

Diurnal aging of biomass burning emissions: Impacts on secondary organic aerosol formation and oxidative potential

Maria P. Georgopoulou^{1,2}, Kalliopi Florou¹, Angeliki Matrali^{1,2}, Georgia Starida², Christos Kaltsonoudis¹, Athanasios Nenes^{1,3,*}, and Spyros N. Pandis^{1,2,*}

¹Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras 26504, Greece

²Department of Chemical Engineering, University of Patras, Patras 26504, Greece

³ Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland

*Correspondence to: Spyros Pandis (spyros@chemeng.upatras.gr) and Athanasios Nenes (athanasios.nenes@epfl.ch)

1 Abstract

2 Residential biomass burning is an important wintertime source of aerosols. These particles are
3 subjected to complex diurnal aging processes in the atmosphere, contributing to urban and
4 regional air pollution. The cumulative impact of these aging cycles on aerosol composition and
5 oxidative potential, a key toxicity metric, remains unclear. This study examined the oxidation
6 cycles of biomass burning emissions during day-to-night and night-to-day transitions in the
7 FORTH (Foundation for Research and Technology – Hellas) atmospheric simulation chamber,
8 focusing on emissions from burning of olive wood. The final high-resolution AMS spectra of
9 biomass burning organic aerosol (bbOA) after either oxidation cycle were almost identical (R^2
10 > 0.99 , $\theta = 3^\circ$). This indicates transformation into similar biomass burning secondary organic
11 aerosol (bbSOA) regardless of the initial step of the diurnal cycle. A 56% average increase in
12 the bbOA oxygen-to-carbon (O:C) ratio was observed during both cycle cases (from $0.38 \pm$
13 0.06 for the fresh to 0.59 ± 0.07 after aging). Additional OA mass was produced after the two
14 cycles, varying from 35 to 90 % of the initial OA. The aging of the emissions led to a final
15 water-soluble oxidative potential (WS-OP) increase of 60% to 68 ± 18 pmol min⁻¹ μg^{-1} for both
16 cycles, but with notably different transient values that depend on the order of the oxidation
17 regimes. The effect of each oxidation regime on the WS-OP of the bbOA depends on the
18 airmass history. The evolution of the WS-OP was not well correlated with that of the O:C.

19 **1 Introduction**

20 Biomass burning for residential heating has significantly increased over the past two decades
21 in several countries, primarily driven by rising energy costs and efforts to reduce the use of
22 fossil fuels (Alper et al., 2020). Alongside contributions from wildfires, residential biomass
23 burning has emerged as a major source of urban and regional pollution worldwide (Zauqi-
24 Sajani et al., 2024). Solid biomass currently represents nearly 45% of the total bioenergy supply
25 in the EU, 40% of which is allocated to residential heating, with an anticipated 20% increase
26 projected by 2050 (IEA, 2019, 2021; Reid et al., 2020). This upward trend in the residential
27 burning of solid biomass, particularly wood, has raised serious concerns regarding air quality
28 and human health (Cincinelli et al., 2019; Guercio et al., 2021; Pardo et al., 2024).

29 Particles emitted from biomass burning consist of organic compounds, elemental carbon
30 (EC), sulfates, nitrates, ammonium, and ash (Jiang et al., 2024). Biomass burning emissions
31 also include a range of gases; carbon monoxide (Shen et al., 2020), volatile organic compounds
32 (VOCs) such as aldehydes, ketones, and organic acids (Zhang et al., 2021; Huang et al., 2022),
33 carcinogenic polycyclic aromatic hydrocarbons (PAHs and oxy-PAHs) (Tsiodra et al., 2021,
34 2024; Lim et al., 2022), as well as nitrogen oxides and ammonia (Bray et al., 2021). The emitted
35 VOCs contribute to the formation of biomass burning secondary organic aerosol (bbSOA) and
36 can have direct health effects (Fang et al., 2021). The emission profile of these pollutants is
37 variable, influenced by factors such as fuel type and quality (e.g., logs vs. pellets; hardwood
38 vs. softwood; certified vs. non-certified wood, moisture content etc.), burning conditions (e.g.,
39 flaming vs. smoldering, air/oxygen supply, and dilution), and the type of combustion appliance
40 (Fachinger et al., 2017; Nyström et al., 2017; Price-Allison et al., 2021; Trubetskaya et al.,
41 2021).

42 After their release, biomass burning emissions are subject to chemical transformations
43 through homogeneous or heterogeneous reactions, that differ between daytime and nighttime
44 (Donahue et al., 2012; Hodshire et al., 2019; Yazdani et al., 2023). During these reactions, a
45 significant amount of SOA (Yazdani et al., 2023) and reactive oxygen species (ROS) (Wang
46 et al., 2023) can be generated. Hennigan et al. (2011) reported significant variability in bbSOA
47 formation during the photo-oxidation of different emissions. Yazdani et al. (2023) reported that
48 after 6 to 10 hours of daytime exposure, up to 30% (with an average of 15%) of the primary
49 bbOA (bbPOA) mass was oxidized, forming bbSOA that was predominantly composed of
50 acids. The coupled gas-particle partitioning, and reaction of semi-volatile vapors (SVOCs) may
51 play an important role in the processing of bbPOA (Hennigan et al., 2011; Srivastava et al.,

52 Li et al. (2024) demonstrated that intermediate volatility species (IVOCs) can contribute
53 approximately 70% of the formed bbSOA, more than twice the contribution from VOCs.

54 The nighttime oxidation of biomass burning emissions by the nitrate radical (NO_3) also
55 leads to rapid aerosol changes (Kodros et al., 2020), but to a lesser extent compared to OH
56 oxidation (Yazdani et al., 2023). In some cases, a doubling of bbOA levels compared to the
57 initial primary bbOA has been observed. This increase has been attributed to gas-phase
58 reactions between the NO_3 radical and mainly phenolic compounds or furanic aldehydes
59 (Hartikainen et al., 2018). Moreover, a substantial increase (7-100%) in the aerosol oxygen-to-
60 carbon (O:C) ratio, as well as in the mass of organic nitrates in bbOA has been reported, as
61 result of nocturnal aging (Kiendler-Scharr et al., 2016; Kodros et al., 2022; Yazdani et al.,
62 2023).

63 To date, field and atmospheric simulation chamber studies have focused on the oxidation
64 of biomass burning emissions during either daytime or nighttime oxidation regimes, driven
65 respectively by OH and NO_3 radicals (Hennigan et al., 2011; Fry et al., 2014; Hodshire et al.,
66 2019; Jorga et al., 2021; Kodros et al., 2022; Wang et al., 2023; Yazdani et al., 2023). While
67 such investigations have significantly advanced our understanding of the individual effects of
68 these oxidation regimes, they do not fully capture the real-world evolution of biomass burning
69 aerosols, which undergo multiple repeated cycles of daytime and nighttime chemistry during
70 their atmospheric lifetime. Studies on successive aging from daytime and nighttime cycling do
71 exist, but have focused on the changes of the optical and chemical properties of bbOA and the
72 gas-particle phase partitioning of semi- and intermediate-volatility organic compounds (Tiitta
73 et al., 2016; Hartikainen et al., 2018; Cappa et al., 2020; Che et al., 2022; Desservettaz et al.,
74 2023; Yazdani et al., 2023). These alternating oxidation regimes cause successive changes in
75 chemical composition, reactivity, and toxicity (Li et al., 2021, 2023; Tomlin et al., 2022; He et
76 al., 2024) that are not well understood. Consequently, the timing of atmospheric BB emissions,
77 being released during the day or night, may also influence the chemical trajectory of BB aerosol
78 aging and therefore affect its composition and properties, including toxicity.

79 Biomass burning particles are significant sources of reactive oxygen species (ROS),
80 including free radicals (e.g., OH, RO_2 , HO_2^-) and non-radicals (e.g., $^1\text{O}_2$, H_2O_2). Upon
81 inhalation, these species interact with biological tissues and can disrupt cellular redox balance,
82 triggering (or propagating) oxidative stress and systemic health effects (Costabile et al., 2023).
83 The ability of particulate matter (PM) to catalyze ROS production, known as oxidative
84 potential (OP), is a critical metric linking aerosol exposure to health outcomes (Zhang et al.,
85 2022; Dominutti et al., 2025). Among the various in vivo and in vitro methods developed to

86 quantify OP (Ng et al., 2019), the abiotic dithiothreitol (DTT) assay is the most well established
87 one, providing a measure of the water-soluble OP (WS-OP) of aerosols through the depletion
88 of surrogate DTT in aerosol extracts (Cho et al., 2005). In this assay, DTT acts as a surrogate
89 biological reducing agent that is oxidized by redox-active PM components. The remaining DTT
90 is determined via a colorimetric reaction with DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)),
91 producing a light-absorbing compound measured spectrophotometrically at 412 nm. Blank-
92 corrected depletion rates are typically normalized to aerosol mass or organic carbon content to
93 provide a per mass health-relevant measure of WS-OP. The broad sensitivity of this method to
94 diverse sources of ROS in aerosols with long lifetimes (Gao et al., 2020a; Rao et al., 2020),
95 along with its optimization over the years (Fang et al., 2015; Puthusseray et al., 2020) to provide
96 more rapid measurements of water-soluble OP (WS-OP), makes it highly suitable for large-
97 scale studies. In this study, we focus on WS-OP as a partial measure of aerosol toxicity,
98 acknowledging that the DTT assay reflects only one aspect of oxidative potential, and its direct
99 link to health outcomes remains uncertain. Recent studies emphasize that no single OP assay
100 can fully represent particle toxicity and that complementary approaches (e.g., thiol- and
101 hydroxyl radical-based assays) are needed to capture the full range of oxidative mechanisms
102 and to strengthen links with health-relevant outcomes (Dominutti et al., 2025). Studies using
103 the DTT assay have identified bbOA and SOA as dominant contributors to DTT activity,
104 accounting respectively for 35% and 30% of total OP in ambient aerosols in the Southeastern
105 USA (Verma et al., 2015). More recent studies confirm that biomass burning is a significant
106 source of OP in diverse environments, highlighting the importance of understanding diurnal
107 variations in OP from biomass burning (Paraskevopoulou et al., 2019, 2022; Mylonaki et al.,
108 2024).

Commented [MG1]: Reviewer 1; Comment 2

109 Photochemical aging during daytime oxidation promotes particle-bound ROS
110 production, enhancing the OP of the aged aerosols (Li et al., 2021; Wang et al., 2023). For
111 bbOA, the OP was found to increase by a factor of two (2.1 ± 0.9) after multiple days (68 h) of
112 atmospheric aging (Wong et al., 2019). This implies that the health impacts of bbOA may
113 extend far from its sources, as it ages and becomes part of the background aerosol
114 (Vasilakopoulou et al., 2023; Mylonaki et al., 2024).

115 While it is well-established that bbOA ages rapidly at night, the effects of its nocturnal
116 aging on aerosol OP are poorly understood. Moreover, to our knowledge no studies have yet
117 investigated how the oxidation sequence (day-to-night and night-to-day) affects aerosol
118 chemical composition, aging trajectory, and toxicity (i.e., evolution of OP). This study aims to
119 address these knowledge gaps through controlled chamber experiments simulating realistic

120 diurnal oxidation cycles. In these experiments, fresh biomass burning emissions undergo
121 sequential aging, either through daytime oxidation followed by nighttime oxidation or the
122 reverse. By comparing day-to-night and night-to-day sequences, we aim to elucidate the
123 interplay of oxidation regimes on aerosol chemical evolution and OP, providing novel insights
124 into the health impacts of diurnally aged biomass burning aerosols.

125 **2 Methods**

126 **2.1 Atmospheric simulation chamber experiments**

127 Emission aging experiments took place at the FORTH-ASC chamber facility at Patras,
128 Greece. Figure 1 illustrates the setup used for conducting the experiments. Fresh biomass
129 burning emissions were produced in the combustion facility beneath FORTH-ASC by a
130 residential wood stove, fed with commercially available olive wood logs and branches. This
131 type of hardwood is widely used as a fuel in Greece. The emissions were diluted before their
132 injection into the smog chamber, using a custom-made dilution device that was located at the
133 chamber inlet.

134 The FORTH-ASC consists of 10 m³ squared Teflon chamber, located inside a 30 m³
135 reflective room (polished interior aluminium walls), which is temperature-regulated and
136 equipped with ultraviolet lights (Osram, L 36W/73 UV lamps). This setup yields a maximum
137 NO₂ photo-dissociation rate coefficient (J_{NO_2}) of 0.5 min⁻¹ when all lights are on. In this study
138 1/3 to 2/3 of the ultraviolet lights were used during photooxidation, resulting in a NO₂ photo-
139 dissociation rate coefficient (J_{NO_2}) of 0.17 to 0.33 min⁻¹.

140 Eight day-to-night (denoted as DN) and eight night-to-day (denoted as ND) aging
141 experiments were performed under dry (12-24% RH) conditions. Because a small amount of
142 water vapor is inherently present in biomass burning emissions, achieving extremely low RH
143 (<5%) would require complete removal of this water, which would result in losses of organic
144 vapors and particles and compromise experimental quality. The selected RH range therefore
145 ensured stable experimental conditions and is consistent with previous chamber studies
146 (Kodros et al., 2022; Li et al., 2023). Table 1 summarizes the initial aerosol composition and
147 experimental conditions for all the conducted experiments. To investigate the impact of fire
148 starter on biomass burning emissions characteristics, pine kindling mixed with olive logs was
149 used in two of the ND experiments (ND7, ND8). Pine, which is a softwood, has chemically
150 distinct characteristics compared to olive wood (hardwood) and is used as a kindling material
151 because it burns quickly due to its high resin content. While all night-to-day (ND) and day-to-night

Commented [MG3]: Reviewer 1; Comment 3

152 (DN) experiments were conducted under the same general initial chamber conditions (temperature,
153 relative humidity, and sampling protocol), there were the unavoidable in these chamber experiments
154 differences in the initial aerosol and gas-phase composition, including the starting organic aerosol (OA)
155 mass, black carbon (BC) content, and oxidant concentrations (e.g., O₃, NO₂) (Table 1).

Commented [ΣΠ4]: Reviewer 3; Comment 2

156 The smog chamber was first flushed with clean air overnight at a rate of 20 L min⁻¹.
157 Approximately 30 min after the combustion ignition in the wood stove, when flaming
158 conditions had been achieved, a fraction of the fresh emissions was diluted with clean air
159 (dilution ratio ranging from 1:5 to 1:10) and was injected into the chamber, which was pre-
160 filled with clean air and regulated to the desired RH level. This resulted in additional dilution
161 (dilution ratio ~1:30) of the emissions. Two high precision mass flow controllers (Bronkhorst
162 EL-FLOW Prestige FG-201CVP), operating at flow rates ranging from 0 to 20 L min⁻¹, were
163 used; one to supply clean air to the smog chamber during its filling and cleaning stages, and
164 the other to supply clean air to the dilution system. The initial PM₁ concentration achieved in
165 the chamber was 112 ± 56 µg m⁻³ on average (Table 1). The fresh emissions were left to
166 equilibrate and were characterized for about 2 hours. 30-90 ppb of d₉-butanol (98%, Cambridge
167 Isotope Laboratories) was also injected in the chamber as a tracer to determine the
168 concentration of OH radicals (Barmet et al., 2012).

169 Subsequently, in DN experiments, the UV lights were turned on, initiating the daytime
170 aging of fresh biomass burning emissions by OH radicals for at least 2 hours, without the
171 addition of further oxidants. This oxidation step was then followed by at least 2 hours of aging
172 with NO₃ radicals under dark conditions. To initiate NO₃ radical formation, NO₂ and O₃ were
173 injected into the chamber at concentrations of 50–150 ppb, and 60–280 ppb, respectively, NO₂
174 (50–150 ppb) was first injected into the chamber and allowed to mix for approximately 10 min,
175 followed by a 1-min O₃ injection (60–280 ppb). This sequence ensured uniform NO₂
176 distribution and prevented its immediate consumption, enabling accurate concentration control.

Commented [MG5]: Reviewer 1; Comment 3

177 The injected NO₂ concentrations are consistent with polluted urban environments, while the
178 O₃ levels correspond to those observed during daytime pollution episodes and in the residual
179 layer above the nocturnal boundary layer, from where they can gradually mix downward and
180 react with NO₂ to form NO₃ radicals (Kodros et al., 2020). Homogeneous mixing was
181 confirmed through real-time gas monitoring, and measurements commenced only after full
182 mixing to minimize artifacts. During ND cycling experiments, the same oxidation steps were

183 performed but in reverse order. In DN experiments, “time zero” was defined as the moment
184 when the UV lights were turned on, whereas in ND experiments, it was the point at which O₃
185 was injected.

