

Diurnal aging of biomass burning emissions: Impacts on secondary organic aerosol formation and oxidative potential

Maria P. Georgopoulou^{1,2}, Kalliopi Florou¹, Angeliki Matrali^{1,2}, Georgia Starida², Christos Kaltsonoudis¹, Athanasios Nenes^{1,3,*}, and Spyros N. Pandis^{1,2,*}

¹Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras 26504, Greece

²Department of Chemical Engineering, University of Patras, Patras 26504, Greece

³ Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland

**Correspondence to:* Spyros Pandis (spyros@chemeng.upatras.gr) and Athanasios Nenes (athanasios.nenes@epfl.ch)

1 Abstract

2 Residential biomass burning is an important wintertime source of aerosols. These particles are
3 subjected to complex diurnal aging processes in the atmosphere, contributing to urban and
4 regional air pollution. The cumulative impact of these aging cycles on aerosol composition and
5 oxidative potential, a key toxicity metric, remains unclear. This study examined the oxidation
6 cycles of biomass burning emissions during day-to-night and night-to-day transitions in the
7 FORTH (Foundation for Research and Technology – Hellas) atmospheric simulation chamber,
8 focusing on emissions from burning of olive wood. The final high-resolution AMS spectra of
9 biomass burning organic aerosol (bbOA) after either oxidation cycle were almost identical (R^2
10 > 0.99, $\theta = 3^\circ$). This indicates transformation into similar biomass burning secondary organic
11 aerosol (bbSOA) regardless of the initial step of the diurnal cycle. A 56% average increase in
12 the bbOA oxygen-to-carbon (O:C) ratio was observed during both cycle cases (from $0.38 \pm$
13 0.06 for the fresh to 0.59 ± 0.07 after aging). Additional OA mass was produced after the two
14 cycles, varying from 35 to 90 % of the initial OA. The aging of the emissions led to a final
15 water-soluble oxidative potential (WS-OP) increase of 60% to $68 \pm 18 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ for both
16 cycles, but with notably different transient values that depend on the order of the oxidation
17 regimes. The effect of each oxidation regime on the WS-OP of the bbOA depends on the
18 airmass history. The evolution of the WS-OP was not well correlated with that of the O:C.

19 **1 Introduction**

20 Biomass burning for residential heating has significantly increased over the past two decades
21 in several countries, primarily driven by rising energy costs and efforts to reduce the use of
22 fossil fuels (Alper et al., 2020). Alongside contributions from wildfires, residential biomass
23 burning has emerged as a major source of urban and regional pollution worldwide (Zauqi-
24 Sajani et al., 2024). Solid biomass currently represents nearly 45% of the total bioenergy supply
25 in the EU, 40% of which is allocated to residential heating, with an anticipated 20% increase
26 projected by 2050 (IEA, 2019, 2021; Reid et al., 2020). This upward trend in the residential
27 burning of solid biomass, particularly wood, has raised serious concerns regarding air quality
28 and human health (Cincinelli et al., 2019; Guercio et al., 2021; Pardo et al., 2024).

29 Particles emitted from biomass burning consist of organic compounds, elemental carbon
30 (EC), sulfates, nitrates, ammonium, and ash (Jiang et al., 2024). Biomass burning emissions
31 also include a range of gases; carbon monoxide (Shen et al., 2020), volatile organic compounds
32 (VOCs) such as aldehydes, ketones, and organic acids (Zhang et al., 2021; Huang et al., 2022),
33 carcinogenic polycyclic aromatic hydrocarbons (PAHs and oxy-PAHs) (Tsiodra et al., 2021,
34 2024; Lim et al., 2022), as well as nitrogen oxides and ammonia (Bray et al., 2021). The emitted
35 VOCs contribute to the formation of biomass burning secondary organic aerosol (bbSOA) and
36 can have direct health effects (Fang et al., 2021). The emission profile of these pollutants is
37 variable, influenced by factors such as fuel type and quality (e.g., logs vs. pellets; hardwood
38 vs. softwood; certified vs. non-certified wood, moisture content etc.), burning conditions (e.g.,
39 flaming vs. smoldering, air/oxygen supply, and dilution), and the type of combustion appliance
40 (Fachinger et al., 2017; Nyström et al., 2017; Price-Allison et al., 2021; Trubetskaya et al.,
41 2021).

42 After their release, biomass burning emissions are subject to chemical transformations
43 through homogeneous or heterogeneous reactions, that differ between daytime and nighttime
44 (Donahue et al., 2012; Hodshire et al., 2019; Yazdani et al., 2023). During these reactions, a
45 significant amount of SOA (Yazdani et al., 2023) and reactive oxygen species (ROS) (Wang
46 et al., 2023) can be generated. Hennigan et al. (2011) reported significant variability in bbSOA
47 formation during the photo-oxidation of different emissions. Yazdani et al. (2023) reported that
48 after 6 to 10 hours of daytime exposure, up to 30% (with an average of 15%) of the primary
49 bbOA (bbPOA) mass was oxidized, forming bbSOA that was predominantly composed of
50 acids. The coupled gas-particle partitioning, and reaction of semi-volatile vapors (SVOCs) may
51 play an important role in the processing of bbPOA (Hennigan et al., 2011; Srivastava et al.,

52 2022). Li et al. (2024) demonstrated that intermediate volatility species (IVOCs) can contribute
53 approximately 70% of the formed bbSOA, more than twice the contribution from VOCs.

54 The nighttime oxidation of biomass burning emissions by the nitrate radical (NO_3) also
55 leads to rapid aerosol changes (Kodros et al., 2020), but to a lesser extent compared to OH
56 oxidation (Yazdani et al., 2023). In some cases, a doubling of bbOA levels compared to the
57 initial primary bbOA has been observed. This increase has been attributed to gas-phase
58 reactions between the NO_3 radical and mainly phenolic compounds or furanic aldehydes
59 (Hartikainen et al., 2018). Moreover, a substantial increase (7-100%) in the aerosol oxygen-to-
60 carbon (O:C) ratio, as well as in the mass of organic nitrates in bbOA has been reported, as
61 result of nocturnal aging (Kiendler-Scharr et al., 2016; Kodros et al., 2022; Yazdani et al.,
62 2023).

63 To date, field and atmospheric simulation chamber studies have focused on the oxidation
64 of biomass burning emissions during either daytime or nighttime oxidation regimes, driven
65 respectively by OH and NO_3 radicals (Hennigan et al., 2011; Fry et al., 2014; Hodshire et al.,
66 2019; Jorga et al., 2021; Kodros et al., 2022; Wang et al., 2023; Yazdani et al., 2023). While
67 such investigations have significantly advanced our understanding of the individual effects of
68 these oxidation regimes, they do not fully capture the real-world evolution of biomass burning
69 aerosols, which undergo multiple repeated cycles of daytime and nighttime chemistry during
70 their atmospheric lifetime. Studies on successive aging from daytime and nighttime cycling do
71 exist, but have focused on the changes of the optical and chemical properties of bbOA and the
72 gas-particle phase partitioning of semi- and intermediate-volatility organic compounds (Tiitta
73 et al., 2016; Hartikainen et al., 2018; Cappa et al., 2020; Che et al., 2022; Desservetaz et al.,
74 2023; Yazdani et al., 2023). These alternating oxidation regimes cause successive changes in
75 chemical composition, reactivity, and toxicity (Li et al., 2021, 2023; Tomlin et al., 2022; He et
76 al., 2024) that are not well understood. Consequently, the timing of atmospheric BB emissions,
77 being released during the day or night, may also influence the chemical trajectory of BB aerosol
78 aging and therefore affect its composition and properties, including toxicity.

79 Biomass burning particles are significant sources of reactive oxygen species (ROS),
80 including free radicals (e.g., OH, RO_2 , HO_2^-) and non-radicals (e.g., ${}^1\text{O}_2$, H_2O_2). Upon
81 inhalation, these species interact with biological tissues and can disrupt cellular redox balance,
82 triggering (or propagating) oxidative stress and systemic health effects (Costabile et al., 2023).
83 The ability of particulate matter (PM) to catalyze ROS production, known as oxidative
84 potential (OP), is a critical metric linking aerosol exposure to health outcomes (Zhang et al.,
85 2022; Dominutti et al., 2025). Among the various in vivo and in vitro methods developed to

86 quantify OP (Ng et al., 2019), the abiotic dithiothreitol (DTT) assay is the most well established
87 one, providing a measure of the water-soluble OP (WS-OP) of aerosols through the depletion
88 of surrogate DTT in aerosol extracts (Cho et al., 2005). In this assay, DTT acts as a surrogate
89 biological reducing agent that is oxidized by redox-active PM components. The remaining DTT
90 is determined via a colorimetric reaction with DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)),
91 producing a light-absorbing compound measured spectrophotometrically at 412 nm. Blank-
92 corrected depletion rates are typically normalized to aerosol mass or organic carbon content to
93 provide a per mass health-relevant measure of WS-OP. The broad sensitivity of this method to
94 diverse sources of ROS in aerosols with long lifetimes (Gao et al., 2020a; Rao et al., 2020),
95 along with its optimization over the years (Fang et al., 2015; Puthussery et al., 2020) to provide
96 more rapid measurements of water-soluble OP (WS-OP), makes it highly suitable for large-
97 scale studies. In this study, we focus on WS-OP as a partial measure of aerosol toxicity,
98 acknowledging that the DTT assay reflects only one aspect of oxidative potential, and its direct
99 link to health outcomes remains uncertain. Recent studies emphasize that no single OP assay
100 can fully represent particle toxicity and that complementary approaches (e.g., thiol- and
101 hydroxyl radical-based assays) are needed to capture the full range of oxidative mechanisms
102 and to strengthen links with health-relevant outcomes (Dominutti et al., 2025). Studies using
103 the DTT assay have identified bbOA and SOA as dominant contributors to DTT activity,
104 accounting respectively for 35% and 30% of total OP in ambient aerosols in the Southeastern
105 USA (Verma et al., 2015). More recent studies confirm that biomass burning is a significant
106 source of OP in diverse environments, highlighting the importance of understanding diurnal
107 variations in OP from biomass burning (Paraskevopoulou et al., 2019, 2022; Mylonaki et al.,
108 2024).

109 Photochemical aging during daytime oxidation promotes particle-bound ROS
110 production, enhancing the OP of the aged aerosols (Li et al., 2021; Wang et al., 2023). For
111 bbOA, the OP was found to increase by a factor of two (2.1 ± 0.9) after multiple days (68 h) of
112 atmospheric aging (Wong et al., 2019). This implies that the health impacts of bbOA may
113 extend far from its sources, as it ages and becomes part of the background aerosol
114 (Vasilakopoulou et al., 2023; Mylonaki et al., 2024).

115 While it is well-established that bbOA ages rapidly at night, the effects of its nocturnal
116 aging on aerosol OP are poorly understood. Moreover, to our knowledge no studies have yet
117 investigated how the oxidation sequence (day-to-night and night-to-day) affects aerosol
118 chemical composition, aging trajectory, and toxicity (i.e., evolution of OP). This study aims to
119 address these knowledge gaps through controlled chamber experiments simulating realistic

120 diurnal oxidation cycles. In these experiments, fresh biomass burning emissions undergo
121 sequential aging, either through daytime oxidation followed by nighttime oxidation or the
122 reverse. By comparing day-to-night and night-to-day sequences, we aim to elucidate the
123 interplay of oxidation regimes on aerosol chemical evolution and OP, providing novel insights
124 into the health impacts of diurnally aged biomass burning aerosols.

125 **2 Methods**

126 **2.1 Atmospheric simulation chamber experiments**

127 Emission aging experiments took place at the FORTH-ASC chamber facility at Patras,
128 Greece. Figure 1 illustrates the setup used for conducting the experiments. Fresh biomass
129 burning emissions were produced in the combustion facility beneath FORTH-ASC by a
130 residential wood stove, fed with commercially available olive wood logs and branches. This
131 type of hardwood is widely used as a fuel in Greece. The emissions were diluted before their
132 injection into the smog chamber, using a custom-made dilution device that was located at the
133 chamber inlet.

134 The FORTH-ASC consists of 10 m³ squared Teflon chamber, located inside a 30 m³
135 reflective room (polished interior aluminium walls), which is temperature-regulated and
136 equipped with ultraviolet lights (Osram, L 36W/73 UV lamps). This setup yields a maximum
137 NO₂ photo-dissociation rate coefficient (J_{NO_2}) of 0.5 min⁻¹ when all lights are on. In this study
138 1/3 to 2/3 of the ultraviolet lights were used during photooxidation, resulting in a NO₂ photo-
139 dissociation rate coefficient (J_{NO_2}) of 0.17 to 0.33 min⁻¹.

140 Eight day-to-night (denoted as DN) and eight night-to-day (denoted as ND) aging
141 experiments were performed under dry (12-24% RH) conditions. Because a small amount of
142 water vapor is inherently present in biomass burning emissions, achieving extremely low RH
143 (<5%) would require complete removal of this water, which would result in losses of organic
144 vapors and particles and compromise experimental quality. The selected RH range therefore
145 ensured stable experimental conditions and is consistent with previous chamber studies
146 (Kodros et al., 2022; Li et al., 2023). Table 1 summarizes the initial aerosol composition and
147 experimental conditions for all the conducted experiments. To investigate the impact of fire
148 starter on biomass burning emissions characteristics, pine kindling mixed with olive logs was
149 used in two of the ND experiments (ND7, ND8). Pine, which is a softwood, has chemically
150 distinct characteristics compared to olive wood (hardwood) and is used as a kindling material
151 because it burns quickly due to its high resin content. While all night-to-day (ND) and day-to-night

152 (DN) experiments were conducted under the same general initial chamber conditions (temperature,
153 relative humidity, and sampling protocol), there were the unavoidable in these chamber experiments
154 differences in the initial aerosol and gas-phase composition, including the starting organic aerosol (OA)
155 mass, black carbon (BC) content, and oxidant concentrations (e.g., O₃, NO₂) (Table 1).

156 The smog chamber was first flushed with clean air overnight at a rate of 20 L min⁻¹.
157 Approximately 30 min after the combustion ignition in the wood stove, when flaming
158 conditions had been achieved, a fraction of the fresh emissions was diluted with clean air
159 (dilution ratio ranging from 1:5 to 1:10) and was injected into the chamber, which was pre-
160 filled with clean air and regulated to the desired RH level. This resulted in additional dilution
161 (dilution ratio ~1:30) of the emissions. Two high precision mass flow controllers (Bronkhorst
162 EL-FLOW Prestige FG-201CVP), operating at flow rates ranging from 0 to 20 L min⁻¹, were
163 used; one to supply clean air to the smog chamber during its filling and cleaning stages, and
164 the other to supply clean air to the dilution system. The initial PM₁ concentration achieved in
165 the chamber was 112 ± 56 µg m⁻³ on average (Table 1). The fresh emissions were left to
166 equilibrate and were characterized for about 2 hours. 30-90 ppb of d₉-butanol (98%, Cambridge
167 Isotope Laboratories) was also injected in the chamber as a tracer to determine the
168 concentration of OH radicals (Barmet et al., 2012).

169 Subsequently, in DN experiments, the UV lights were turned on, initiating the daytime
170 aging of fresh biomass burning emissions by OH radicals for at least 2 hours, without the
171 addition of further oxidants. This oxidation step was then followed by at least 2 hours of aging
172 with NO₃ radicals under dark conditions. To initiate NO₃ radical formation, NO₂ (50-150 ppb)
173 was first injected into the chamber and allowed to mix for approximately 10 min, followed by
174 a 1-min O₃ injection (60-280 ppb). This sequence ensured uniform NO₂ distribution and
175 prevented its immediate consumption, enabling accurate concentration control. The injected
176 NO₂ concentrations are consistent with polluted urban environments, while the O₃ levels
177 correspond to those observed during daytime pollution episodes and in the residual layer above
178 the nocturnal boundary layer, from where they can gradually mix downward and react with
179 NO₂ to form NO₃ radicals (Kodros et al., 2020). Homogeneous mixing was confirmed through
180 real-time gas monitoring, and measurements commenced only after full mixing to minimize
181 artifacts. During ND cycling experiments, the same oxidation steps were performed but in
182 reverse order. In DN experiments, “time zero” was defined as the moment when the UV lights
183 were turned on, whereas in ND experiments, it was the point at which O₃ was injected.

184 Particle wall losses were also characterized for each experiment. After the completion of
185 the two oxidation stages ammonium sulfate ((NH₄)₂SO₄ ≥99 %, Sigma Aldrich) was injected

186 into the chamber and its loss rate was monitored for at least 3 hours. The dry seeds were
187 produced by atomizing a $(\text{NH}_4)_2\text{SO}_4$ solution using a TSI atomizer (model 3076) and drying
188 the resulting droplets with a diffusion silica gel dryer (Fig. 1), as described in Wang et al.
189 (2018). Particle wall loss corrections were applied to all aerosol data. Organic vapor wall losses
190 were neglected over the corresponding experimental timescales. Wall losses of inorganic gases,
191 such as NO_2 and O_3 , were evaluated during preliminary chamber characterization and found to
192 be minimal, typically only a few percent or less (<5%) over the course of the experiments.

193 **2.2 Online instrumentation**

194 A suite of instrumentation was used for the online characterization of both particle and gas-
195 phase pollutants (Fig. 1). A scanning mobility particle sizer (SMPS; Classifier) model 3080;
196 DMA, model 3081, TSI) coupled to a butanol-based condensation particle counter (CPC,
197 model 3775 high, TSI), was used for the measurement of the number and volume size
198 distributions (mobility diameter in the range of 13–700 nm) of the aerosol particles. The SMPS
199 sampled every 3 min with its sheath flow rate set at 3 L min^{-1} and the sample flow rate at 0.6 L min^{-1} . A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne
200 Research Inc.), working in V mode with vaporizer temperature set at 600°C and sampling flow
201 rate of approximately 0.1 L min^{-1} , was used for monitoring the time evolution of the non-
202 refractory organic and inorganic PM_1 aerosol composition with time resolution of 3 min.
203 Aerosol absorption and black carbon (BC) concentration were measured with a seven-
204 wavelength aethalometer (Magee Scientific, Model AE33-7), sampling at 2 L min^{-1} . VOCs
205 were measured using a proton transfer reaction mass spectrometer (PTR-QMS 500, Ionicon
206 Analytik), sampling at 0.5 L min^{-1} . The drift tube was maintained at 2.3 mbar and operated at
207 600 V. A detailed explanation of the PTR-MS operational parameters and the calibration
208 procedure using VOC standards can be found in in Kaltsonoudis et al. (2016). Concentrations
209 of carbon monoxide (CO) and dioxide (CO_2), sulfur dioxide (SO_2), ozone (O_3) and nitrogen
210 oxides (NO_x) were measured using the corresponding monitors; CO (Teledyne model 300E),
211 CO_2 (Teledyne model T360), (Thermo model 43i-TLE), O_3 (Teledyne model 400E), NO and
212 NO_2 (Teledyne model T201). The total sampling flow rate of all monitors was 3.8 L min^{-1} .

