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Abstract. Multi-scenario, multi-model ensembles of hydrological projections are widely used to describe possible futures of
regional hydrology and inform adaptation strategies. The Explore2 dataset is such an ensemble of river flow projections in
Metropolitan France. It provides future simulations for 1,735 catchments with modeling chains composed of different hy-
drological models forced by 36 regional climate projections based on bias-adjusted EUROCORDEX simulations. This study
assesses the uncertainties of this ensemble with QUALYPSO, a method specifically designed to deal with incomplete ensem-
bles and to disentangle and quantify all uncertainty sources, including that due to internal variability.

Focusing on results obtained at the end of the century, this study shows a strong agreement between modeling chains
towards decreases in low flows in a large southern part of France for a high-emission scenario, and very uncertain changes for
the annual mean and high flows. Emission scenario uncertainty is the dominant source of uncertainty for low flows over the
whole of France, and for mean annual flows in southeastern France. The contribution of the global and regional climate models
is important for mean and high flows, especially in rainfall-dominated areas. Regional climate models contribute considerable

uncertainty to low flows, much more than global models. The contribution of hydrological model uncertainty is large for low
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flows, moderate for mean annual flows, and small for high flows. For all climate and hydrological indicators, internal variability
is often large and cannot be overlooked. It is often of the same order and sometimes larger than the uncertainty on the climate

change response.

1 Introduction

Hydrological projections for future climates are often based on modeling chains driven by emission scenarios depicting future
emissions of greenhouse gases and aerosols. Modeling chains are composed of a global climate model (GCM) to simulate
global climate evolution for the chosen scenario, a regional climate model (RCM) or statistical downscaling method (SDM) to
refine the simulation for a specific region, a bias adjustment model (BAM) to adjust systematic errors in the regional climate
scenario, and a hydrological model (HM) to assess hydrological impacts of projected climate changes for the targeted river
basin. Modeling chains made of different scenarios or different models for each category of models are expected to project
different climate responses to emission scenarios, i.e. different long-term evolutions of climate or hydroclimatic variables.
Multi-scenario, multi-model ensembles of projections (MMESs) provide the opportunity to characterize the spread and the
degree of agreement between projections as well as the different sources of uncertainty in the projections (Hawkins and Sutton,
2009; Lehner et al., 2020; Evin et al., 2021).

Sources of uncertainty include uncertainty on future emissions (i.e. scenario uncertainty), model uncertainty, and internal
variability of the climate system (see, e.g., Hawkins and Sutton, 2009). Future emissions of greenhouse gases and aerosols
for the coming decades are highly uncertain. They will depend on a range of different socio-economic factors and decisions
around the world. In the Coupled Model Intercomparison Projects (CMIPs) designed to improve knowledge on climate change
and its impacts, climate projections are produced for different emission scenarios (e.g. RCP and SSP scenarios, Moss et al.,
2010; Riahi et al., 2017).

Model uncertainty arises from model imperfections. Different models of the same natural system (e.g. climate models)
simulate different responses to the same forcing scenario. As shown by COordinated Regional Downscaling EXperiments
(CORDEX), where regional projections are obtained from multiple combinations of GCMs and RCMs, both GCMs and RCMs
can have important contributions to model uncertainty (Bichet et al., 2020; Evin et al., 2021; Christensen and Kjellstrom,
2021). In MME:s obtained with multiple HMs, a substantial contribution can also come from HM uncertainty (Lafaysse et al.,
2014; Chegwidden et al., 2019; Lemaitre-Basset et al., 2021; Aitken et al., 2023). Scenario uncertainty and model uncertainty
make the climate response uncertain for all climate or hydroclimatic variables.

Additional uncertainty arises from climate internal variability (IV), resulting from the chaotic and nonlinear nature of the
climate system (Deser et al., 2012). IV introduces erratic multiscale fluctuations to the climate response, potentially causing
unusual sequences of meteorological events, unusual years, or sequences of years. Unlike scenario or model uncertainty, IV is
irreducible. It decreases with temporal and/or spatial aggregation. IV is small for temperature-related indicators but significant
for precipitation and hydrology-related indicators (Hawkins and Sutton, 2009; Lehner et al., 2020; Evin et al., 2021; Vicente-

Serrano et al., 2025). While it can be an important component of the overall uncertainty in hydrological projections (Lafaysse
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et al., 2014; Vidal et al., 2016; Chegwidden et al., 2019; Alder and Hostetler, 2019), IV is often overlooked in impact studies.
However, accounting for IV is crucial for designing robust adaptation strategies, particularly in addressing extreme or atypical
conditions.

The estimation of scenario uncertainty, model uncertainty components, and internal variability is often performed by apply-
ing Analysis of Variance (ANOVA) methods to large MMEs that combine multiple models across different emission scenarios.

However, this estimation faces two challenges:

— Filtering out IV fluctuations for climate response estimation: Disentangling the climate response of a given chain
from stochastic fluctuations caused by IV is key for a relevant uncertainty analysis. Estimating the climate response
can be challenging, particularly for indicators such as precipitation, where IV is significant (Hingray et al., 2019). This
difficulty arises because climate outputs blend the climate responses with chaotic fluctuations from I'V, which propagate
through all the subsequent models in the chain. If for a given GCM multiple members are available and used for subse-
quent simulations, the climate response of a modeling chain forced by this GCM can be estimated with the multi-member
mean of the simulations, and IV can be estimated with the inter-member variability. However, many hydrological studies
rely on single-member and time-slice GCM experiments. As a consequence, [V cannot be properly filtered out and,
when they are not simply disregarded, stochastic fluctuations from IV are often attributed to GCM uncertainty (see, e.g.,

Bosshard et al., 2013; Vetter et al., 2017; Gangrade et al., 2020).