Commented [MG6]: Reviewer 1; Comment 4

186 Particle wall losses were also characterized for each experiment. After the completion of
187 the two oxidation stages ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4 \geq 99\%$, Sigma Aldrich) was injected
188 into the chamber and its loss rate was monitored for at least 3 hours. The dry seeds were
189 produced by atomizing a $(\text{NH}_4)_2\text{SO}_4$ solution using a TSI atomizer (model 3076) and drying
190 the resulting droplets with a diffusion silica gel dryer (Fig. 1), as described in Wang et al.
191 (2018).
192 [Particle wall loss corrections were applied to all aerosol data. Organic vapor wall losses](#)
193 [were neglected over the corresponding experimental timescales. Wall losses of inorganic gases,](#)
194 [such as \$\text{NO}_2\$ and \$\text{O}_3\$, were evaluated during preliminary chamber characterization and found to](#)
195 [be minimal, typically only a few percent or less \(<5%\) over the course of the experiments.](#)

Commented [MG7]: Reviewer 1; Comment 5

195 2.2 Online instrumentation

196 A suite of instrumentation was used for the online characterization of both particle and gas-
197 phase pollutants (Fig. 1). A scanning mobility particle sizer (SMPS; Classifier) model 3080;
198 DMA, model 3081, TSI) coupled to a butanol-based condensation particle counter (CPC,
199 model 3775 high, TSI), was used for the measurement of the number and volume size
200 distributions (mobility diameter in the range of 13–700 nm) of the aerosol particles. The SMPS
201 sampled every 3 min with its sheath flow rate set at 3 L min^{-1} and the sample flow rate at 0.6
202 L min^{-1} . A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne
203 Research Inc.), working in V mode with vaporizer temperature set at 600°C and sampling flow
204 rate of approximately 0.1 L min^{-1} , was used for monitoring the time evolution of the non-
205 refractory organic and inorganic PM_1 aerosol composition with time resolution of 3 min.
206 Aerosol absorption and black carbon (BC) concentration were measured with a seven-
207 wavelength aethalometer (Magee Scientific, Model AE33-7), sampling at 2 L min^{-1} . VOCs
208 were measured using a proton transfer reaction mass spectrometer (PTR-QMS 500, Ionicon
209 Analytik), sampling at 0.5 L min^{-1} . The drift tube was maintained at 2.3 mbar and operated at
210 600 V . A detailed explanation of the PTR-MS operational parameters and the calibration
211 procedure using VOC standards can be found in Kaltsonoudis et al. (2016). Concentrations
212 of carbon monoxide (CO) and dioxide (CO_2), sulfur dioxide (SO_2), ozone (O_3) and nitrogen
213 oxides (NO_x) were measured using the corresponding monitors; CO (Teledyne model 300E),
214 CO_2 (Teledyne model T360), (Thermo model 43i-TLE), O_3 (Teledyne model 400E), NO and
215 NO_2 (Teledyne model T201). The total sampling flow rate of all monitors was 3.8 L min^{-1} .

216 **2.3 Online data analysis methodology**

217 The initial combustion conditions in the chamber were characterized by calculating the
218 modified combustion efficiency (MCE) as the ratio of the carbon dioxide (CO₂) to the sum of
219 CO₂ and carbon monoxide (CO) (Yokelson et al., 1996).

220 The HR-ToF-AMS data were analyzed using the packages SQUIRREL (Sequential Igor
221 data Retrieval; v1.57) and PIKA (Peak Integration by Key Analysis; v1.16) incorporated in
222 Igor Pro software (WaveMetrics; version 6.37). The method described in Canagaratna et al.
223 (2015) was used to estimate of elemental O:C ratio. The AMS collection efficiency (CE) and
224 the corresponding OA density have been determined using the algorithm proposed by
225 Kostenidou et al. (2007). This approach combines the volume distributions obtained from the
226 SMPS and the mass distributions of the main PM₁ components from the AMS. The BC
227 concentration obtained by the aethalometer was also included in the calculation, assuming a
228 size distribution for BC similar to that of OA.

229 SMPS measurements were corrected using size-dependent wall loss rate constants,
230 estimated by monitoring the decline in the mass concentration of (NH₄)₂SO₄ particles injected
231 into the chamber at the end of each experiment. Practically size independent first-order wall
232 loss rates were observed for particle diameters ranging from 60 to 700 nm. Based on this, the
233 concentrations of the non-refractory PM₁ aerosol species measured by the AMS were corrected
234 using one experiment-specific, size-independent wall loss rate constant that was 0.15 ± 0.05
235 h⁻¹ on average.

236 The total OA was split into primary (bbPOA) and secondary (bbSOA) following the
237 approach proposed by Jorga et al. (2020) and applied for bbOA by Kodros et al. (2022). To
238 quantify the variation between primary and secondary bbOA mass spectra, obtained by the
239 AMS, the theta angle (θ) was estimated (Kostenidou et al., 2009). This angle represents the
240 inner product of the two spectra (i.e., fresh and aged one), considered as n-dimensional vectors
241 (n is to the number of the mass-to-charge (m/z) ratios). Theta angles less than 10° imply high
242 similarity, while major differences between two compared spectra correspond to θ values
243 higher than 25° (Florou et al., 2023). The approach described in Kiendler-Scharr et al. (2016)
244 was used to quantify the particulate organic nitrate (ON). In the present study the minimum
245 measured NO₂⁺/NO⁺ ratio in all experiments was 0.04. The corresponding measured ratio for
246 pure NH₄NO₃, determined through calibration, was equal to 0.56.

247 Prior to each experiment, background VOC levels in the chamber were measured using
248 the PTR-MS for at least 1 hour. The PTR-MS was unavailable during experiments DN2–DN7.

249 The PTR-MS measurements of the protonated VOCs were background-corrected and averaged
250 at the end (over the last 1 h) of the fresh emissions' stabilization period, as well as at the end
251 (over the last 1 h) of each oxidation step. The final values are summarized in Table S1 of the
252 supplement, along with a classification of the identified VOCs by chemical structure and
253 functional groups.

254 Following the work of Barmet et al. (2012), the average OH radical concentration was
255 estimated from the decline/reduction in the concentration of the *m/z* 66 (protonated mass of d₉-
256 butanol). A d₉-butanol reaction rate coefficient equal to $3.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (at 295
257 K) was assumed (Allani et al., 2021).

258 2.4 Collection of samples for offline analysis

259 To investigate the WS-OP of both fresh and aged BB aerosol, as well as to measure their
260 organic (OC) and elemental carbon (EC) content, filter samples (Whatman Tissuquartz
261 2500QAO-UP, 47 mm, 0.45 *pose* size) were collected for 1 h at the end of the emissions'
262 equilibration period as well as at the end of each oxidation step. Prior to each experiment, blank
263 filter samples were also collected. Sampling was conducted using a filter holder coupled with
264 a PM_{2.5} cyclone positioned at the chamber exit. An external vacuum pump (Becker VT 4.10,
265 150 Mbar), operating at a flow rate of 16.7 L min⁻¹, was used, with its exhaust connected to a
266 HEPA filter (Whatman 6702-9500). Prior to sampling, the quartz filters were baked at 500 °C
267 for 10 h and left in the oven overnight, to remove any absorbed organic material. Each filter
268 was wrapped in prebaked aluminum foil and was kept before and after sampling in sterile
269 polystyrene petri dishes (50 mm, Pall Laboratory). After sampling all filters were stored at a
270 temperature of -20 °C, until WS-OP and OC/EC analysis.

271 Tenax sorbent tubes (stainless steel 3.5 x 1/4 in tubes, filled with Tenax TA, Markes
272 International) were used to collect VOC samples at specific time intervals. The custom-made
273 sampling system used included a mass flow controller (Alicat Scientific MC-500SCCM-
274 D/5M), the sampling tube, and a diaphragm vacuum pump (AIRPO, Model D2028B 12VDC),
275 operating at a flow of 0.3 L min⁻¹ for 1 to 1.5 h, resulting in total collected sample volumes
276 ranging from 18-27 L. After sampling all sorbent tubes were capped with long-term storage
277 brass caps containing PTFE ferrules and were stored in a freezer at -18 °C (Harshman et al.,
278 2016).

279 **2.5 TD-GCMS measurements**

280 The offline determination of VOCs/IVOCs involved a two-step desorption process. The
281 compounds adsorbed in the Tenax tubes were first desorbed using a thermal desorber (UNITY–
282 Air Server-xr, Markes International Ltd.). During thermal desorption (TD), the sorbent tube
283 underwent heating up to 280 °C for 10 min to release all its contents. Subsequently, the
284 desorbed VOCs were captured using Helium (as the carrier gas) and then deposited onto a
285 sorption cold trap at 20 °C. Subsequently, the temperature of the cold trap was gradually
286 increased from 20 °C to 300 °C at a rate of 100 °C s⁻¹, where it remained for 6 min. The retained
287 analytes were then injected into a single quadrupole gas chromatograph-mass spectrometer
288 (GSMS, Shimadzu model QP2010, with helium as carrier gas). The GC-MS system was
289 equipped with an inert capillary column (MEGA-5MS, 30 m length, 0.25 mm inner diameter,
290 0.25 µm film thickness). The oven temperature of the GC column remained at 32°C for
291 approximately 5 min, increasing to 320 °C at 5 °C min⁻¹. MS data acquisition was conducted
292 in full scan mode, scanning within the *m/z* range of 35 to 300 amu. After the analysis, both the
293 Tenax tubes and the GC column were cleaned. Calibration of the system was performed using
294 standards of specific VOCs (EPA labelled) loaded in clean tubes. The species detected by TD-
295 GCMS for a typical experiment (DN4) are presented in Table S2.

296 **2.6 Oxidative potential (OP) measurements**

297 The water-soluble oxidative potential (WS-OP) of redox-active aerosol components was
298 measured using a DTT assay system (Fig. S1) at FORTH/ICE-HT in Patras, Greece, which is
299 based on the semi-automated method of Fang et al. (2015). A detailed description of the system
300 components, operation, measurement protocol, and data treatment, is provided in the
301 Supplementary Information Section S1. Briefly, the fresh and aged aerosol samples (1.5 cm²
302 punches of the collected quartz filters) are extracted, filtered, and incubated with DTT, in
303 excess, under controlled conditions. The DTT is gradually oxidized by ROS in the sample, with
304 its consumption rate (DTT activity, in nmol min⁻¹) determined spectrophotometrically by
305 measuring the absorbance of 2-nitrobenzoic acid (TNB), the derivatization product of DTT
306 with DTNB reagent, at 412 nm at specific time intervals. The WS-OP was calculated by
307 correcting for blank samples and was normalized to the OC mass of the sample, yielding net
308 DTT consumption rates (mass-normalized DTT activity – DTT_m) in pmol min⁻¹µg⁻¹ (Table S3).
309 OC was quantified via thermal-optical analysis (NIOSH-870 protocol), with an estimated
310 relative standard deviation of 15 ± 5% for replicate measurements.

311 **3 Results and Discussion**

312 **3.1 Characterization of fresh olive wood emissions**

313 Flaming conditions predominated in all experiments, as indicated by the estimated modified
314 combustion efficiency (MCE) that ranged from 0.91 to 0.99 (Table 1) (Li et al., 2015; Briggs
315 et al., 2016). The initial PM_{10} concentration of the fresh olive wood burning emissions in the
316 chamber varied from 47 to 177 $\mu g m^{-3}$ (considering experiments DN1-DN8 and ND1-ND6).
317 This range of concentrations is representative of light to severe biomass burning pollution
318 episodes in polluted urban areas during wintertime (Chen et al., 2022; Luo et al., 2022; Othman
319 et al., 2022). The average AMS collection efficiency (CE) of the fresh emissions averaged 0.8
320 ± 0.2 , while the mean OA density, calculated following the approach of Kostenidou et al.
321 (2007), was $1.11 \pm 0.12 g cm^{-3}$. Estimating the OA density from measured O:C and hydrogen-
322 to-carbon (H:C) ratios, following the Kuwata et al. (2012) approach, yielded an average of 1.18
323 $\pm 0.03 g cm^{-3}$.

324 The fresh aerosol primarily consisted of organics ($95 \pm 3\%$) with OA concentrations
325 ranging from 46 up to $174 \mu g m^{-3}$ (Table 1). The rest of the aerosol consisted of BC ($2.4 \pm$
326 2.4%), nitrates ($1.4 \pm 0.7\%$), sulfates ($0.7 \pm 0.4\%$), chloride ($0.4 \pm 0.2\%$) and ammonium (0.2
327 $\pm 0.1\%$). In experiment DN3, ammonium sulfate seeds were also present explaining the higher
328 initial sulfate (28%) and ammonium (10%) content.

329 The initial mass ratio of the organic aerosol to black carbon (OA/BC) ranged from 13 to
330 263. The OA/BC differs significantly depending on the combustion conditions. When MCE
331 values exceed 0.9, the OA/BC ratio can range between 0.3 to 10^5 (McClure et al., 2020), with
332 higher values indicating more efficient combustion (Novakov et al., 2005). The relatively low
333 primary BC concentrations in experiments DN3, DN5, DN6, and ND2, despite high MCEs of
334 0.96 – 0.99, likely reflect variability in combustion conditions and fuel composition during our
335 biomass burning experiments. Such variability can lead to differences in OA/BC ratios even
336 under high MCE conditions. Overall, our OA/BC values indicate relatively efficient wood
337 stove operation.

338 The average initial oxygen to carbon ratio (O:C) of the bbOA in all olive wood burning
339 experiments was 0.39 ± 0.04 . The average initial hydrogen to carbon ratio (H:C) was $1.67 \pm$
340 0.04 ranging from 1.62 to 1.76. These values are consistent with previously reported field and
341 smog chamber O:C and H:C observations for fresh biomass burning aerosols (Ng et al., 2010;
342 Sun et al., 2016; Lim et al., 2019; Kodros et al., 2020; He et al., 2024). The relatively low AMS
343 f_{44}/f_{60} ratios (1.56 ± 0.52) observed in the experiments are representative of fresh biomass

Commented [MG8]: Reviewer 2; Comment 7

344 burning emissions from wildfires and laboratory wood burning chamber studies (Li et al.,
345 2023).

346 The average high-resolution (HR) fresh bbOA mass spectrum obtained by AMS for the
347 olive wood burning experiments (Fig. S2a) showed predominant fragments at m/z 29 (CHO^+ ,
348 C_2H_5^+), 41 (C_2HO^+ , $\text{C}_2\text{H}_3\text{N}^+$, C_3H_5^+), 43 ($\text{C}_2\text{H}_3\text{O}^+$, C_3H_7^+), 55 ($\text{C}_3\text{H}_3\text{O}^+$, C_4H_7^+), 57 ($\text{C}_3\text{H}_5\text{O}^+$),
349 69 (C_5H_9^+ , $\text{C}_4\text{H}_5\text{O}^+$) and 73 ($\text{C}_3\text{H}_5\text{O}_2^+$), suggesting a significant presence of alkenes, alkanes,
350 and fatty acids. The observed signals at m/z 44 (CO_2^+) and m/z 60 ($\text{C}_2\text{H}_4\text{O}_2^+$), are typical tracer
351 fragments for OOA and bbOA, respectively. The obtained fresh bbOA spectrum profile is quite
352 similar to those reported in previous biomass burning chamber studies that examined wood or
353 pellets burning (He et al., 2010; Kodros et al., 2020, 2022; Florou et al., 2023). The average
354 theta angle θ of the fresh bbOA spectra, calculated for all possible pairs of the olive wood
355 burning experiments in the present study, was on average $9^\circ \pm 7^\circ$ (Fig. S3), indicating a
356 generally similar composition of fresh bbOA.

357 Based on PTR-MS measurements, oxygen-containing compounds contributed the largest
358 portion of the protonated VOCs identified in the fresh emissions (Fig. 2a). Aldehydes,
359 including acetaldehyde (m/z 45; 12.9 ± 3.7 ppb), formaldehyde (m/z 31; 1.6 ± 0.7 ppb), acrolein
360 (m/z 57; 3.5 ± 1.5 ppb), and hexenal (m/z 99; 2.1 ± 1.5 ppb), along with saturated ketones like
361 acetone (m/z 59; 4.7 ± 2.0 ppb) and unsaturated ones such as ethyl vinyl ketone (m/z 85; $2.1 \pm$
362 1.4 ppb), contributed a total of 32.5 ppb, accounting for 19.7% of the measured VOCs.
363 Carboxylic acids, such as formic (m/z 47) and acetic (m/z 61) acids, averaged a total
364 concentration of 8.2 ppb, comprising 5% of the total VOCs (Fig. 2a). The main identified
365 alcohol was 1-butanol (m/z 75), which accounted for 3% of the VOC composition, with
366 concentrations varying from 2.1 ppb to 9.5 ppb across experiments (Table S1). Furans and their
367 derivatives (m/z 69, 83, 113, 147) had an average concentration of 7.9 ppb, accounting for 5%
368 of the total measured VOCs (Fig. 2a).

369 Cyclic and heterocyclic aromatic compounds (with 1-ring or 2-ring structure) contributed
370 approximately 10% to the total VOCs. This includes benzene (m/z 79; 1.5 ± 1.0 ppb) and its
371 substituted forms (m/z 139, 151, 155; 3.3 ppb), toluene (m/z 93; 1.2 ± 0.8 ppb), phenol (m/z 95;
372 2.1 ± 1.7 ppb) and its substituted forms (m/z 121, 135, 149, 169; 2.4 ppb in total), and C8
373 aromatics, including xylenes, (m/z 107; 3.2 ± 2.4 ppb). Other minor contributors, with varying
374 concentrations across experiments, included terpenes and terpenoids (m/z 81 and m/z 137),
375 averaging 2.9 ppb, and naphthalene (m/z 129), averaging 1.4 ± 1.1 ppb. The presence of these
376 aromatic species is corroborated by the Tenax samples, along with compounds like
377 benzonitrile, trimethoxy- benzene, methylindene and benzofurans. For a typical sample of fresh

378 emissions, chromatographic analysis yielded a variety of phenolic species other than phenol,
379 with functional groups including several alkyl groups (methyl-, dimethyl-,ethyl), but also with
380 oxygenated functional groups (methoxy-, dimethoxy-) as presented in Table S2. Furans
381 comprised approximately 11% of the identifiable VOCs in the offline analysis, with the most
382 prominent being furfural, followed by methyl-furans and methyl- furancarboxaldehyde. In
383 terms of polyaromatic species, similarly to the PTR-QMS observations, the most abundant was
384 naphthalene, while there were several alkyl-substituted naphthalenes present in comparable
385 concentrations. Trace amounts of higher ring number PAHs (e.g., phenanthrene) were also
386 observed. Most of these compounds have been previously reported in biomass burning ambient
387 and laboratory studies (Stockwell et al., 2014; Bruns et al., 2017; Sun et al., 2019; Desservetaz
388 et al., 2023; Florou et al., 2023).

