdrawal dates, seasonal length, and seasonal accumulated rainfall of the rainy season 302 

over India (Fig. S2). The motivation to carry out this comparison is to establish that a 23-year 303 

record of IMERG is comparable to a longer record of dataset available from the other two sources 304 

besides examining its fidelity.  305 

 306 

It is apparent from Fig. S2 that the spatial patterns of the climatological onset and withdrawal 307 

dates, seasonal length, and rainfall in IMERG is comparable to corresponding climatologies from 308 

IMD and CPC datasets. There is however a tendency for IMERG to have a bias of a slightly earlier 309 

onset of the rainy season compared to IMD and CPC, particularly over southern peninsular India, 310 

including Kerala and Tamil Nadu (Figs. S2a-c). Similar inference can be drawn in Rajasthan, 311 

coastal Odisha and West Bengal, and few isolated grid points over other regions. In contrast, over 312 

Jammu and Kashmir, IMERG exhibits a noticeably delayed onset, which makes us unsure about 313 

the results over this area. Similarly, IMERG display a systematic bias of slightly later withdrawal 314 

dates along the Western Ghats, but overall, the rainy season withdrawal dates are consistent across 315 

datasets (Figs. S2e-g). As a result, IMERG's rainy season seems to last longer than the other two 316 

datasets in some of these locations (Figs. S2i-k). Again, in terms of seasonal accumulated rainfall 317 

(Figs. S2m-o), IMERG overestimates precipitation compared to IMD and CPC in some of these 318 

locations. However, rainfall over the Western Ghats exhibits stronger gradients and is 319 

underestimated in IMERG while it exhibits more rainfall over western central India and Tamil 320 

Nadu than the other two datasets. 321 

 322 

The interannual variability of these variables in IMERG also appear to be comparable to the other 323 

two datasets, especially in their spatial gradients (Fig. S3). There are however instances of some 324 
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differences in the datasets. For example, over central India, the standard deviation of seasonal 325 

rainfall is significantly overestimated in IMERG compared to IMD (Figs. S3m-o), even though 326 

the withdrawal dates (Figs. S3e-g) and seasonal length (Figs. S3i-k) exhibit less variability in 327 

IMERG. 328 

 329 

As mentioned earlier, IMERG has few different rainfall products based on the latency of their 330 

availability in real-time. We have made comparisons of 12-hour latency product with the Final 331 

product of IMERG in Figs. S1, S2, and S3. The comparison in Fig. S1 indicates that some of the 332 

largest differences in the seasonal rain of the variable rainy season between Final and 12-hour 333 

latency of IMERG is over northern India. However, the spatial patterns of the climatological onset 334 

appear comparable (Figs. S2c and d). But the climatological withdrawal dates appear to be slightly 335 

earlier in northern India in the Final run (Fig. S2h) compared to 12-hour latency (Fig. S2g) of 336 

IMERG, which likely leads to slightly shorter length (Fig. S2l) and reduced seasonal rainfall (Fig. 337 

S2p) in the former (Fig. S2l) than in the latter (Figs. S2k and o). Some of the discrepancies 338 

observed in the 12 hour latency product of IMERG relative to IMD and CPC in Figs. S2 and S3 339 

can likely be attributed to the uncertainty associated with the choice of the 12-hour latency product, 340 

which is an early version of IMERG with limited calibration against ground-based observations, 341 

its shorter temporal coverage of 23 years compared to the 45 years of data used for IMD and CPC. 342 

Despite these limitations, which seem to be tolerable for the applications of this study (compare 343 

Fig. 1) we are inclined to use IMERG due to its higher spatial resolution and near real-time 344 

availability making it particularly suitable for real-time applications. 345 

 346 

The primary motivation to monitor the local onset and withdrawal of the ISM is its significant 347 

interannual variations and spatial variability (Fig. S3). Both the variation in seasonal length and 348 

seasonal rainfall are crucial in determining the nature of the rainy season (Xavier et al. 349 