214 **2.3 Online data analysis methodology**

215 The initial combustion conditions in the chamber were characterized by calculating the
216 modified combustion efficiency (MCE) as the ratio of the carbon dioxide (CO_2) to the sum of
217 CO_2 and carbon monoxide (CO) (Yokelson et al., 1996).

218 The HR-ToF-AMS data were analyzed using the packages SQUIRREL (Sequential Igor
219 data Retrieval; v1.57) and PIKA (Peak Integration by Key Analysis; v1.16) incorporated in
220 Igor Pro software (WaveMetrics; version 6.37). The method described in Canagaratna et al.
221 (2015) was used to estimate of elemental O:C ratio. The AMS collection efficiency (CE) and
222 the corresponding OA density have been determined using the algorithm proposed by
223 Kostenidou et al. (2007). This approach combines the volume distributions obtained from the
224 SMPS and the mass distributions of the main PM_1 components from the AMS. The BC
225 concentration obtained by the aethalometer was also included in the calculation, assuming a
226 size distribution for BC similar to that of OA.

227 SMPS measurements were corrected using size-dependent wall loss rate constants,
228 estimated by monitoring the decline in the mass concentration of $(NH_4)_2SO_4$ particles injected
229 into the chamber at the end of each experiment. Practically size independent first-order wall
230 loss rates were observed for particle diameters ranging from 60 to 700 nm. Based on this, the
231 concentrations of the non-refractory PM_1 aerosol species measured by the AMS were corrected
232 using one experiment-specific, size-independent wall loss rate constant that was 0.15 ± 0.05
233 h^{-1} on average.

234 The total OA was split into primary (bbPOA) and secondary (bbSOA) following the
235 approach proposed by Jorga et al. (2020) and applied for bbOA by Kodros et al. (2022). To
236 quantify the variation between primary and secondary bbOA mass spectra, obtained by the
237 AMS, the theta angle (θ) was estimated (Kostenidou et al., 2009). This angle represents the
238 inner product of the two spectra (i.e., fresh and aged one), considered as n-dimensional vectors
239 (n is to the number of the mass-to-charge (m/z) ratios). Theta angles less than 10° imply high
240 similarity, while major differences between two compared spectra correspond to θ values
241 higher than 25° (Florou et al., 2023). The approach described in Kiendler-Scharr et al. (2016)
242 was used to quantify the particulate organic nitrate (ON). In the present study the minimum
243 measured NO_2^+/NO^+ ratio in all experiments was 0.04. The corresponding measured ratio for
244 pure NH_4NO_3 , determined through calibration, was equal to 0.56.

245 Prior to each experiment, background VOC levels in the chamber were measured using
246 the PTR-MS for at least 1 hour. The PTR-MS was unavailable during experiments DN2–DN7.
247 The PTR-MS measurements of the protonated VOCs were background-corrected and averaged
248 at the end (over the last 1 h) of the fresh emissions' stabilization period, as well as at the end
249 (over the last 1 h) of each oxidation step. The final values are summarized in Table S1 of the
250 supplement, along with a classification of the identified VOCs by chemical structure and
251 functional groups.

252 Following the work of Barmet et al. (2012), the average OH radical concentration was
253 estimated from the decline/reduction in the concentration of the *m/z* 66 (protonated mass of d₉-
254 butanol). A d₉-butanol reaction rate coefficient equal to $3.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (at 295
255 K) was assumed (Allani et al., 2021).

256 **2.4 Collection of samples for offline analysis**

257 To investigate the WS-OP of both fresh and aged BB aerosol, as well as to measure their
258 organic (OC) and elemental carbon (EC) content, filter samples (Whatman Tissuquartz
259 2500QAO-UP, 47 mm, 0.45 *pose* size) were collected for 1 h at the end of the emissions'
260 equilibration period as well as at the end of each oxidation step. Prior to each experiment, blank
261 filter samples were also collected. Sampling was conducted using a filter holder coupled with
262 a PM_{2.5} cyclone positioned at the chamber exit. An external vacuum pump (Becker VT 4.10,
263 150 Mbar), operating at a flow rate of 16.7 L min⁻¹, was used, with its exhaust connected to a
264 HEPA filter (Whatman 6702-9500). Prior to sampling, the quartz filters were baked at 500 °C
265 for 10 h and left in the oven overnight, to remove any absorbed organic material. Each filter
266 was wrapped in prebaked aluminum foil and was kept before and after sampling in sterile
267 polystyrene petri dishes (50 mm, Pall Laboratory). After sampling all filters were stored at a
268 temperature of -20 °C, until WS-OP and OC/EC analysis.

269 Tenax sorbent tubes (stainless steel 3.5 x 1/4 in tubes, filled with Tenax TA, Markes
270 International) were used to collect VOC samples at specific time intervals. The custom-made
271 sampling system used included a mass flow controller (Alicat Scientific MC-500SCCM-
272 D/5M), the sampling tube, and a diaphragm vacuum pump (AIRPO, Model D2028B 12VDC),
273 operating at a flow of 0.3 L min⁻¹ for 1 to 1.5 h, resulting in total collected sample volumes
274 ranging from 18-27 L. After sampling all sorbent tubes were capped with long-term storage
275 brass caps containing PTFE ferrules and were stored in a freezer at -18 °C (Harshman et al.,
276 2016).

277 **2.5 TD-GCMS measurements**

278 The offline determination of VOCs/IVOCs involved a two-step desorption process. The
279 compounds adsorbed in the Tenax tubes were first desorbed using a thermal desorber (UNITY-
280 Air Server-xr, Markes International Ltd.). During thermal desorption (TD), the sorbent tube
281 underwent heating up to 280 °C for 10 min to release all its contents. Subsequently, the
282 desorbed VOCs were captured using Helium (as the carrier gas) and then deposited onto a
283 sorption cold trap at 20 °C. Subsequently, the temperature of the cold trap was gradually

increased from 20 °C to 300 °C at a rate of 100 °C s⁻¹, where it remained for 6 min. The retained analytes were then injected into a single quadrupole gas chromatograph-mass spectrometer (GSMS, Shimadzu model QP2010, with helium as carrier gas). The GC-MS system was equipped with an inert capillary column (MEGA-5MS, 30 m length, 0.25 mm inner diameter, 0.25 µm film thickness). The oven temperature of the GC column remained at 32°C for approximately 5 min, increasing to 320 °C at 5 °C min⁻¹. MS data acquisition was conducted in full scan mode, scanning within the *m/z* range of 35 to 300 amu. After the analysis, both the Tenax tubes and the GC column were cleaned. Calibration of the system was performed using standards of specific VOCs (EPA labelled) loaded in clean tubes. The species detected by TD-GCMS for a typical experiment (DN4) are presented in Table S2.

2.6 Oxidative potential (OP) measurements

The water-soluble oxidative potential (WS-OP) of redox-active aerosol components was measured using a DTT assay system (Fig. S1) at FORTH/ICE-HT in Patras, Greece, which is based on the semi-automated method of Fang et al. (2015). A detailed description of the system components, operation, measurement protocol, and data treatment, is provided in the Supplementary Information Section S1. Briefly, the fresh and aged aerosol samples (1.5 cm² punches of the collected quartz filters) are extracted, filtered, and incubated with DTT, in excess, under controlled conditions. The DTT is gradually oxidized by ROS in the sample, with its consumption rate (DTT activity, in nmol min⁻¹) determined spectrophotometrically by measuring the absorbance of 2-nitrobenzoic acid (TNB), the derivatization product of DTT with DTNB reagent, at 412 nm at specific time intervals. The WS-OP was calculated by correcting for blank samples and was normalized to the OC mass of the sample, yielding net DTT consumption rates (mass-normalized DTT activity – DTT_m) in pmol min⁻¹µg⁻¹ (Table S3). OC was quantified via thermal-optical analysis (NIOSH-870 protocol), with an estimated relative standard deviation of 15 ± 5% for replicate measurements.

3 Results and Discussion

3.1 Characterization of fresh olive wood emissions

Flaming conditions predominated in all experiments, as indicated by the estimated modified combustion efficiency (MCE) that ranged from 0.91 to 0.99 (Table 1) (Li et al., 2015; Briggs et al., 2016). The initial PM₁ concentration of the fresh olive wood burning emissions in the chamber varied from 47 to 177 µg m⁻³ (considering experiments DN1-DN8 and ND1-ND6).

315 This range of concentrations is representative of light to severe biomass burning pollution
316 episodes in polluted urban areas during wintertime (Chen et al., 2022; Luo et al., 2022; Othman
317 et al., 2022). The average AMS collection efficiency (CE) of the fresh emissions averaged 0.8
318 \pm 0.2, while the mean OA density, calculated following the approach of Kostenidou et al.
319 (2007), was $1.11 \pm 0.12 \text{ g cm}^{-3}$. Estimating the OA density from measured O:C and hydrogen-
320 to-carbon (H:C) ratios, following the Kuwata et al. (2012) approach, yielded an average of $1.18 \pm 0.03 \text{ g cm}^{-3}$.

322 The fresh aerosol primarily consisted of organics ($95 \pm 3 \%$) with OA concentrations
323 ranging from 46 up to $174 \mu\text{g m}^{-3}$ (Table 1). The rest of the aerosol consisted of BC ($2.4 \pm 2.4\%$), nitrates ($1.4 \pm 0.7\%$), sulfates ($0.7 \pm 0.4\%$), chloride ($0.4 \pm 0.2\%$) and ammonium ($0.2 \pm 0.1\%$). In experiment DN3, ammonium sulfate seeds were also present explaining the higher
326 initial sulfate (28%) and ammonium (10%) content.

327 The initial mass ratio of the organic aerosol to black carbon (OA/BC) ranged from 13 to
328 263. The OA/BC differs significantly depending on the combustion conditions. When MCE
329 values exceed 0.9, the OA/BC ratio can range between 0.3 to 10^5 (McClure et al., 2020), with
330 higher values indicating more efficient combustion (Novakov et al., 2005). The relatively low
331 primary BC concentrations in experiments DN3, DN5, DN6, and ND2, despite high MCEs of
332 0.96 – 0.99, likely reflect variability in combustion conditions and fuel composition during our
333 biomass burning experiments. Such variability can lead to differences in OA/BC ratios even
334 under high MCE conditions. Overall, our OA/BC values indicate relatively efficient wood
335 stove operation.

336 The average initial oxygen to carbon ratio (O:C) of the bbOA in all olive wood burning
337 experiments was 0.39 ± 0.04 . The average initial hydrogen to carbon ratio (H:C) was 1.67 ± 0.04 ranging from 1.62 to 1.76. These values are consistent with previously reported field and
338 smog chamber O:C and H:C observations for fresh biomass burning aerosols (Ng et al., 2010;
339 Sun et al., 2016; Lim et al., 2019; Kodros et al., 2020; He et al., 2024). The relatively low AMS
340 f_{44}/f_{60} ratios (1.56 ± 0.52) observed in the experiments are representative of fresh biomass
341 burning emissions from wildfires and laboratory wood burning chamber studies (Li et al.,
342 2023).

344 The average high-resolution (HR) fresh bbOA mass spectrum obtained by AMS for the
345 olive wood burning experiments (Fig. S2a) showed predominant fragments at m/z 29 (CHO^+ ,
346 C_2H_5^+), 41 (C_2HO^+ , $\text{C}_2\text{H}_3\text{N}^+$, C_3H_5^+), 43 ($\text{C}_2\text{H}_3\text{O}^+$, C_3H_7^+), 55 ($\text{C}_3\text{H}_3\text{O}^+$, C_4H_7^+), 57 ($\text{C}_3\text{H}_5\text{O}^+$),
347 69 (C_5H_9^+ , $\text{C}_4\text{H}_5\text{O}^+$) and 73 ($\text{C}_3\text{H}_5\text{O}_2^+$), suggesting a significant presence of alkenes, alkanes,
348 and fatty acids. The observed signals at m/z 44 (CO_2^+) and m/z 60 ($\text{C}_2\text{H}_4\text{O}_2^+$), are typical tracer

349 fragments for OOA and bbOA, respectively. The obtained fresh bbOA spectrum profile is quite
350 similar to those reported in previous biomass burning chamber studies that examined wood or
351 pellets burning (He et al., 2010; Kodros et al., 2020, 2022; Florou et al., 2023). The average
352 theta angle θ of the fresh bbOA spectra, calculated for all possible pairs of the olive wood
353 burning experiments in the present study, was on average $9^\circ \pm 7^\circ$ (Fig. S3), indicating a
354 generally similar composition of fresh bbOA.

355 Based on PTR-MS measurements, oxygen-containing compounds contributed the largest
356 portion of the protonated VOCs identified in the fresh emissions (Fig. 2a). Aldehydes,
357 including acetaldehyde (m/z 45; 12.9 ± 3.7 ppb), formaldehyde (m/z 31; 1.6 ± 0.7 ppb), acrolein
358 (m/z 57; 3.5 ± 1.5 ppb), and hexenal (m/z 99; 2.1 ± 1.5 ppb), along with saturated ketones like
359 acetone (m/z 59; 4.7 ± 2.0 ppb) and unsaturated ones such as ethyl vinyl ketone (m/z 85; $2.1 \pm$
360 1.4 ppb), contributed a total of 32.5 ppb, accounting for 19.7% of the measured VOCs.
361 Carboxylic acids, such as formic (m/z 47) and acetic (m/z 61) acids, averaged a total
362 concentration of 8.2 ppb, comprising 5% of the total VOCs (Fig. 2a). The main identified
363 alcohol was 1-butanol (m/z 75), which accounted for 3% of the VOC composition, with
364 concentrations varying from 2.1 ppb to 9.5 ppb across experiments (Table S1). Furans and their
365 derivatives (m/z 69, 83, 113, 147) had an average concentration of 7.9 ppb, accounting for 5%
366 of the total measured VOCs (Fig. 2a).

367 Cyclic and heterocyclic aromatic compounds (with 1-ring or 2-ring structure) contributed
368 approximately 10% to the total VOCs. This includes benzene (m/z 79; 1.5 ± 1.0 ppb) and its
369 substituted forms (m/z 139, 151, 155; 3.3 ppb), toluene (m/z 93; 1.2 ± 0.8 ppb), phenol (m/z 95;
370 2.1 ± 1.7 ppb) and its substituted forms (m/z 121, 135, 149, 169; 2.4 ppb in total), and C8
371 aromatics, including xylenes, (m/z 107; 3.2 ± 2.4 ppb). Other minor contributors, with varying
372 concentrations across experiments, included terpenes and terpenoids (m/z 81 and m/z 137),
373 averaging 2.9 ppb, and naphthalene (m/z 129), averaging 1.4 ± 1.1 ppb. The presence of these
374 aromatic species is corroborated by the Tenax samples, along with compounds like
375 benzonitrile, trimethoxy- benzene, methylindene and benzofurans. For a typical sample of fresh
376 emissions, chromatographic analysis yielded a variety of phenolic species other than phenol,
377 with functional groups including several alkyl groups (methyl-, dimethyl-,ethyl), but also with
378 oxygenated functional groups (methoxy-, dimethoxy-) as presented in Table S2. Furans
379 comprised approximately 11% of the identifiable VOCs in the offline analysis, with the most
380 prominent being furfural, followed by methyl-furans and methyl- furancarboxaldehyde. In
381 terms of polyaromatic species, similarly to the PTR-QMS observations, the most abundant was
382 naphthalene, while there were several alkyl-substituted naphthalenes present in comparable

383 concentrations. Trace amounts of higher ring number PAHs (e.g., phenanthrene) were also
384 observed. Most of these compounds have been previously reported in biomass burning ambient
385 and laboratory studies (Stockwell et al., 2014; Bruns et al., 2017; Sun et al., 2019; Desservetaz
386 et al., 2023; Florou et al., 2023).

387 The average WS-OP of the fresh olive wood burning aerosol was $42.9 \pm 16.1 \text{ pmol}$
388 $\text{min}^{-1} \mu\text{g}^{-1}$, comparable to toxicity levels reported in literature for the water- and methanol-
389 soluble portion of freshly emitted bbOA, which were also estimated using the acellular DTT
390 assay protocol (Cao et al., 2021; Wang et al., 2023). The WS-OP values ranged from $21.2 \pm$
391 $5.7 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ (in DN3) to $79 \pm 11.3 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ (in DN7) (Table S3).

392 3.2 Effect of pine kindling on fresh olive wood emissions

393 In experiments ND7 and ND8, where pine kindling sticks were mixed with olive wood logs,
394 the PM_1 concentration during the characterization period was $126 \mu\text{g m}^{-3}$ and $276 \mu\text{g m}^{-3}$,
395 respectively (Table 1). High amounts of BC ($67 \mu\text{g m}^{-3}$ and $190 \mu\text{g m}^{-3}$) were produced in these
396 experiments, constituting more than half (53% and 69%) of the total fresh PM_1 mass. Given
397 the efficient combustion conditions (MCE ranged from 0.96 to 0.98), these elevated BC levels
398 were likely related to the properties of the pine (e.g., higher moisture, ash, and carbon content)
399 compared to the olive logs (Nyström et al., 2017; Trubetskaya et al., 2021). The initial O:C of
400 the fresh bbOA was 0.23 in experiment ND7 and 0.36 in ND8. The O:C in ND7 was the lowest
401 of all experiments.

402 Comparison of the average fresh bbOA mass spectrum from olive-pine mixed emissions
403 with that of olive logs burning (Fig. S4a) reveals significantly higher peaks at m/z 28 (CO^+ ;
404 +69%), 41 (+36%), 44 (+40%), and 73 (+39%), indicating an increase in certain oxygenated
405 organic species. Additionally, the stronger fractional signals at m/z 91 (C_7H_7^+ ; 104%), and at
406 higher masses, such as m/z 105 (C_8H_9^+ ; 154%), 129 ($\text{C}_{10}\text{H}_9^+$; +166%), suggest a higher relative
407 contribution of cyclic hydrocarbons, PAHs, and other aromatic compounds. The theta angle of
408 the two average fresh spectra was approximately 20° , implying distinct chemical composition
409 of olive-pine mixed emissions. For the VOCs, while most aromatic compound concentrations
410 were lower in the mixed fuel emissions, their relative contribution to the total VOCs was higher
411 (17.7% vs. 9.6% in olive wood alone), suggesting differences in pyrolysis pathways and
412 thermal degradation mechanisms between the two wood types (Fig. 2a,b). Additionally,
413 monoterpenes (m/z 137 and their fragment m/z 81) showed a significant increase in the mixed
414 emissions, rising from 2.9 ppb to 9.1 ppb, highlighting the influence of pine higher terpene
415 content on VOC composition (Fig. 2). The variations observed in aldehydes, ketones, and

416 heavier PAHs were within the experimental uncertainty. A more detailed breakdown of the
417 absolute and CO₂-normalized VOC concentrations, including experiment-specific observations
418 and comparisons, is provided in the Supplement (Fig. S5, Table S1).