389 The average WS-OP of the fresh olive wood burning aerosol was 42.9 ± 16.1 pmol
390 $\text{min}^{-1} \mu\text{g}^{-1}$, comparable to toxicity levels reported in literature for the water- and methanol-
391 soluble portion of freshly emitted bbOA, which were also estimated using the acellular DTT
392 assay protocol (Cao et al., 2021; Wang et al., 2023). The WS-OP values ranged from $21.2 \pm$
393 5.7 pmol $\text{min}^{-1} \mu\text{g}^{-1}$ (in DN3) to 79 ± 11.3 pmol $\text{min}^{-1} \mu\text{g}^{-1}$ (in DN7) (Table S3).

394 3.2 Effect of pine kindling on fresh olive wood emissions

395 In experiments ND7 and ND8, where pine kindling sticks were mixed with olive wood logs,
396 the PM_1 concentration during the characterization period was $126 \mu\text{g m}^{-3}$ and $276 \mu\text{g m}^{-3}$,
397 respectively (Table 1). High amounts of BC ($67 \mu\text{g m}^{-3}$ and $190 \mu\text{g m}^{-3}$) were produced in these
398 experiments, constituting more than half (53% and 69%) of the total fresh PM_1 mass. Given
399 the efficient combustion conditions (MCE ranged from 0.96 to 0.98), these elevated BC levels
400 were likely related to the properties of the pine (e.g., higher moisture, ash, and carbon content)
401 compared to the olive logs (Nyström et al., 2017; Trubetskaya et al., 2021). The initial O:C of
402 the fresh bbOA was 0.23 in experiment ND7 and 0.36 in ND8. The O:C in ND7 was the lowest
403 of all experiments.

404 Comparison of the average fresh bbOA mass spectrum from olive-pine mixed emissions
405 with that of olive logs burning (Fig. S4a) reveals significantly higher peaks at m/z 28 (CO^+ ;
406 +69%), 41 (+36%), 44 (+40%), and 73 (+39%), indicating an increase in certain oxygenated
407 organic species. Additionally, the stronger fractional signals at m/z 91 (C_7H_7^+ ; 104%), and at
408 higher masses, such as m/z 105 (C_8H_9^+ ; 154%), 129 ($\text{C}_{10}\text{H}_9^+$; +166%), suggest a higher relative
409 contribution of cyclic hydrocarbons, PAHs, and other aromatic compounds. The theta angle of
410 the two average fresh spectra was approximately 20° , implying distinct chemical composition

411 of olive-pine mixed emissions. For the VOCs, while most aromatic compound concentrations
412 were lower in the mixed fuel emissions, their relative contribution to the total VOCs was higher
413 (17.7% vs. 9.6% in olive wood alone), suggesting differences in pyrolysis pathways and
414 thermal degradation mechanisms between the two wood types (Fig. 2a,b). Additionally,
415 monoterpenes (m/z 137 and their fragment m/z 81) showed a significant increase in the mixed
416 emissions, rising from 2.9 ppb to 9.1 ppb, highlighting the influence of pine higher terpene
417 content on VOC composition (Fig. 2). The variations observed in aldehydes, ketones, and
418 heavier PAHs were within the experimental uncertainty. A more detailed breakdown of the
419 absolute and CO₂-normalized VOC concentrations, including experiment-specific observations
420 and comparisons, is provided in the Supplement (Fig. S5, Table S1).

421 No changes were observed in the WS-OP of the fresh olive-pine mixed emissions
422 compared to fresh olive wood emissions. The corresponding DTT_m values in experiments ND7
423 and ND8 were 44.7 ± 4.0 pmol min⁻¹ μg^{-1} and 41.1 ± 3.4 pmol min⁻¹ μg^{-1} , respectively (Table
424 S3). Similar WS-OP values (25 to 45 pmol min⁻¹ μg^{-1}) were reported by Wang et al. (2023) for
425 fresh bbOA from pine combustion under smoldering conditions (MCE=0.61). These values are
426 comparable to the average WS-OP measured in this study for olive wood emissions ($42.9 \pm$
427 16.1 pmol min⁻¹ μg^{-1}).

428 3.3 Typical day-to-night (DN) aging experiment

429 During a typical dry DN oxidation experiment (DN1), two hours before the start of oxidation
430 (at $t = -2$ h), 70 ± 0.4 $\mu\text{g m}^{-3}$ of fresh olive wood burning PM₁ (91 % OA) were injected into
431 the chamber along with approximately 14 ppb of O₃ (Fig. 3). During the emissions equilibration
432 period (-2 to 0 h), the average O:C was 0.43, H:C was 1.67, OA/BC was 17, and the f_{44}/f_{60}
433 ratio was 1.37 (Table 1), and remained quite stable. The WS-OP of the fresh aerosol was
434 estimated at 51.4 ± 4.7 pmol min⁻¹ μg^{-1} (Table S3).

435 At time zero ($t = 0$ h), daytime oxidation of the emissions was initiated by turning on the
436 UV lights of the chamber, without adding any oxidants, and allowing the process to proceed
437 for 2 h. Under the given experimental conditions, each hour of UV exposure in the simulation
438 chamber corresponds to approximately 2 hours of atmospheric photochemical oxidation,
439 assuming an average OH concentration of 1.5×10^6 molecule cm⁻³ (Liu et al., 2018; Nault et al.,
440 2018). In DN1, the average OH concentration during this 2-h oxidation period, estimated from
441 the decay of d9-butanol, was 3.2×10^6 molecules cm⁻³, corresponding to an equivalent daytime
442 exposure of 4.3 h. The average O₃ concentration was 33 ± 14 ppb.

443 During this 2-h period the OA (wall loss corrected) increased by 22 $\mu\text{g m}^{-3}$ (34%).
444 Organic nitrates also increased by 54% and O_3 reached 56 ppb. The H:C decreased by 4% while
445 the f_{44}/f_{60} more than doubled (3 times higher). The O:C increased from 0.43 to 0.58 (35%),
446 consistent with previous observations (Tiitta et al., 2016). The change in the HR-AMS
447 spectrum of the day-aged OA was modest ($\theta = 8^\circ$). The photochemical processing resulted in
448 an ~~50~~ 51% increase of WS-OP ($77.6 \pm 6.3 \text{ pmol min}^{-1} \mu\text{g}^{-1}$) of the bbOA (Table S3). Similar
449 increases of OP have also been reported in previous studies (Wong et al., 2019; Lei et al., 2023;
450 Wang et al., 2023).

451 Furans, terpenes and cyclic aromatic hydrocarbons, major precursors of SOA production,
452 were significantly reduced during daytime (Fig. S6). Aromatic hydrocarbons including toluene
453 (m/z 93), phenol (m/z 95), styrene (m/z 105), C8 aromatics (m/z 107), C9 aromatics (m/z 121),
454 and creosol/2-methoxy-4-methylphenol (m/z 139) reacted and their levels were reduced (Fig.
455 S6b). Daytime aging also led to small changes (1 ppb or less) in the concentrations of
456 formaldehyde, acetaldehyde, acetone, acetic acid, and heptanal which however could also be
457 attributed to chamber background effects. According to TD-GCMS analysis, maleic anhydride
458 was also identified at m/z 99 in the aged emissions (Table S2).

459 Reaction with OH radicals was estimated to be the dominant daytime oxidation pathway
460 for most of the examined VOC species. For methyl vinyl ketone (m/z 71), benzene (m/z 79),
461 monoterpenes fragment (m/z 81), methyl furan (m/z 83), toluene (m/z 93), phenol (m/z 95), and
462 C8 aromatics (m/z 107, assuming o-xylene), the observed reductions in concentration were
463 close to the theoretically expected values (Table S4). Lower than predicted reductions, due to
464 OH oxidation, were observed for furan/isoprene (m/z 69; 32% less), ethyl vinyl ketone (m/z 85;
465 21% less), styrene (m/z 105; ~30% less), C9 aromatics (m/z 121; assuming 1,2,3
466 trimethylbenzene; 23% less), monoterpenes (m/z 137; assuming a-pinene; 58% less), and
467 creosol (m/z 139; 60% less). This discrepancy from theoretical predictions is likely due to the
468 presence of other compounds at the same m/z signal, including isomers, that react more slowly.
469 Ozone-induced oxidation was a minor consumption mechanism for most of the VOCs (k_{O_3}
470 ranged from 10^{-17} to $10^{-22} \text{ molecule}^{-1} \text{ cm}^3 \text{ s}^{-1}$) (Table S5), with the exception of monoterpenes
471 and their fragments (m/z 137 and 81).

472 At the end of the daytime oxidation ($t = 2 \text{ h}$), the UV lights were turned off, and nighttime
473 oxidation of the already aged emissions was conducted for two hours (2–4 h) by injecting
474 additional 80 ppb of O_3 and 130 ppb of NO_2 into the chamber. The reaction of NO_2 and O_3
475 resulted in the decrease of their levels along with production of NO_3 radical (Fig. 3d). Although

476 the NO_3 radical concentration was not directly measured in this study, it was estimated to range
477 between 1 and 5×10^8 molecule cm^{-3} (typical for nighttime urban environments) based on
478 previous dark aging experiments conducted with the same chamber setup under similar
479 conditions (Kodros et al., 2022; Florou et al., 2023). This corresponds to approximately 4–7
480 hours of equivalent atmospheric exposure.

481 Nighttime aging led to further bbSOA production, with OA increasing by 17%, reaching
482 $100 \mu\text{g m}^{-3}$ (Fig. 3a). Organic nitrate increased by $0.62 \mu\text{g m}^{-3}$ (72%) and total nitrate by $0.94 \mu\text{g m}^{-3}$ (53%) compared to their daytime levels. Nighttime enhancement of organic nitrate has
483 been also reported in other studies (Kodros et al., 2020, 2022; Florou et al., 2023). The O:C
484 ratio slightly increased from 0.58 to 0.61 (5%). A small decrease (<1%) in H:C was observed,
485 while the f_{44}/f_{60} increased further by 19% due to the nighttime oxidation. At the end of the DN
486 oxidation cycle the theta angle of the aged aerosol compared to the fresh one was 23° (Fig. 3e),
487 suggesting significant differences. The final DTT_m of the aged emissions was $68.7 \pm 6.0 \text{ pmol min}^{-1} \mu\text{g}^{-1}$, higher by $\pm 11\%$ compared to the daytime measured WS-OP and 34% higher than
488 the fresh one (Table S3).

489 The most notable VOC increases were observed for formaldehyde (m/z 31), which
490 increased from 1.8 to 2.2 ppb (22%); hexenal/maleic anhydride (m/z 99), which increased from
491 2.7 to 3.7 ppb (37%), and 2,3-benzofurandione (m/z 149), that increased from 0.2 to 0.3 ppb
492 (50%) (Fig. S6). Further decreases in the gas-phase concentrations of furan (m/z 69) by 0.4 ppb
493 (61%), methylfuran (m/z 95) by 0.35 ppb (26%), phenol (m/z 95) by 1.1 ppb (86%), and styrene
494 (m/z 105) by 0.4 ppb (56%), were observed (Fig. S6).

495 3.4 Typical night-to-day (ND) aging experiment

496 ND1 is as a typical night to day oxidation experiment (Fig. 4). The initial PM_1 concentration
497 injected into the chamber was $121 \mu\text{g m}^{-3}$, with OA contributing 97%. The transition from fresh
498 emissions to nighttime (0–2 h) and then daytime (2–4 h) oxidation resulted in significant
499 changes in both the particle and gas phase. OA concentration increased by $78 \mu\text{g m}^{-3}$ (65%
500 increase) during the nighttime oxidation and by $34 \mu\text{g m}^{-3}$ (an additional 17% increase) during
501 daytime oxidation. During nighttime, total nitrate increased from $0.66 \mu\text{g m}^{-3}$ to $5.4 \mu\text{g m}^{-3}$, driven by
502 production of organic nitrate. During daytime, organic nitrate levels decreased slightly (8%)
503 compared to nighttime. The ND cycle also led to increases in ammonium levels first by $0.9 \mu\text{g m}^{-3}$
504 (from $0.3 \mu\text{g m}^{-3}$ to $1.2 \mu\text{g m}^{-3}$) and then by $0.3 \mu\text{g m}^{-3}$ (from $1.2 \mu\text{g m}^{-3}$ to $1.5 \mu\text{g m}^{-3}$).

505 The theta angle between the HR-AMS spectra of fresh and night-aged OA was 13° while
506 at the end of the ND oxidation cycle the overall change of spectrum of the aged aerosol

509 compared to the fresh one was 24° (Fig. 4e), similar to that observed during the DN cycle. The
510 f_{44}/f_{60} ratio increased from 1.7 to 5.5 during night and from 5.5 to 9 during the day, while the
511 H:C decreased from 1.67 to 1.61 and 1.58, respectively (Tables 1 and 2). The O:C increased
512 by 34% (from 0.41 to 0.55) at night with a further 20% enhancement (from 0.55 to 0.66)
513 observed after the day aging. DTT_m increased from $31.8 \pm 2.8 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ for the fresh
514 aerosol to $42.5 \pm 3.1 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ for night-aged aerosol (3633 % increase) and to $71.0 \pm$
515 $5.7 \text{ pmol min}^{-1} \mu\text{g}^{-1}$ for day-aged aerosol (67% increase) (Table S3). Unlike experiment DN1,
516 which exhibited an initial increase (daytime) followed by a decrease (nighttime) in oxidative
517 potential, experiment ND1 showed a monotonic increase with aging (Fig. 5).

518 During daytime oxidation, the OH concentration was $4.2 \times 10^6 \text{ molecule cm}^{-3}$, which
519 corresponds to approximately 5.3 h of equivalent photochemical atmospheric aging. O₃ levels
520 increased by 88 ppb, rising from 96 ppb to 184 ppb by the end of daytime oxidation.

521 Similar trends and concentration levels were observed for most identified VOCs in
522 experiments ND1 and DN1 (Fig. S6a and Fig. S7a). The observed differences in the percentage
523 reduction of key bbSOA precursors, such as aromatic compounds and furans, between DN1
524 and ND1 (Fig. S6b and Fig. S7b) suggest that the variability in precursor depletion dynamics
525 is primarily influenced by differences in oxidant availability, photochemical reactivity, and the
526 chemical composition of the emissions.

527 3.5 Results of all dry DN and ND experiments

528 The average OA production (including organic nitrate) observed in the DN (DN1-DN8) and
529 ND (ND1-ND6) experiments at the end of a complete diurnal aging cycle was $51 \pm 22 \mu\text{g m}^{-3}$,
530 ranging from 19 to $136 \mu\text{g m}^{-3}$ (Fig. 6Fig. 6a). These values correspond to a total OA mass
531 increase ranging from 35% to 91% compared to the fresh OA. In both oxidation cycles the
532 majority of the produced OA was formed during the first stage of oxidation. This is consistent
533 with the higher availability of precursor VOCs initially. No significant differences were
534 observed in the levels of OA produced in experiments ND7 and ND8 compared to the rest (Fig.
535 Fig. 6a). This suggests that, although the use of pine kindling resulted in a different
536 composition of fresh wood emissions, its overall impact on SOA production was less
537 significant compared to the influence of oxidation conditions.

538 In some cases, the ND oxidation cycle resulted in higher SOA production (Fig. 6Fig. 6a
539 and Fig. 7b). For instance, in experiment ND1, an OA mass increase of over 90% was observed
540 at the end of the ND cycle. Similarly, in ND5, the OA increased by 78% compared to fresh.

541 The enhanced SOA observed in ND1 and ND5 appears to be linked to their experimental

542 conditions. Both experiments had high initial OA concentration in the fresh emissions (Table
543 1) and higher initial O₃ levels (at around 30 ppb) compared to the rest of the ND experiments,
544 which had an average level of 14 ± 2 ppb. These conditions suggest that the enhanced SOA
545 formation in ND1 and ND5 was driven by the higher availability of precursors, oxidants, and
546 existing OA mass, which together facilitated higher secondary production. However, statistical
547 analysis across the full dataset did not confirm that the ND oxidation cycle generally leads to
548 higher SOA production compared to the DN cycle.

Commented [MG9]: Reviewer 1; Comment 6

549 The experiments in this study were performed under relatively low RH conditions (12–
550 24%) to minimize condensation and artifacts during sampling. While this approach enables
551 comparison across oxidation scenarios, it does not capture the effects of higher RH and
552 associated aerosol liquid water content, which are often significant during atmospheric
553 nighttime aging. Aerosol water can enhance multiphase chemistry and SOA formation, and
554 thus our results should be interpreted in the context of this limitation.

Commented [MG10]: Reviewer 2; Comment 6

555 During both DN and ND oxidation cycles, the average density of the aged aerosol
556 increased from 1.17 to 1.33 g cm⁻³, corresponding to approximately 13% increase in both cases
557 (Table 2). Similar increases in bbSOA density, in the range of 1.31–1.34 g cm⁻³, have been also
558 reported in other chamber studies during dark aging (Li et al., 2015; Florou et al., 2023).

559 At the end of the DN oxidation cycle, the average O:C was 0.61 ± 0.04 , 56% higher than
560 the average O:C (0.39 ± 0.03) of the fresh bbOA in our experiments. Almost 90% of this
561 increase occurred during daytime (O:C increased from 0.39 to 0.59; $\Delta\text{O:C} = 0.2$) (Fig. 7c), while
562 the subsequent nighttime oxidation resulted in an additional 10% increase in O:C (from 0.59
563 to 0.61). For the ND cycle, the O:C increased from 0.40 ± 0.06 for the fresh emissions to 0.61
564 ± 0.06 (a 54% increase) at the end of the cycle (Fig. 7d). In this case, the contributions of the
565 nighttime and daytime oxidation stages to the increase in O:C were almost equal, at 55% and
566 45%, respectively. In both oxidation cycles the final O:C is similar, but the importance of each
567 oxidation stage depends on the order (oxidation sequence).