2007; Sperber and Annamalai 2014). The spatial distribution of the correlation of the local onset 350 

date with the seasonal length shows a significant negative correlation across India except in some 351 

parts of central India and Jammu and Kashmir (Fig. 3a). This negative correlation suggests that an 352 

early or later onset date is likely to be associated with a longer or a shorter rainy season, 353 

respectively. Only the correlations significant at a 5% level are shaded (non-significant values are 354 

shown in white) in Fig. 3. Similarly, early onset is associated with a wetter season, while a delayed 355 
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onset is linked with a drier season (Fig. 3b). However, the grid points showing significant 356 

correlation are fewer in Fig. 3b compared to Fig. 3a. The correlations of the withdrawal date with 357 

seasonal length (Fig. 3c) and seasonal rainfall anomalies (Fig. 3d) show that later or early 358 

withdrawal of the wet season corresponds to a longer and wetter season, whereas an earlier 359 

withdrawal corresponds to shorter and drier seasons. While the correlation between seasonal 360 

rainfall and onset/withdrawal dates appears weaker than that with seasonal length, over 50% of 361 

grid points across India still show statistically significant relationships. This is expected, as total 362 

rainfall during the rainy season is influenced by variations in the seasonal length but also daily rain 363 

rate, which can be influenced by various factors like tropical cyclones and intraseasonal weather 364 

patterns that may lead to a weak correlation with onset/withdrawal dates. However, the withdrawal 365 

date may not be a useful predictor for the rainy season because it occurs when the rainy season 366 

ends. The onset and withdrawal dates are largely uncorrelated (not shown), implying that their 367 

variations are independent of each other. These outcomes imply that the onset date alone can be a 368 

useful predictor for the outlook of the seasonal length and the seasonal rainfall anomaly of the 369 

forthcoming rainy season. 370 

 371 
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 372 
Figure 3: The correlation coefficients of the onset date (OD) with a) seasonal length (SL), and b) 373 

seasonal rain (SR). Similarly, the correlations of withdrawal date (WD) with c) SL and d) SR. The 374 

shading indicates statistical significance at a 5% significance level according to the t-statistic 375 

(non-significant values are shown in white), following false discovery rate testing as described by 376 

Benjamini and Hochberg (1995). Cross hatchings denote correlations greater than or equal to +/-377 

0.6. 378 

 379 

We estimated the signal-to-noise ratio (Equation 4) on the four variables of onset and withdrawal 380 

dates, seasonal length, and rainfall by utilizing the 101-member ensemble of time-series data. This 381 

analysis examines the spread across ensemble members and informs on the uncertainty of the 382 

diagnosis to random rain events. The signal-to-noise ratio for onset dates (Fig. 4a) shows that noise 383 

dominates in many places, particularly in peninsular India and the eastern half of central India. 384 

These low signal-to-noise ratio regions suggests that onset dates of the rainy season are not very 385 

strongly tied to the seasonal cycle and predicting the onset dates in these places becomes 386 

challenging and less reliable. In contrast, the signal-to-noise ratios for withdrawal dates (Fig. 4b) 387 
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are typically more than one over most grid points. This indicates greater certainty for withdrawal 388 

dates, particularly in areas like Kerala, coastal Karnataka, and Gujarat, where the ratios are 389 

comparatively higher than one. In the case of the seasonal length, signal dominates over noise with 390 

a signal-to-noise ratio above 1 over most areas (Fig. 4c). Compared to the other variables, seasonal 391 

rainfall generally shows much higher signal-to-noise ratios (> 1) across most of the grid points. 392 

This result is obvious given the fact that seasonal rainfall is an aggregate of the daily rainfall over 393 

the entire rainy season, while the onset and withdrawal dates are single days of the season when 394 

they are diagnosed. Therefore, there is a tendency for the cancellation of the noise in the 395 

aggregation of the daily rainfall to seasonal rainfall, which yields a higher signal-to-noise ratio. 396 

 397 
Figure 4: The 23-year climatology of the signal-to-noise ratio of a) onset date, b) withdrawal date, 398 

c) seasonal length, and d) seasonal rainfall estimated based on the 101 ensemble members.  399 
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Further, we examined the probabilistic skill of the seasonal outlook by using the Area Under the 400 

relative operating characteristic (ROC) Curve (AUC) method. The AUC method is widely used to 401 

assess the skill of seasonal climate predictions (Mason and Graham 2002; Misra 2004; Narotsky 402 

and Misra 2021). Previous studies have shown that this method is useful for evaluating the 403 

probabilistic skill of predicting anomalous seasons based on anomalous onset dates of the rainy 404 