419 No changes were observed in the WS-OP of the fresh olive-pine mixed emissions
420 compared to fresh olive wood emissions. The corresponding DTT_m values in experiments ND7
421 and ND8 were $44.7 \pm 4.0 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ and $41.1 \pm 3.4 \text{ pmol min}^{-1} \mu\text{g}^{-1}$, respectively (Table
422 S3). Similar WS-OP values (25 to 45 pmol min⁻¹ μg⁻¹) were reported by Wang et al. (2023) for
423 fresh bbOA from pine combustion under smoldering conditions (MCE=0.61). These values are
424 comparable to the average WS-OP measured in this study for olive wood emissions ($42.9 \pm$
425 $16.1 \text{ pmol min}^{-1} \mu\text{g}^{-1}$).

426 3.3 Typical day-to-night (DN) aging experiment

427 During a typical dry DN oxidation experiment (DN1), two hours before the start of oxidation
428 (at $t = -2 \text{ h}$), $70 \pm 0.4 \mu\text{g m}^{-3}$ of fresh olive wood burning PM₁ (91 % OA) were injected into
429 the chamber along with approximately 14 ppb of O₃ (Fig. 3). During the emissions equilibration
430 period (-2 to 0 h), the average O:C was 0.43, H:C was 1.67, OA/BC was 17, and the f_{44}/f_{60}
431 ratio was 1.37 (Table 1), and remained quite stable. The WS-OP of the fresh aerosol was
432 estimated at $51.4 \pm 4.7 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ (Table S3).

433 At time zero ($t = 0 \text{ h}$), daytime oxidation of the emissions was initiated by turning on the
434 UV lights of the chamber, without adding any oxidants, and allowing the process to proceed
435 for 2 h. Under the given experimental conditions, each hour of UV exposure in the simulation
436 chamber corresponds to approximately 2 hours of atmospheric photochemical oxidation,
437 assuming an average OH concentration of $1.5 \times 10^6 \text{ molecule cm}^{-3}$ (Liu et al., 2018; Nault et al.,
438 2018). In DN1, the average OH concentration during this 2-h oxidation period, estimated from
439 the decay of d9-butanol, was $3.2 \times 10^6 \text{ molecules cm}^{-3}$, corresponding to an equivalent daytime
440 exposure of 4.3 h. The average O₃ concentration was $33 \pm 14 \text{ ppb}$.

441 During this 2-h period the OA (wall loss corrected) increased by $22 \mu\text{g m}^{-3}$ (34%).
442 Organic nitrates also increased by 54% and O₃ reached 56 ppb. The H:C decreased by 4% while
443 the f_{44}/f_{60} more than doubled (3 times higher). The O:C increased from 0.43 to 0.58 (35%),
444 consistent with previous observations (Tiitta et al., 2016). The change in the HR-AMS
445 spectrum of the day-aged OA was modest ($\theta = 8^\circ$). The photochemical processing resulted in
446 an 51% increase of WS-OP ($77.6 \pm 6.3 \text{ pmol min}^{-1} \mu\text{g}^{-1}$) of the bbOA (Table S3). Similar
447 increases of OP have also been reported in previous studies (Wong et al., 2019; Lei et al., 2023;
448 Wang et al., 2023).

449 Furans, terpenes and cyclic aromatic hydrocarbons, major precursors of SOA production,
450 were significantly reduced during daytime (Fig. S6). Aromatic hydrocarbons including toluene
451 (*m/z* 93), phenol (*m/z* 95), styrene (*m/z* 105), C8 aromatics (*m/z* 107), C9 aromatics (*m/z* 121),
452 and creosol/2-methoxy-4-methylphenol (*m/z* 139) reacted and their levels were reduced (Fig.
453 S6b). Daytime aging also led to small changes (1 ppb or less) in the concentrations of
454 formaldehyde, acetaldehyde, acetone, acetic acid, and heptanal which however could also be
455 attributed to chamber background effects. According to TD-GCMS analysis, maleic anhydride
456 was also identified at *m/z* 99 in the aged emissions (Table S2).

457 Reaction with OH radicals was estimated to be the dominant daytime oxidation pathway
458 for most of the examined VOC species. For methyl vinyl ketone (*m/z* 71), benzene (*m/z* 79),
459 monoterpenes fragment (*m/z* 81), methyl furan (*m/z* 83), toluene (*m/z* 93), phenol (*m/z* 95), and
460 C8 aromatics (*m/z* 107, assuming o-xylene), the observed reductions in concentration were
461 close to the theoretically expected values (Table S4). Lower than predicted reductions, due to
462 OH oxidation, were observed for furan/isoprene (*m/z* 69; 32% less), ethyl vinyl ketone (*m/z* 85;
463 21% less), styrene (*m/z* 105; ~30% less), C9 aromatics (*m/z* 121; assuming 1,2,3
464 trimethylbenzene; 23% less), monoterpenes (*m/z* 137; assuming a-pinene; 58% less), and
465 creosol (*m/z* 139; 60% less). This discrepancy from theoretical predictions is likely due to the
466 presence of other compounds at the same *m/z* signal, including isomers, that react more slowly.
467 Ozone-induced oxidation was a minor consumption mechanism for most of the VOCs (k_{O_3}
468 ranged from 10^{-17} to 10^{-22} molecule $^{-1}$ cm 3 s $^{-1}$) (Table S5), with the exception of monoterpenes
469 and their fragments (*m/z* 137 and 81).

470 At the end of the daytime oxidation ($t = 2$ h), the UV lights were turned off, and nighttime
471 oxidation of the already aged emissions was conducted for two hours (2–4 h) by injecting
472 additional 80 ppb of O₃ and 130 ppb of NO₂ into the chamber. The reaction of NO₂ and O₃
473 resulted in the decrease of their levels along with production of NO₃ radical (Fig. 3d). Although
474 the NO₃ radical concentration was not directly measured in this study, it was estimated to range
475 between 1 and 5×10^8 molecule cm $^{-3}$ (typical for nighttime urban environments) based on
476 previous dark aging experiments conducted with the same chamber setup under similar
477 conditions (Kodros et al., 2022; Florou et al., 2023). This corresponds to approximately 4–7
478 hours of equivalent atmospheric exposure.

479 Nighttime aging led to further bbSOA production, with OA increasing by 17%, reaching
480 100 $\mu\text{g m}^{-3}$ (Fig. 3a). Organic nitrate increased by 0.62 $\mu\text{g m}^{-3}$ (72%) and total nitrate by 0.94
481 $\mu\text{g m}^{-3}$ (53%) compared to their daytime levels. Nighttime enhancement of organic nitrate has

482 been also reported in other studies (Kodros et al., 2020, 2022; Florou et al., 2023). The O:C
483 ratio slightly increased from 0.58 to 0.61 (5%). A small decrease (<1%) in H:C was observed,
484 while the f_{44}/f_{60} increased further by 19% due to the nighttime oxidation. At the end of the DN
485 oxidation cycle the theta angle of the aged aerosol compared to the fresh one was 23° (Fig. 3e),
486 suggesting significant differences. The final DTT_m of the aged emissions was 68.7 ± 6.0 pmol
487 min⁻¹ μg^{-1} , higher by 11% compared to the daytime measured WS-OP and 34% higher than
488 the fresh one (Table S3).

489 The most notable VOC increases were observed for formaldehyde (*m/z* 31), which
490 increased from 1.8 to 2.2 ppb (22%); hexenal/maleic anhydride (*m/z* 99), which increased from
491 2.7 to 3.7 ppb (37%), and 2,3-benzofurandione (*m/z* 149), that increased from 0.2 to 0.3 ppb
492 (50%) (Fig. S6). Further decreases in the gas-phase concentrations of furan (*m/z* 69) by 0.4 ppb
493 (61%), methylfuran (*m/z* 95) by 0.35 ppb (26%), phenol (*m/z* 95) by 1.1 ppb (86%), and styrene
494 (*m/z* 105) by 0.4 ppb (56%), were observed (Fig. S6).

495 3.4 Typical night-to-day (ND) aging experiment

496 ND1 is as a typical night to day oxidation experiment (Fig. 4). The initial PM₁ concentration
497 injected into the chamber was $121 \mu\text{g m}^{-3}$, with OA contributing 97%. The transition from fresh
498 emissions to nighttime (0-2 h) and then daytime (2-4 h) oxidation resulted in significant
499 changes in both the particle and gas phase. OA concentration increased by $78 \mu\text{g m}^{-3}$ (65%
500 increase) during the nighttime oxidation and by $34 \mu\text{g m}^{-3}$ (an additional 17% increase) during
501 daytime oxidation. During nighttime, total nitrate increased from 0.66 to $5.4 \mu\text{g m}^{-3}$, driven by
502 production of organic nitrate. During daytime, organic nitrate levels decreased slightly (8%)
503 compared to nighttime. The ND cycle also led to increases in ammonium levels first by $0.9 \mu\text{g}$
504 m^{-3} (from 0.3 to $1.2 \mu\text{g m}^{-3}$) and then by $0.3 \mu\text{g m}^{-3}$ (from 1.2 to $1.5 \mu\text{g m}^{-3}$).

505 The theta angle between the HR-AMS spectra of fresh and night-aged OA was 13° while
506 at the end of the ND oxidation cycle the overall change of spectrum of the aged aerosol
507 compared to the fresh one was 24° (Fig. 4e), similar to that observed during the DN cycle. The
508 f_{44}/f_{60} ratio increased from 1.7 to 5.5 during night and from 5.5 to 9 during the day, while the
509 H:C decreased from 1.67 to 1.61 and 1.58, respectively (Tables 1 and 2). The O:C increased
510 by 34% (from 0.41 to 0.55) at night with a further 20% enhancement (from 0.55 to 0.66)
511 observed after the day aging. DTT_m increased from 31.8 ± 2.8 pmol min⁻¹ μg^{-1} for the fresh
512 aerosol to 42.5 ± 3.1 pmol min⁻¹ μg^{-1} for night-aged aerosol (33 % increase) and to 71.0 ± 5.7
513 pmol min⁻¹ μg^{-1} for day-aged aerosol (67% increase) (Table S3). Unlike experiment DN1,

514 which exhibited an initial increase (daytime) followed by a decrease (nighttime) in oxidative
515 potential, experiment ND1 showed a monotonic increase with aging (Fig. 5).

516 During daytime oxidation, the OH concentration was 4.2×10^6 molecule cm⁻³, which
517 corresponds to approximately 5.3 h of equivalent photochemical atmospheric aging. O₃ levels
518 increased by 88 ppb, rising from 96 ppb to 184 ppb by the end of daytime oxidation.

519 Similar trends and concentration levels were observed for most identified VOCs in
520 experiments ND1 and DN1 (Fig. S6a and Fig. S7a). The observed differences in the percentage
521 reduction of key bbSOA precursors, such as aromatic compounds and furans, between DN1
522 and ND1 (Fig. S6b and Fig. S7b) suggest that the variability in precursor depletion dynamics
523 is primarily influenced by differences in oxidant availability, photochemical reactivity, and the
524 chemical composition of the emissions.

525 **3.5 Results of all dry DN and ND experiments**

526 The average OA production (including organic nitrate) observed in the DN (DN1-DN8) and
527 ND (ND1-ND6) experiments at the end of a complete diurnal aging cycle was $51 \pm 22 \mu\text{g m}^{-3}$,
528 ranging from 19 to $136 \mu\text{g m}^{-3}$ (Fig. 6a). These values correspond to a total OA mass increase
529 ranging from 35% to 91% compared to the fresh OA. In both oxidation cycles the majority of
530 the produced OA was formed during the first stage of oxidation. This is consistent with the
531 higher availability of precursor VOCs initially. No significant differences were observed in the
532 levels of OA produced in experiments ND7 and ND8 compared to the rest (Fig. 6a). This
533 suggests that, although the use of pine kindling resulted in a different composition of fresh
534 wood emissions, its overall impact on SOA production was less significant compared to the
535 influence of oxidation conditions.

536 In some cases, the ND oxidation cycle resulted in higher SOA production (Fig. 6a and
537 Fig. 7b). For instance, in experiment ND1, an OA mass increase of over 90% was observed at
538 the end of the ND cycle. Similarly, in ND5, the OA increased by 78% compared to fresh. The
539 enhanced SOA observed in ND1 and ND5 appears to be linked to their experimental
540 conditions. Both experiments had high initial OA concentration in the fresh emissions (Table
541 1) and higher initial O₃ levels (at around 30 ppb) compared to the rest of the ND experiments,
542 which had an average level of 14 ± 2 ppb. These conditions suggest that the enhanced SOA
543 formation in ND1 and ND5 was driven by the higher availability of precursors, oxidants, and
544 existing OA mass, which together facilitated higher secondary production. However, statistical
545 analysis across the full dataset did not confirm that the ND oxidation cycle generally leads to
546 higher SOA production compared to the DN cycle.

547 The experiments in this study were performed under relatively low RH conditions (12–
548 24%) to minimize condensation and artifacts during sampling. While this approach enables
549 comparison across oxidation scenarios, it does not capture the effects of higher RH and
550 associated aerosol liquid water content, which are often significant during atmospheric
551 nighttime aging. Aerosol water can enhance multiphase chemistry and SOA formation, and
552 thus our results should be interpreted in the context of this limitation.

553 During both DN and ND oxidation cycles, the average density of the aged aerosol
554 increased from 1.17 to 1.33 g cm⁻³, corresponding to approximately 13% increase in both cases
555 (Table 2). Similar increases in bbSOA density, in the range of 1.31–1.34 g cm⁻³, have been also
556 reported in other chamber studies during dark aging (Li et al., 2015; Florou et al., 2023).

557 At the end of the DN oxidation cycle, the average O:C was 0.61 ± 0.04 , 56% higher than
558 the average O:C (0.39 ± 0.03) of the fresh bbOA in our experiments. Almost 90% of this
559 increase occurred during daytime (O:C increased from 0.39 to 0.59; Δ O:C= 0.2) (Fig. 7c), while
560 the subsequent nighttime oxidation resulted in an additional 10% increase in O:C (from 0.59
561 to 0.61). For the ND cycle, the O:C increased from 0.40 ± 0.06 for the fresh emissions to 0.61
562 ± 0.06 (a 54% increase) at the end of the cycle (Fig. 7d). In this case, the contributions of the
563 nighttime and daytime oxidation stages to the increase in O:C were almost equal, at 55% and
564 45%, respectively. In both oxidation cycles the final O:C is similar, but the importance of each
565 oxidation stage depends on the order (oxidation sequence).

566 In all experiments, the OA AMS spectra changed progressively with aging. The
567 predominant differences between the average fresh and aged bbSOA spectra at the end of DN
568 cycle were found for *m/z* 28 (more than 2-fold increase) and 44 (1.5-fold increase) (Fig. S2).
569 Significant decreases were observed for *m/z* 60 (37%) and 91 (36%), 115 (38%) and 137 (42%).
570 The same changes were observed comparing the fresh and the ND aged bbSOA (Fig. S2).
571 During the DN cycles the main changes in the OA spectrum occurred during the first (daytime)
572 oxidation regime, with a theta angle of $26 \pm 4^\circ$ on average (Fig. 7e). The further change in the
573 second step (nighttime) was $4 \pm 2^\circ$ on average. In contrast, a more balanced change was
574 observed in the evolution of the theta angle over time during the ND cycle (Fig. 7f). The
575 average OA spectrum shifted by $19 \pm 4^\circ$ on average during nighttime, followed by an additional
576 10° shift during UV exposure. Overall, at the end of both cycles, regardless of the followed
577 oxidation path, the final average bbSOA spectra were almost identical ($\theta < 3^\circ$) (Fig. 8).

578 To evaluate the environmental relevance of the chamber-produced bbSOA, the final DN
579 and ND bbSOA spectra from this study were compared to the spectra of oxidized OA, that was
580 measured at a remote site in Greece (Pertouli) during the summer of 2022 (Vasilakopoulou et

581 al., 2023). Most of this aged OA was aged emissions of wildfires from different regions of
582 Europe. Two oxygenated OA (OOA) factors; a more-oxidized OOA (MO-OOA) and a less-
583 oxidized OOA (LO-OOA) were needed to reproduce the observed OA spectra. Our final
584 bbSOA spectra showed greater similarity to the LO-OOA factor, with a theta angle of
585 approximately 16°, and were more distinct (θ at around 30°) from the MO-OOA spectra
586 measured in Pertouli. This suggests that our experiments simulated the earlier stages of
587 atmospheric aging, while additional aging processes likely occur under ambient conditions (see
588 also Fig. S8).

589 Changes in VOC levels of aged emissions across all DN (Fig. S9) and ND (Fig. S10)
590 experiments were consistent with those observed in the typical experiments DN1 and ND1.
591 Both aging cycles resulted in a significant decrease in the concentration of furans and their
592 derivatives, cyclic and polycyclic aromatic hydrocarbons and terpenes. The day aged Tenax
593 samples indicated a moderate decrease in aromatic species like toluene (~20%) and benzene,
594 which is consistent with their lower reaction rates compared to higher carbon number
595 aromatics. Rapid decrease in concentration was noted for species like phenol (~45%) and
596 furfural (~75%), as well as their structurally related compounds. Related products, including
597 2-nitro-phenol, 4-methyl-2-nitro-phenol, maleic anhydride, and 3-methyl-2,5-furandione, were
598 also detected. p-Benzoquinone was also formed, possibly as a result of the reacted aromatics.
599 Benzofuran was absent from the aged samples; instead, 2,3-benzofurandione was detected. At
600 the same time a progressive increase in aldehydes and ketones was observed, along with
601 significant increases in carboxylic acids, such as formic (m/z 47) and acetic (m/z 61). The
602 benzaldehyde concentration increased, accompanied by the formation of benzeneacetaldehyde,
603 2-hydroxy-benzaldehyde, 3-ethyl-benzaldehyde. A notable increase in butanol was also
604 observed in the Tenax samples, along with the formation of straight-chain aldehydes (hexanal
605 to undecanal). The GC-MS measurements for the night-aged samples following daytime
606 processing were consistent with those of the PTR-MS. Furfural was no longer detected, while
607 a further decrease in phenol and increases in benzaldehyde and butanol were noted. A
608 cumulative depiction of the experiment's progression in terms of oxidation and VOCs detected
609 by the GC-MS, is provided in Fig. S11. Similar results were obtained for the other experiments.