568 In all experiments, the OA AMS spectra changed progressively with aging. The
569 predominant differences between the average fresh and aged bbSOA spectra at the end of DN
570 cycle were found for *m/z* 28 (more than 2-fold increase) and 44 (1.5-fold increase) (Fig. S2).
571 Significant decreases were observed for *m/z* 60 (37%) and 91 (36%), 115 (38%) and 137 (42%).
572 The same changes were observed comparing the fresh and the ND aged bbSOA (Fig. S2).
573 During the DN cycles the main changes in the OA spectrum occurred during the first (daytime)
574 oxidation regime, with a theta angle of $26 \pm 4^\circ$ on average (Fig. 7e). The further change in the
575 second step (nighttime) was $4 \pm 2^\circ$ on average. In contrast, a more balanced change was

576 observed in the evolution of the theta angle over time during the ND cycle (Fig. 7f). The
577 average OA spectrum shifted by $19 \pm 4^\circ$ on average during nighttime, followed by an additional
578 10° shift during UV exposure. Overall, at the end of both cycles, regardless of the followed
579 oxidation path, the final average bbSOA spectra were almost identical ($\theta < 3^\circ$) (Fig. 8).

580 To evaluate the environmental relevance of the chamber-produced bbSOA, the final DN
581 and ND bbSOA spectra from this study were compared to the spectra of oxidized OA, that was
582 measured at a remote site in Greece (Pertouli) during the summer of 2022 (Vasilakopoulou et
583 al., 2023). Most of this aged OA was aged emissions of wildfires from different regions of
584 Europe. Two oxygenated OA (OOA) factors; a more-oxidized OOA (MO-OOA) and a less-
585 oxidized OOA (LO-OOA) were needed to reproduce the observed OA spectra. Our final
586 bbSOA spectra showed greater similarity to the LO-OOA factor, with a theta angle of
587 approximately 16° , and were more distinct (θ at around 30°) from the MO-OOA spectra
588 measured in Pertouli. This suggests that our experiments simulated the earlier stages of
589 atmospheric aging, while additional aging processes likely occur under ambient conditions (see
590 also Fig. S8).

591 Changes in VOC levels of aged emissions across all DN (Fig. S9) and ND (Fig. S10)
592 experiments were consistent with those observed in the typical experiments DN1 and ND1.
593 Both aging cycles resulted in a significant decrease in the concentration of furans and their
594 derivatives, cyclic and polycyclic aromatic hydrocarbons and terpenes. The day aged Tenax
595 samples indicated a moderate decrease in aromatic species like toluene (~20%) and benzene,
596 which is consistent with their lower reaction rates compared to higher carbon number
597 aromatics. Rapid decrease in concentration was noted for species like phenol (~45%) and
598 furfural (~75%), as well as their structurally related compounds. Related products, including
599 2-nitro-phenol, 4-methyl-2-nitro-phenol, maleic anhydride, and 3-methyl-2,5-furandione, were
600 also detected. p-Benzoquinone was also formed, possibly as a result of the reacted aromatics.
601 Benzofuran was absent from the aged samples; instead, 2,3-benzofurandione was detected. At
602 the same time a progressive increase in aldehydes and ketones was observed, along with
603 significant increases in carboxylic acids, such as formic (m/z 47) and acetic (m/z 61). The
604 benzaldehyde concentration increased, accompanied by the formation of benzeneacetaldehyde,
605 2-hydroxy-benzaldehyde, 3-ethyl-benzaldehyde. A notable increase in butanol was also
606 observed in the Tenax samples, along with the formation of straight-chain aldehydes (hexanal
607 to undecanal). The GC-MS measurements for the night-aged samples following daytime
608 processing were consistent with those of the PTR-MS. Furfural was no longer detected, while
609 a further decrease in phenol and increases in benzaldehyde and butanol were noted. A

610 cumulative depiction of the experiment's progression in terms of oxidation and VOCs detected
611 by the GC-MS, is provided in Fig. S11. Similar results were obtained for the other experiments.

612 3.6 Effect of DN and ND oxidation cycle on WS-OP

613 The water-soluble oxidative potential (WS-OP) of fresh emissions ranged from 21 pmol min⁻¹
614 µg⁻¹ to 79 pmol min⁻¹ µg⁻¹ and that of aged wood-burning emissions from 39 pmol min⁻¹ µg⁻¹
615 to 127 pmol min⁻¹ µg⁻¹ (Table S3). These values fall within the range reported in literature for
616 fresh bbOA and aged bbOA (Verma et al., 2015; Tuet et al., 2017; Bates et al., 2019;
617 Daellenbach et al., 2020; Wang et al., 2023).

618 Figure 6b presents the absolute ($\Delta DT_{m,}$ pmol min⁻¹ µg⁻¹) and percent changes in $DT_{m,}$
619 activity for each experiment. In all DN experiments, WS-OP followed a consistent pattern of
620 increasing during daytime oxidation and decreasing during subsequent nighttime aging, except
621 for DN6 and DN8, where it continued to rise, suggesting experiment-specific chemical
622 variability. Similarly, in the ND experiments, WS-OP generally increased during both
623 nighttime and daytime oxidation, except for ND4 and ND7, which exhibited a reduction during
624 the second daytime step, indicating that the extent of oxidative enhancement can depend on the
625 initial emission composition and oxidation conditions.

Commented [MG11]: Reviewer 3; Comment 5

626 The evolution of average WS-OP of fresh and aged emissions, considering all
627 experiments and both oxidation cycles, (Fig. 9) was similar to that observed in experiments
628 DN1 and DN1 (Fig. 5). The average WS-OP values for the DN cycle were 47.9 ± 17.7 pmol
629 min⁻¹ µg⁻¹ for fresh emissions, 93 ± 27 pmol min⁻¹ µg⁻¹ for daytime-aged emissions,
630 representing a 94% increase compared to fresh aerosol, and 73.4 ± 13.3 pmol min⁻¹ µg⁻¹ for
631 nighttime-aged emissions, indicating a 21% reduction compared to daytime-aged WS-OP (Fig.
632 9a). For the ND oxidation cycle, the average WS-OP of the fresh emissions were 37.8 ± 10.6
633 pmol min⁻¹ µg⁻¹. After nighttime aging, it increased by 44% to 54.4 ± 13.6 pmol min⁻¹ µg⁻¹, and
634 following daytime aging, it further increased by 62.9 ± 20.4 pmol min⁻¹ µg⁻¹ (Fig. 9b).

635 Statistical analysis (t-test) showed that aged WS-OP values were significantly higher than
636 those of fresh emissions in all experiments, for both oxidation cycles. Additionally, for the DN
637 oxidation cycle, a statistically significant difference was observed between the WS-OP of
638 nighttime-aged (NO₃-oxidized) and daytime-aged (UV-oxidized) emissions. Further details on
639 the statistical analysis are provided in Supplementary Section S4 and Table S9.

640 The overall increase in WS-OP at the end of the two oxidation cycles was $53 \pm 34\%$ for
641 the DN cycle and $66 \pm 8\%$ for the ND cycle, indicating that both daytime and nighttime aging
642 of biomass burning emissions consistently enhanced their oxidative potential. Our results

643 suggest that the sequence of chemical processes – whether the emissions are first oxidized by
644 OH or NO_3^- – can significantly affect the temporal evolution of OP. This, in turn, may also
645 influence the health impacts associated with exposure to biomass burning plumes, depending
646 on the time of day when the emissions occur. Although daytime boundary layer dynamics
647 generally favour mixing and dilution of pollutants, daytime burning in urban environments may
648 actually be as or more aggravating than nighttime burning, owing to the enhanced oxidative
649 processing of the emissions occurring in the former stage of the diurnal cycle.

650 The correlation of WS-OP with produced OA and degree of oxidation (O:C) were also
651 investigated. Three OA types were considered (fresh, day-aged, and night-aged). WS-OP was
652 not well correlated with either the O:C ratio ($R^2 < 30\%$) of the organic aerosol or its fresh and
653 aged fractions (R^2 up to 34%) (Fig. S12). This implies that the link between bbOA aging, and
654 WS-OP change is complex and cannot be just described by one variable. [Weak correlations](#)
655 ($R^2 < 0.3$) between WS-OP (both fresh and aged) and most of the rest of the aerosol components
656 (Tables 1 and 2) were also observed (Figs. S13–S17). An exception was the nighttime WS-OP,
657 which showed a stronger correlation with inorganic nitrate ($R^2 > 0.3$) in both oxidation cycles.
658 In addition, after one complete diurnal cycle, WS-OP showed a stronger correlation with OC,
659 with R^2 values reaching up to 0.65 (DN cycle) and 0.53 (ND cycle) (Figs. S15 and S17),
660 highlighting the growing influence of organic components. These results point to a complex
661 interplay of chemical processes governing WS-OP variability.

Commented [MG12]: Reviewer 3; Comment 3

662 [It is important to note that our study focused exclusively on the water-soluble fraction of](#)
663 [OP and thus does not capture contributions from relatively water insoluble components \(e.g.,](#)
664 [brown carbon and metals\), which can significantly influence total oxidative properties \(Gao et](#)
665 [al., 2020b\). Atmospheric aging usually tends to increase OA solubility through oxidative](#)
666 [functionalization, which may move compounds with high OP to the aqueous phase during the](#)
667 [extraction. Previous field observations support this hypothesis. Wong et al. \(2019\) reported](#)
668 [that the OP of bbOA increased during the first day of atmospheric transport, even as OC and](#)
669 [water soluble organic carbon \(WSOC\) concentrations decreased, indicating that aging removes](#)
670 [less reactive compounds while producing more DTT-active compounds. The majority of this](#)
671 [activity \(around 80%\) was associated with the water-soluble fraction, highlighting its dominant](#)
672 [role in driving the oxidative properties of aged bbOA. These findings emphasize the crucial](#)
673 [role of water-soluble aerosol components in driving OP, while also underscoring the need for](#)
674 [studies that simultaneously capture both soluble and insoluble contributions.](#)

Commented [MG13]: Reviewer 2; Comment 3

675 The observed WS-OP trends could be [also](#) linked to the VOC composition and oxidation
676 processes in the DN and ND cycles. [The WS-OP of fresh emissions exhibited positive](#)

677 correlations ($0.2 < R^2 < 0.6$) with several VOCs, including aldehydes (m/z 45, 57), benzene
678 (m/z 79), monoterpenes (m/z 81), toluene (m/z 93), phenol (m/z 95) and its substituted forms
679 (m/z 121, 135), styrene (m/z 105), xylenes (m/z 107), and naphthalene (m/z 129) (Fig. S13).
680 Among these, the strongest correlations were observed for benzene ($R^2 = 0.56$), phenol ($R^2 =$
681 0.56), and styrene ($R^2 = 0.56$), suggesting that the products of aromatic hydrocarbons and
682 phenolic compounds may contribute significantly to the WS-OP of fresh bbOA.

Commented [MG14]: Reviewer 3; Comment 3

683 The DN cycle exhibits a high daytime WS-OP due to the OH oxidation of VOCs such as furans, aromatics,
684 and phenolic compounds, leading to the formation of reactive species like, 4-methyl-2-
685 nitrophenol, and highly reactive p-benzoquinone. In contrast, the ND cycle shows a gradual
686 increase in WS-OP, with the exception of experiments ND4 and ND7 (Fig. 6b). These
687 contrasting trends likely reflect differences in the subsequent aging of oxidation products. In
688 the DN case, the decrease in intrinsic DTT activity during nighttime oxidation may result from
689 the formation of compounds with lower OP (less redox-active), lower solubility, or both, when
690 daytime OH oxidation products are further processed by NO_3 radicals. In some specific cases
691 (DN6, DN8; Fig. 6b), WS-OP continued to increase at night, suggesting potential ongoing
692 nighttime formation of soluble or redox-active compounds under certain oxidation conditions.
693 Conversely, in the ND case, the reverse sequence of reactions appears to generate products
694 with higher OP or solubility or both. Importantly, this divergence does not seem to be
695 controlled by the bulk O:C ratio, but rather by differences in chemical structure of the later-
696 generation products. For example, after nighttime oxidation in the ND cycle the WS-OP was
697 positively correlated with formic acid (m/z 47; $R^2 = 0.24$), toluene (m/z 93; $R^2 = 0.28$),
698 naphthalene (m/z 129; $R^2 = 0.25$) and substituted forms of phenol (m/z 121, 135; $R^2 = 0.25$) and
699 benzene (m/z 151, 155; R^2 up to 0.2) (Fig. S18). After further daytime oxidation WS-OP was
700 only correlated with m/z 121 (trimethylbenzene; $R^2 = 0.20$) (Fig. S19). Oxidized derivatives of
701 phenol and benzene formed during atmospheric aging tend to exhibit higher water solubility
702 than their parent compounds, as the functionalization increases molecular polarity and
703 hydrogen-bonding capacity. More detailed work is needed to identify these later generation
704 products and to quantify both their OP and water solubility.

Commented [ΣΠ15]: Reviewer 3; Comment 4

705 After one complete diurnal cycle, WS-OP values in both cycles converge, indicating that
706 oxidative processes in both pathways ultimately lead to similar levels of oxidation products.
707 This convergence highlights the role of both fast and slow oxidation mechanisms in
708 determining aerosol OP and suggests that even VOCs with lower reactivity can significantly
709 contribute to aerosol toxicity over extended atmospheric aging.

710 4 | Conclusions |

Commented [MG17]: Reviewer 3; Comment 6

711 This study investigated how different diurnal oxidation sequences - daytime-first (DN)
712 and nighttime-first (ND)- affect the formation of OA, the gas-phase composition, and the
713 oxidative potential of emissions produced by burning olive wood and olive wood mixed with
714 pine throughout a complete diurnal aging cycle. Both DN and ND oxidation cycles resulted in
715 enhancement in OA levels by 35%-90%, **demonstrating efficient SOA production under both**
716 **OH- and NO₃-dominated oxidation conditions**. The mixture of olive wood with pine kindling
717 resulted in a different composition of fresh emissions, **particularly in VOC speciation and**
718 **OA/BC ratios**, however its overall impact on SOA production was less significant compared
719 to the influence of oxidation conditions.

720 ~~Oxidation sequence governed not only the SOA formation but also the chemical~~
721 ~~composition and redox activity of the resulting particles.~~ The DN cycle favoured rapid daytime
722 oxidation, producing highly oxygenated species and increasing the O:C ratio of the fresh
723 emissions from 0.39 ± 0.04 to 0.59 ± 0.04 during daytime, reaching finally at 0.61 ± 0.03 during
724 nighttime. The ND cycle showed a gradual (two-steps) oxidation increase with a similar final
725 O:C ratio of 0.61 ± 0.06 . DN cycle exhibited rapid spectral changes during daytime oxidation,
726 while ND cycles showed a more balanced two-step evolution. **The convergence of O:C ratios**
727 **after one diurnal cycle imply that multiple oxidation pathways can yield comparable end**
728 **products through distinct chemical routes.** At the end of both cycles, the final average bbSOA
729 spectra were nearly identical ($R^2 > 0.99$; $\theta < 3^\circ$), indicating that the aerosol was transformed
730 into similar aged OA regardless of the initial oxidation step (daytime or nighttime) at the start
731 of the cycle. The chamber-produced bbSOA resembled the less-oxidized OOA in a field
732 campaign in Greece, with the corresponding OA dominated by aged bbOA, suggesting that the
733 present study has addressed only part of the aging that occurs in the atmosphere.

734 Both the DN and ND oxidation cycles effectively reduced the concentration of bbSOA
735 precursors (e.g., furans, aromatic hydrocarbons, terpenes). Concurrently, a progressive increase
736 in aldehydes and ketones was observed in both cycles, alongside increases in carboxylic acids,
737 such as formic and acetic acids. **The higher daytime WS-OP in the DN cycle likely results from**
738 **rapid OH oxidation of reactive VOCs (e.g., furans, aromatics, phenolics), producing redox-**
739 **active species such as nitrophenols and quinones.** The subsequent nighttime decrease in DTT
740 activity suggests formation of less soluble, less redox-active products. In contrast, the ND cycle
741 accumulated moderately oxidized intermediates during nighttime NO₃ oxidation, which were
742 further transformed into more soluble, higher-OP compounds during daytime processing. Thus,

743 variations in molecular structure and solubility, rather than bulk oxidation state (O:C),
744 primarily drive differences in WS-OP.

745 ~~Moreover, the transient changes of WS-OP evolution patterns indicate that oxidation~~
746 ~~order can modulate aerosol toxicity over short timescales.~~ From an atmospheric perspective,
747 these findings imply that emissions released at different times of day may contribute differently
748 to local air toxicity, depending on oxidant availability and photochemical activity. For example,
749 daytime burning in urban or suburban environments may enhance the formation of ROS-
750 generating compounds more rapidly than nighttime burning, even if total SOA mass is
751 comparable. This temporal dependence suggests that biomass burning – related health impacts
752 effects may vary with exposure timing, a factor rarely considered in air quality or exposure
753 models. The DN cycle resulted in $53 \pm 34\%$ increase in WS-OP of aerosol while the ND cycle
754 showed a slightly higher increase of $66 \pm 8\%$. The final WS-OP values of the DN (73 ± 14
755 pmol min $^{-1}$ μg^{-1}) and ND (63 ± 20 pmol min $^{-1}$ μg^{-1}) cycles were statistically similar. This
756 convergence suggests a self-organizing tendency in atmospheric aging toward similar chemical
757 and toxicological endpoints.

758 ~~The results also reinforce the dominant role of the water-soluble fraction of OA in driving~~
759 ~~OP.~~ Although this study focused on water-soluble OP, insoluble components such as transition
760 metals and brown carbon (not assessed here) can also contribute significantly to total aerosol
761 reactivity. Oxidative functionalization during atmospheric aging generally increases OA
762 solubility, which may shift OP from the insoluble to the soluble phase, either altering or
763 maintaining total OP, depending on chemical composition. Consequently, measuring only the
764 water-soluble fraction likely underestimates the total oxidative capacity of aged bbOA. Future
765 studies combining complementary assays (e.g., ascorbic acid or AA and glutathione or GSH)
766 and phase-resolved analyses are necessary to better constrain the contributions of soluble and
767 insoluble components to overall aerosol toxicity.