— Dealing with incomplete or unbalanced MMEs: MME:s are often incomplete or unbalanced. This is usually the case
when climate projections are simulated by RCMs since many GCM/RCM combinations are often missing in GCM/RCM
MMEs. At the same time, some models of a given model category (GCM, RCM) are often over- or under-represented
in MMEs (see, e.g., the large EUROCORDEX MME assessed in Evin et al., 2021). When MMEs are incomplete or
unbalanced, uncertainty analysis cannot be performed with a naive ANOVA approach, unless MMESs are subsampled
to produce a complete and balanced MME subset, but this can lead to a dramatic waste of information (Tramblay and

Somot, 2018; Christensen et al., 2019).

The “Quasi-Ergodic Analysis of Climate Projections Using Data Augmentation" approach (QUALYPSO) was specifically
designed to address these two challenges (Evin et al., 2019). Based on the quasi-ergodic assumption for transient climate
projections (Hingray and Said, 2014), QUALYPSO separates long-term climate responses from multiscale fluctuations caused
by IV and applies an ANOVA to the differences of the climate responses between future and reference periods, a.k.a. climate
change responses (CCRs). This allows disentangling all uncertainty sources, including IV. QUALYPSO can also be applied to
incomplete and unbalanced MMEs, providing thorough uncertainty analyses even in those configurations, as is often the case
for hydroclimatic ensembles derived from CORDEX experiments. QUALYPSO has been used in various contexts, for regional
climate projections in Europe (Evin et al., 2021), Africa (Bichet et al., 2020) and for climate-related indicators in different
sectoral applications such as renewable energy (Bichet et al., 2019) or hydrology (Lemaitre-Basset et al., 2021; Aitken et al.,
2023; Jeantet et al., 2023; Thirel et al., 2025).
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The present study aims to characterize uncertainty components in the Explore2 MME, a very large ensemble of climate and
hydrological projections developed for France from EUROCORDEX projections (Marson et al., 2024; Sauquet et al., 2025).
The Explore2 MME was developed as part of the Explore2 research project. This project, funded by the French Ministry of
Ecological Transition (MTECT) and the French Biodiversity Agency (OFB), aims to support water management adaptation
for French rivers in the 21st century (Sauquet et al., 2025). To our knowledge, the Explore2 MME is the largest ensemble
of hydrological projections ever produced from regional climate experiments at the scale of a country. Analyses conducted
across numerous catchments throughout an entire country are particularly valuable for exploring how projected changes vary
geographically, as they reflect differences in hydroclimatic conditions, sensitivities, and regional climate shifts (Addor et al.,
2014; Chegwidden et al., 2019; Aitken et al., 2023). This study leverages the large Explore2 MME and the wide hydroclimatic

diversity in France to address the following questions:

What are the projected future changes for different hydrological metrics in France and how much do the modeling chains

agree on the projections?

How large is the IV compared to CCR uncertainty?

How do scenario and model uncertainties contribute to the CCR uncertainty?

What is the influence of individual models on projections (so-called main effects), and are there important discrepancies

between them?

— How do results vary by location and hydroclimatic context?

Section 2 summarizes the different hydrological regimes encountered in France, describes the Explore2 MME and provides a
summary of the climate and hydrological models used to produce the MME. It also describes QUALYPSO, the method used for
the uncertainty analysis. Section 3 presents projected changes and related uncertainties for different climate and hydrological
indicators. Section 4 highlights the key features of the various sources of uncertainty. Section 5 further discusses these results

and some related aspects. Section 6 concludes.

2 Data and methods
2.1 Hydrology of French rivers

France presents a large panel of hydrological regimes resulting from various physiographical contexts (e.g. geology, topogra-
phy, see Fig. 1a) but also from the large diversity of regional climates (oceanic influences in the West, Mediterranean in the
South-East, Strohmenger et al., 2024). Catchment regimes can be considered from a hydroclimatic perspective, as provided
by the Budyko (1974) framework. The Budyko model, which provides a simplified representation of the mean annual water
balance, allows for the analysis of interactions between energy and water limitations and their impact on catchment hydrology.

More specifically, the ratio between total precipitation (P) and potential evapotranspiration (PET) provides a humidity index



110

115

120

125

130

that can be used as a proxy for different types of interactions and various impacts on runoff. P/PET ratio values lower than one
characterize water-limited regions, where dry conditions prevail and sensible heat fluxes are typically high. In contrast, P/PET
ratios greater than one denote energy-limited regions, which are generally wetter and exhibit lower sensible heat fluxes (Spos-
ito, 2017). In France, most regions are energy-limited, especially mountainous areas (Alps, Jura, Vosges in the East, Pyrénées
in the South, Massif Central in the center, see Fig. 1b). Water-limited regions are found in the South (Mediterranean region),
in a large area northwest of the Massif Central and in some small areas. As reported by Gan et al. (2021) or Lemaitre-Basset
et al. (2022), the projected evolution of hydrological changes can be interpreted according to this distinction.