610 3.6 Effect of DN and ND oxidation cycle on WS-OP

611 The water-soluble oxidative potential (WS-OP) of fresh emissions ranged from 21 pmol min⁻¹
612 μg^{-1} to 79 pmol min⁻¹ μg^{-1} and that of aged wood-burning emissions from 39 pmol min⁻¹ μg^{-1}
613 to 127 pmol min⁻¹ μg^{-1} (Table S3). These values fall within the range reported in literature for

614 fresh bbOA and aged bbOA (Verma et al., 2015; Tuet et al., 2017; Bates et al., 2019;
615 Daellenbach et al., 2020; Wang et al., 2023).

616 Figure 6b presents the absolute (ΔDT_{m} , pmol min⁻¹ μg^{-1}) and percent changes in DT_{m}
617 activity for each experiment. In all DN experiments, WS-OP followed a consistent pattern of
618 increasing during daytime oxidation and decreasing during subsequent nighttime aging, except
619 for DN6 and DN8, where it continued to rise, suggesting experiment-specific chemical
620 variability. Similarly, in the ND experiments, WS-OP generally increased during both
621 nighttime and daytime oxidation, except for ND4 and ND7, which exhibited a reduction during
622 the second daytime step, indicating that the extent of oxidative enhancement can depend on the
623 initial emission composition and oxidation conditions.

624 The evolution of average WS-OP of fresh and aged emissions, considering all
625 experiments and both oxidation cycles, (Fig. 9) was similar to that observed in experiments
626 DN1 and DN1 (Fig. 5). The average WS-OP values for the DN cycle were 47.9 ± 17.7 pmol
627 min⁻¹ μg^{-1} for fresh emissions, 93 ± 27 pmol min⁻¹ μg^{-1} for daytime-aged emissions,
628 representing a 94% increase compared to fresh aerosol, and 73.4 ± 13.3 pmol min⁻¹ μg^{-1} for
629 nighttime-aged emissions, indicating a 21% reduction compared to daytime-aged WS-OP (Fig.
630 9a). For the ND oxidation cycle, the average WS-OP of the fresh emissions were 37.8 ± 10.6
631 pmol min⁻¹ μg^{-1} . After nighttime aging, it increased by 44% to 54.4 ± 13.6 pmol min⁻¹ μg^{-1} , and
632 following daytime aging, it further increased by 62.9 ± 20.4 pmol min⁻¹ μg^{-1} (Fig. 9b).

633 Statistical analysis (t-test) showed that aged WS-OP values were significantly higher than
634 those of fresh emissions in all experiments, for both oxidation cycles. Additionally, for the DN
635 oxidation cycle, a statistically significant difference was observed between the WS-OP of
636 nighttime-aged (NO₃-oxidized) and daytime-aged (UV-oxidized) emissions. Further details on
637 the statistical analysis are provided in Supplementary Section S4 and Table S9.

638 The overall increase in WS-OP at the end of the two oxidation cycles was $53 \pm 34\%$ for
639 the DN cycle and $66 \pm 8\%$ for the ND cycle, indicating that both daytime and nighttime aging
640 of biomass burning emissions consistently enhanced their oxidative potential. Our results
641 suggest that the sequence of chemical processes – whether the emissions are first oxidized by
642 OH or NO₃ – can significantly affect the temporal evolution of OP. This, in turn, may also
643 influence the health impacts associated with exposure to biomass burning plumes, depending
644 on the time of day when the emissions occur. Although daytime boundary layer dynamics
645 generally favour mixing and dilution of pollutants, daytime burning in urban environments may
646 actually be as or more aggravating than nighttime burning, owing to the enhanced oxidative
647 processing of the emissions occurring in the former stage of the diurnal cycle.

648 The correlation of WS-OP with produced OA and degree of oxidation (O:C) were also
649 investigated. Three OA types were considered (fresh, day-aged, and night-aged). WS-OP was
650 not well correlated with either the O:C ratio ($R^2 < 30\%$) of the organic aerosol or its fresh and
651 aged fractions (R^2 up to 34%) (Fig. S12). This implies that the link between bbOA aging, and
652 WS-OP change is complex and cannot be just described by one variable. Weak correlations
653 ($R^2 < 0.3$) between WS-OP (both fresh and aged) and most of the rest of the aerosol components
654 (Tables 1 and 2) were also observed (Figs. S13–S17). An exception was the nighttime WS-OP,
655 which showed a stronger correlation with inorganic nitrate ($R^2 > 0.3$) in both oxidation cycles.
656 In addition, after one complete diurnal cycle, WS-OP showed a stronger correlation with OC,
657 with R^2 values reaching up to 0.65 (DN cycle) and 0.53 (ND cycle) (Figs. S15 and S17),
658 highlighting the growing influence of organic components. These results point to a complex
659 interplay of chemical processes governing WS-OP variability.

660 It is important to note that our study focused exclusively on the water-soluble fraction of
661 OP and thus does not capture contributions from relatively water insoluble components (e.g.,
662 brown carbon and metals), which can significantly influence total oxidative properties (Gao et
663 al., 2020b). Atmospheric aging usually tends to increase OA solubility through oxidative
664 functionalization, which may move compounds with high OP to the aqueous phase during the
665 extraction. Previous field observations support this hypothesis. Wong et al. (2019) reported
666 that the OP of bbOA increased during the first day of atmospheric transport, even as OC and
667 water soluble organic carbon (WSOC) concentrations decreased, indicating that aging removes
668 less reactive compounds while producing more DTT-active compounds. The majority of this
669 activity (around 80%) was associated with the water-soluble fraction, highlighting its dominant
670 role in driving the oxidative properties of aged bbOA. These findings emphasize the crucial
671 role of water-soluble aerosol components in driving OP, while also underscoring the need for
672 studies that simultaneously capture both soluble and insoluble contributions.

673 The observed WS-OP trends could be also linked to the VOC composition and oxidation
674 processes in the DN and ND cycles. The WS-OP of fresh emissions exhibited positive
675 correlations ($0.2 < R^2 < 0.6$) with several VOCs, including aldehydes (m/z 45, 57), benzene
676 (m/z 79), monoterpenes (m/z 81), toluene (m/z 93), phenol (m/z 95) and its substituted forms
677 (m/z 121, 135), styrene (m/z 105), xylenes (m/z 107), and naphthalene (m/z 129) (Fig. S13).
678 Among these, the strongest correlations were observed for benzene ($R^2 = 0.56$), phenol ($R^2 =$
679 0.56), and styrene ($R^2 = 0.56$), suggesting that the products of aromatic hydrocarbons and
680 phenolic compounds may contribute significantly to the WS-OP of fresh bbOA. The DN cycle
681 exhibits a high daytime WS-OP due to the OH oxidation of VOCs such as furans, aromatics,

682 and phenolic compounds, leading to the formation of reactive species like, 4-methyl-2-
683 nitrophenol, and highly reactive p-benzoquinone. In contrast, the ND cycle shows a gradual
684 increase in WS-OP, with the exception of experiments ND4 and ND7 (Fig. 6b). These
685 contrasting trends likely reflect differences in the subsequent aging of oxidation products. In
686 the DN case, the decrease in intrinsic DTT activity during nighttime oxidation may result from
687 the formation of compounds with lower OP (less redox-active), lower solubility, or both, when
688 daytime OH oxidation products are further processed by NO_3 radicals. In some specific cases
689 (DN6, DN8; Fig. 6b), WS-OP continued to increase at night, suggesting potential ongoing
690 nighttime formation of soluble or redox-active compounds under certain oxidation conditions.
691 Conversely, in the ND case, the reverse sequence of reactions appears to generate products
692 with higher OP or solubility or both. Importantly, this divergence does not seem to be
693 controlled by the bulk O:C ratio, but rather by differences in chemical structure of the later-
694 generation products. For example, after nighttime oxidation in the ND cycle the WS-OP was
695 positively correlated with formic acid (m/z 47; $R^2 = 0.24$), toluene (m/z 93; $R^2 = 0.28$),
696 naphthalene (m/z 129; $R^2 = 0.25$) and substituted forms of phenol (m/z 121, 135; $R^2 = 0.25$) and
697 benzene (m/z 151, 155; R^2 up to 0.2) (Fig. S18). After further daytime oxidation WS-OP was
698 only correlated with m/z 121 (trimethylbenzene; $R^2 = 0.20$) (Fig. S19). Oxidized derivatives of
699 phenol and benzene formed during atmospheric aging tend to exhibit higher water solubility
700 than their parent compounds, as the functionalization increases molecular polarity and
701 hydrogen-bonding capacity. More detailed work is needed to identify these later generation
702 products and to quantify both their OP and water solubility.

703 After one complete diurnal cycle, WS-OP values in both cycles converge, indicating that
704 oxidative processes in both pathways ultimately lead to similar levels of oxidation products.
705 This convergence highlights the role of both fast and slow oxidation mechanisms in
706 determining aerosol OP and suggests that even VOCs with lower reactivity can significantly
707 contribute to aerosol toxicity over extended atmospheric aging.

708 4 Conclusions

709 This study investigated how different diurnal oxidation sequences - daytime-first (DN)
710 and nighttime-first (ND)- affect the formation of OA, the gas-phase composition, and the
711 oxidative potential of emissions produced by burning olive wood and olive wood mixed with
712 pine throughout a complete diurnal aging cycle. Both DN and ND oxidation cycles resulted in
713 enhancement in OA levels by 35%-90%, demonstrating efficient SOA production under both
714 OH- and NO_3 -dominated oxidation conditions. The mixture of olive wood with pine kindling

715 resulted in a different composition of fresh emissions, however its overall impact on SOA
716 production was less significant compared to the influence of oxidation conditions.

717 The DN cycle favoured rapid daytime oxidation, producing highly oxygenated species
718 and increasing the O:C ratio of the fresh emissions from 0.39 ± 0.04 to 0.59 ± 0.04 during
719 daytime, reaching finally at 0.61 ± 0.03 during nighttime. The ND cycle showed a gradual
720 (two-steps) oxidation increase with a similar final O:C ratio of 0.61 ± 0.06 . DN cycle exhibited
721 rapid spectral changes during daytime oxidation, while ND cycles showed a more balanced
722 two-step evolution. The convergence of O:C ratios after one diurnal cycle imply that multiple
723 oxidation pathways can yield comparable end products through distinct chemical routes. At the
724 end of both cycles, the final average bbSOA spectra were nearly identical ($R^2 > 0.99$; $\theta < 3^\circ$),
725 indicating that the aerosol was transformed into similar aged OA regardless of the initial
726 oxidation step (daytime or nighttime) at the start of the cycle. The chamber-produced bbSOA
727 resembled the less-oxidized OOA in a field campaign in Greece, with the corresponding OA
728 dominated by aged bbOA, suggesting that the present study has addressed only part of the
729 aging that occurs in the atmosphere.

730 Both the DN and ND oxidation cycles effectively reduced the concentration of bbSOA
731 precursors (e.g., furans, aromatic hydrocarbons, terpenes). Concurrently, a progressive increase
732 in aldehydes and ketones was observed in both cycles, alongside increases in carboxylic acids,
733 such as formic and acetic acids. The higher daytime WS-OP in the DN cycle likely results from
734 rapid OH oxidation of reactive VOCs (e.g., furans, aromatics, phenolics), producing redox-
735 active species such as nitrophenols and quinones. The subsequent nighttime decrease in DTT
736 activity suggests formation of less soluble, less redox-active products. In contrast, the ND cycle
737 accumulated moderately oxidized intermediates during nighttime NO_3^- oxidation, which were
738 further transformed into more soluble, higher-OP compounds during daytime processing. Thus,
739 variations in molecular structure and solubility, rather than bulk oxidation state (O:C),
740 primarily drive differences in WS-OP.

741 From an atmospheric perspective, these findings imply that emissions released at
742 different times of day may contribute differently to local air toxicity, depending on oxidant
743 availability and photochemical activity. For example, daytime burning in urban or suburban
744 environments may enhance the formation of ROS-generating compounds more rapidly than
745 nighttime burning, even if total SOA mass is comparable. This temporal dependence suggests
746 that biomass burning – related health impacts effects may vary with exposure timing, a factor
747 rarely considered in air quality or exposure models. The DN cycle resulted in $53 \pm 34\%$ increase
748 in WS-OP of aerosol while the ND cycle showed a slightly higher increase of $66 \pm 8\%$. The

749 final WS-OP values of the DN ($73 \pm 14 \text{ pmol min}^{-1} \mu\text{g}^{-1}$) and ND ($63 \pm 20 \text{ pmol min}^{-1} \mu\text{g}^{-1}$)
750 cycles were statistically similar. This convergence suggests a self-organizing tendency in
751 atmospheric aging toward similar chemical and toxicological endpoints.

752 Although this study focused on water-soluble OP, insoluble components such as
753 transition metals and brown carbon (not assessed here) can also contribute significantly to total
754 aerosol reactivity. Oxidative functionalization during atmospheric aging generally increases
755 OA solubility, which may shift OP from the insoluble to the soluble phase, either altering or
756 maintaining total OP, depending on chemical composition. Consequently, measuring only the
757 water-soluble fraction likely underestimates the total oxidative capacity of aged bbOA. Future
758 studies combining complementary assays (e.g., ascorbic acid or AA and glutathione or GSH)
759 and phase-resolved analyses are necessary to better constrain the contributions of soluble and
760 insoluble components to overall aerosol toxicity.

761 A few additional limitations of the present work must be also acknowledged. The
762 experiments were performed at relatively low relative humidity (12–24%) to reduce
763 condensation artifacts, and therefore the potential role of multiphase chemistry enhancement
764 and promotion of SOA formation was not investigated. Furthermore, the aging period
765 examined here corresponds approximately to a single diurnal cycle, representing only the first
766 stages of atmospheric processing, whereas ambient bbOA typically undergoes multi-day
767 oxidation cycles that may further modify its composition and OP. In addition, the controlled
768 combustion setup, while suitable and effective for mechanistic interpretation, inevitably
769 simplifies real-world burning conditions, where variations in fuel moisture, temperature
770 gradients, meteorology, and interactions with co-emitted anthropogenic pollutants play
771 important roles in shaping emissions chemistry.

772 Despite these constraints, the present study provides a mechanistic framework for
773 understanding how diurnal oxidation sequences regulate the chemical and redox activity
774 evolution of bbOA. The findings underscore the importance of considering oxidation
775 sequences and timing when assessing the environmental fate and health impacts of biomass
776 burning emissions. They highlight the complex and dynamic nature of atmospheric aging
777 processes and emphasize the need for time-resolved approaches to better predict the
778 transformation and OP evolution of bbOA under realistic atmospheric conditions.

779 **Author contributions**

780 M.P.G., K.F., and A.M. contributed to investigation, conducted the experiments and performed
781 the laboratory measurements.; M.P.G. and G.S. performed the offline measurement of the

782 water-soluble oxidative potential of the collected aerosol samples.; A.M. performed the offline
783 TD-GCMS analysis of the Tenax samples; C.K. contributed to chamber set-up optimization.;
784 A.N. conceived and supported the research project; S.N.P. supported and directed this
785 research.; M.P.G. and K.F. interpreted the results and contributed to formal data analysis;
786 M.P.G. wrote the original manuscript with contributions from all co-authors.; All authors
787 contributed to the review and editing of the manuscript and have approved the final submitted
788 version.

789 **Conflicts of interest**

790 The authors declare that there are no conflicts to declare.

791 **Funding information**

792 This work was supported by the project NANOSOMs (Grant 11504) of the Greek HFRI, the
793 Horizon 2020 project REMEDIA (grant agreement no. 874753), and the European Research
794 Council (ERC) under the European Union's Horizon 2020 research and innovation programme
795 (grant agreement no. 726165, PyroTRACH – Pyrogenic Transformations Affecting Climate
796 and Health).