Commented [MG18]: Reviewer 2; Comment 3

768 ~~Several other limitations~~ A few additional limitations of the present work must be also
769 acknowledged. The experiments were performed at relatively low relative humidity (12–24%)
770 to reduce condensation artifacts, and therefore the potential role of ~~aerosol liquid water content~~
771 (~~ALWC~~) on multiphase chemistry enhancement and promotion of SOA formation was not
772 explicitly investigated. Furthermore, the aging period examined here corresponds
773 approximately to a single diurnal cycle, representing only the ~~first~~^{early} stages of atmospheric
774 processing, whereas ambient bbOA typically undergoes multi-day oxidation ~~and dilution~~
775 cycles that may further modify its composition and OP ~~in more complex ways~~. In addition, the
776 controlled combustion setup, while suitable and effective for mechanistic interpretation,

777 inevitably simplifies real-world burning conditions, where variations in fuel moisture,
778 temperature gradients, meteorology, and interactions with co-emitted anthropogenic pollutants
779 play important roles in shaping emissions chemistry.

Commented [MG19: Reviewer 2; Comment 2]

780 Despite these constraints, the present study provides a mechanistic framework for
781 understanding how diurnal oxidation sequences regulate the chemical and redox activity
782 evolution of bbOA. ~~These~~ The findings underscore the importance of considering oxidation
783 sequences and timing when assessing the environmental fate and health impacts of biomass
784 burning emissions. ~~This~~ They highlights the complex and dynamic nature of atmospheric aging
785 processes and emphasize the need for time-resolved approaches to better predict the
786 transformation and OP evolution of bbOA under realistic atmospheric conditions. Future
787 research should investigate the effects of prolonged atmospheric aging under more realistic
788 conditions, such as higher initial relative humidity, multiple day-night cycles, and conduct
789 detailed chemical analyses of particle phase products to better understand contributions of
790 specific chemical components to aerosol OP.

791 ~~Future research should extend this work to prolonged atmospheric aging under more
792 realistic environmental conditions, including higher relative humidity and multiple day-night
793 oxidation cycles. Detailed chemical characterization of particle phase products, combined with
794 complementary OP assays and in vitro toxicological analyses, will provide deeper insight into
795 the molecular drivers and relative contributions of specific aerosol components to overall
796 toxicity. Integrating such experimental findings with regional atmospheric models and
797 epidemiological data will be crucial for bridging the gap between controlled laboratory studies
798 and real world exposure, ultimately improving predictions of biomass burning impacts on air
799 quality and human health.~~

800 Author contributions

801 M.P.G., K.F., and A.M. contributed to investigation, conducted the experiments and performed
802 the laboratory measurements.; M.P.G. and G.S. performed the offline measurement of the
803 water-soluble oxidative potential of the collected aerosol samples.; A.M. performed the offline
804 TD-GCMS analysis of the Tenax samples; C.K. contributed to chamber set-up optimization.;
805 A.N. conceived and supported the research project; S.N.P. supported and directed this
806 research.; M.P.G. and K.F. interpreted the results and contributed to formal data analysis;
807 M.P.G. wrote the original manuscript with contributions from all co-authors.; All authors
808 contributed to the review and editing of the manuscript and have approved the final submitted
809 version.

810 Conflicts of interest

811 The authors declare that there are no conflicts to declare.

812 **Funding information**

813 This work was supported by the project NANOSOMs (Grant 11504) of the Greek HFRI, the
814 Horizon 2020 project REMEDIA (grant agreement no. 874753), and the European Research
815 Council (ERC) under the European Union's Horizon 2020 research and innovation programme
816 (grant agreement no. 726165, PyroTRACH – Pyrogenic Transformations Affecting Climate
817 and Health).

818 **5 References**

819 Allani, A., Bedjanian, Y., Papanastasiou, D. K., and Romanias, M. N.: Reaction rate
820 coefficient of OH radicals with d₉-butanol as a function of temperature, *ACS Omega*, 6,
821 18123–18134, <https://doi.org/10.1021/acsomega.1c01942>, 2021.

822 Alper, K., Tekin, K., Karagöz, S., and Ragauskas, A. J.: Sustainable energy and fuels from
823 biomass: a review focusing on hydrothermal biomass processing, *Sustain. Energy Fuels*,
824 4, 4390–4414, <https://doi.org/10.1039/d0se00784f>, 2020.

825 Barmet, P., Dommen, J., DeCarlo, P. F., Tritscher, T., Praplan, A. P., Platt, S. M., Prévôt, A.
826 S. H., Donahue, N. M., and Baltensperger, U.: OH clock determination by proton
827 transfer reaction mass spectrometry at an environmental chamber, *Atmos. Meas. Tech.*,
828 5, 647–656, <https://doi.org/10.5194/amt-5-647-2012>, 2012.

829 Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat,
830 S. E., Klein, M., Mulholland, J. A., and Russell, A. G.: Review of Acellular Assays of
831 Ambient Particulate Matter Oxidative Potential: Methods and Relationships with
832 Composition, Sources, and Health Effects, *Environ Sci Technol*, 53, 4003–4019,
833 <https://doi.org/10.1021/ACS.EST.8B03430>, 2019.

834 Bray, C. D., Battye, W. H., Aneja, V. P., and Schlesinger, W. H.: Global emissions of NH₃,
835 NO_x, and N₂O from biomass burning and the impact of climate change, *J. Air Waste
836 Manage. Assoc.*, 71, 102–114, <https://doi.org/10.1080/10962247.2020.1842822>, 2021.

837 Briggs, N. L., Jaffe, D. A., Gao, H., Hee, J. R., Baylon, P. M., Zhang, Q., Zhou, S., Collier, S.
838 C., Sampson, P. D., and Cary, R. A.: Particulate matter, ozone, and nitrogen species in
839 aged wildfire plumes observed at the mount bachelor observatory, *Aerosol Air Qual.
840 Res.*, 16, 3075–3087, <https://doi.org/10.4209/aaqr.2016.03.0120>, 2016.

841 Bruns, E. A., Slowik, J. G., El Haddad, I., Kilic, D., Klein, F., Dommen, J., Temime-Roussel,
842 B., Marchand, N., Baltensperger, U., and Prévôt, A. S. H.: Characterization of gas-phase
843 organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged
844 residential wood combustion emissions, *Atmos. Chem. Phys.*, 17, 705–720,
845 <https://doi.org/10.5194/acp-17-705-2017>, 2017.

846 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P.,
847 Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D.,
848 Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of
849 organic compounds using aerosol mass spectrometry: characterization, improved
850 calibration, and implications, *Atmos. Chem. Phys.*, 15, 253–272,
851 <https://doi.org/10.5194/acp-15-253-2015>, 2015.

852 Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., and Peng, P.: Chemical
853 composition, optical properties, and oxidative potential of water-and methanol-soluble

854 organic compounds emitted from the combustion of biomass materials and coal, *Atmos.*
855 *Chem. Phys.*, 21, 13187–13205, <https://doi.org/10.5194/acp-21-13187-2021>, 2021.

856 Cappa, C. D., Lim, C. Y., Hagan, D. H., Coggon, M., Koss, A., Sekimoto, K., De Gouw, J.,
857 Onasch, T. B., Warneke, C., and Kroll, J. H.: Biomass-burning-derived particles from a
858 wide variety of fuels-Part 2: Effects of photochemical aging on particle optical and
859 chemical properties, *Atmos. Chem. Phys.*, 20, 8511–8532, <https://doi.org/10.5194/acp-20-8511-2020>, 2020.

860 Che, H., Segal-Rozenhaimer, M., Zhang, L., Dang, C., Zuidema, P., Dobracki, A., Sedlacek,
861 A. J., Coe, H., Wu, H., Taylor, J., Zhang, X., Redemann, J., and Haywood, J.: Cloud
862 processing and weeklong ageing affect biomass burning aerosol properties over the
863 south-eastern Atlantic, *Commun. Earth Environ.*, 3, 182, <https://doi.org/10.1038/s43247-022-00517-3>, 2022.

864 Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S., Aurela,
865 M., Baltensperger, U., Bougiatioti, A., De Brito, J. F., Ceburnis, D., Chazeau, B.,
866 Chebaicheb, H., Daellenbach, K. R., Ehn, M., El Haddad, I., Eleftheriadis, K., Favez,
867 O., Flentje, H., Font, A., Fossum, K., Freney, E., Gini, M., Green, D. C., Heikkinen, L.,
868 Herrmann, H., Kalogridis, A. C., Keernik, H., Lhotka, R., Lin, C., Lunder, C.,
869 Maasikmets, M., Manouskas, M. I., Marchand, N., Marin, C., Marmureanu, L.,
870 Mihalopoulos, N., Močnik, G., Nęcki, J., O'Dowd, C., Ovadnevaite, J., Peter, T., Petit,
871 J. E., Pikridas, M., Matthew Platt, S., Pokorná, P., Poulain, L., Priestman, M., Riffault,
872 V., Rinaldi, M., Różański, K., Schwarz, J., Sciare, J., Simon, L., Skiba, A., Slowik, J.
873 G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E., Timonen, H., Tremper, A.,
874 Vasilescu, J., Via, M., Vodička, P., Wiedensohler, A., Zografoiu, O., Cruz Minguillón,
875 M., and Prévôt, A. S. H.: European aerosol phenomenology - 8: Harmonised source
876 apportionment of organic aerosol using 22 year-long ACSM/AMS datasets, *Environ. Int.*,
877 166, 107325, <https://doi.org/10.1016/j.envint.2022.107325>, 2022.

878 Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh, M., Eiguren-
879 Fernandez, A., and Froines, J. R.: Redox activity of airborne particulate matter at
880 different sites in the Los Angeles Basin, *Environ. Res.*, 99, 40–47,
881 <https://doi.org/10.1016/j.envres.2005.01.003>, 2005.

882 Cincinelli, A., Guerranti, C., Martellini, T., and Scodellini, R.: Residential wood combustion
883 and its impact on urban air quality in Europe, *Curr. Opin. Environ. Sci. Health*, 8, 10–
884 14, <https://doi.org/10.1016/j.coesh.2018.12.007>, 2019.

885 Costabile, F., Gualtieri, M., Rinaldi, M., Canepari, S., Vecchi, R., Massimi, L., Di Julio, G.,
886 Paglione, M., Di Liberto, L., Corsini, E., Facchini, M. C., and Decesari, S.: Exposure to
887 urban nanoparticles at low PM₁ concentrations as a source of oxidative stress and
888 inflammation, *Sci. Rep.*, 13, 1–18, <https://doi.org/10.1038/s41598-023-45230-z>, 2023.

889 Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A., Stefenelli, G.,
890 Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet,
891 A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.
892 L., and Prévôt, A. S. H.: Sources of particulate-matter air pollution and its oxidative
893 potential in Europe, *Nature*, 587, 414–419, <https://doi.org/10.1038/S41586-020-2902-8>,
894 2020.

895 Desservetaz, M., Pikridas, M., Stavroulas, I., Bougiatioti, A., Liakakou, E., Hatzianastassiou,
896 N., Sciare, J., Mihalopoulos, N., and Bourtsoukidis, E.: Emission of volatile organic

899 compounds from residential biomass burning and their rapid chemical transformations,
900 *Sci. Total Environ.*, 903, 166592, <https://doi.org/10.1016/j.scitotenv.2023.166592>, 2023.

901 Dominutti, P. A., Jaffrezo, J.-L., Marsal, A., Mhadhbi, T., Elazzouzi, R., Rak, C., Cavalli, F.,
902 Putaud, J.-P., Bougiatioti, A., Mihalopoulos, N., Paraskevopoulou, D., Mudway, I.,
903 Nenes, A., Daellenbach, K. R., Banach, C., Campbell, S. J., Cigánková, H., Contini, D.,
904 Evans, G., Georgopoulou, M., Ghanem, M., Glencross, D. A., Guascito, M. R.,
905 Herrmann, H., Iram, S., Jovanović, M., Jovašević-Stojanović, M., Kalberer, M., Kooter,
906 I. M., Paulson, S. E., Patel, A., Perdrix, E., Pietrogrande, M. C., Mikuška, P., Sauvain,
907 J.-J., Seitanidi, K., Shahpoury, P., Souza, E. J. d. S., Steimer, S., Stevanovic, S., Suarez,
908 G., Subramanian, P. S. G., Uttinger, B., van Os, M. F., Verma, V., Wang, X., Weber, R.
909 J., Yang, Y., Querol, X., Hoek, G., Harrison, R. M., and Uzu, G.: An interlaboratory
910 comparison to quantify oxidative potential measurement in aerosol particles: challenges
911 and recommendations for harmonisation, *Atmos. Meas. Tech.*, 18, 177–195,
912 <https://doi.org/10.5194/AMT-18-177-2025>, 2025.

913 Donahue, N. M., Henry, K. M., Mentel, T. F., Kiendler-Scharr, A., Spindler, C., Bohn, B.,
914 Brauers, T., Dorn, H. P., Fuchs, H., Tillmann, R., Wahner, A., Saathoff, H., Naumann,
915 K. H., Möhler, O., Leisner, T., Müller, L., Reinnig, M. C., Hoffmann, T., Salo, K.,
916 Hallquist, M., Frosch, M., Bilde, M., Tritscher, T., Barmet, P., Praplan, A. P., DeCarlo,
917 P. F., Dommen, J., Prévôt, A. S. H., and Baltensperger, U.: Aging of biogenic secondary
918 organic aerosol via gas-phase OH radical reactions, *Proc. Natl. Acad. Sci. U.S.A.*, 109
919 (34), 13503–13508, <https://doi.org/10.1073/pnas.1115186109>, 2012.

920 Fachinger, F., Drewnick, F., Gieré, R., and Borrmann, S.: How the user can influence
921 particulate emissions from residential wood and pellet stoves: Emission factors for
922 different fuels and burning conditions, *Atmos. Environ.*, 158, 216–226,
923 <https://doi.org/10.1016/j.atmosenv.2017.03.027>, 2017.

924 Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-
925 automated system for quantifying the oxidative potential of ambient particles in aqueous
926 extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for
927 Air Pollution and Epidemiology (SCAPE), *Atmos. Meas. Tech.*, 8, 471–482,
928 <https://doi.org/10.5194/amt-8-471-2015>, 2015.

929 Fang, Z., Li, C., He, Q., Czech, H., Gröger, T., Zeng, J., Fang, H., Xiao, S., Pardo, M.,
930 Hartner, E., Meidan, D., Wang, X., Zimmermann, R., Laskin, A., and Rudich, Y.:
931 Secondary organic aerosols produced from photochemical oxidation of secondarily
932 evaporated biomass burning organic gases: Chemical composition, toxicity, optical
933 properties, and climate effect, *Environ Int*, 157,
934 <https://doi.org/10.1016/j.envint.2021.106801>, 2021.

935 Florou, K., Kodros, J. K., Paglione, M., Jorga, S., Squizzato, S., Masiol, M., Uruci, P., Nenes,
936 A., and Pandis, S. N.: Characterization and dark oxidation of the emissions of a pellet
937 stove, *Environ. Sci.: Atmos.*, 3, 1319–1334, <https://doi.org/10.1039/d3ea00070b>, 2023.

938 Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkler, P. M., Lawler, M.
939 J., Brown, S. S., Edwards, P. M., Cohen, R. C., and Lee, L.: Secondary organic aerosol
940 formation and organic nitrate yield from NO_3 oxidation of biogenic hydrocarbons,
941 *Environ. Sci. Technol.*, 48, 11944–11953, <https://doi.org/10.1021/es502204x>, 2014.

942 Gao, D., Ripley, S., Weichenthal, S., and Godri Pollitt, K. J.: Ambient particulate matter
943 oxidative potential: Chemical determinants, associated health effects, and strategies for

944 risk management, *Free Radic. Biol. Med.*, 151, 7–25,
945 <https://doi.org/10.1016/j.freeradbiomed.2020.04.028>, 2020a.

946 Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization of water-
947 insoluble oxidative potential of PM2.5 using the dithiothreitol assay, *Atmos Environ*,
948 224, 117327, <https://doi.org/10.1016/j.atmosenv.2020.117327>, 2020b.

949 Guercio, V., Pojum, I. C., Leonardi, G. S., Shrubsole, C., Gowers, A. M., Dimitroulopoulou,
950 S., and Exley, K. S.: Exposure to indoor and outdoor air pollution from solid fuel
951 combustion and respiratory outcomes in children in developed countries: a systematic
952 review and meta-analysis, *Sci. Total Environ.*, 755, 142187,
953 <https://doi.org/10.1016/j.scitotenv.2020.142187>, 2021.

954 Harshman, S. W., Mani, N., Geier, B. A., Kwak, J., Shepard, P., Fan, M., Sudberry, G. L.,
955 Mayes, R. S., Ott, D. K., Martin, J. A., and Grigsby, C. C.: Storage stability of exhaled
956 breath on Tenax TA, *J. Breath Res.*, 10, 046008, <https://doi.org/10.1088/1752-7155/10/4/046008>, 2016.

957 Hartikainen, A., Yli-Pirilä, P., Tiitta, P., Leskinen, A., Kortelainen, M., Orasche, J., Schnelle-
958 Kreis, J., Lehtinen, K. E. J., Zimmerman, R., Jokiniemi, J., and Sippula, O.: Volatile
959 organic compounds from logwood combustion: emissions and transformation under dark
960 and photochemical aging conditions in a smog chamber, *Environ. Sci. Technol.*, 52,
961 4979–4988, <https://doi.org/10.1021/acs.est.7b06269>, 2018.