Hydrological regimes can also be classified based on the seasonal cycle of inter-annual mean monthly discharges, following
the work of Pardé (1933). Sauquet et al. (2024) propose seven regimes ranging from snow-dominated regimes in mountainous
areas to mixed regimes downstream and/or rainfall-dominated regimes in lowlands (Figure 1c,d). Snow-dominated regimes
are mainly characterized by a monthly peak flow in spring due to snowmelt which can be particularly large for high-elevation
mountainous catchments. Three different snow-dominated regimes are considered: 1) a regime with a dominant nival con-
tribution (N) found in the highest regions of the Alps, 2) a Nivo-Pluvial regime (NP) observed at downstream locations, in
mid-elevation areas (e.g. Pyrénées, PreAlps regions) and in southeastern France where Mediterranean events can be impor-
tant, and 3) a Pluvial-Nival (PN) regime mainly found in downstream locations and low-elevation mountainous areas (Massif
Central, Vosges, Jura, Corsica).

Rainfall-dominated regimes present a seasonality mostly derived from the seasonality of precipitation and evapotranspiration
losses, with high flows in winter and low flows in summer. The winter / summer contrast depends on the catchment. It is very
large in the Western and northeastern parts of France, where catchments have a low storage capacity, large in the North and
the South-West, moderate in the Center and in the East, and very small in regions where river streamflows are sustained all
year long by important aquifers (e.g. in the Paris Basin region). This diversity is represented by four regimes: highly contrasted
pluvial (HCP), contrasted pluvial (CP), pluvial (P), and non-contrasted pluvial (NCP). Different hydrological responses to

climate change are expected according to these regimes (e.g., Sauquet et al., 2024).
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Figure 1. (a) Physical Map of Metropolitan France. (b) P/PET ratio values indicating limiting conditions as estimated for the reference
period 1976-2005 from SAFRAN meteorological reanalyses. Ratios greater than one (green colors) indicate energy-limited regions and
ratios smaller than one (brown colors) indicate water-limited regions. (c) The seven main hydrological regimes found in Metropolitan France,
classified according to the annual cycle of monthly discharges. They consist of four rainfall-dominated regimes: highly contrasted pluvial
(HCP), contrasted pluvial (CP), pluvial (P) and non-contrasted pluvial (NCP) and three snow-dominated regimes: Nival (N) , Nivo-Pluvial
(NP), Pluvial-Nival (PN). (d) Hydrological regimes estimated for the 1735 simulation points considered in this study. Estimation from
discharge time series simulated for the reference period 1976-2005 from SAFRAN meteorological reanalyses (Vidal et al., 2010). See
Sauquet et al. (2024) for details.
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2.2 Explore2: a large climate and hydrological multi-model ensemble

The Explore2 dataset, spanning the period 1976-2099, was generated using various scenarios and models shown in Figure
2. A detailed description is provided in Sauquet et al. (2025). The 36 climate projections correspond to a subset of the large
CMIP5-EUROCORDEX ensemble (Jacob et al., 2014, 2020) and have been obtained with three emission scenarios (10 with
the RCP2.6, 9 with the RCP4.5, and 17 with the RCP8.5, see Marson et al., 2024). It is based on six CMIP5 GCMs (Taylor
et al., 2011) downscaled by nine RCMs. As summarized in Table 1, it considers 17 GCM/RCM combinations and is therefore
incomplete (e.g. not all GCMs have been used to force a given RCM); however, the selected projections ensure a diverse range
of climate models and include at least two simulations for each GCM and RCM. This selection enhances the robustness of the

uncertainty component estimates.

RCP GCM RCM ‘BAM HM
RCP2.6 CNRM-CM5-LR ADAMONT CTRIP
RCP4.5 EC-EARTH
RCP8.5 #‘HadGEMZ—ESI* I* I* eRsb
IPSL-CM5A-MR
MPI-ESM-LR
NorESM1-M

Figure 2. Modeling chain: Emission scenarios (RCP), Climate models (GCM, RCM), Bias Adjustment Model (BAM) and Hydrological
Models (HM) considered in this study.

The BAM ADAMONT (Verfaillie et al., 2017) was applied to adjust climate projections for some systematic errors using
the meteorological reanalysis SAFRAN (Vidal et al., 2010; Le Moigne et al., 2020) as the reference dataset. Adjusted climate
projections are produced on a regular horizontal 8 km grid covering Metropolitan France and part of Switzerland. In this study,
we focus on the 8981 grid points that cover Metropolitan France. Reference evapotranspiration (ETO) is obtained from the
Penman-Monteith formula (Allen et al., 1998) with a parameterization for short grass. The net radiation is derived from the
Hargreaves equation (Hargreaves and Samani, 1985).

Explore2 hydrological projections offer a *natural reference hydrology’ as a foundation for future studies on water allocation.
Streamflow simulations are provided in the absence of any water management interventions—such as abstractions, releases, or
reservoir operations—thus representing natural flow conditions. In this study, we assess an ensemble of hydrological projec-
tions obtained for 1735 simulation points with four HMs of different types (Table 2) covering almost all the country, namely
CTRIP, GRSD, ORCHIDEE and SMASH (Fig. 1). The Explore2 MME provides hydrological simulations with nine HMs,
but the five other HMs cover only specific regions of France and for fewer catchments (Sauquet et al., 2025). SMASH and
GRSD HMs are conceptual “bucket” type models. CTRIP and ORCHIDEE are land surface models and physically based. No

single model provided discharge simulations for all simulation points across the study area. Some simulation points could not
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Table 1. Unbalanced ensemble of EUROCORDEX GCM/RCM combinations used for Explore2 climate projections with the scenarios
RCP2.6 (x), RCP4.5 (+) and RCP8.5 (O). Only one run was used for each GCM (member rlilpl for all GCMs except for EC-EARTH

where the member r12ilp1 has been used). All HMs were forced by all climate projections.

be reliably paired with their corresponding locations in the hydrographic network (or were excluded due to large differences in
simulated versus physical catchment areas). All HMs used the same meteorological forcings: the reanalysis SAFRAN as the
reference dataset for the period 1976-2005 and adjusted scenarios for historical and future climate experiments. Calibration
of each HM, if required, was model-specific and carried out automatically or manually based on the expertise of the model
developers. To assess model performance, all HMs have been evaluated within a standardized framework, focusing on their

ability to replicate various observed hydrological signatures for the current climate (see Sauquet et al., 2025, for evaluations).