797 **5 References**

- 798 Allani, A., Bedjanian, Y., Papanastasiou, D. K., and Romanias, M. N.: Reaction rate
799 coefficient of OH radicals with d₉-butanol as a function of temperature, *ACS Omega*, 6,
800 18123–18134, <https://doi.org/10.1021/acsomega.1c01942>, 2021.
- 801 Alper, K., Tekin, K., Karagöz, S., and Ragauskas, A. J.: Sustainable energy and fuels from
802 biomass: a review focusing on hydrothermal biomass processing, *Sustain. Energy Fuels*,
803 4, 4390–4414, <https://doi.org/10.1039/d0se00784f>, 2020.
- 804 Barmet, P., Dommen, J., DeCarlo, P. F., Tritscher, T., Praplan, A. P., Platt, S. M., Prévôt, A.
805 S. H., Donahue, N. M., and Baltensperger, U.: OH clock determination by proton
806 transfer reaction mass spectrometry at an environmental chamber, *Atmos. Meas. Tech.*,
807 5, 647–656, <https://doi.org/10.5194/amt-5-647-2012>, 2012.
- 808 Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat,
809 S. E., Klein, M., Mulholland, J. A., and Russell, A. G.: Review of Acellular Assays of
810 Ambient Particulate Matter Oxidative Potential: Methods and Relationships with
811 Composition, Sources, and Health Effects, *Environ Sci Technol*, 53, 4003–4019,
812 <https://doi.org/10.1021/ACS.EST.8B03430>, 2019.
- 813 Bray, C. D., Battye, W. H., Aneja, V. P., and Schlesinger, W. H.: Global emissions of NH₃,
814 NO_x, and N₂O from biomass burning and the impact of climate change, *J. Air Waste
815 Manage. Assoc.*, 71, 102–114, <https://doi.org/10.1080/10962247.2020.1842822>, 2021.
- 816 Briggs, N. L., Jaffe, D. A., Gao, H., Hee, J. R., Baylon, P. M., Zhang, Q., Zhou, S., Collier, S.
817 C., Sampson, P. D., and Cary, R. A.: Particulate matter, ozone, and nitrogen species in
818 aged wildfire plumes observed at the mount bachelor observatory, *Aerosol Air Qual.
819 Res.*, 16, 3075–3087, <https://doi.org/10.4209/aaqr.2016.03.0120>, 2016.
- 820 Bruns, E. A., Slowik, J. G., El Haddad, I., Kilic, D., Klein, F., Dommen, J., Temime-Roussel,
821 B., Marchand, N., Baltensperger, U., and Prévôt, A. S. H.: Characterization of gas-phase
822 organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged

- 823 residential wood combustion emissions, *Atmos. Chem. Phys.*, 17, 705–720,
824 <https://doi.org/10.5194/acp-17-705-2017>, 2017.
- 825 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P.,
826 Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D.,
827 Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of
828 organic compounds using aerosol mass spectrometry: characterization, improved
829 calibration, and implications, *Atmos. Chem. Phys.*, 15, 253–272,
830 <https://doi.org/10.5194/acp-15-253-2015>, 2015.
- 831 Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P.: Chemical
832 composition, optical properties, and oxidative potential of water-and methanol-soluble
833 organic compounds emitted from the combustion of biomass materials and coal, *Atmos.*
834 *Chem. Phys.*, 21, 13187–13205, <https://doi.org/10.5194/acp-21-13187-2021>, 2021.
- 835 Cappa, C. D., Lim, C. Y., Hagan, D. H., Coggon, M., Koss, A., Sekimoto, K., De Gouw, J.,
836 Onasch, T. B., Warneke, C., and Kroll, J. H.: Biomass-burning-derived particles from a
837 wide variety of fuels-Part 2: Effects of photochemical aging on particle optical and
838 chemical properties, *Atmos. Chem. Phys.*, 20, 8511–8532, <https://doi.org/10.5194/acp-20-8511-2020>, 2020.
- 839 Che, H., Segal-Rozenhaimer, M., Zhang, L., Dang, C., Zuidema, P., Dobracki, A., Sedlacek,
840 A. J., Coe, H., Wu, H., Taylor, J., Zhang, X., Redemann, J., and Haywood, J.: Cloud
841 processing and weeklong ageing affect biomass burning aerosol properties over the
842 south-eastern Atlantic, *Commun. Earth Environ.*, 3, 182, <https://doi.org/10.1038/s43247-022-00517-3>, 2022.
- 843 Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela,
844 M., Baltensperger, U., Bougiatioti, A., De Brito, J. F., Ceburnis, D., Chazeau, B.,
845 Chebaicheb, H., Daellenbach, K. R., Ehn, M., El Haddad, I., Eleftheriadis, K., Favez,
846 O., Flentje, H., Font, A., Fossum, K., Freney, E., Gini, M., Green, D. C., Heikkinen, L.,
847 Herrmann, H., Kalogridis, A. C., Keernik, H., Lhotka, R., Lin, C., Lunder, C.,
848 Maasikmets, M., Manousakas, M. I., Marchand, N., Marin, C., Marmureanu, L.,
849 Mihalopoulos, N., Močnik, G., Nęcki, J., O'Dowd, C., Ovadnevaite, J., Peter, T., Petit,
850 J. E., Pikridas, M., Matthew Platt, S., Pokorná, P., Poulain, L., Priestman, M., Riffault,
851 V., Rinaldi, M., Różański, K., Schwarz, J., Sciare, J., Simon, L., Skiba, A., Slowik, J.,
852 G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E., Timonen, H., Tremper, A.,
853 Vasilescu, J., Via, M., Vodička, P., Wiedensohler, A., Zografou, O., Cruz Minguillón,
854 M., and Prévôt, A. S. H.: European aerosol phenomenology - 8: Harmonised source
855 apportionment of organic aerosol using 22 year-long ACSM/AMS datasets, *Environ. Int.*,
856 166, 107325, <https://doi.org/10.1016/j.envint.2022.107325>, 2022.
- 857 Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh, M., Eiguren-
858 Fernandez, A., and Froines, J. R.: Redox activity of airborne particulate matter at
859 different sites in the Los Angeles Basin, *Environ. Res.*, 99, 40–47,
860 <https://doi.org/10.1016/j.envres.2005.01.003>, 2005.
- 861 Cincinelli, A., Guerranti, C., Martellini, T., and Scodellini, R.: Residential wood combustion
862 and its impact on urban air quality in Europe, *Curr. Opin. Environ. Sci. Health*, 8, 10–
863 14, <https://doi.org/10.1016/j.coesh.2018.12.007>, 2019.
- 864 Costabile, F., Gualtieri, M., Rinaldi, M., Canepari, S., Vecchi, R., Massimi, L., Di Julio, G.,
865 Paglione, M., Di Liberto, L., Corsini, E., Facchini, M. C., and Decesari, S.: Exposure to

- 868 urban nanoparticles at low PM₁ concentrations as a source of oxidative stress and
869 inflammation, *Sci. Rep.*, 13, 1–18, <https://doi.org/10.1038/s41598-023-45230-z>, 2023.
- 870 Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A., Stefenelli, G.,
871 Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet,
872 A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.
873 L., and Prévôt, A. S. H.: Sources of particulate-matter air pollution and its oxidative
874 potential in Europe, *Nature*, 587, 414–419, <https://doi.org/10.1038/S41586-020-2902-8>,
875 2020.
- 876 Desservettaz, M., Pikridas, M., Stavroulas, I., Bougiatioti, A., Liakakou, E., Hatzianastassiou,
877 N., Sciare, J., Mihalopoulos, N., and Bourtsoukidis, E.: Emission of volatile organic
878 compounds from residential biomass burning and their rapid chemical transformations,
879 *Sci. Total Environ.*, 903, 166592, <https://doi.org/10.1016/j.scitotenv.2023.166592>, 2023.
- 880 Dominutti, P. A., Jaffrezo, J.-L., Marsal, A., Mhadhbi, T., Elazzouzi, R., Rak, C., Cavalli, F.,
881 Putaud, J.-P., Bougiatioti, A., Mihalopoulos, N., Paraskevopoulou, D., Mudway, I.,
882 Nenes, A., Daellenbach, K. R., Banach, C., Campbell, S. J., Cigánková, H., Contini, D.,
883 Evans, G., Georgopoulou, M., Ghanem, M., Glencross, D. A., Guascito, M. R.,
884 Herrmann, H., Iram, S., Jovanović, M., Jovašević-Stojanović, M., Kalberer, M., Kooter,
885 I. M., Paulson, S. E., Patel, A., Perdrix, E., Pietrogrande, M. C., Mikuška, P., Sauvain,
886 J.-J., Seitanidi, K., Shahpoury, P., Souza, E. J. d. S., Steimer, S., Stevanovic, S., Suarez,
887 G., Subramanian, P. S. G., Uttinger, B., van Os, M. F., Verma, V., Wang, X., Weber, R.
888 J., Yang, Y., Querol, X., Hoek, G., Harrison, R. M., and Uzu, G.: An interlaboratory
889 comparison to quantify oxidative potential measurement in aerosol particles: challenges
890 and recommendations for harmonisation, *Atmos. Meas. Tech.*, 18, 177–195,
891 <https://doi.org/10.5194/AMT-18-177-2025>, 2025.
- 892 Donahue, N. M., Henry, K. M., Mentel, T. F., Kiendler-Scharr, A., Spindler, C., Bohn, B.,
893 Brauers, T., Dorn, H. P., Fuchs, H., Tillmann, R., Wahner, A., Saathoff, H., Naumann,
894 K. H., Möhler, O., Leisner, T., Müller, L., Reinnig, M. C., Hoffmann, T., Salo, K.,
895 Hallquist, M., Frosch, M., Bilde, M., Tritscher, T., Barmet, P., Praplan, A. P., DeCarlo,
896 P. F., Dommen, J., Prévôt, A. S. H., and Baltensperger, U.: Aging of biogenic secondary
897 organic aerosol via gas-phase OH radical reactions, *Proc. Natl. Acad. Sci. U.S.A.*, 109
898 (34), 13503–13508, <https://doi.org/10.1073/pnas.1115186109>, 2012.
- 899 Fachinger, F., Drewnick, F., Gieré, R., and Borrmann, S.: How the user can influence
900 particulate emissions from residential wood and pellet stoves: Emission factors for
901 different fuels and burning conditions, *Atmos. Environ.*, 158, 216–226,
902 <https://doi.org/10.1016/j.atmosenv.2017.03.027>, 2017.
- 903 Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-
904 automated system for quantifying the oxidative potential of ambient particles in aqueous
905 extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for
906 Air Pollution and Epidemiology (SCAPE), *Atmos. Meas. Tech.*, 8, 471–482,
907 <https://doi.org/10.5194/amt-8-471-2015>, 2015.
- 908 Fang, Z., Li, C., He, Q., Czech, H., Gröger, T., Zeng, J., Fang, H., Xiao, S., Pardo, M.,
909 Hartner, E., Meidan, D., Wang, X., Zimmermann, R., Laskin, A., and Rudich, Y.:
910 Secondary organic aerosols produced from photochemical oxidation of secondarily
911 evaporated biomass burning organic gases: Chemical composition, toxicity, optical

- 912 properties, and climate effect, *Environ Int*, 157,
913 <https://doi.org/10.1016/j.envint.2021.106801>, 2021.
- 914 Florou, K., Kodros, J. K., Paglione, M., Jorga, S., Squizzato, S., Masiol, M., Uruci, P., Nenes,
915 A., and Pandis, S. N.: Characterization and dark oxidation of the emissions of a pellet
916 stove, *Environ. Sci.: Atmos.*, 3, 1319–1334, <https://doi.org/10.1039/d3ea00070b>, 2023.
- 917 Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkler, P. M., Lawler, M.
918 J., Brown, S. S., Edwards, P. M., Cohen, R. C., and Lee, L.: Secondary organic aerosol
919 formation and organic nitrate yield from NO_3 oxidation of biogenic hydrocarbons,
920 *Environ. Sci. Technol.*, 48, 11944–11953, <https://doi.org/10.1021/es502204x>, 2014.
- 921 Gao, D., Ripley, S., Weichenthal, S., and Godri Pollitt, K. J.: Ambient particulate matter
922 oxidative potential: Chemical determinants, associated health effects, and strategies for
923 risk management, *Free Radic. Biol. Med.*, 151, 7–25,
924 <https://doi.org/10.1016/j.freeradbiomed.2020.04.028>, 2020a.
- 925 Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization of water-
926 insoluble oxidative potential of PM2.5 using the dithiothreitol assay, *Atmos Environ*,
927 224, 117327, <https://doi.org/10.1016/j.atmosenv.2020.117327>, 2020b.
- 928 Guercio, V., Pojum, I. C., Leonardi, G. S., Shrubsole, C., Gowers, A. M., Dimitroulopoulou,
929 S., and Exley, K. S.: Exposure to indoor and outdoor air pollution from solid fuel
930 combustion and respiratory outcomes in children in developed countries: a systematic
931 review and meta-analysis, *Sci. Total Environ.*, 755, 142187,
932 <https://doi.org/10.1016/j.scitotenv.2020.142187>, 2021.
- 933 Harshman, S. W., Mani, N., Geier, B. A., Kwak, J., Shepard, P., Fan, M., Sudberry, G. L.,
934 Mayes, R. S., Ott, D. K., Martin, J. A., and Grigsby, C. C.: Storage stability of exhaled
935 breath on Tenax TA, *J. Breath Res.*, 10, 046008, <https://doi.org/10.1088/1752-7155/10/4/046008>, 2016.
- 937 Hartikainen, A., Yli-Pirilä, P., Tiitta, P., Leskinen, A., Kortelainen, M., Orasche, J., Schnelle-
938 Kreis, J., Lehtinen, K. E. J., Zimmermann, R., Jokiniemi, J., and Sippula, O.: Volatile
939 organic compounds from logwood combustion: emissions and transformation under dark
940 and photochemical aging conditions in a smog chamber, *Environ. Sci. Technol.*, 52,
941 4979–4988, <https://doi.org/10.1021/acs.est.7b06269>, 2018.
- 942 He, L. Y., Lin, Y., Huang, X. F., Guo, S., Xue, L., Su, Q., Hu, M., Luan, S. J., and Zhang, Y.
943 H.: Characterization of high-resolution aerosol mass spectra of primary organic aerosol
944 emissions from Chinese cooking and biomass burning, *Atmos. Chem. Phys.*, 10, 11535–
945 11543, <https://doi.org/10.5194/ACP-10-11535-2010>, 2010.
- 946 He, Y., Zhao, B., Wang, S., Valorso, R., Chang, X., Yin, D., Feng, B., Camredon, M.,
947 Aumont, B., Dearden, A., Jathar, S. H., Shrivastava, M., Jiang, Z., Cappa, C. D., Yee, L.
948 D., Seinfeld, J. H., Hao, J., and Donahue, N. M.: Formation of secondary organic
949 aerosol from wildfire emissions enhanced by long-time ageing, *Nat. Geosci.*, 17, 124–
950 129, <https://doi.org/10.1038/s41561-023-01355-4>, 2024.
- 951 Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T.,
952 Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W. M., Gilman, J. B.,
953 Kuster, W. C., De Gouw, J., Schichtel, B. A., Collett, J. L., Kreidenweis, S. M., and
954 Robinson, A. L.: Chemical and physical transformations of organic aerosol from the
955 photo-oxidation of open biomass burning emissions in an environmental chamber,
956 *Atmos. Chem. Phys.*, 11, 7669–7686, <https://doi.org/10.5194/acp-11-7669-2011>, 2011.

- 957 Hodshire, A. L., Akherati, A., Alvarado, M. J., Brown-Steiner, B., Jathar, S. H., Jimenez, J.
958 L., Kreidenweis, S. M., Lonsdale, C. R., Onasch, T. B., Ortega, A. M., and Pierce, J. R.:
959 Aging effects on biomass burning aerosol mass and composition: a critical review of
960 field and laboratory studies., *Environ. Sci. Technol.*, 53, 10007–10022,
961 <https://doi.org/10.1021/acs.est.9b02588>, 2019.
- 962 Huang, G., Wang, S., Chang, X., Cai, S., Zhu, L., Li, Q., and Jiang, J.: Emission factors and
963 chemical profile of I/SVOCs emitted from household biomass stove in China, *Sci. Total
964 Environ.*, 842, 156940, <https://doi.org/10.1016/j.scitotenv.2022.156940>, 2022.
- 965 IEA: Key World Energy Statistics 2019, OECD Publishing, Paris,
966 <https://doi.org/10.1787/71b3ce84-en>, 2019.
- 967 IEA: Key World Energy Statistics 2021, OECD Publishing, Paris,
968 <https://doi.org/10.1787/2ef8cebc-en>, 2021.
- 969 Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan,
970 B., and Shen, G.: Pollutant emissions from biomass burning: A review on emission
971 characteristics, environmental impacts, and research perspectives, *Particuology*, 85,
972 296–309, <https://doi.org/10.1016/j.partic.2023.07.012>, 2024.
- 973 Jorga, S. D., Kaltsonoudis, C., Liangou, A., and Pandis, S. N.: Measurement of formation
974 rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber
975 system, *Environ. Sci. Technol.*, 54, 1336–1343, <https://doi.org/10.1021/acs.est.9b03479>,
976 2020.
- 977 Jorga, S. D., Florou, K., Kaltsonoudis, C., Kodros, J. K., Vasilakopoulou, C., Cirtog, M.,
978 Fouqueau, A., Picquet-Varrault, B., Nenes, A., and Pandis, S. N.: Nighttime chemistry
979 of biomass burning emissions in urban areas: A dual mobile chamber study, *Atmos.
980 Chem. Phys.*, 21, 15337–15349, <https://doi.org/10.5194/acp-21-15337-2021>, 2021.
- 981 Kaltsonoudis, C., Kostenidou, E., Florou, K., Psichoudaki, M., and Pandis, S. N.: Temporal
982 variability and sources of VOCs in urban areas of the eastern Mediterranean, *Atmos.
983 Chem. Phys.*, 16, 14825–14842, <https://doi.org/10.5194/acp-16-14825-2016>, 2016.
- 984 Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H.,
985 Äijälä, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto,
986 M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao,
987 L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A.,
988 McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N.,
989 Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner,
990 A., Worsnop, D., and Wu, H. C.: Ubiquity of organic nitrates from nighttime chemistry
991 in the European submicron aerosol, *Geophys. Res. Lett.*, 43, 7735–7744,
992 <https://doi.org/10.1002/2016gl069239>, 2016.
- 993 Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato, S., Florou, K.,
994 Skyllakou, K., Kaltsonoudis, C., Nenes, A., and Pandis, S. N.: Rapid dark aging of
995 biomass burning as an overlooked source of oxidized organic aerosol, *Proc. Natl. Acad.
996 Sci. USA*, 117, 33028–33033, <https://doi.org/10.1073/pnas.2010365117>, 2020.
- 997 Kodros, J. K., Kaltsonoudis, C., Paglione, M., Florou, K., Jorga, S., Vasilakopoulou, C.,
998 Cirtog, M., Cazaunau, M., Picquet-Varrault, B., Nenes, A., and Pandis, S. N.: Secondary
999 aerosol formation during the dark oxidation of residential biomass burning emissions,
1000 *Environ. Sci.: Atmos.*, 2, 1221–1236, <https://doi.org/10.1039/d2ea00031h>, 2022.