962 He, L. Y., Lin, Y., Huang, X. F., Guo, S., Xue, L., Su, Q., Hu, M., Luan, S. J., and Zhang, Y.
963 H.: Characterization of high-resolution aerosol mass spectra of primary organic aerosol
964 emissions from Chinese cooking and biomass burning, *Atmos. Chem. Phys.*, 10, 11535–
965 11543, <https://doi.org/10.5194/ACP-10-11535-2010>, 2010.

966 He, Y., Zhao, B., Wang, S., Valorso, R., Chang, X., Yin, D., Feng, B., Camredon, M.,
967 Aumont, B., Dearden, A., Jathar, S. H., Shrivastava, M., Jiang, Z., Cappa, C. D., Yee, L.
968 D., Seinfeld, J. H., Hao, J., and Donahue, N. M.: Formation of secondary organic
969 aerosol from wildfire emissions enhanced by long-time ageing, *Nat. Geosci.*, 17, 124–
970 129, <https://doi.org/10.1038/s41561-023-01355-4>, 2024.

971 Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T.,
972 Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W. M., Gilman, J. B.,
973 Kuster, W. C., De Gouw, J., Schichtel, B. A., Collett, J. L., Kreidenweis, S. M., and
974 Robinson, A. L.: Chemical and physical transformations of organic aerosol from the
975 photo-oxidation of open biomass burning emissions in an environmental chamber,
976 *Atmos. Chem. Phys.*, 11, 7669–7686, <https://doi.org/10.5194/acp-11-7669-2011>, 2011.

977 Hodshire, A. L., Akherati, A., Alvarado, M. J., Brown-Steiner, B., Jathar, S. H., Jimenez, J.
978 L., Kreidenweis, S. M., Lonsdale, C. R., Onasch, T. B., Ortega, A. M., and Pierce, J. R.:
979 Aging effects on biomass burning aerosol mass and composition: a critical review of
980 field and laboratory studies., *Environ. Sci. Technol.*, 53, 10007–10022,
981 <https://doi.org/10.1021/acs.est.9b02588>, 2019.

982 Huang, G., Wang, S., Chang, X., Cai, S., Zhu, L., Li, Q., and Jiang, J.: Emission factors and
983 chemical profile of I/SVOCs emitted from household biomass stove in China, *Sci. Total
984 Environ.*, 842, 156940, <https://doi.org/10.1016/j.scitotenv.2022.156940>, 2022.

985 IEA: Key World Energy Statistics 2019, OECD Publishing, Paris,
986 <https://doi.org/10.1787/71b3ce84-en>, 2019.

988 IEA: Key World Energy Statistics 2021, OECD Publishing, Paris,
989 <https://doi.org/10.1787/2ef8cebc-en>, 2021.

990 Jiang, K., Xing, R., Luo, Z., Huang, W., Yi, F., Men, Y., Zhao, N., Chang, Z., Zhao, J., Pan,
991 B., and Shen, G.: Pollutant emissions from biomass burning: A review on emission
992 characteristics, environmental impacts, and research perspectives, *Particuology*, 85,
993 296–309, <https://doi.org/10.1016/j.partic.2023.07.012>, 2024.

994 Jorga, S. D., Kaltsonoudis, C., Liangou, A., and Pandis, S. N.: Measurement of formation
995 rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber
996 system, *Environ. Sci. Technol.*, 54, 1336–1343, <https://doi.org/10.1021/acs.est.9b03479>,
997 2020.

998 Jorga, S. D., Florou, K., Kaltsonoudis, C., Kodros, J. K., Vasilakopoulou, C., Cirtog, M.,
999 Fouqueau, A., Picquet-Varrault, B., Nenes, A., and Pandis, S. N.: Nighttime chemistry
1000 of biomass burning emissions in urban areas: A dual mobile chamber study, *Atmos.*
1001 *Chem. Phys.*, 21, 15337–15349, <https://doi.org/10.5194/acp-21-15337-2021>, 2021.

1002 Kaltsonoudis, C., Kostenidou, E., Florou, K., Psichoudaki, M., and Pandis, S. N.: Temporal
1003 variability and sources of VOCs in urban areas of the eastern Mediterranean, *Atmos.*
1004 *Chem. Phys.*, 16, 14825–14842, <https://doi.org/10.5194/acp-16-14825-2016>, 2016.

1005 Kiendler-Scharr, A., Mensah, A. A., Fries, E., Topping, D., Nemitz, E., Prevot, A. S. H.,
1006 Äijälä, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto,
1007 M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao,
1008 L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A.,
1009 McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N.,
1010 Poulain, L., Schlag, P., Sellegrí, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner,
1011 A., Worsnop, D., and Wu, H. C.: Ubiquity of organic nitrates from nighttime chemistry
1012 in the European submicron aerosol, *Geophys. Res. Lett.*, 43, 7735–7744,
1013 <https://doi.org/10.1002/2016gl069239>, 2016.

1014 Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato, S., Florou, K.,
1015 Skyllakou, K., Kaltsonoudis, C., Nenes, A., and Pandis, S. N.: Rapid dark aging of
1016 biomass burning as an overlooked source of oxidized organic aerosol, *Proc. Natl. Acad.*
1017 *Sci. USA*, 117, 33028–33033, <https://doi.org/10.1073/pnas.2010365117>, 2020.

1018 Kodros, J. K., Kaltsonoudis, C., Paglione, M., Florou, K., Jorga, S., Vasilakopoulou, C.,
1019 Cirtog, M., Cazaunau, M., Picquet-Varrault, B., Nenes, A., and Pandis, S. N.: Secondary
1020 aerosol formation during the dark oxidation of residential biomass burning emissions,
1021 *Environ. Sci.: Atmos.*, 2, 1221–1236, <https://doi.org/10.1039/d2ea00031h>, 2022.

1022 Kostenidou, E., Pathak, R. K., and Pandis, S. N.: An algorithm for the calculation of
1023 secondary organic aerosol density combining AMS and SMPS data, *Aerosol Sci.*
1024 *Technol.*, 41, 1002–1010, <https://doi.org/10.1080/02786820701666270>, 2007.

1025 Kostenidou, E., Lee, B. H., Engelhart, G. J., Pierce, J. R., and Pandis, S. N.: Mass spectra
1026 deconvolution of low, medium, and high volatility biogenic secondary organic aerosol,
1027 *Environ. Sci. Technol.*, 43, 4884–4889, <https://doi.org/10.1021/es803676g>, 2009.

1028 Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of
1029 organic material composed of carbon, hydrogen, and oxygen, *Environ. Sci. Technol.*, 46,
1030 787–794, <https://doi.org/10.1021/es202525q>, 2012.

1031 Lei, R., Wei, Z., Chen, M., Meng, H., Wu, Y., and Ge, X.: Aging effects on the toxicity
1032 alteration of different types of organic aerosols: a review, *Curr. Pollut. Rep.*, 1, 1–12,
1033 <https://doi.org/10.1007/s40726-023-00272-9>, 2023.

1034 Li, C., Ma, Z., Chen, J., Wang, X., Ye, X., Wang, L., Yang, X., Kan, H., Donaldson, D. J.,
1035 and Mellouki, A.: Evolution of biomass burning smoke particles in the dark, *Atmos*
1036 *Environ.*, 120, 244–252, <https://doi.org/10.1016/j.atmosenv.2015.09.003>, 2015.

1037 Li, J., Li, J., Wang, G., Ho, K. F., Dai, W., Zhang, T., Wang, Q., Wu, C., Li, L., Li, L., and
1038 Zhang, Q.: Effects of atmospheric aging processes on in vitro induced oxidative stress
1039 and chemical composition of biomass burning aerosols, *J. Hazard. Mater.*, 401, 123750,
1040 <https://doi.org/10.1016/j.jhazmat.2020.123750>, 2021.

1041 Li, K., Zhang, J., Bell, D. M., Wang, T., Lamkaddam, H., Cui, T., Qi, L., Surdu, M., Wang,
1042 D., Du, L., Haddad, I. El, Slowik, J. G., and Prevot, A. S. H.: Uncovering the dominant
1043 contribution of intermediate volatility compounds in secondary organic aerosol
1044 formation from biomass-burning emissions, *Natl. Sci. Rev.*, 11,
1045 <https://doi.org/10.1093/nsr/nwae014>, 2024.

1046 Li, S., Liu, D., Wu, Y., Hu, K., Jiang, X., Tian, P., Sheng, J., Pan, B., and Zhao, D.: Aging
1047 effects on residential biomass burning emissions under quasi-real atmospheric
1048 conditions, *Environ. Pollut.*, 337, 122615, <https://doi.org/10.1016/j.envpol.2023.122615>,
1049 2023.

1050 Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., De Gouw, J.,
1051 Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from
1052 the laboratory oxidation of biomass burning emissions, *Atmos. Chem. Phys.*, 19, 12797–
1053 12809, <https://doi.org/10.5194/acp-19-12797-2019>, 2019.

1054 Lim, H., Silvergren, S., Spinicci, S., Mashayekhy Rad, F., Nilsson, U., Westerholm, R., and
1055 Johansson, C.: Contribution of wood burning to exposures of PAHs and oxy-PAHs in
1056 Eastern Sweden, *Atmos. Chem. Phys.*, 22, 11359–11379, <https://doi.org/10.5194/acp-22-11359-2022>, 2022.

1058 Luo, L., Bai, X., Liu, S., Wu, B., Liu, W., Lv, Y., Guo, Z., Lin, S., Zhao, S., Hao, Y., Hao, J.,
1059 Zhang, K., Zheng, A., and Tian, H.: Fine particulate matter (PM_{2.5}/PM_{1.0}) in Beijing,
1060 China: variations and chemical compositions as well as sources, *J. Environ. Sci.*, 121,
1061 187–198, <https://doi.org/10.1016/j.jes.2021.12.014>, 2022.

1062 McClure, C. D., Lim, C. Y., Hagan, D. H., Kroll, J. H., and Cappa, C. D.: Biomass-burning-
1063 derived particles from a wide variety of fuels - Part 1: Properties of primary particles,
1064 *Atmos. Chem. Phys.*, 20, 1531–1547, <https://doi.org/10.5194/acp-20-1531-2020>, 2020.

1065 Mylonaki, M., Gini, M., Georgopoulou, M., Pilou, M., Chalvatzaki, E., Solomos, S.,
1066 Diapouli, E., Giannakaki, E., Lazaridis, M., Pandis, S. N., Nenes, A., Eleftheriadis, K.,
1067 and Papayannis, A.: Wildfire and African dust aerosol oxidative potential, exposure and
1068 dose in the human respiratory tract, *Sci. Total Environ.*, 913, 169683,
1069 <https://doi.org/10.1016/j.scitotenv.2023.169683>, 2024.

1070 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H.,
1071 Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H.,
1072 Hildebrandt, L., Donahue, N. M., Decarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E.,
1073 Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern
1074 Hemispheric datasets from aerosol mass spectrometry, *Atmos. Chem. Phys.*, 10, 4625–
1075 4641, <https://doi.org/10.5194/acp-10-4625-2010>, 2010.

1076 Ng, N. L., Tuet, W. Y., Chen, Y., Fok, S., Gao, D., Rodriguez, M. S. T., Klein, M., Grosberg,
1077 A., Weber, R. J., and Champion, J. A.: Cellular and acellular assays for measuring
1078 oxidative stress induced by ambient and laboratory-generated aerosols, *Res. Rep.*
1079 *Health. Eff. Inst.*, 2019, 1–57, 2019.

1080 Novakov, T., Menon, S., Kirchstetter, T. W., Koch, D., and Hansen, J. E.: Aerosol organic
1081 carbon to black carbon ratios: analysis of published data and implications for climate
1082 forcing, *J. Geophys. Res. Atmos.*, 110, 1–12, <https://doi.org/10.1029/2005jd005977>,
1083 2005.

1084 Nyström, R., Lindgren, R., Avagyan, R., Westerholm, R., Lundstedt, S., and Boman, C.:
1085 Influence of wood species and burning conditions on particle emission characteristics in
1086 a residential wood stove, *Energy & Fuels*, 31, 5514–5524,
1087 <https://doi.org/10.1021/acs.energyfuels.6b02751>, 2017.

1088 Othman, M., Latif, M. T., Hamid, H. H. A., Uning, R., Khumsaeng, T., Phairuang, W., Daud,
1089 Z., Idris, J., Sofwan, N. M., and Lung, S. C. C.: Spatial–temporal variability and health
1090 impact of particulate matter during a 2019–2020 biomass burning event in Southeast
1091 Asia, *Sci. Rep.*, 12, 1–11, <https://doi.org/10.1038/s41598-022-11409-z>, 2022.

1092 Paraskevopoulou, D., Bougiatioti, A., Stavroulas, I., Fang, T., Lianou, M., Liakakou, E.,
1093 Gerasopoulos, E., Weber, R., Nenes, A., and Mihalopoulos, N.: Yearlong variability of
1094 oxidative potential of particulate matter in an urban Mediterranean environment, *Atmos.*
1095 *Environ.*, 206, 183–196, <https://doi.org/10.1016/j.atmosenv.2019.02.027>, 2019.

1096 Paraskevopoulou, D., Bougiatioti, A., Zarmpas, P., Tsagkaraki, M., Nenes, A., and
1097 Mihalopoulos, N.: Impact of COVID-19 lockdown on oxidative potential of particulate
1098 matter: case of Athens (Greece), *Toxics*, 10, 280,
1099 <https://doi.org/10.3390/toxics10060280>, 2022.

1100 Price-Allison, A., Mason, P. E., Jones, J. M., Barimah, E. K., Jose, G., Brown, A. E., Ross,
1101 A. B., and Williams, A.: The impact of fuelwood moisture content on the emission of
1102 gaseous and particulate pollutants from a wood stove, *Combust. Sci. Technol.*, 195,
1103 133–152, <https://doi.org/10.1080/00102202.2021.1938559>, 2021.

1104 Puthussery, J. V., Singh, A., Rai, P., Bhattu, D., Kumar, V., Vats, P., Furger, M., Rastogi, N.,
1105 Slowik, J. G., Ganguly, D., Prevot, A. S. H., Tripathi, S. N., and Verma, V.: Real-time
1106 measurements of PM_{2.5} oxidative potential using a dithiothreitol assay in Delhi, India,
1107 *Environ. Sci. Technol. Lett.*, 7, 504–510, <https://doi.org/10.1021/acs.estlett.0c00342>,
1108 2020.

1109 Rao, L., Zhang, L., Wang, X., Xie, T., Zhou, S., Lu, S., Liu, X., Lu, H., Xiao, K., Wang, W.,
1110 and Wang, Q.: Oxidative potential induced by ambient particulate matters with acellular
1111 assays: a review, *Processes*, 8, 1–21, <https://doi.org/10.3390/pr8111410>, 2020.

1112 Reid, W. V., Ali, M. K., Christopher, J., Field, B., Correspondence, W. V., Reid, D., and
1113 Packard, L.: The future of bioenergy, *Glob. Chang. Biol.*, 26, 274–286,
1114 <https://doi.org/10.1111/gcb.14883>, 2020.

1115 Shen, G., Du, W., Luo, Z., Li, Y., Cai, G., Lu, C., Qiu, Y., Chen, Y., Cheng, H., and Tao, S.:
1116 Fugitive emissions of CO and PM_{2.5} from indoor biomass burning in chimney stoves
1117 based on a newly developed carbon balance approach, *Environ. Sci. Technol. Lett.*, 7,
1118 128–134, <https://doi.org/10.1021/acs.estlett.0c00095>, 2020.

1119 Srivastava, D., Vu, T. V., Tong, S., Shi, Z., and Harrison, R. M.: Formation of secondary
1120 organic aerosols from anthropogenic precursors in laboratory studies, *Npj Clim. Atmos.*
1121 *Sci.*, 5, 1–30, <https://doi.org/10.1038/s41612-022-00238-6>, 2022.

1122 Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., Demott, P. J.,
1123 Sullivan, R. C., Reardon, J., Ryan, K. C., Griffith, D. W. T., and Stevens, L.: Trace gas
1124 emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other
1125 fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire
1126 Lab at Missoula Experiment (FLAME-4), *Atmos. Chem. Phys.*, 14, 9727–9754,
1127 <https://doi.org/10.5194/acp-14-9727-2014>, 2014.

1128 Sun, J., Wang, J., Shen, Z., Huang, Y., Zhang, Y., Niu, X., Cao, J., Zhang, Q., Xu, H., Zhang,
1129 N., and Li, X.: Volatile organic compounds from residential solid fuel burning in
1130 Guanzhong Plain, China: source-related profiles and risks, *Chemosphere*, 221, 184–192,
1131 <https://doi.org/10.1016/j.chemosphere.2019.01.002>, 2019.

1132 Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao,
1133 J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in
1134 winter: sources, variations and processes, *Atmos. Chem. Phys.*, 16, 8309–8329,
1135 <https://doi.org/10.5194/acp-16-8309-2016>, 2016.

1136 Tiitta, P., Leskinen, A., Hao, L., Yli-Pirilä, P., Kortelainen, M., Grigonyte, J., Tissari, J.,
1137 Lamberg, H., Hartikainen, A., Kuuspalo, K., Kortelainen, A. M., Virtanen, A., Lehtinen,
1138 K. E. J., Komppula, M., Pieber, S., Prévôt, A. S. H., Onasch, T. B., Worsnop, D. R.,
1139 Czech, H., Zimmermann, R., Jokiniemi, J., and Sippula, O.: Transformation of logwood
1140 combustion emissions in a smog chamber: formation of secondary organic aerosol and
1141 changes in the primary organic aerosol upon daytime and nighttime aging, *Atmos.*
1142 *Chem. Phys.*, 16, 13251–13269, <https://doi.org/10.5194/acp-16-13251-2016>, 2016.