Name # points | Reference
CTRIP 2024 Munier and Decharme (2022)
GRSD 3712 de Lavenne et al. (2019)
ORCHIDEE | 3587 Huang et al. (2024)
SMASH 3821 Jay-Allemand et al. (2020); Huynh et al. (2024)

Table 2. Names of the surface hydrological models, the associated number of streamflow simulation points and the corresponding reference.

We carried out our analyses for a selection of indicators representative of projected changes in climate and hydrology. Indi-
cators considered in the present work are surface air temperature (TAS), total precipitation (PR), reference evapotranspiration
(ETO) at a seasonal scale (summer and winter), annual maximum daily precipitation (RX1D), annual minimum monthly flow

(QMNA), mean annual daily discharge (QA), and annual maximum daily discharge (QJXA).
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2.3 Multi-model ensemble characterization with QUALYPSO

To characterize how a given climate or hydrological indicator is projected to change, we use the QUALYPSO method (Evin
et al., 2019). QUALYPSO focuses on the climate change response (CCR) projected for the considered indicator. The CCR
projected by a given simulation chain defines, for any future time, the absolute or relative difference of the long-term climate
response for this future time compared to the reference period. The QUALYPSO method is implemented in an R package (Evin,
2023) and was specifically designed to tackle the main challenges of uncertainty partitioning in unbalanced and incomplete
MMEs. More information is provided in Appendix A, including an illustration of the different steps in Fig. Al.

QUALYPSO aims to estimate, for any future time, the CCR of each modeling chain, the mean CCR of the MME, the
dispersion between the CCRs of individual chains, the sources of uncertainty explaining this dispersion, and the additional

potential dispersion in future realizations of climate indicators that can result from IV.
2.3.1 Main assumptions

Following Hawkins and Sutton (2009) and Hingray and Said (2014), QUALYPSO is based on two main hypotheses expressed

as follows:

1. We consider that the projection of a simulation chain ¢ combines two components: the climate response and interannual
variability. For a future time ¢, the climate response corresponds to the long-term trend of the simulated projection. We
hypothesize that it has a temporal variation that is inherently gradual and smooth. The high- to mid-frequency fluctuations

in the simulated projections are assumed to result solely from I'V.

2. The CCR of a simulation chain ¢ can be expressed as a linear sum of the ensemble mean CCR and the main effects of

the different components of the chain (main effects of the scenario s, GCM g, RCM r, and HM h).

The first assumption implies that it is reasonable to consider a trend model to estimate the climate response of a chain and,
in turn, fluctuations due to IV (deviations from the climate response). Hingray et al. (2019) have shown that this assumption
allows for providing more precise estimates for all uncertainty components than those obtained with time-slice approaches.

The additive and linear decomposition model of the second assumption can be derived for any future time using a fixed-
effects ANOVA model (see Eq. A6 in the Appendix). In the case of a complete MME, the main effect of a given scenario or
model is easily interpreted as the mean difference between 1) the CCR of all the projections using this scenario or model and

2) the mean CCR of the ensemble.
2.3.2 Estimation of the climate response

In QUALYPSO, the climate response of each modelling chain is estimated by applying a trend model to the corresponding
projection available for the period 1976-2099. Different trend models can be considered (e.g., linear, polynomial, splines). In
this study, we consider cubic smoothing splines (function smooth.spline in R {R Core Team}, 2022). For all indicators

except temperature, the IV is relatively large compared to the long-term trend, so the smoothing parameter spar was set to
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1.1 to reduce the model’s flexibility. This prevents misattributing the low-frequency fluctuations caused by IV to the climate
response. For temperature, we apply a lower smoothing parameter value of 1 to provide more flexibility, in agreement with

previous studies (Evin et al., 2021).
2.3.3 Estimation of the climate change response and of internal variability

The CCR of each chain is obtained by computing the differences in the climate response between future periods and the refer-
ence period 1976-2005. Absolute changes are considered for temperature (in °C) and relative changes for the other indicators
(in %). IV contribution is assumed to be constant over time, although this assumption could be relaxed as done in Hingray and
Said (2014). For a given chain i, we estimate IV as the standard deviation of the annual deviations from its climate response.
IV varies from one chain to another. Here, we use the IV averaged over the different simulation chains to characterize the IV

component of the MME.
2.3.4 ANOVA model

A fixed-effect ANOVA model is used to estimate the ensemble mean CCR and the main effects of all scenarios and models
belonging to the different model categories. The ANOVA framework can also be used to estimate interaction terms (e.g., GCM-
scenario interaction effects, Northrop and Chandler, 2014). For the sake of simplicity, we disregard them in the present work.
The estimation of our ANOVA model (see Eq. A6) is carried out for each future time horizon ¢ using a linear model, where the
least squares of the residuals (denoted as €, 4 . 5 (t) in Eq. A6) are minimized. For the estimation, QUALYPSO relies on the R
function 1m provided by the built-in st at s package, a core statistical library in R that can handle incomplete and unbalanced
MME:s.