- 1001 Kostenidou, E., Pathak, R. K., and Pandis, S. N.: An algorithm for the calculation of
1002 secondary organic aerosol density combining AMS and SMPS data, *Aerosol Sci.*
1003 *Technol.*, 41, 1002–1010, <https://doi.org/10.1080/02786820701666270>, 2007.
- 1004 Kostenidou, E., Lee, B. H., Engelhart, G. J., Pierce, J. R., and Pandis, S. N.: Mass spectra
1005 deconvolution of low, medium, and high volatility biogenic secondary organic aerosol,
1006 *Environ. Sci. Technol.*, 43, 4884–4889, <https://doi.org/10.1021/es803676g>, 2009.
- 1007 Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of
1008 organic material composed of carbon, hydrogen, and oxygen, *Environ. Sci. Technol.*, 46,
1009 787–794, <https://doi.org/10.1021/es202525q>, 2012.
- 1010 Lei, R., Wei, Z., Chen, M., Meng, H., Wu, Y., and Ge, X.: Aging effects on the toxicity
1011 alteration of different types of organic aerosols: a review, *Curr. Pollut. Rep.*, 1, 1–12,
1012 <https://doi.org/10.1007/s40726-023-00272-9>, 2023.
- 1013 Li, C., Ma, Z., Chen, J., Wang, X., Ye, X., Wang, L., Yang, X., Kan, H., Donaldson, D. J.,
1014 and Mellouki, A.: Evolution of biomass burning smoke particles in the dark, *Atmos*
1015 *Environ.*, 120, 244–252, <https://doi.org/10.1016/j.atmosenv.2015.09.003>, 2015.
- 1016 Li, J., Li, J., Wang, G., Ho, K. F., Dai, W., Zhang, T., Wang, Q., Wu, C., Li, L., Li, L., and
1017 Zhang, Q.: Effects of atmospheric aging processes on in vitro induced oxidative stress
1018 and chemical composition of biomass burning aerosols, *J. Hazard. Mater.*, 401, 123750,
1019 <https://doi.org/10.1016/j.jhazmat.2020.123750>, 2021.
- 1020 Li, K., Zhang, J., Bell, D. M., Wang, T., Lamkaddam, H., Cui, T., Qi, L., Surdu, M., Wang,
1021 D., Du, L., Haddad, I. El, Slowik, J. G., and Prevot, A. S. H.: Uncovering the dominant
1022 contribution of intermediate volatility compounds in secondary organic aerosol
1023 formation from biomass-burning emissions, *Natl. Sci. Rev.*, 11,
1024 <https://doi.org/10.1093/nsr/nwae014>, 2024.
- 1025 Li, S., Liu, D., Wu, Y., Hu, K., Jiang, X., Tian, P., Sheng, J., Pan, B., and Zhao, D.: Aging
1026 effects on residential biomass burning emissions under quasi-real atmospheric
1027 conditions, *Environ. Pollut.*, 337, 122615, <https://doi.org/10.1016/j.envpol.2023.122615>,
1028 2023.
- 1029 Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., De Gouw, J.,
1030 Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from
1031 the laboratory oxidation of biomass burning emissions, *Atmos. Chem. Phys.*, 19, 12797–
1032 12809, <https://doi.org/10.5194/acp-19-12797-2019>, 2019.
- 1033 Lim, H., Silvergren, S., Spinicci, S., Mashayekhy Rad, F., Nilsson, U., Westerholm, R., and
1034 Johansson, C.: Contribution of wood burning to exposures of PAHs and oxy-PAHs in
1035 Eastern Sweden, *Atmos. Chem. Phys.*, 22, 11359–11379, <https://doi.org/10.5194/acp-22-11359-2022>, 2022.
- 1037 Luo, L., Bai, X., Liu, S., Wu, B., Liu, W., Lv, Y., Guo, Z., Lin, S., Zhao, S., Hao, Y., Hao, J.,
1038 Zhang, K., Zheng, A., and Tian, H.: Fine particulate matter (PM_{2.5}/PM_{1.0}) in Beijing,
1039 China: variations and chemical compositions as well as sources, *J. Environ. Sci.*, 121,
1040 187–198, <https://doi.org/10.1016/j.jes.2021.12.014>, 2022.
- 1041 McClure, C. D., Lim, C. Y., Hagan, D. H., Kroll, J. H., and Cappa, C. D.: Biomass-burning-
1042 derived particles from a wide variety of fuels - Part 1: Properties of primary particles,
1043 *Atmos. Chem. Phys.*, 20, 1531–1547, <https://doi.org/10.5194/acp-20-1531-2020>, 2020.
- 1044 Mylonaki, M., Gini, M., Georgopoulou, M., Pilou, M., Chalvatzaki, E., Solomos, S.,
1045 Diapouli, E., Giannakaki, E., Lazaridis, M., Pandis, S. N., Nenes, A., Eleftheriadis, K.,

- 1046 and Papayannis, A.: Wildfire and African dust aerosol oxidative potential, exposure and
1047 dose in the human respiratory tract, *Sci. Total Environ.*, 913, 169683,
1048 <https://doi.org/10.1016/j.scitotenv.2023.169683>, 2024.
- 1049 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H.,
1050 Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H.,
1051 Hildebrandt, L., Donahue, N. M., Decarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E.,
1052 Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern
1053 Hemispheric datasets from aerosol mass spectrometry, *Atmos. Chem. Phys.*, 10, 4625–
1054 4641, <https://doi.org/10.5194/acp-10-4625-2010>, 2010.
- 1055 Ng, N. L., Tuet, W. Y., Chen, Y., Fok, S., Gao, D., Rodriguez, M. S. T., Klein, M., Grosberg,
1056 A., Weber, R. J., and Champion, J. A.: Cellular and acellular assays for measuring
1057 oxidative stress induced by ambient and laboratory-generated aerosols, *Res. Rep.*
1058 *Health. Eff. Inst.*, 2019, 1–57, 2019.
- 1059 Novakov, T., Menon, S., Kirchstetter, T. W., Koch, D., and Hansen, J. E.: Aerosol organic
1060 carbon to black carbon ratios: analysis of published data and implications for climate
1061 forcing, *J. Geophys. Res. Atmos.*, 110, 1–12, <https://doi.org/10.1029/2005jd005977>,
1062 2005.
- 1063 Nyström, R., Lindgren, R., Avagyan, R., Westerholm, R., Lundstedt, S., and Boman, C.:
1064 Influence of wood species and burning conditions on particle emission characteristics in
1065 a residential wood stove, *Energy & Fuels*, 31, 5514–5524,
1066 <https://doi.org/10.1021/acs.energyfuels.6b02751>, 2017.
- 1067 Othman, M., Latif, M. T., Hamid, H. H. A., Uning, R., Khumsaeng, T., Phairuang, W., Daud,
1068 Z., Idris, J., Sofwan, N. M., and Lung, S. C. C.: Spatial–temporal variability and health
1069 impact of particulate matter during a 2019–2020 biomass burning event in Southeast
1070 Asia, *Sci. Rep.*, 12, 1–11, <https://doi.org/10.1038/s41598-022-11409-z>, 2022.
- 1071 Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M., Liakakou, E.,
1072 Gerasopoulos, E., Weber, R., Nenes, A., and Mihalopoulos, N.: Yearlong variability of
1073 oxidative potential of particulate matter in an urban Mediterranean environment, *Atmos.*
1074 *Environ.*, 206, 183–196, <https://doi.org/10.1016/j.atmosenv.2019.02.027>, 2019.
- 1075 Paraskevopoulou, D., Bougiatioti, A., Zarmpas, P., Tsagkaraki, M., Nenes, A., and
1076 Mihalopoulos, N.: Impact of COVID-19 lockdown on oxidative potential of particulate
1077 matter: case of Athens (Greece), *Toxics*, 10, 280,
1078 <https://doi.org/10.3390/toxics10060280>, 2022.
- 1079 Price-Allison, A., Mason, P. E., Jones, J. M., Barimah, E. K., Jose, G., Brown, A. E., Ross,
1080 A. B., and Williams, A.: The impact of fuelwood moisture content on the emission of
1081 gaseous and particulate pollutants from a wood stove, *Combust. Sci. Technol.*, 195,
1082 133–152, <https://doi.org/10.1080/00102202.2021.1938559>, 2021.
- 1083 Puthussery, J. V., Singh, A., Rai, P., Bhattu, D., Kumar, V., Vats, P., Furger, M., Rastogi, N.,
1084 Slowik, J. G., Ganguly, D., Prevot, A. S. H., Tripathi, S. N., and Verma, V.: Real-time
1085 measurements of PM_{2.5} oxidative potential using a dithiothreitol assay in Delhi, India,
1086 *Environ. Sci. Technol. Lett.*, 7, 504–510, <https://doi.org/10.1021/acs.estlett.0c00342>,
1087 2020.
- 1088 Rao, L., Zhang, L., Wang, X., Xie, T., Zhou, S., Lu, S., Liu, X., Lu, H., Xiao, K., Wang, W.,
1089 and Wang, Q.: Oxidative potential induced by ambient particulate matters with acellular
1090 assays: a review, *Processes*, 8, 1–21, <https://doi.org/10.3390/pr8111410>, 2020.

- 1091 Reid, W. V., Ali, M. K., Christopher, J., Field, B., Correspondence, W. V., Reid, D., and
1092 Packard, L.: The future of bioenergy, *Glob. Chang. Biol.*, 26, 274–286,
1093 <https://doi.org/10.1111/gcb.14883>, 2020.
- 1094 Shen, G., Du, W., Luo, Z., Li, Y., Cai, G., Lu, C., Qiu, Y., Chen, Y., Cheng, H., and Tao, S.:
1095 Fugitive emissions of CO and PM_{2.5} from indoor biomass burning in chimney stoves
1096 based on a newly developed carbon balance approach, *Environ. Sci. Technol. Lett.*, 7,
1097 128–134, <https://doi.org/10.1021/acs.estlett.0c00095>, 2020.
- 1098 Srivastava, D., Vu, T. V., Tong, S., Shi, Z., and Harrison, R. M.: Formation of secondary
1099 organic aerosols from anthropogenic precursors in laboratory studies, *Npj Clim. Atmos.
1100 Sci.*, 5, 1–30, <https://doi.org/10.1038/s41612-022-00238-6>, 2022.
- 1101 Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., Demott, P. J.,
1102 Sullivan, R. C., Reardon, J., Ryan, K. C., Griffith, D. W. T., and Stevens, L.: Trace gas
1103 emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other
1104 fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire
1105 Lab at Missoula Experiment (FLAME-4), *Atmos. Chem. Phys.*, 14, 9727–9754,
1106 <https://doi.org/10.5194/acp-14-9727-2014>, 2014.
- 1107 Sun, J., Wang, J., Shen, Z., Huang, Y., Zhang, Y., Niu, X., Cao, J., Zhang, Q., Xu, H., Zhang,
1108 N., and Li, X.: Volatile organic compounds from residential solid fuel burning in
1109 Guanzhong Plain, China: source-related profiles and risks, *Chemosphere*, 221, 184–192,
1110 <https://doi.org/10.1016/j.chemosphere.2019.01.002>, 2019.
- 1111 Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao,
1112 J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in
1113 winter: sources, variations and processes, *Atmos. Chem. Phys.*, 16, 8309–8329,
1114 <https://doi.org/10.5194/acp-16-8309-2016>, 2016.
- 1115 Tiitta, P., Leskinen, A., Hao, L., Yli-Pirilä, P., Kortelainen, M., Grigonyte, J., Tissari, J.,
1116 Lamberg, H., Hartikainen, A., Kuuspalo, K., Kortelainen, A. M., Virtanen, A., Lehtinen,
1117 K. E. J., Komppula, M., Pieber, S., Prévôt, A. S. H., Onasch, T. B., Worsnop, D. R.,
1118 Czech, H., Zimmermann, R., Jokiniemi, J., and Sippula, O.: Transformation of logwood
1119 combustion emissions in a smog chamber: formation of secondary organic aerosol and
1120 changes in the primary organic aerosol upon daytime and nighttime aging, *Atmos.
1121 Chem. Phys.*, 16, 13251–13269, <https://doi.org/10.5194/acp-16-13251-2016>, 2016.
- 1122 Tomlin, J. M., Weis, J., Veghte, D. P., China, S., Fraud, M., He, Q., Reicher, N., Li, C.,
1123 Jankowski, K. A., Rivera-Adorno, F. A., Morales, A. C., Rudich, Y., Moffet, R. C.,
1124 Gilles, M. K., and Laskin, A.: Chemical composition and morphological analysis of
1125 atmospheric particles from an intensive bonfire burning festival, *Environ. Sci. Atmos.*,
1126 2, 616–633, <https://doi.org/10.1039/d2ea00037g>, 2022.
- 1127 Trubetskaya, A., Lin, C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C., Leahy, J. J., Monaghan,
1128 R. F. D., Johnson, R., Layden, P., and Smith, W.: Study of emissions from domestic
1129 solid-fuel stove combustion in Ireland, *Energy & Fuels*, 35, 4966–4978,
1130 <https://doi.org/10.1021/acs.energyfuels.0c04148>, 2021.
- 1131 Tsiodra, I., Grivas, G., Tavernaraki, K., Bougiatioti, A., Apostolaki, M., Paraskevopoulou,
1132 D., Gogou, A., Parinos, C., Oikonomou, K., Tsagkaraki, M., Zarmpas, P., Nenes, A.,
1133 and Mihalopoulos, N.: Annual exposure to polycyclic aromatic hydrocarbons in urban
1134 environments linked to wintertime wood-burning episodes, *Atmos. Chem. Phys.*, 21,
1135 17865–17883, <https://doi.org/10.5194/acp-21-17865-2021>, 2021.

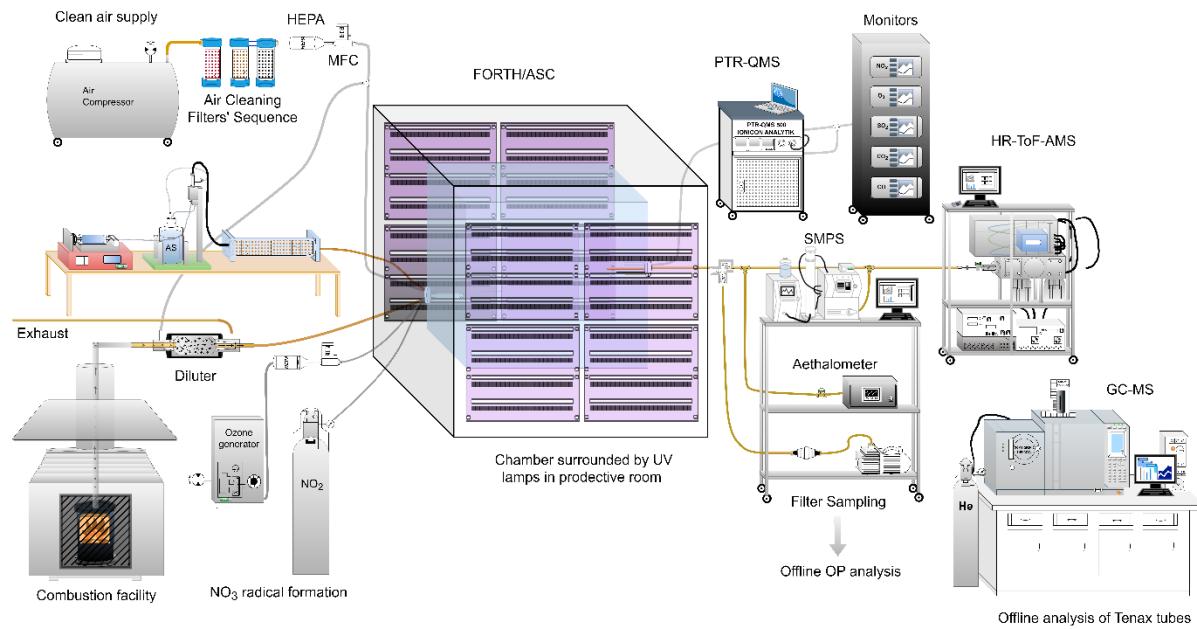
- 1136 Tsiodra, I., Grivas, G., Bougiatioti, A., Tavernaraki, K., Parinos, C., Paraskevopoulou, D.,
1137 Papoutsidaki, K., Tsagkaraki, M., Kozonaki, F. A., Oikonomou, K., Nenes, A., and
1138 Mihalopoulos, N.: Source apportionment of particle-bound polycyclic aromatic
1139 hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term
1140 health risks in a major European city, *Sci. Total Environ.*, 951,
1141 <https://doi.org/10.1016/j.scitotenv.2024.175416>, 2024.
- 1142 Tuet, W. Y., Chen, Y., Xu, L., Fok, S., Gao, D., Weber, R. J., and Ng, N. L.: Chemical
1143 oxidative potential of secondary organic aerosol (SOA) generated from the
1144 photooxidation of biogenic and anthropogenic volatile organic compounds, *Atmos*
1145 *Chem Phys*, 17, 839–853, <https://doi.org/10.5194/ACP-17-839-2017>, 2017.
- 1146 Vasilakopoulou, C. N., Matrali, A., Skyllakou, K., Georgopoulou, M., Aktypis, A., Florou,
1147 Kaltsonoudis, C., Siouti, E., Kostenidou, E., Błaziak, A., Nenes, A., Papagiannis, S.,
1148 Eleftheriadis, K., Patoulas, D., Kioutsioukis, I., and Pandis, S. N.: Rapid transformation
1149 of wildfire emissions to harmful background aerosol, *Npj Clim. Atmos. Sci.*, 6, 1–9,
1150 <https://doi.org/10.1038/s41612-023-00544-7>, 2023.
- 1151 Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., and Weber, R. J.:
1152 Organic aerosols associated with the generation of reactive oxygen species (ROS) by
1153 water-soluble PM_{2.5}, *Environ. Sci. Technol.*, 49, 4646–4656,
1154 <https://doi.org/10.1021/es505577W>, 2015.
- 1155 Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Particle wall-loss
1156 correction methods in smog chamber experiments, *Atmos. Meas. Tech.*, 11, 6577–6588,
1157 <https://doi.org/10.5194/amt-11-6577-2018>, 2018.
- 1158 Wang, S., Gallimore, P. J., Liu-Kang, C., Yeung, K., Campbell, S. J., Uttinger, B., Liu, T.,
1159 Peng, H., Kalberer, M., Chan, A. W. H., and Abbatt, J. P. D.: Dynamic wood smoke
1160 aerosol toxicity during oxidative atmospheric aging, *Environ. Sci. Technol.*, 57, 1246–
1161 1256, <https://doi.org/10.1021/acs.est.2c05929>, 2023.
- 1162 Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M.,
1163 Sciare, J., Nenes, A., and Weber, R. J.: Effects of atmospheric processing on the
1164 oxidative potential of biomass burning organic aerosols, *Environ. Sci. Technol.*, 53,
1165 6747–6756, <https://doi.org/10.1021/acs.est.9b01034>, 2019.
- 1166 Yazdani, A., Takahama, S., Kodros, J. K., Paglione, M., Paglione, M., Masiol, M., Squizzato,
1167 S., Florou, K., Kaltsonoudis, C., Jorga, S. D., Pandis, S. N., Pandis, S. N., Nenes, A.,
1168 and Nenes, A.: Chemical evolution of primary and secondary biomass burning aerosols
1169 during daytime and nighttime, *Atmos. Chem. Phys.*, 23, 7461–7477,
1170 <https://doi.org/10.5194/acp-23-7461-2023>, 2023.
- 1171 Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path Fourier transform infrared
1172 studies of large-scale laboratory biomass fires, *J. Geophys. Res. Atmos.*, 101, 21067–
1173 21080, <https://doi.org/10.1029/96jd01800>, 1996.
- 1174 Zauli-Sajani, S., Thunis, P., Pisoni, E., Bessagnet, B., Monforti-Ferrario, F., De Meij, A.,
1175 Pekar, F., and Vignati, E.: Reducing biomass burning is key to decrease PM_{2.5} exposure
1176 in European cities, *Sci. Rep.*, 14, 1–11, <https://doi.org/10.1038/s41598-024-60946-2>,
1177 2024.
- 1178 Zhang, Y., Kong, S., Sheng, J., Zhao, D., Ding, D., Yao, L., Zheng, H., Wu, J., Cheng, Y.,
1179 Yan, Q., Niu, Z., Zheng, S., Wu, F., Yan, Y., Liu, D., and Qi, S.: Real-time emission and
1180 stage-dependent emission factors/ratios of specific volatile organic compounds from

1181 residential biomass combustion in China, *Atmos. Res.*, 248, 105189,
1182 <https://doi.org/10.1016/j.atmosres.2020.105189>, 2021.