1143 Tomlin, J. M., Weis, J., Veghte, D. P., China, S., Fraund, M., He, Q., Reicher, N., Li, C.,
1144 Jankowski, K. A., Rivera-Adorno, F. A., Morales, A. C., Rudich, Y., Moffet, R. C.,
1145 Gilles, M. K., and Laskin, A.: Chemical composition and morphological analysis of
1146 atmospheric particles from an intensive bonfire burning festival, *Environ. Sci. Atmos.*,
1147 2, 616–633, <https://doi.org/10.1039/d2ea00037g>, 2022.

1148 Trubetskaya, A., Lin, C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C., Leahy, J. J., Monaghan,
1149 R. F. D., Johnson, R., Layden, P., and Smith, W.: Study of emissions from domestic
1150 solid-fuel stove combustion in Ireland, *Energy & Fuels*, 35, 4966–4978,
1151 <https://doi.org/10.1021/acs.energyfuels.0c04148>, 2021.

1152 Tsiodra, I., Grivas, G., Tavernaraki, K., Bougiatioti, A., Apostolaki, M., Paraskevopoulou,
1153 D., Gogou, A., Parinos, C., Oikonomou, K., Tsagkaraki, M., Zarmpas, P., Nenes, A.,
1154 and Mihalopoulos, N.: Annual exposure to polycyclic aromatic hydrocarbons in urban
1155 environments linked to wintertime wood-burning episodes, *Atmos. Chem. Phys.*, 21,
1156 17865–17883, <https://doi.org/10.5194/acp-21-17865-2021>, 2021.

1157 Tsiodra, I., Grivas, G., Bougiatioti, A., Tavernaraki, K., Parinos, C., Paraskevopoulou, D.,
1158 Papoutsidaki, K., Tsagkaraki, M., Kozonaki, F. A., Oikonomou, K., Nenes, A., and
1159 Mihalopoulos, N.: Source apportionment of particle-bound polycyclic aromatic
1160 hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term
1161 health risks in a major European city, *Sci. Total Environ.*, 951,
1162 <https://doi.org/10.1016/j.scitotenv.2024.175416>, 2024.

1163 Tuet, W. Y., Chen, Y., Xu, L., Fok, S., Gao, D., Weber, R. J., and Ng, N. L.: Chemical
1164 oxidative potential of secondary organic aerosol (SOA) generated from the
1165 photooxidation of biogenic and anthropogenic volatile organic compounds, *Atmos*
1166 *Chem Phys*, 17, 839–853, <https://doi.org/10.5194/ACP-17-839-2017>, 2017.

1167 Vasilakopoulou, C. N., Matrali, A., Skyllakou, K., Georgopoulou, M., Aktypis, A., Florou,
1168 K., Kaltsonoudis, C., Siouti, E., Kostenidou, E., Blaziak, A., Nenes, A., Papagiannis, S.,
1169 Eleftheriadis, K., Patoulas, D., Kioutsoukis, I., and Pandis, S. N.: Rapid transformation
1170 of wildfire emissions to harmful background aerosol, *Npj Clim. Atmos. Sci.*, 6, 1–9,
1171 <https://doi.org/10.1038/s41612-023-00544-7>, 2023.

1172 Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., and Weber, R. J.:
1173 Organic aerosols associated with the generation of reactive oxygen species (ROS) by
1174 water-soluble PM_{2.5}, *Environ. Sci. Technol.*, 49, 4646–4656,
1175 <https://doi.org/10.1021/es505577W>, 2015.

1176 Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M., and Pandis, S. N.: Particle wall-loss
1177 correction methods in smog chamber experiments, *Atmos. Meas. Tech.*, 11, 6577–6588,
1178 <https://doi.org/10.5194/amt-11-6577-2018>, 2018.

1179 Wang, S., Gallimore, P. J., Liu-Kang, C., Yeung, K., Campbell, S. J., Uttinger, B., Liu, T.,
1180 Peng, H., Kalberer, M., Chan, A. W. H., and Abbatt, J. P. D.: Dynamic wood smoke
1181 aerosol toxicity during oxidative atmospheric aging, *Environ. Sci. Technol.*, 57, 1246–
1182 1256, <https://doi.org/10.1021/acs.est.2c05929>, 2023.

1183 Wong, J. P. S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M.,
1184 Sciare, J., Nenes, A., and Weber, R. J.: Effects of atmospheric processing on the
1185 oxidative potential of biomass burning organic aerosols, *Environ. Sci. Technol.*, 53,
1186 6747–6756, <https://doi.org/10.1021/acs.est.9b01034>, 2019.

1187 Yazdani, A., Takahama, S., Kodros, J. K., Paglione, M., Paglione, M., Masiol, M., Squizzato,
1188 S., Florou, K., Kaltsonoudis, C., Jorga, S. D., Pandis, S. N., Pandis, S. N., Nenes, A.,
1189 and Nenes, A.: Chemical evolution of primary and secondary biomass burning aerosols
1190 during daytime and nighttime, *Atmos. Chem. Phys.*, 23, 7461–7477,
1191 <https://doi.org/10.5194/acp-23-7461-2023>, 2023.

1192 Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path Fourier transform infrared
1193 studies of large-scale laboratory biomass fires, *J. Geophys. Res. Atmos.*, 101, 21067–
1194 21080, <https://doi.org/10.1029/96jd01800>, 1996.

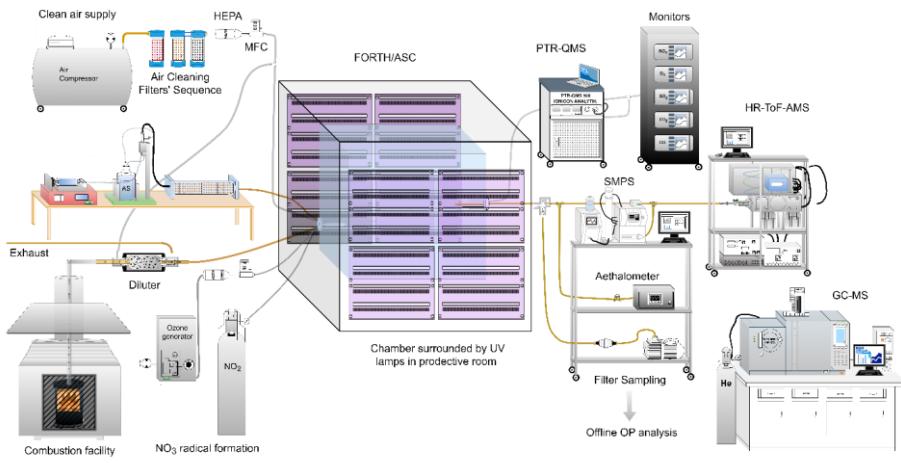
1195 Zauli-Sajani, S., Thunis, P., Pisoni, E., Bessagnet, B., Monforti-Ferrario, F., De Meij, A.,
1196 Pekar, F., and Vignati, E.: Reducing biomass burning is key to decrease PM_{2.5} exposure
1197 in European cities, *Sci. Rep.*, 14, 1–11, <https://doi.org/10.1038/s41598-024-60946-2>,
1198 2024.

1199 Zhang, Y., Kong, S., Sheng, J., Zhao, D., Ding, D., Yao, L., Zheng, H., Wu, J., Cheng, Y.,
1200 Yan, Q., Niu, Z., Zheng, S., Wu, F., Yan, Y., Liu, D., and Qi, S.: Real-time emission and
1201 stage-dependent emission factors/ratios of specific volatile organic compounds from
1202 residential biomass combustion in China, *Atmos. Res.*, 248, 105189,
1203 <https://doi.org/10.1016/j.atmosres.2020.105189>, 2021.

1204 Zhang, Z. H., Hartner, E., Uttinger, B., Gfeller, B., Paul, A., Sklorz, M., Czech, H., Yang, B.
1205 X., Su, X. Y., Jakobi, G., Orasche, J., Schnelle-Kreis, J., Jeong, S., Gröger, T., Pardo,
1206 M., Hohaus, T., Adam, T., Kiendler-Scharr, A., Rudich, Y., Zimmermann, R., and
1207 Kalberer, M.: Are reactive oxygen species (ROS) a suitable metric to predict toxicity of

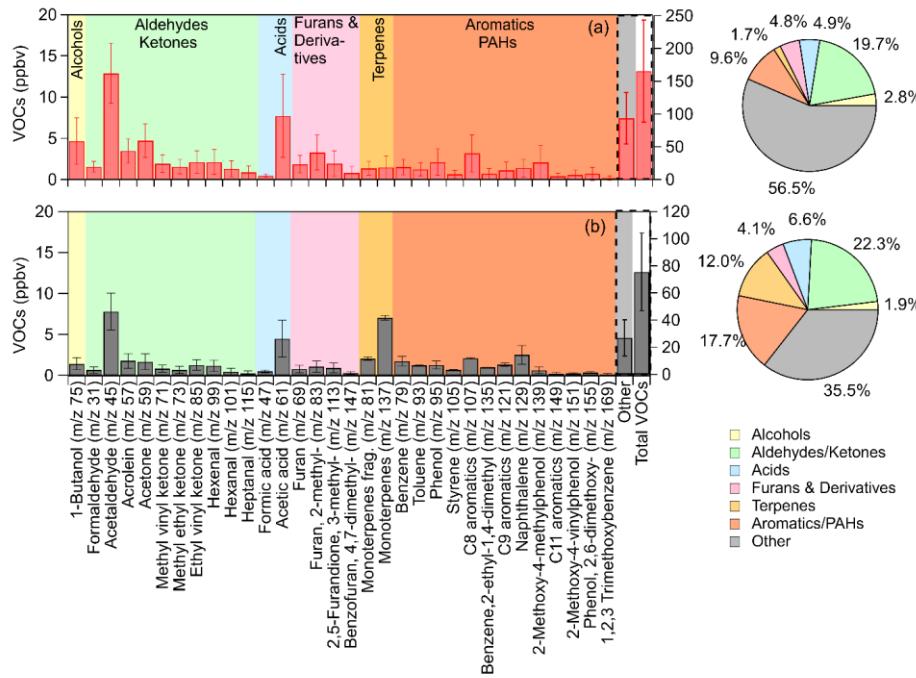
1208 carbonaceous aerosol particles?, *Atmos. Chem. Phys.*, 22, 1793–1809,
1209 <https://doi.org/10.5194/acp-22-1793-2022>, 2022.
1210

1211 **Table 1:** Initial biomass burning aerosol composition and initial chamber conditions for all the
 1212 conducted experiments.

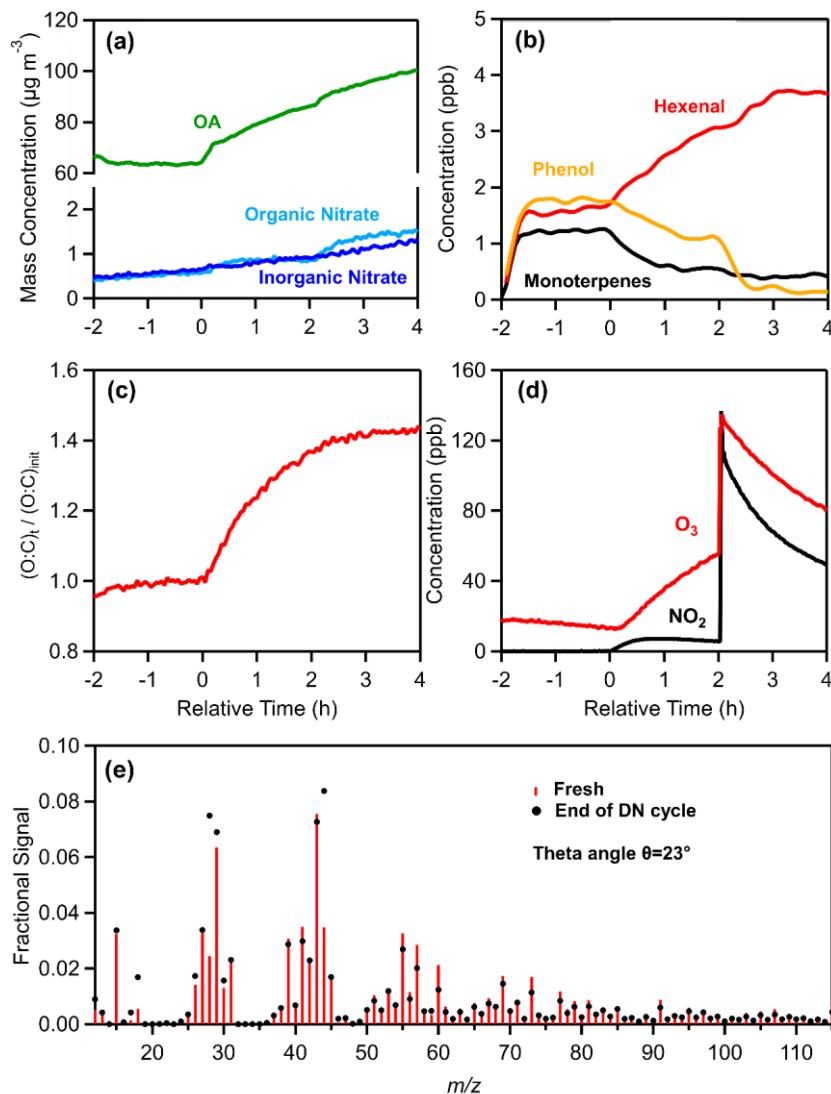

Exp.	PM ₁	BC	Amm onium	Sulfat e	Orga nics	Nitrat e	Org. Nitrat e	Inorg. Nitrat e	Chlor ide	f_{44}/f_{60}	O:C	H:C	T_{init}	RH _{init}	Commented [MG20]: Reviewer 2; Comment 5
	[$\mu\text{g m}^{-3}$]				[$^{\circ}\text{C}$]	[%]									
DN1	70	3.7	0.06	0.62	63.6	1.18	0.56	0.62	0.45	1.37	0.43	1.67	16.4	13	0.96
DN2	114	7.9	0.13	0.86	102	2.01	1	1.01	0.42	2.21	0.39	1.66	N/A	N/A	0.92
DN3	79.1	N/A	8.1	22.1	48.2	0.52	0.23	0.29	0.11	1.82	0.38	1.62	N/A	N/A	0.99
DN4	177	1.1	0.24	1.11	172	2.02	0.91	1.11	0.62	1.11	0.39	1.71	N/A	N/A	0.91
DN5	102	0.4	0.09	0.47	99.8	0.65	0.26	0.39	0.19	1.00	0.35	1.72	N/A	N/A	0.99
DN6	53.6	0.9	0.07	1.02	49.6	1.66	1.02	0.64	0.41	1.50	0.36	1.76	N/A	N/A	0.96
DN7	74.8	0.8	0.06	0.54	72.1	1.15	0.43	0.72	0.16	1.34	0.41	1.67	N/A	N/A	0.91
DN8	85.5	5.4	0.09	0.49	78.0	1.22	0.28	0.94	0.33	1.02	0.44	1.65	16.8	13	0.92
ND1	121	N/A	0.28	1.01	118	1.21	0.66	0.55	0.58	1.72	0.41	1.65	16.5	13	0.92
ND2	72.0	0.5	0.21	0.45	69.4	1.13	0.76	0.37	0.24	2.53	0.47	1.67	N/A	N/A	0.96
ND3	47.2	0.4	0.16	0.12	45.8	0.67	0.34	0.33	0.05	2.37	0.29	1.67	16.5	14	0.94
ND4	93.3	1	0.22	0.54	90.2	0.99	0.50	0.49	0.34	1.61	0.40	1.66	15.9	15	0.92
ND5	176	N/A	0.25	0.34	174	1.35	0.62	0.73	0.18	1.27	0.37	1.66	16.6	13	0.91
ND6	124	3	0.18	0.41	120	0.72	0.31	0.41	0.38	0.92	0.43	1.65	16.7	14	0.90
ND7	126	67	0.06	0.07	58.7	0.15	0.10	0.05	0.05	2.47	0.23	1.61	17.1	12	0.98
ND8	276	190	0.12	0.62	83.4	1.22	0.85	0.37	0.25	1.88	0.36	1.65	17	24	0.96

1213 *Modified combustion efficiency (MCE) calculated based on equation: $([\Delta\text{CO}_2]/([\Delta\text{CO}]+[\Delta\text{CO}_2]))$.

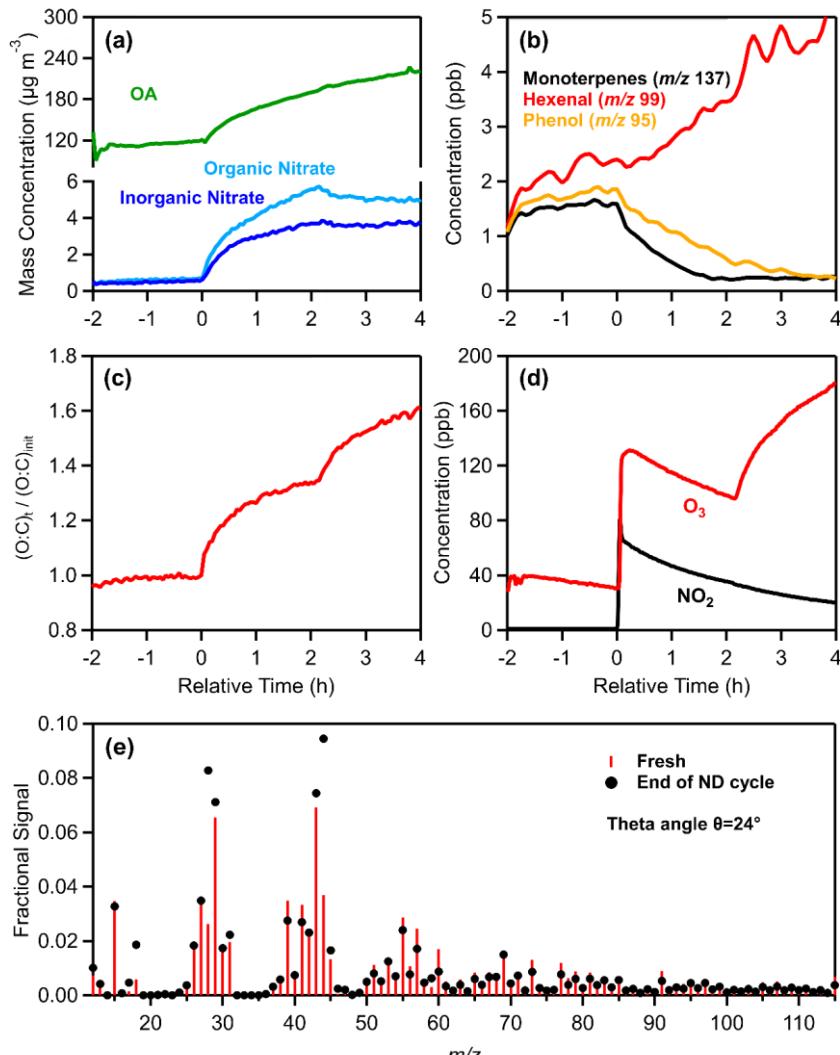
1214 **Table 2:** Composition of aged biomass burning aerosol, averaged over the last 30 minutes of
 1215 each oxidation state, for both DN and ND experiments.