season (e.g. Rodgers et al 2024). We categorized the onset date, seasonal length, and seasonal 405 

rainfall into terciles (23-years divided into three groups): the lower tercile represents an early onset, 406 

shorter season, and drier conditions; the upper tercile signifies a delayed onset, longer season, and 407 

wetter conditions; and the middle tercile indicates normal onset, length, and seasonal rainfall. We 408 

then created a contingency table (Table S1) to assess the probability of categorical forecasts. This 409 

table evaluates how often an early or late onset is linked with a shorter or longer season and with 410 

drier or wetter conditions, respectively. In addition, we also consider the effects of normal onset 411 

on normal length and seasonal rainfall. 412 

 413 
Figure 5: The probabilistic skill score as measured by the Area Under the relative operating 414 

characteristic Curve (AUC) for early start (lowest tercile) season associated with a) longer 415 
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(highest tercile) and b) wetter (highest tercile) season, late start (highest tercile) season associated 416 

with c) shorter (lowest tercile) and d) drier (lowest tercile) season, and normal (middle tercile) 417 

start season associated with e) normal (middle tercile) seasonal length and f) normal (middle 418 

tercile) seasonal rain. The AUC above 0.5 is shaded. 419 

 420 

The probabilistic skill scores derived from the AUC method are shown in Fig. 5. Here, only grid 421 

points with AUC values ≥ 0.5 are shaded, as these points indicate skillful seasonal outlooks that 422 

outperform random predictions (Mason and Graham, 2002). The seasons with an early start and 423 

longer season (Fig. 5a) show the most skill (>0.9) over peninsular India, northwest India, and some 424 

parts of northeast India. Similarly, the early start of the season, along with the wetter season (Fig. 425 

5b), results in high skill levels across most parts of India except the majority of Maharashtra and 426 

north interior Karnataka. The late start and associated shorter seasons shown in Fig. 5c exhibit the 427 

highest skill score over some parts of peninsular India. The late start with the drier season also 428 

resulted in high skill scores across most of the areas except Kerala, Tamil Nadu, Karnataka and 429 

Andhra Pradesh. The anomalous seasons (Fig. 5a-d) demonstrate higher skill levels across India 430 

compared to the normal seasons (Fig. 5e-f). This is due to the leveraging of the linear relationships 431 

of the onset date variations with the rainy season variations (Figs. 3a and b). In contrast, seasons 432 

with a normal start of the rainy season exhibit lower AUC skill scores (Figs. 5e and f) across most 433 

grid points relative to the anomalous start of the rainy seasons (Figs. 5a-d). However, the skill 434 

scores for a normal start with normal rainfall (Fig. 5f) are slightly better than those for a normal 435 

start with normal length (Fig. 5e). In summary, the behavior of the forthcoming season is more 436 

predictable if the onset date is early or delayed than the normal. It is easy to adopt this methodology 437 

for real-time applications. The evolution of the daily cumulative anomaly curve of rainfall could 438 

be monitored in real-time to find the minima in the curve as the onset date. However, to avoid 439 

misdiagnosing the onset date of the rainy season, one could wait for a period of time after this 440 

diagnosis (typically a week) to confirm that the minima were indeed reached to declare the onset 441 

date. Once the onset date is diagnosed then one could use the linear relationships shown in Fig. 3 442 

to develop a seasonal outlook for the rainy season. This is done routinely in Florida (Misra et al. 443 

2022). With the availability of the merged IMERG estimates with the rain-gauge based IMD 444 

rainfall following Mitra et al., (2009) our proposed methodology could be adopted for real-time 445 

applications over India. 446 
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 447 

Further, we investigated the interannual variability of the onset dates over India and its association 448 

with ENSO (Figure S4) and the Indian Ocean Dipole (IOD) variations (Figure S5). In comparison 449 

to Figure 3, Figures S4 and S5 failed the BH test suggesting the lack of robustness in the 450 

teleconnections of the rainy season variations with either ENSO or IOD. It should be noted that 451 

the results in Figures S4 and S5 appear to be contrary to many other studies that suggest a robust 452 

teleconnection of ENSO with ISM (e. g., Webster et al. 1998, Delsole and Shukla 2002). However, 453 

our variable definition of the rainy season, which includes pre- and post-monsoon rainfall, would 454 