The CCR uncertainty of a given category (scenario uncertainty, GCM uncertainty, RCM uncertainty, HM uncertainty) is
estimated by the variance of the main effects of all models (or scenarios) belonging to this category. The residuals of the
ANOVA model arise from the imperfect estimation of the climate responses and the limitations of the additive assumption.
The residuals thus include potential interactions between scenarios and models and/or between models of different categories
(e.g. Hingray and Said, 2014; Evin et al., 2021).

2.3.5 Characterization of the uncertainties

In the following, to characterize the CCR uncertainty of the MME, we use the square root of the CCR uncertainty variance,
calculated as the sum of the uncertainty variances of the different CCR uncertainty sources (scenarios, GCMs, RCMs, and
HMs) and the residual variance of the ANOVA model. The CCR uncertainty is thus expressed in the unit of the considered
indicator.

Results of QUALYPSO analyses will be summarized for each climate and hydrological indicator using different metrics:

— The 5%, 50 %, and 95 % quantiles of the ensemble of CCR. They provide a quick overview of both the MME mean
CCR and its dispersion.

10
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— The CCR uncertainty and the IV of the MME. The CCR uncertainty quantifies the dispersion between projected CCRs.
IV indicates the non-predictable variability component due to natural climate variability (by definition, IV has thus no
contribution to the CCR uncertainty). IV is also presented as the standard deviation and expressed in the units of the

considered indicator. IV and CCR uncertainty can thus be compared.

— The percentage variance contribution to CCR uncertainty variance (in %) of each CCR uncertainty source (scenario,
GCM, RCM, HM) and unexplained CCR uncertainty (residual variability, RV). This indicates the relative importance of

the different sources and the dominant ones.

Note that the CCR uncertainty can be compared to the ensemble mean CCR, also providing an indication of the overall
spread of the CCR in relation to the mean change. If the CCR follows a normal distribution (which is roughly the case for the
indicators considered here), 67 % of the simulation chains would have CCR values in the interval [Q50-CCRU, Q50+CCRU]
on average, where Q50 is the median CCR and CCRU is the CCR uncertainty. All these metrics vary as a continuous function

of future time. In the following, we mainly present results obtained for the end of the century (period 2071-2099).

3 Climate change response, associated uncertainty, and internal variability

In this section, we first present results for climate indicators obtained from the MME composed of 36 Explore2 transient
climate projections by applying QUALYPSO to each of the 8981 grid points covering France. We next show the results for
three hydrological indicators, namely the annual minimum monthly flow (QMNA), the mean annual discharge (QA), and the
annual maximum daily discharge (QJXA). These indicators can be considered representative of low flows, mean discharge,
and high flows, respectively. QUALYPSO is applied to the MME for each of the 1735 simulation points available for the four
HMs. In this study, each MME is thus composed of 144 transient hydrological projections obtained with the four HMs forced
by the 36 climate projections. We present the changes projected at the end of the century (2071-2099) with respect to the
reference period 1976-2005. For each indicator, we show the mean projected changes and the inter-model dispersion with the
scenario RCP8.5 which corresponds to greater changes in climatic and hydrological variables. This section then shows how IV

compares to CCR uncertainty and what climate changes are projected for lower emission scenarios RCP2.6 and RCP4.5.
3.1 Climate change response projected in France

Figure 3 shows the 5 %, 50 %, and 95 % quantiles of the CCR for the climate indicators, for the RCP8.5. These results confirm
those reported in previous publications based on EUROCORDEX ensembles (e.g. Jacob et al., 2014; Christensen and Kjell-
strom, 2020; Coppola et al., 2020; Evin et al., 2021; Marson et al., 2024; Corre et al., 2025). Projected climate change depends
on the indicator, season, and region. It is contrasted and uncertain.

Temperature is projected to increase significantly, especially in summer. Depending on the region, the median projected
increase varies from 2.5 °C to 4.5 °C in winter and from 3.5 °C to 6 °C in summer. Summer warming is projected to be much

greater in mountainous areas (Alps, Pyrénées, Massif Central, Vosges) and in the south, particularly in the South-East. The
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dispersion between modeling chains is important. The 5 % - 95 % interquantile range is around 1.5 °C in winter, up to 4 °C in
summer. The largest warming projected in summer is greater than 7.5 °C.

In summer, precipitation is projected to significantly decrease, from -10 % to -40 % for the median CCR depending on
the region. Although there is considerable dispersion among the projections, they largely agree on the direction of change.
However, a few exceptions exist, notably in the Rhone River valley and some eastern regions, where some projections indicate
a slight increase. The most extreme projections lead to very large decreases, -60 % on average over France and up to -85 % in
the South.

In contrast to summer, winter precipitation is mostly projected to increase (but less than the projected decrease in summer).
The median change is around 0 % in the South, South-East, and it exceeds 30 % over the northern half. The inter-model
dispersion remains significant, although it is less pronounced than in summer. Models almost always agree on the sign of the
changes and, except in the South, even the 5 % quantile projects slight increases.

The median reference evapotranspiration (ETO) is projected to increase, from 20 % to 30 % over most of France (and slightly
more in summer). If all models agree on the sign of changes, the inter-model dispersion is large. In summer, the 5 % quantile
ranges from 10 % to 20 % and the 95 % quantile is larger than 40 %. In general, results roughly follow those obtained for
temperature, but spatial patterns of changes do not match the N-W, S-E gradients obtained for temperature. The South-East
and the mountainous areas do not appear as hot spots of changes.