1183 Zhang, Z. H., Hartner, E., Uttinger, B., Gfeller, B., Paul, A., Sklorz, M., Czech, H., Yang, B.
1184 X., Su, X. Y., Jakobi, G., Orasche, J., Schnelle-Kreis, J., Jeong, S., Gröger, T., Pardo,
1185 M., Hohaus, T., Adam, T., Kiendler-Scharr, A., Rudich, Y., Zimmermann, R., and
1186 Kalberer, M.: Are reactive oxygen species (ROS) a suitable metric to predict toxicity of
1187 carbonaceous aerosol particles?, *Atmos. Chem. Phys.*, 22, 1793–1809,
1188 <https://doi.org/10.5194/acp-22-1793-2022>, 2022.

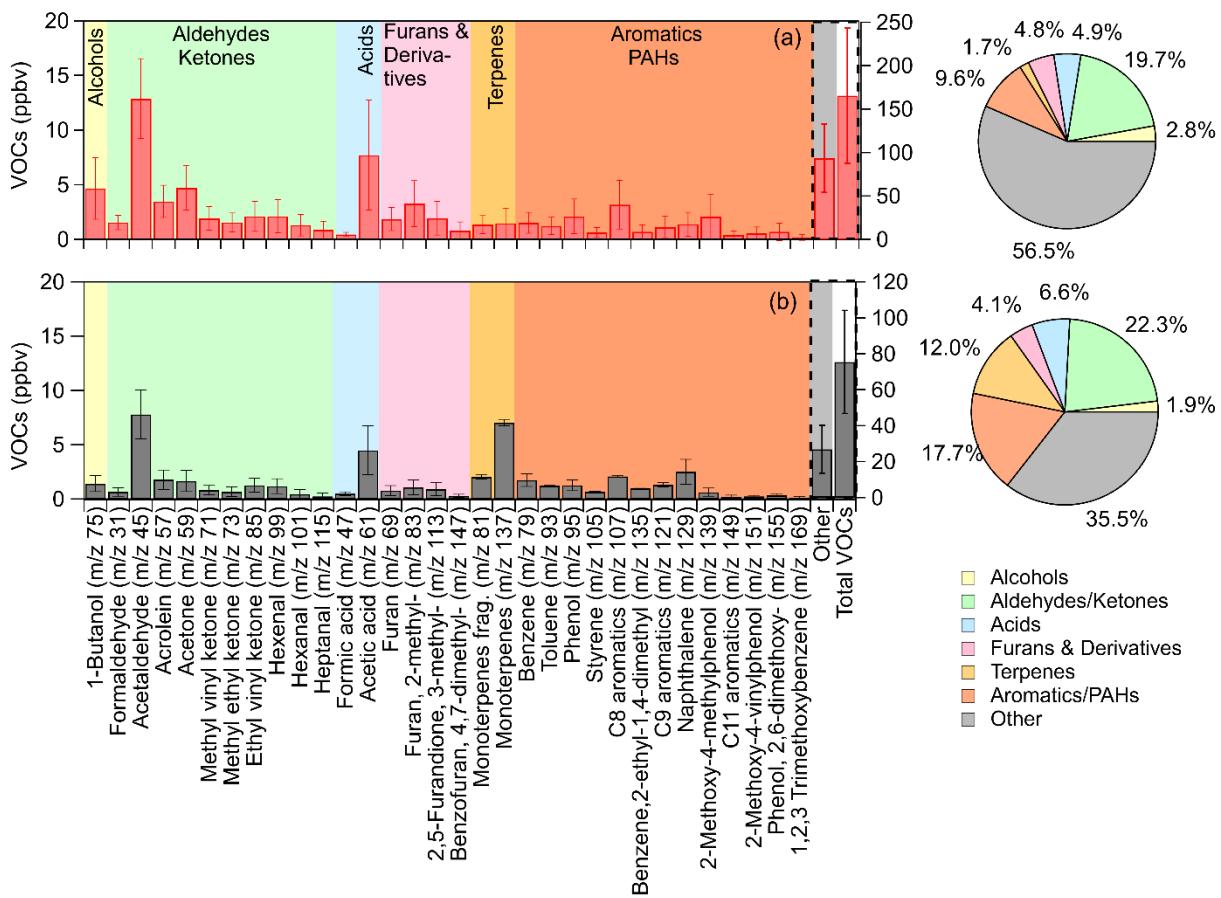
1189

1190 **Table 1:** Initial biomass burning aerosol composition and initial chamber conditions for all the
 1191 conducted experiments.

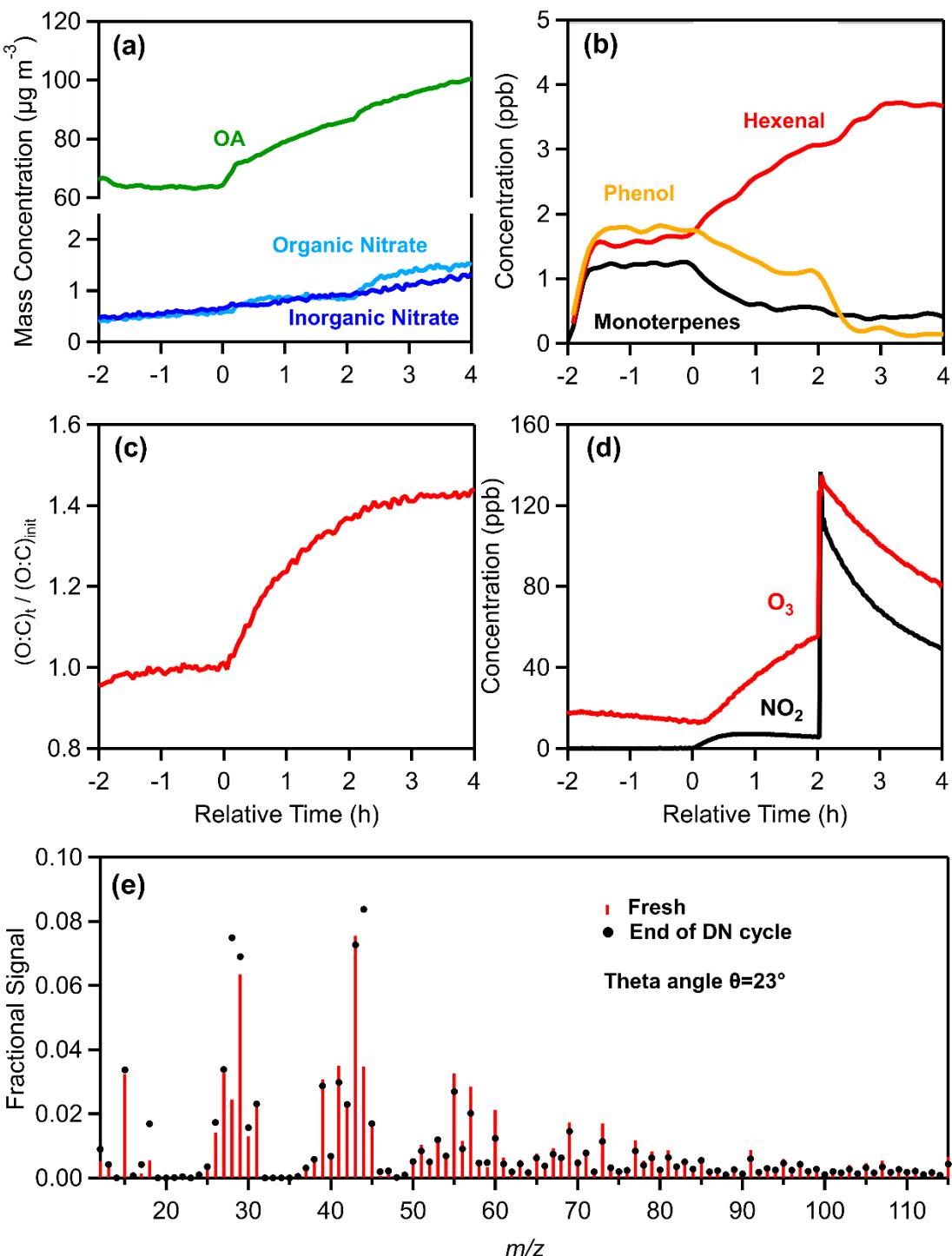

Exp.	PM ₁ [$\mu\text{g m}^{-3}$]	BC [$\mu\text{g m}^{-3}$]	Amm onium [$\mu\text{g m}^{-3}$]	Sulfat e [$\mu\text{g m}^{-3}$]	Orga nics [$\mu\text{g m}^{-3}$]	Nitrat e [$\mu\text{g m}^{-3}$]	Org. Nitrat e [$\mu\text{g m}^{-3}$]	Inorg. Nitrat e [$\mu\text{g m}^{-3}$]	Chlor ide [$\mu\text{g m}^{-3}$]	f_{44}/f_{60}	O:C	H:C	T _{init} °C	RH _{init} [%]	MCE*
DN1	70	3.7	0.06	0.62	63.6	1.18	0.56	0.62	0.45	1.37	0.43	1.67	16.4	13	0.96
DN2	114	7.9	0.13	0.86	102	2.01	1	1.01	0.42	2.21	0.39	1.66	N/A	N/A	0.92
DN3	79.1	N/A	8.1	22.1	48.2	0.52	0.23	0.29	0.11	1.82	0.38	1.62	N/A	N/A	0.99
DN4	177	1.1	0.24	1.11	172	2.02	0.91	1.11	0.62	1.11	0.39	1.71	N/A	N/A	0.91
DN5	102	0.4	0.09	0.47	99.8	0.65	0.26	0.39	0.19	1.00	0.35	1.72	N/A	N/A	0.99
DN6	53.6	0.9	0.07	1.02	49.6	1.66	1.02	0.64	0.41	1.50	0.36	1.76	N/A	N/A	0.96
DN7	74.8	0.8	0.06	0.54	72.1	1.15	0.43	0.72	0.16	1.34	0.41	1.67	N/A	N/A	0.91
DN8	85.5	5.4	0.09	0.49	78.0	1.22	0.28	0.94	0.33	1.02	0.44	1.65	16.8	13	0.92
ND1	121	N/A	0.28	1.01	118	1.21	0.66	0.55	0.58	1.72	0.41	1.65	16.5	13	0.92
ND2	72.0	0.5	0.21	0.45	69.4	1.13	0.76	0.37	0.24	2.53	0.47	1.67	N/A	N/A	0.96
ND3	47.2	0.4	0.16	0.12	45.8	0.67	0.34	0.33	0.05	2.37	0.29	1.67	16.5	14	0.94
ND4	93.3	1	0.22	0.54	90.2	0.99	0.50	0.49	0.34	1.61	0.40	1.66	15.9	15	0.92
ND5	176	N/A	0.25	0.34	174	1.35	0.62	0.73	0.18	1.27	0.37	1.66	16.6	13	0.91
ND6	124	3	0.18	0.41	120	0.72	0.31	0.41	0.38	0.92	0.43	1.65	16.7	14	0.90
ND7	126	67	0.06	0.07	58.7	0.15	0.10	0.05	0.05	2.47	0.23	1.61	17.1	12	0.98
ND8	276	190	0.12	0.62	83.4	1.22	0.85	0.37	0.25	1.88	0.36	1.65	17	24	0.96

1192 *Modified combustion efficiency (MCE) calculated based on equation: $([\Delta\text{CO}_2]/([\Delta\text{CO}] + [\Delta\text{CO}_2]))$.

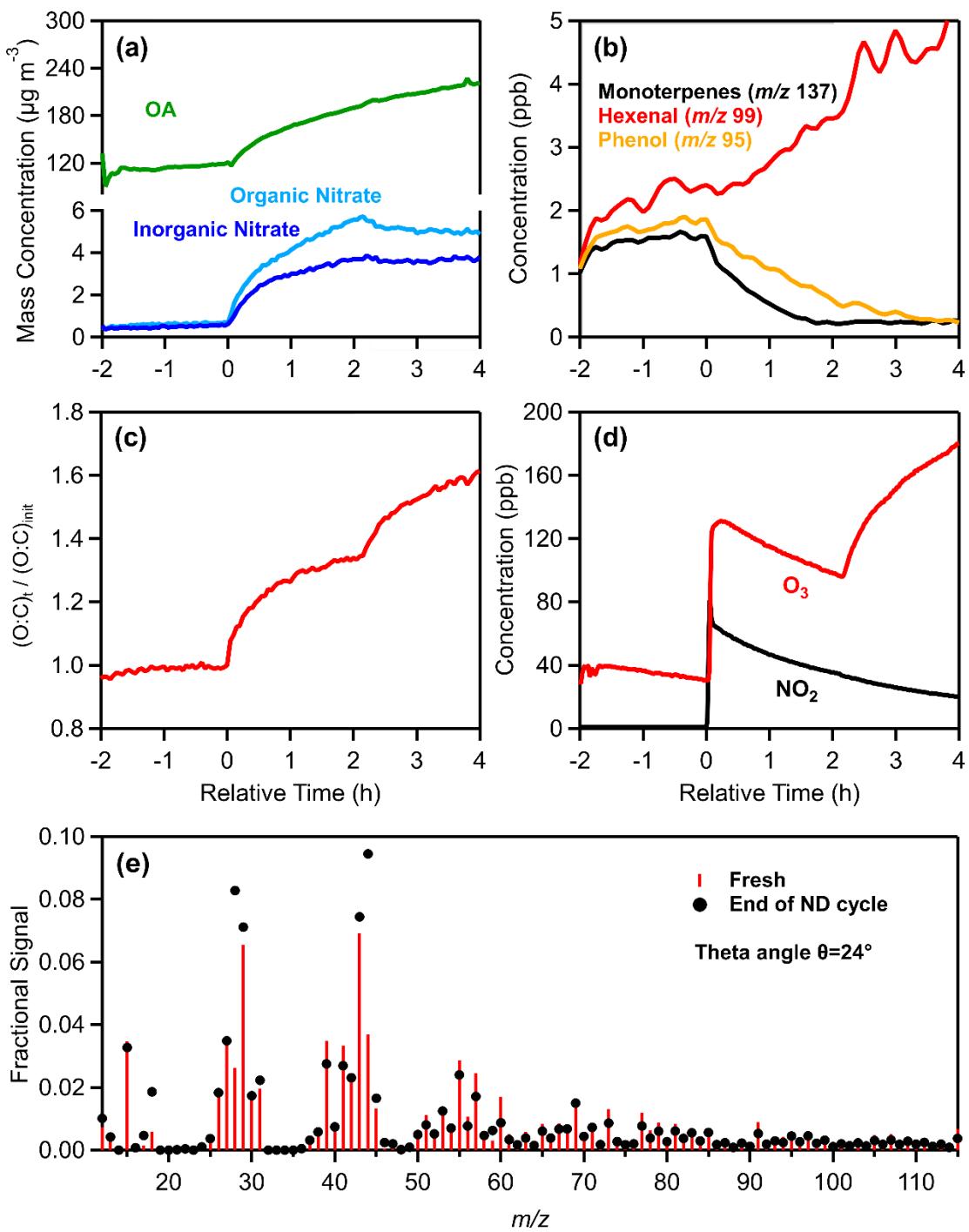
1193 **Table 2:** Composition of aged biomass burning aerosol, averaged over the last 30 minutes of
 1194 each oxidation state, for both DN and ND experiments.


Exp.	Oxid.	PM ₁ [$\mu\text{g m}^{-3}$]	Amm onium [$\mu\text{g m}^{-3}$]	Sulfate [$\mu\text{g m}^{-3}$]	Organic [$\mu\text{g m}^{-3}$]	Nitrate [$\mu\text{g m}^{-3}$]	Org. Nitrate [$\mu\text{g m}^{-3}$]	Inorg. Nitrate [$\mu\text{g m}^{-3}$]	Chlor ide [$\mu\text{g m}^{-3}$]	ρ^* [g cm^{-3}]	f_{44}/f_{60}	O:C	H:C
Day - Night													
DN1	Day	88	0.1	0.7	85	1.76	0.86	0.90	0.38	1.34	4.3	0.58	1.61
	Night	104	0.15	0.83	100	2.74	1.48	1.26	0.4		5.1	0.61	1.6
DN2	Day	157	0.1	0.9	154	2.42	1.75	0.67	0.26	1.34	15.3	0.64	1.52
	Night	185	0.47	1.46	179	4.21	2.98	1.23	0.3		16.5	0.67	1.53
DN3	Day	102	10.3	28.9	62	0.63	0.36	0.27	0.13	1.37	8.5	0.63	1.55
	Night	107	10.8	30.3	65	0.94	0.61	0.33	0.15		9.7	0.64	1.55
DN4	Day	240	1.1	1.2	232	4.92	2.29	2.63	0.49	1.32	3.7	0.58	1.64
	Night	262	1.26	1.35	252	6.14	2.82	3.32	0.52		3.9	0.6	1.64
DN5	Day	134	0.1	0.5	132	0.97	0.52	0.45	0.18	1.29	3.4	0.52	1.66
	Night	156	0.19	0.59	153	2.19	1.51	0.68	0.2		4.3	0.56	1.65
DN6	Day	83	0.2	1.3	78	2.80	1.55	1.25	0.38	1.33	6.5	0.59	1.63
	Night	90	0.22	1.48	85	3.27	1.78	1.49	0.4		7.1	0.61	1.61
DN7	Day	105	0.1	0.6	103	1.43	0.69	0.74	0.15	1.34	5.4	0.6	1.61
	Night	122	0.17	0.79	119	1.94	1.03	0.91	0.17		5.8	0.62	1.61
DN8	Day	111	0.1	0.6	108	1.68	0.59	1.09	0.33	1.33	3	0.58	1.61
	Night	134	0.19	0.74	130	2.95	1.37	1.58	0.36		3.4	0.6	1.6
Night – Day													
ND1	Night	199	1.2	1.1	188	9.0	5.4	3.6	0.28	1.36	5.5	0.55	1.61
	Day	233	1.5	1.3	222	8.7	5.0	3.7	0.29		9	0.66	1.58
ND2	Night	110	0.5	0.5	102	7.0	5.5	1.5	0.15	1.39	8.1	0.62	1.6
	Day	119	0.6	0.6	112	6.3	4.8	1.5	0.16		11.1	0.7	1.57
ND3	Night	61	0.2	0.2	57	2.9	2.2	0.7	0.06	1.28	7.3	0.42	1.64
	Day	66	0.3	0.2	63	2.5	1.9	0.6	0.07		12.2	0.52	1.61
ND4	Night	133	0.4	0.8	127	4.3	3.1	1.2	0.29	1.31	3.9	0.49	1.62
	Day	148	0.6	1	142	4.2	2.9	1.3	0.3		6.4	0.58	1.6
ND5	Night	278	0.5	0.5	270	7.0	4.8	2.2	0.14	1.31	3.8	0.48	1.63
	Day	315	0.7	0.6	307	6.6	4.0	2.6	0.14		6.5	0.58	1.61
ND6	Night	192	0.7	0.6	184	6.8	4.1	2.7	0.18	1.33	2.6	0.51	1.62
	Day	203	0.8	0.7	195	6.0	3.4	2.6	0.19		4.8	0.61	1.61
ND7	Night	182	0.1	0.1	93	4.6	3.1	1.5	0.06	1.2	5	0.36	1.65
	Day	211	0.1	0.2	105	4.7	3.0	1.7	0.08		6.5	0.41	1.62
ND8	Night	400	0.3	1.2	149	9.3	5.4	3.9	0.26	1.29	4.7	0.48	1.64
	Day	451	0.5	1.7	163	9.1	5.2	3.9	0.29		7.6	0.54	1.6

1195 *Density calculated based on O:C and H:C ratios, following the approach of Kuwata et al. (2012).