make the comparison with other studies dealing with fixed calendar ISM season and or all India 455 

averaged rainfall of the ISM incompatible. But in light of these results, which indicate a lack of 456 

strong external forcing, the significance of the reliability of the seasonal outlook of the rainy season 457 

shown in Figure 5 assumes greater significance. Furthermore, the monitoring of the observations 458 

of the evolution of the rainy season, to diagnose the onset dates seems an attractive approach with 459 

the relatively low signal-to-noise ratio of the onset date of the rainy season shown in Figure 4a, 460 

relative to the seasonal length in Figure 4c or seasonal rainfall in Figure 4d. We are then able to 461 

leverage a low signal-to-noise ratio quantity like the onset date of the rainy season to provide a 462 

seasonal outlook of relatively higher signal-to-noise ratio quantities of seasonal length and rainfall. 463 

 464 

4. Summary and Concluding Remarks 465 

The seasonal prediction of the Indian rainy season is a considerable challenge given its complex 466 

spatio-temporal variations. In this study, we offer a simple and reliable technique for seasonal 467 

outlook of the rainy season, which is viable for real-time applications as well. Using precipitation 468 

estimates of IMERG version 6 over India at 10km grid, we generate an ensemble of 101 members 469 

from randomly perturbing the series to assess the uncertainty of the diagnosed onset/withdrawal 470 

dates of the rainy season to random synoptic-meso scale rain events unconnected to the seasonal 471 

cycle. The proposed method generates a spatial distribution of local-scale onset and withdrawal 472 

dates, capturing regional variations and offering a nuanced view of progression rainy season across 473 

India. Such location-specific information is useful for practical applications such as agriculture, 474 

disaster planning, and water management. 475 

 476 
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We verified the IMERG rainfall observations against gauge-based IMD observations. The mean 477 

annual rainfall climatology of IMERG closely matches that of the IMD. However, IMERG tends 478 

to underestimate mean annual rainfall in high-altitude regions and overestimate it in the Indo-479 

Gangetic plains. Further, we examined the relationships between the onset and withdrawal dates 480 

with seasonal length and rainfall and discovered that variations in onset and withdrawal dates of 481 

the rainy season across India have a significant impact on the seasonal length and the seasonal 482 

rainfall variations of the rainy season. It is found that an earlier onset date of the rainy season is 483 

strongly related to a longer and wetter season, whereas a later onset date corresponds to a shorter 484 

and drier season. However, the relationship between the onset, withdrawal, seasonal length, and 485 

rainfall with large-scale climate drivers such as ENSO and IOD is comparatively weaker in major 486 

parts of India. Although the influence of ENSO and IOD were investigated in this study, future 487 

research could investigate the influence of additional teleconnection patterns such as the Madden–488 

Julian Oscillation (MJO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation 489 

(NAO), which may also modulate the timing and characteristics of the rainy season.  490 

 491 

This study shows that by estimating the onset date of the rainy season alone we can effectively 492 

provide a reliable seasonal outlook for both the seasonal length and total rainfall of the upcoming 493 

season by exploiting the existing local relationships. The low signal to noise ratio of the onset date 494 

of the rainy season suggests the dominance of internal variations, which will be a challenge for its 495 

seasonal predictability. However, by way of monitoring the evolution of the onset date we can 496 

leverage its local relationship with the seasonal length and seasonal rainfall anomaly to provide 497 

reliable seasonal outlook of the rainy season. The probabilistic skill scores of these seasonal 498 

outlooks generated from the monitoring of the onset date variations present an objective measure 499 

of its high confidence of reliability. Compared to traditional ISM onset definitions, which often 500 

focus on Kerala (e.g., MoK), the proposed method can generate spatial maps of local-scale onset 501 

dates of the rainy season. It captures regional heterogeneity and the progression of the rainy season 502 

across India. Since the method is based on the rainy season and includes pre- and post-monsoon 503 

rainfall, it provides a comprehensive viewpoint of the rainy season. These seasonal outlooks have 504 

numerous potential applications, and many local communities could greatly benefit from them. 505 

The proposed methodology for the seasonal outlook of the rainy season over India demonstrates 506 
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its adaptation for real-time applications from the current availability of IMERG rainfall products 507 

in real-time. 508 
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