The median annual maximum daily precipitation is projected to increase. Projected increases vary a lot from one location to
another, from 0 % to 20 % in a large southern part to (20 %, 30 %) in northern areas. Regardless of the region, the inter-model
dispersion is considerable. In the south, for instance, models do not agree on the sign of the changes, and the most extreme

chains project decreases down to (-40 %, -20 %) and large increases up to (40 %, 60 %).
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Figure 3. 5%, 50 %, and 95 % quantiles of the climate change responses for seasonal temperature (TAS), precipitation (PR), reference

evapotranspiration (ET0) and annual daily precipitation maxima (RX1D) changes (2071-2099 relative to 1976-2005) in summer (JJA) and
winter (DJF) for the RCPS.5.
13



ETO 5%

50
40

JJA

30
20

-20
-30

DJF

-40
<-50

R

[%]
>

Figure 3. (continued).

14



280

285

290

3.2 Hydrological response to climate change projected in France

The 5%, 50 %, and 95 % quantiles of the CCR for the hydrological indicators, for the RCP8.5 (Figure 4) are contrasted,
uncertain, and depend on the region.

Low flows are mostly projected to decrease, from -10 % in the North to (-60 %, -45 %) in the South for the median CCR.
While the inter-model dispersion is very large, projections agree on a decrease for most southern regions (with the exception
of the Alps). The driest chains lead to very large decreases, greater than -60 % (except for a small area in the North where they
“only" reach -45 % to -60 %). Conversely, the most humid ones project large increases (40 % or more) in the Center-North.

For median annual discharges, while slight increases are projected (often less than 15 %) in the North, decreases (up to
-30 %) are projected in the South. With the exception of the Pyrénées and the southern Alps, where most models project a
decrease, modeling chains do not agree on the sign of change. The inter-model dispersion is very important. Large decreases
are projected for the driest chains (up to -75 % in the South-East) while large to very large increases are projected for the most
humid ones (up to 75 % in the North).

Results for high flows are roughly similar. The median high flow is projected to slightly increase (up to 15-30 %) in the North
and to decrease in the South. Regardless of the region, the inter-model dispersion is large, and models do not agree on the sign
changes. Large decreases are projected for the driest chains (up to -75 % in the South) while large to very large increases are
projected for the most humid ones (up to 75 % in the North). We refer to Tramblay et al. (2025) for further analyses of projected
high flows from the Explore2 dataset.
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Figure 4. 5%, 50 %, and 95 % quantiles of the climate change responses for low flow (QMNA), mean annual flow (QA), and high flow
(QJXA) changes (2071-2099 relative to 1976-2005) for the RCP8.5.
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3.3 Uncertainty of the climate change response and internal variability

Figures 5 and 6 compare the CCR uncertainty (CCRU) and the internal variability IV for the climate and hydrological indica-
tors, respectively. Except for summer temperatures, IV is large to very large and is often of the same order as, or even greater
than CCR uncertainty.

For seasonal temperature, year-to-year fluctuations around the CCR are of the order of 1 °C (Fig. 5). IV is much lower than
CCR uncertainty in summer but similar in winter. Results for ETO are roughly similar (Fig. S5 in the Supplement). IV is rather
large, slightly smaller than CCR uncertainty in summer, and slightly larger in winter.

For precipitation, IV is very large (> 30%), much larger than CCR uncertainty (between 10 % and 30 %), especially in
winter and along the Mediterranean sea (>50 %, Fig. 5). For maximum annual precipitation, IV is large (often greater than
40 %, see Fig. S5 in the Supplement). It is also much larger than CCR uncertainty (10 %-20 %).

For the three hydrological indicators, IV is logically also very large (Fig. 6). For annual flows, IV is larger than 30-40 % in
many regions. For low and high flows, it is higher than 40 % almost everywhere (higher than 100 % for low flows locally). It is

often more than two times larger than CCR uncertainty.
3.4 Projections for lower emissions

Figures S1 and S2 in the Supplement show the 5 %, 50 %, and 95 % quantiles of the CCR projected for the climate indicators,
for the lower emission scenarios RCP2.6 and RCP4.5 respectively. For temperature and related indicators, changes projected
with lower emission scenarios are generally smaller than those under RCP8.5, while exhibiting similar spatial patterns. In
contrast, projections for precipitation and hydrological indicators do not necessarily lead to the same conclusions. For these
indicators, inter-model spread remains substantial, with frequent disagreement among models regarding the sign of change.
Moreover, the direction of projected changes does not always align with those under RCP8.5. For instance, under RCP2.6,
winter precipitation is projected to increase in the South-East, and some model chains also indicate increases in summer.

This pattern is also observed in hydrological projections. Changes projected for lower emission scenarios are not necessarily
smaller than changes projected for RCP8.5 (Fig. S3 and S4 in the Supplement). The mean annual flows are projected to increase
everywhere in RCP2.6 and almost everywhere in RCP4.5. Low flows are still projected to decrease (much less) for RCP4.5 but
they are projected to increase for RCP2.6, regardless of the region. Projected changes for high flows are roughly the same for

all scenarios.

4 Main uncertainty sources

This section provides key messages about the main sources of uncertainty. They are not the same for the different climate
and hydrological indicators. Furthermore, they vary regionally, and uncertainties in projected hydrological changes can be

interpreted according to the corresponding hydroclimatic regimes.
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Figure 5. Uncertainty components for summer and winter temperature and precipitation changes (2071-2099 relative to 1976-2005) for
all emission scenarios. Climate change response uncertainty (CCRU) and internal variability IV (standard deviations expressed in °C for

temperature changes and % for precipitation changes).