Exp.	Oxid.	PM ₁	Amm onium	Sulfate	Organic	Nitrate	Org. Nitrate	Inorg. Nitrate	Chlor ide	ρ^*	f_{44}/f_{60}	O:C	H:C
Day - Night													
DN1	Day	88	0.1	0.7	85	1.76	0.86	0.90	0.38	1.34	4.3	0.58	1.61
	Night	104	0.15	0.83	100	2.74	1.48	1.26	0.4		5.1	0.61	1.6
DN2	Day	157	0.1	0.9	154	2.42	1.75	0.67	0.26	1.34	15.3	0.64	1.52
	Night	185	0.47	1.46	179	4.21	2.98	1.23	0.3		16.5	0.67	1.53
DN3	Day	102	10.3	28.9	62	0.63	0.36	0.27	0.13	1.37	8.5	0.63	1.55
	Night	107	10.8	30.3	65	0.94	0.61	0.33	0.15		9.7	0.64	1.55
DN4	Day	240	1.1	1.2	232	4.92	2.29	2.63	0.49	1.32	3.7	0.58	1.64
	Night	262	1.26	1.35	252	6.14	2.82	3.32	0.52		3.9	0.6	1.64
DN5	Day	134	0.1	0.5	132	0.97	0.52	0.45	0.18	1.29	3.4	0.52	1.66
	Night	156	0.19	0.59	153	2.19	1.51	0.68	0.2		4.3	0.56	1.65
DN6	Day	83	0.2	1.3	78	2.80	1.55	1.25	0.38	1.33	6.5	0.59	1.63
	Night	90	0.22	1.48	85	3.27	1.78	1.49	0.4		7.1	0.61	1.61
DN7	Day	105	0.1	0.6	103	1.43	0.69	0.74	0.15	1.34	5.4	0.6	1.61
	Night	122	0.17	0.79	119	1.94	1.03	0.91	0.17		5.8	0.62	1.61
DN8	Day	111	0.1	0.6	108	1.68	0.59	1.09	0.33	1.33	3	0.58	1.61
	Night	134	0.19	0.74	130	2.95	1.37	1.58	0.36		3.4	0.6	1.6
Night - Day													
ND1	Night	199	1.2	1.1	188	9.0	5.4	3.6	0.28	1.36	5.5	0.55	1.61
	Day	233	1.5	1.3	222	8.7	5.0	3.7	0.29		9	0.66	1.58
ND2	Night	110	0.5	0.5	102	7.0	5.5	1.5	0.15	1.39	8.1	0.62	1.6
	Day	119	0.6	0.6	112	6.3	4.8	1.5	0.16		11.1	0.7	1.57
ND3	Night	61	0.2	0.2	57	2.9	2.2	0.7	0.06	1.28	7.3	0.42	1.64
	Day	66	0.3	0.2	63	2.5	1.9	0.6	0.07		12.2	0.52	1.61
ND4	Night	133	0.4	0.8	127	4.3	3.1	1.2	0.29	1.31	3.9	0.49	1.62
	Day	148	0.6	1	142	4.2	2.9	1.3	0.3		6.4	0.58	1.6
ND5	Night	278	0.5	0.5	270	7.0	4.8	2.2	0.14	1.31	3.8	0.48	1.63
	Day	315	0.7	0.6	307	6.6	4.0	2.6	0.14		6.5	0.58	1.61
ND6	Night	192	0.7	0.6	184	6.8	4.1	2.7	0.18	1.33	2.6	0.51	1.62
	Day	203	0.8	0.7	195	6.0	3.4	2.6	0.19		4.8	0.61	1.61
ND7	Night	182	0.1	0.1	93	4.6	3.1	1.5	0.06	1.2	5	0.36	1.65
	Day	211	0.1	0.2	105	4.7	3.0	1.7	0.08		6.5	0.41	1.62
ND8	Night	400	0.3	1.2	149	9.3	5.4	3.9	0.26	1.29	4.7	0.48	1.64
	Day	451	0.5	1.7	163	9.1	5.2	3.9	0.29		7.6	0.54	1.6

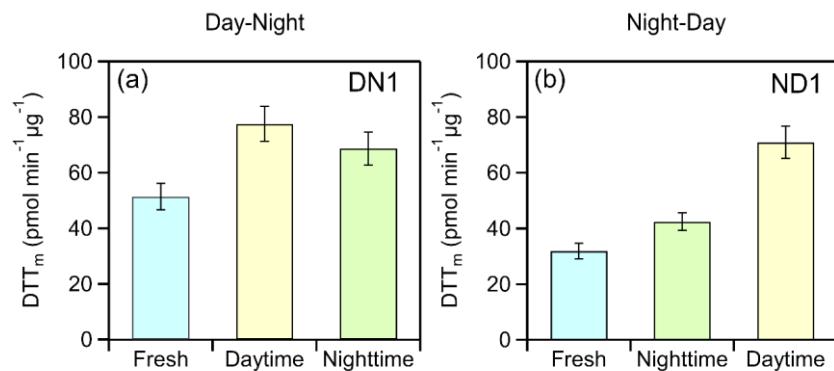
1216 *Density calculated based on O:C and H:C ratios, following the approach of Kuwata et al. (2012).


1217

1218 **Figure 1:** Experimental setup of the FORTH-ASC facility, illustrating the surrounding
 1219 instrumentation and the combustion facility.


1220

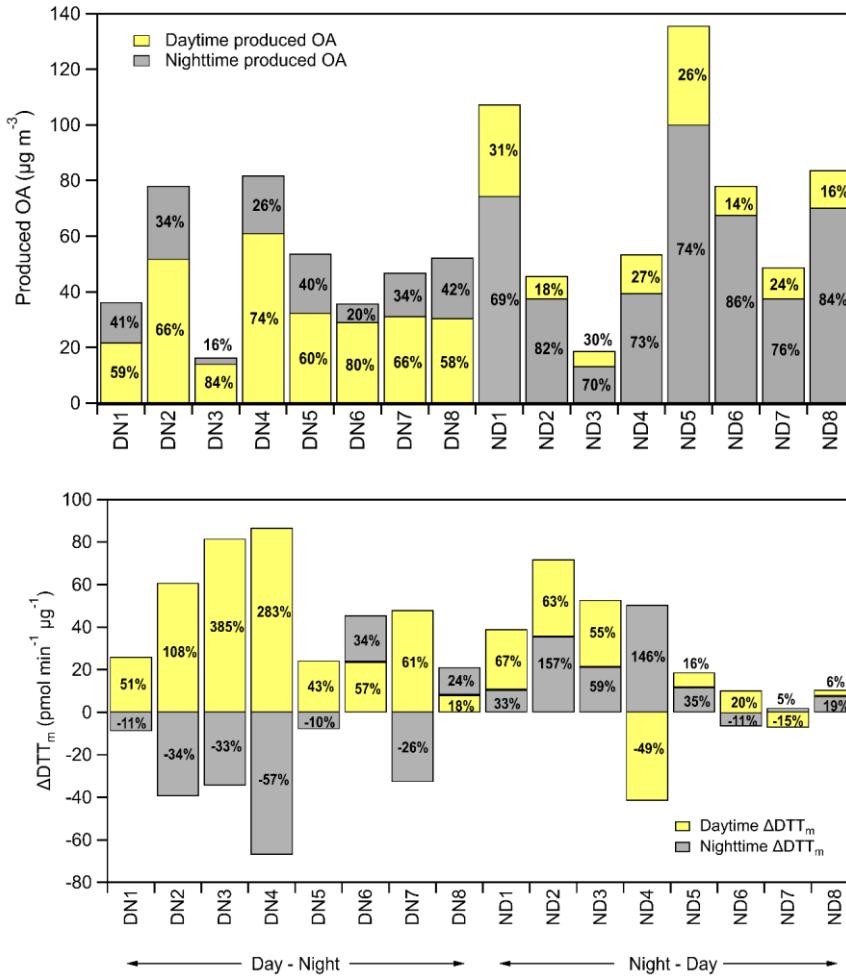
1221 **Figure 2:** Average concentrations, in ppb, of the identified VOCs in (a) fresh olive wood
 1222 burning emissions (red bars) and (b) fresh olive-pine mixed emissions (grey bars), along with
 1223 their percentage contribution to the total VOCs concentration measured by PTR-QMS. The
 1224 protonated m/z for each compound is shown in parentheses on the x-axis. The left y-axis shows
 1225 the concentrations of identified VOCs, while the right y-axis displays the concentrations of the
 1226 sum of the unidentified (other) and the total measured VOCs.


1229 **Figure 3:** Measurements from the experiment DN1, showing the time evolution of: (a) wall-
1230 loss-corrected organic aerosol, particulate organic and inorganic nitrate, (b) selected VOCs,
1231 including monoterpenes (m/z 137), hexenal (m/z 99), and phenol (m/z 95), (c) normalized O:C
1232 ratio, (d) O_3 and NO_2 , and (e) a comparison of the fresh (red sticks) and nighttime (black
1233 markers) oxidized aerosol mass spectra at the end of the DN oxidation cycle.

Commented [MG21]: Italic

1236 **Figure 4:** Measurements from the experiment ND1, showing the time evolution of: (a) wall-
 1237 loss-corrected organic aerosol, particulate organic and inorganic nitrate, (b) selected VOCs,
 1238 including monoterpenes (m/z 137), hexenal (m/z 99), and phenol (m/z 95), (c) normalized O:C
 1239 ratio, (d) O_3 and NO_2 , and (e) a comparison of the fresh (red sticks) and daytime (black
 1240 markers) oxidized aerosol mass spectra at the end of the ND oxidation cycle.

1241

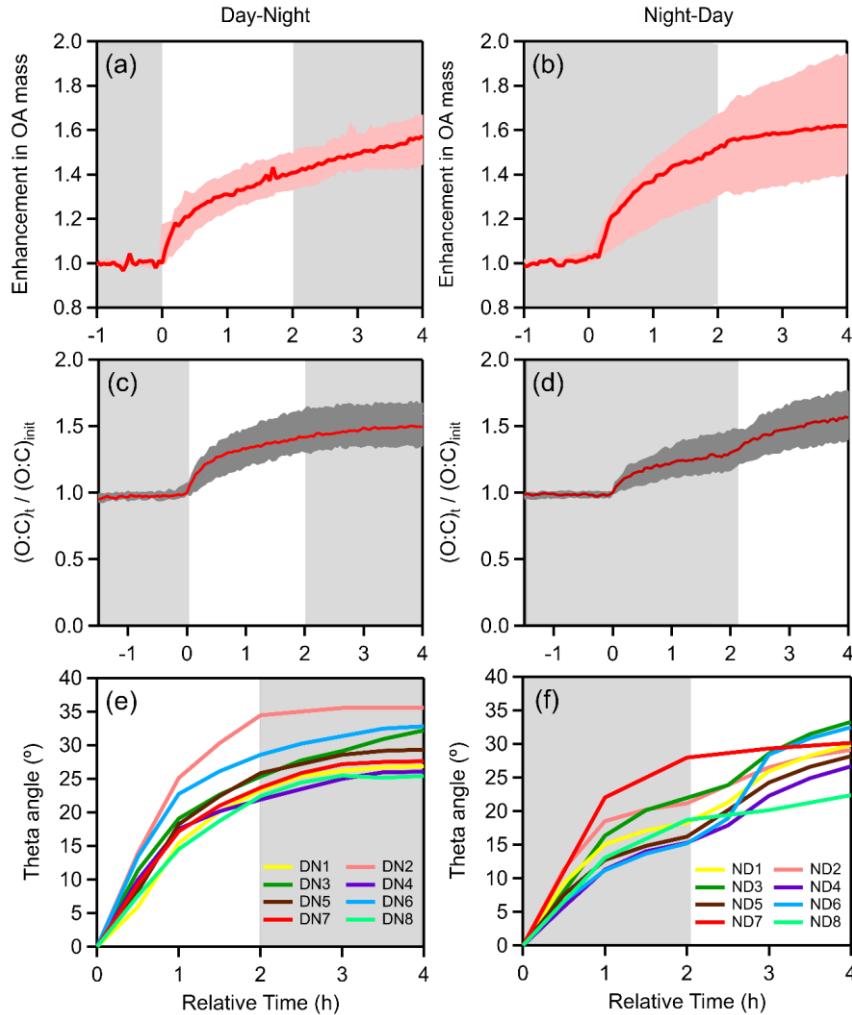


1242

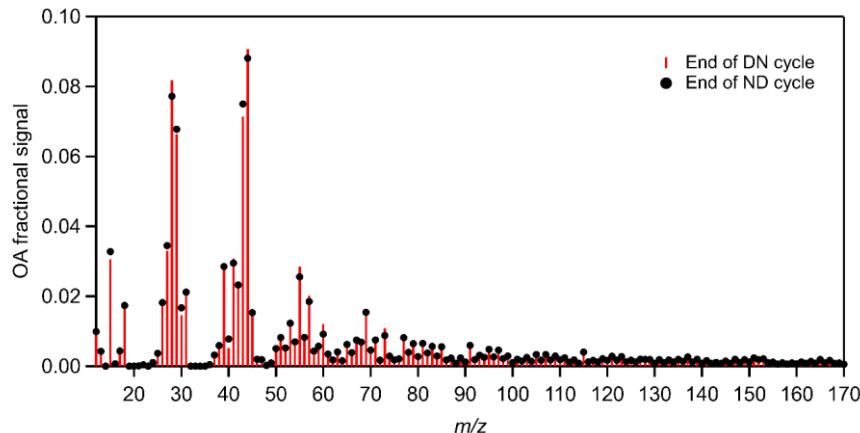
1243 **Figure 5:** Category plots illustrating the evolution in water-soluble oxidative potential (WS-
1244 OP), expressed as per OC mass normalized DTT_m activity (pmol min⁻¹ μg⁻¹), in case of typical
1245 experiment (a) DN1 and (b) ND1.

1246

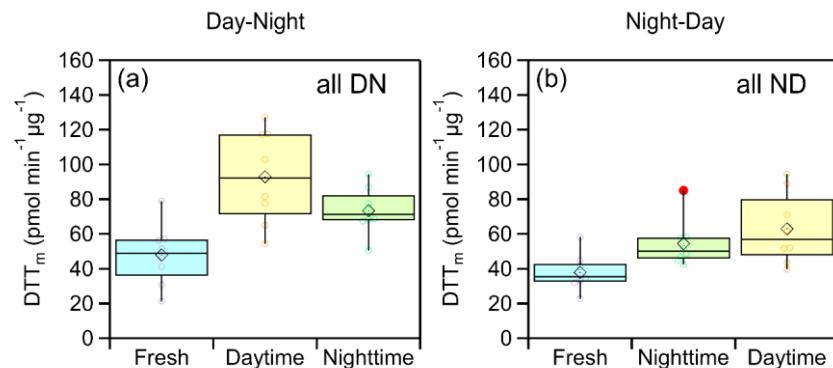
1247



1248


← Day - Night → ← Night - Day →

1249 **Figure 6:** (a) Absolute mass (in $\mu\text{g m}^{-3}$) and percentage increase (%) of OA (including organic
1250 nitrate) per oxidation regime (daytime, nighttime); (b) absolute change in DTT_m activity
1251 (ΔDTT_m , in $\text{pmol min}^{-1} \mu\text{g}^{-1}$) and percentage change (%) per oxidation regime (daytime,
1252 nighttime) for both DN and ND cycles, for all conducted experiments.


Commented [MG22]: Reviewer 3; Comment 5

1255 **Figure 7:** Evolution over time of: OA enhancement during (a) DN and (b) ND oxidation cycle;
 1256 O:C ratio enhancement during (c) DN and (d) ND oxidation cycle; theta angle during (e) DN
 1257 and (f) ND oxidation for experiments conducted under dry initial conditions using only olive
 1258 wood logs as burning fuel (DN1-DN8, ND1-ND6). In experiments ND3, ND4, and ND6, the
 1259 change in spectrum occurred slightly later, as the first-step oxidation extended to 3 h compared
 1260 to 2 h lasted in the other ND experiments.

1263 **Figure 8:** Relative differences in the average spectra obtained at the end of DN (red sticks)
 1264 and ND (black circles) oxidation cycle, respectively, for experiments conducted using olive wood
 1265 logs as burning fuel. The theta angle between the averaged DN and ND aged spectra was 3°
 1266 (identical).

1269 **Figure 9:** Box plots illustrating the changes in WS-OP, expressed as per OC mass normalized
 1270 DTT_m activity (pmol min⁻¹ µg⁻¹), considering all performed experiments, in case of (a) DN
 1271 oxidation cycle and (b) ND oxidation cycle.