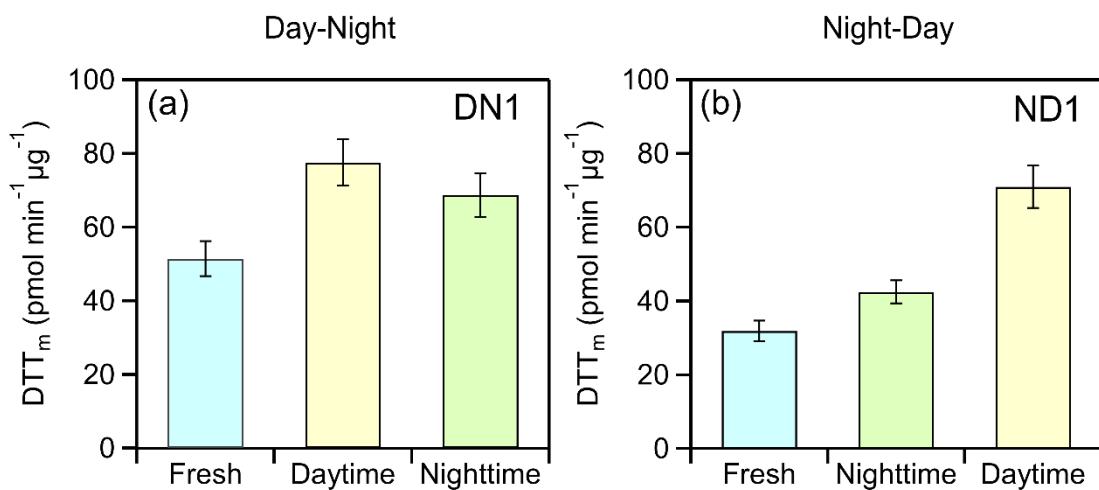

1196

1197 **Figure 1:** Experimental setup of the FORTH-ASC facility, illustrating the surrounding
 1198 instrumentation and the combustion facility.



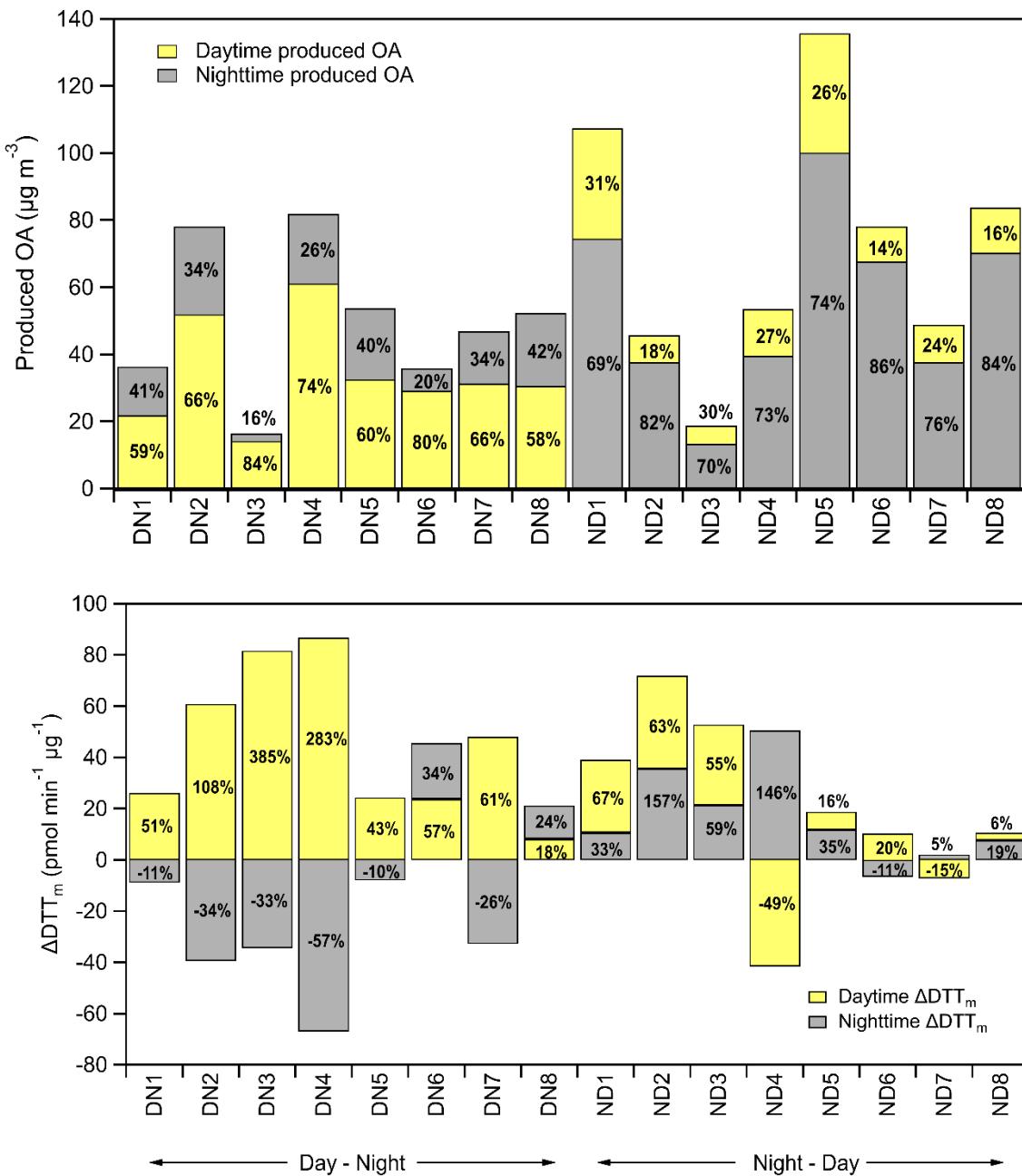
1199

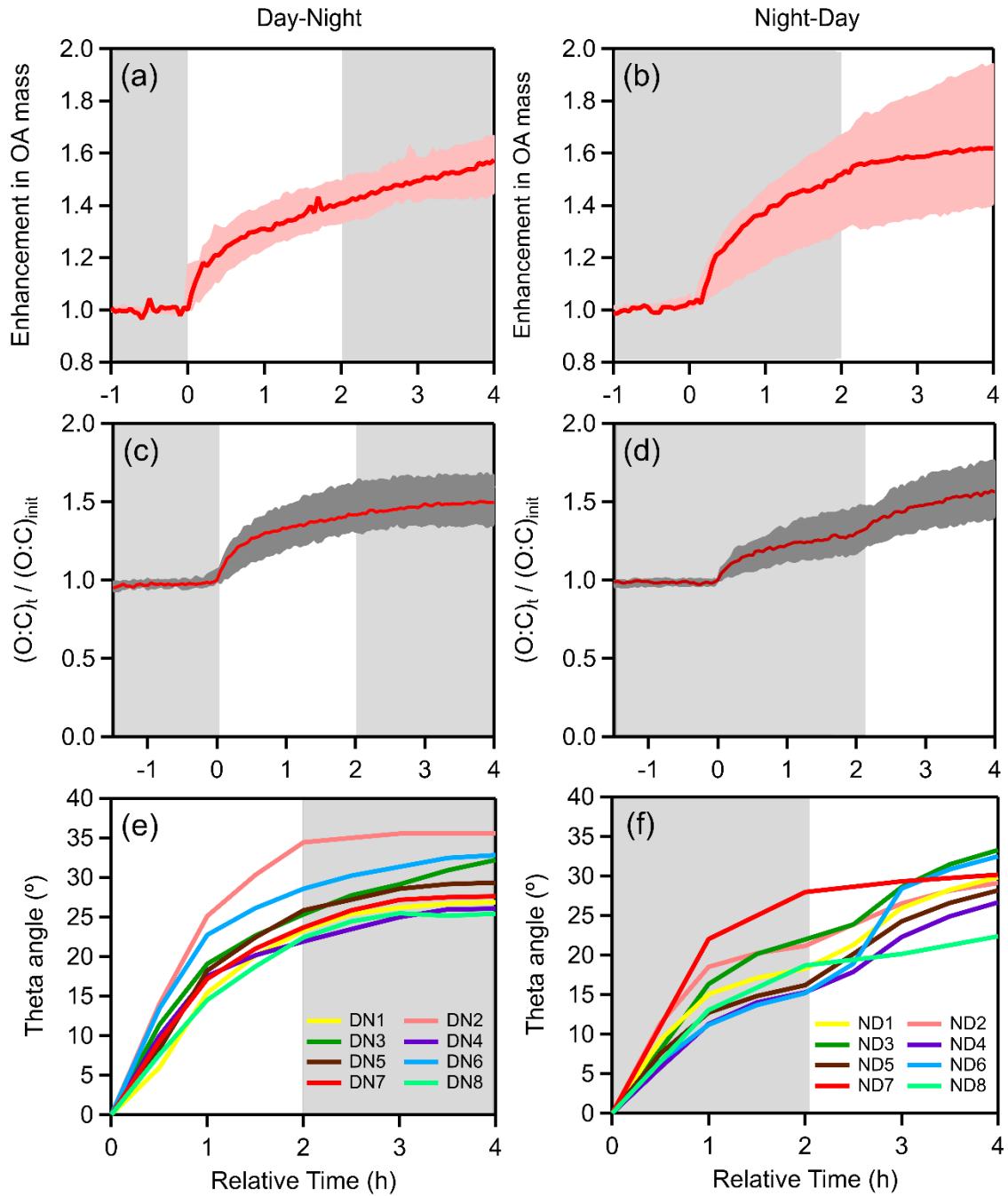
1200 **Figure 2:** Average concentrations, in ppb, of the identified VOCs in (a) fresh olive wood
 1201 burning emissions (red bars) and (b) fresh olive-pine mixed emissions (grey bars), along with
 1202 their percentage contribution to the total VOCs concentration measured by PTR-QMS. The
 1203 protonated *m/z* for each compound is shown in parentheses on the x-axis. The left y-axis shows
 1204 the concentrations of identified VOCs, while the right y-axis displays the concentrations of the
 1205 sum of the unidentified (other) and the total measured VOCs.



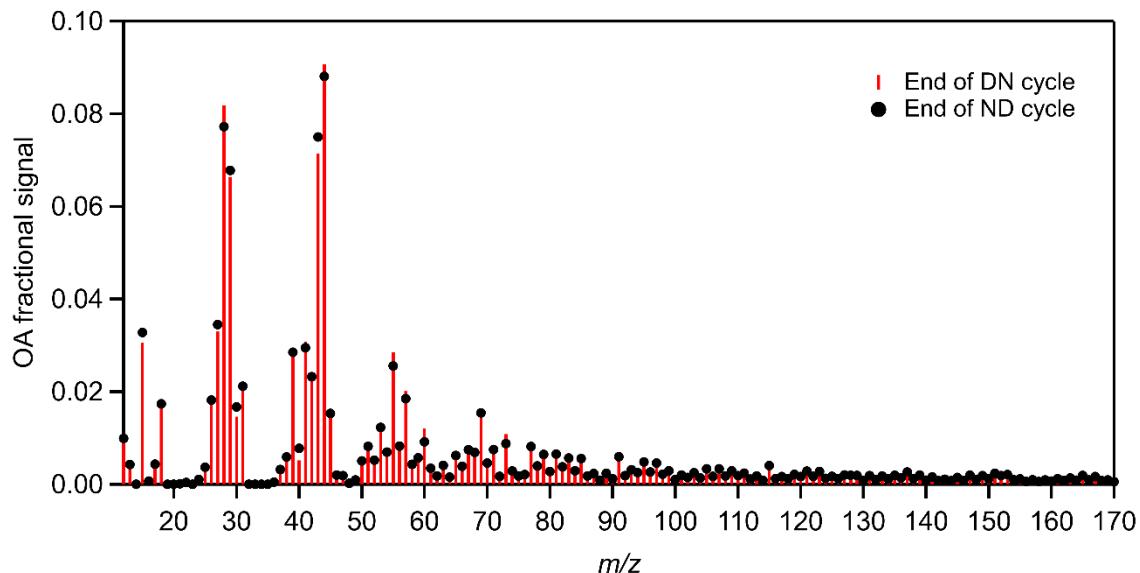
1208 **Figure 3:** Measurements from the experiment DN1, showing the time evolution of: (a) wall-
 1209 loss-corrected organic aerosol, particulate organic and inorganic nitrate, (b) selected VOCs,
 1210 including monoterpenes (m/z 137), hexenal (m/z 99), and phenol (m/z 95), (c) normalized O:C
 1211 ratio, (d) O_3 and NO_2 , and (e) a comparison of the fresh (red sticks) and nighttime (black
 1212 markers) oxidized aerosol mass spectra at the end of the DN oxidation cycle.

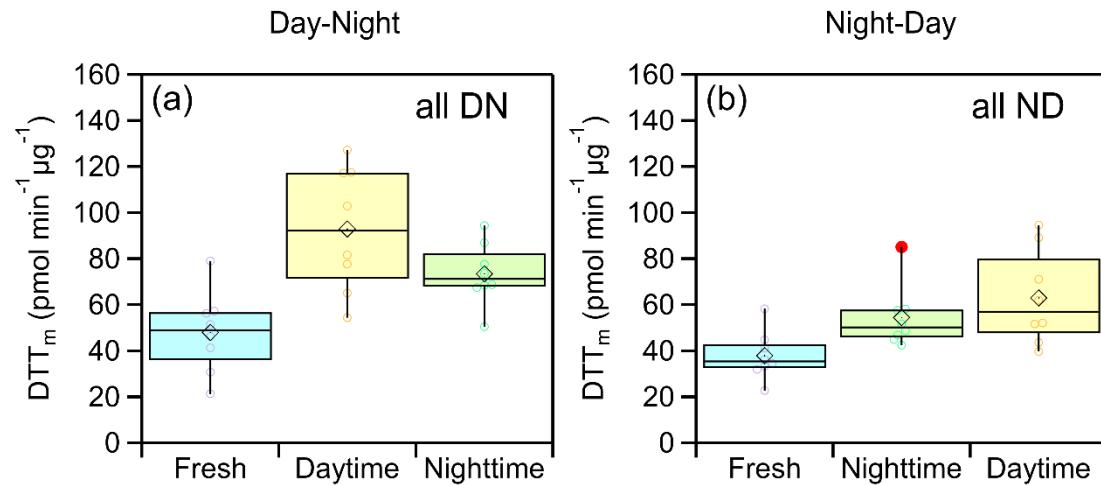
1215 **Figure 4:** Measurements from the experiment ND1, showing the time evolution of: (a) wall-
 1216 loss-corrected organic aerosol, particulate organic and inorganic nitrate, (b) selected VOCs,
 1217 including monoterpenes (m/z 137), hexenal (m/z 99), and phenol (m/z 95), (c) normalized O:C
 1218 ratio, (d) O_3 and NO_2 , and (e) a comparison of the fresh (red sticks) and daytime (black
 1219 markers) oxidized aerosol mass spectra at the end of the ND oxidation cycle.


1220


1221

1222 **Figure 5:** Category plots illustrating the evolution in water-soluble oxidative potential (WS-
1223 OP), expressed as per OC mass normalized DTT_m activity (pmol min⁻¹ μg⁻¹), in case of typical
1224 experiment (a) DN1 and (b) ND1.


1225


1228 **Figure 6:** (a) Absolute mass (in $\mu\text{g m}^{-3}$) and percentage increase (%) of OA (including organic
 1229 nitrate) per oxidation regime (daytime, nighttime); (b) absolute change in DTT_m activity
 1230 (ΔDTT_m , in $\text{pmol min}^{-1} \mu\text{g}^{-1}$) and percentage change (%) per oxidation regime (daytime,
 1231 nighttime) for both DN and ND cycles, for all conducted experiments.

1234 **Figure 7:** Evolution over time of: OA enhancement during (a) DN and (b) ND oxidation cycle;
1235 O:C ratio enhancement during (c) DN and (d) ND oxidation cycle; theta angle during (e) DN
1236 and (f) ND oxidation for experiments conducted under dry initial conditions using only olive
1237 wood logs as burning fuel (DN1-DN8, ND1-ND6). In experiments ND3, ND4, and ND6, the
1238 change in spectrum occurred slightly later, as the first-step oxidation extended to 3 h compared
1239 to 2 h lasted in the other ND experiments.

1242 **Figure 8:** Relative differences in the average spectra obtained at the end of DN (red sticks) and
 1243 ND (black circles) oxidation cycle, respectively, for experiments conducted using olive wood
 1244 logs as burning fuel. The theta angle between the averaged DN and ND aged spectra was 3°
 1245 (identical).

1248 **Figure 9:** Box plots illustrating the changes in WS-OP, expressed as per OC mass normalized
 1249 DTT_m activity (pmol min⁻¹ µg⁻¹), considering all performed experiments, in case of (a) DN
 1250 oxidation cycle and (b) ND oxidation cycle.