4.1 Main uncertainty sources depend on the climate indicator

Figure 7 shows the main uncertainty components for seasonal temperature and precipitation changes and confirms the results
obtained for Europe (e.g. Christensen and Kjellstrom, 2020; Evin et al., 2021). The relative contributions of the different
uncertainty sources to CCR uncertainty depend on the indicator and region.

For temperature projections, scenario uncertainty is by far the main contribution for all seasons. A non-negligible contribu-
tion of climate model uncertainty is found in summer. It comes from GCMs for coastal areas (Atlantic and Channel) and from
RCMs for mountainous areas and in the East.

For summer precipitation, the main contributions come from RCMs and then from scenarios (between 20 % and 40 %).
In winter, they mostly come from GCMs or from RCMs in mountainous areas and in the Mediterranean region. Scenario
uncertainty has a moderate contribution in the North-East. For maximum precipitation, the main contributions come from

GCMs and RCMs (Fig. S5 in the Supplement).
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For summer ETO, results closely follow those for summer temperature (Fig. S5). However, the contribution of scenario
uncertainty is smaller, whereas the contribution of RCMs becomes much larger (> 20—40 %). For winter ETO, the contribution
of scenario uncertainty is smaller to the benefit of RCM uncertainty, which reaches up to 40 — 60 % in the West.

With the exception of temperature, the contribution of residual variability to CCR uncertainty is moderate to important,

340 which means that a moderate to large part of the CCR uncertainty cannot be explained by the additive effects of scenario,
GCM or RCM uncertainty. This is the case for precipitation in both seasons, for instance. In summer, the unexplained fraction
of CCR uncertainty varies from 10-20 % in the West to 20-40 % in the East. In winter, it varies from 20-40 % in the East to
40-60 % in the South-East. Evin et al. (2021) show that interactions between scenarios and climate models can be important
in France for winter precipitation (see their Figure S7). In particular, scenario/GCM and GCM/RCM interactions can partly

345 explain this important residual variability in the current study.

CCRU

v

Figure 6. Uncertainty components for low flow (QMNA), mean annual flow (QA), and high flow (QJXA) changes (2071-2099 relative
to 1976-2005) for all emission scenarios. Climate change response uncertainty (CCRU) and internal variability IV (standard deviations

expressed in % for hydrological changes).
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Figure 7. Uncertainty components for summer and winter temperature and precipitation changes (2071-2099 relative to 1976-2005). Per-

centage contribution of uncertainty sources (scenario, GCM, RCM, residual variability RV) to the CCR variance (CCRV).
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4.2 Main uncertainty sources depend on the hydrological indicator

Figure 8 presents the main uncertainty components for hydrological changes. These results are generally consistent with pre-
vious studies (e.g. Lafaysse et al., 2014; Chegwidden et al., 2019; Lemaitre-Basset et al., 2021; Aitken et al., 2023). The extent
to which each source of uncertainty contributes to the spread in projected changes also depends on the region and indicator.

For low flows, CCR uncertainty comes from emission scenarios, especially in southern France (>40-60 %), from RCMs,
especially in the East (>20-40 %), and to a lesser extent from HMs in the North-West and in the Alps (>20-40 %). The
uncertainty from GCMs is significantly lower than that from RCMs. However, it remains notable in the northern regions, at
the expense of RCP uncertainty, especially in the energy-limited areas. In France, except in mountainous areas, low flows
occur in summer when snow and soil moisture are depleted. They are mainly driven by soil processes, evapotranspiration, and
sometimes groundwater support. Low flows are thus controlled by the climate conditions that determine the summer water
budget and by the choice of the HM.

For mean annual flows, CCR uncertainty mostly comes from RCMs, especially in the East (>40-60 %), from GCMs (ev-
erywhere except in the South-East), and from emission scenarios in the southern half of France (>20-40 %). A non-negligible
contribution of HMs is obtained in the Paris Basin region (>10-20 %).

For high flows, CCR uncertainty is predominantly attributable to climate models, with GCMs and RCMs contributing to
a comparable extent. This substantial contribution can partly be explained by the considerable uncertainty in projections of
extreme precipitation (Fig. 3), but may also reflect uncertainties in other climatic variables. High flows are driven by a combi-
nation of factors, including the magnitude and spatiotemporal distribution of precipitation, as well as antecedent hydrological
conditions resulting from preceding precipitation events (Tarasova et al., 2023). Using the GRSD hydrological model, Tram-
blay et al. (2025) demonstrate that projected changes in soil saturation exert an influence on high flows comparable to that of
projected changes in intense rainfall. In the current study, the pronounced sensitivity to hydrological model selection in eastern
France further supports the role of antecedent conditions in shaping high flow responses.

The unexplained fraction of CCR uncertainty can also be large for hydrological indicators. It varies from 10-20 % in the
South to 20-40 % in the North for low flows, mostly between 20-40 % for mean annual flows, from 20-40 % to more than 60 %

in a number of sites for high flows (Fig. 8).
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Figure 8. Uncertainty components for low flow (QMNA), mean annual flow (QA), and high flow (QJXA) changes (2071-2099 relative to
1976-2005). Percentage contribution of uncertainty sources (scenario, GCM, RCM, HM and residual variability RV) to the CCR variance
(CCRYV).
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4.3 Main sources of uncertainty by hydroclimatic regimes

The hydrology of French rivers is expected to undergo marked changes in the coming decades, but the high uncertainty sur-
rounding future precipitation makes the nature of these changes mostly unpredictable. However, the projected increase in
temperature is robust and, as a consequence, some changes are very likely, especially for some specific hydroclimatic regimes.
As already shown by previous studies in the area (e.g. Lafaysse et al., 2014; Vidal et al., 2016; Dayon et al., 2018; Huang et al.,
2022) and by additional Explore2 analyses (Sauquet et al., 2024), warming will profoundly modify the hydrological regimes
where discharges are significantly influenced by snow accumulation and melt. Snow-dominated regimes will shift to mixed
regimes, while mixed regimes will become predominantly rainfall-driven. As a result, snowmelt floods will occur earlier in the
spring and be less intense.

Figure 9 aggregates the different results shown in this study by hydrological regime (obtained for the reference period 1976-
2005). As indicated above, median CCRs (Fig. 9A) highlight more pronounced changes for low flows than for mean and high
flows. For low flows, strong decreases are obtained across most hydrological regimes (around -40%), and scenario uncertainty
emerges as the dominant source of variability (Fig. 9B, first row), primarily due to the strong dependence of evapotranspiration
losses on temperature, as previously discussed. There are two exceptions. The first concerns catchments with a non-contrasted
pluvial (NCP) regime, where low flows are likely to remain supported by deep aquifer contributions regardless of the emission
scenario. In this case, the main source of uncertainty arises from climate models, but hydrological models (HMs) also contribute
due to their varying representations of deep groundwater storage. The second exception involves catchments with a nival (N)
regime, where low flows typically occur in winter due to a high proportion of solid precipitation during this season (Fig. 1C).
Under warmer conditions, this proportion is expected to decrease, leading to increased winter discharges. As HMs vary in their
representation of snow processes, HM uncertainty plays a particularly significant role in this case.

For mean annual and high flows, the combined uncertainty from GCMs and RCMs is relatively consistent across all regimes.
In contrast, the contributions of scenario and HM uncertainties vary by regime. For mean annual discharges, scenario uncer-
tainty is minor in rainfall-dominated regimes but more significant in snow-dominated ones. HM uncertainty is generally low,
except in catchments where low flows make up a substantial portion of the mean annual flow (i.e., P and PNC regimes). For
high flows, scenario uncertainty is negligible across all regimes. HM uncertainty, while also similar across regimes, is more pro-
nounced due to differing representations of runoff generation in the models—particularly in snow-dominated regimes, where
high flows are primarily driven by snowmelt.

A qualitative comparison between Figures 1B, 4 and 8 shows that projected changes are only partially influenced by whether
catchments are water- or energy-limited. In the South, the decrease of mean annual flows, which highly depends on the interplay
between precipitation and evapotranspiration, tends to be larger in water-limited areas. In the North, mean annual flows tend to
decline in water-limited catchments, while they increase in energy-limited ones. However, projected changes in high and low
flows appear largely independent of the hydroclimatic regime. For example, the significant reduction in low flows projected
for the South is widespread across different regimes. A notable exception is the case of high flows in the South, which tend to

increase more in water-limited areas. Across most locations and hydrological variables, the sources of uncertainty contributing
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to CCR uncertainty are quite similar between water- and energy-limited regimes, especially regarding HM uncertainty. An

exception occurs in the energy-limited catchments of the North, where HM uncertainty is greater for projections of both low

and mean annual flows compared to other regions.
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Figure 9. Results for the different hydrological regimes. A) Median CCR (2071-2099 relative to 1976-2005) for low flow (QMNA), mean
annual flow (QA), and high flow (QJXA) changes for the RCP8.5 and B) Percentage contributions of uncertainty sources to CCR vari-

ance (CCRV). Rainfall-dominated regimes: highly contrasted pluvial (HCP), contrasted pluvial (CP), pluvial (P) and non-contrasted pluvial
(NCP); snow-dominated regimes: Nival (N), Nivo-Pluvial (NP), Pluvial-Nival (PN).

24



410

415

420

425

430

435

5 Discussion
5.1 IV is substantial and should not be overlooked

Our results show that IV can be a substantial source of uncertainty in hydrological projections and are in agreement with most
other analyses where IV has been considered (e.g. Lafaysse et al., 2014; Vidal et al., 2016; Chegwidden et al., 2019; Alder and
Hostetler, 2019; Ye et al., 2024). The influence of IV is strong when precipitation is a key driver and is particularly pronounced
for low and high flow projections (Fig. 6). For the three variables considered here, IV is larger than CCR uncertainty at the end
of the century, and much larger for projected periods that are not far (not shown).

Our results show that IV should not be overlooked or disregarded in hydrological impact studies. IV expresses the range of
possible future realizations around the climate response. IV is likely to cause substantial deviations from the climate response,
potentially leading to unusual or critical years or sequences of years. Disregarding IV could be detrimental for interpretations
and use of projections. It could prevent a fair evaluation of the resilience and robustness of natural and anthropogenic systems

to climate change, variability, and extremes (Doss-Gollin et al., 2019; Bonnet et al., 2020).
5.2 A single or a few individual models can have a large contribution to model uncertainty

As shown in Evin et al. (2021) for Europe, a large contribution of GCM (resp. RCM) uncertainty to CCR uncertainty is often
due to a single or a small number of individual GCM models (resp. RCM models). This can be easily identified from the
maps of the main effects obtained for each individual model. For summer temperature, for instance (Fig. 10), the large RCM
contribution comes mainly from the higher warming signature of HadREM3-GA7-05 and the lower warming signature of
WREF381P. For winter precipitation (Fig. 11), the important GCM uncertainty comes mainly from the ‘wet signature’ of IPSL-
CMS5A-MR; the large RCM contribution in mountainous areas comes mainly from the large differences between four RCMs
(RACMO22E and RCA4 are much drier than HIRHAMS and WRF381P).

A large contribution of a specific climate model to the CCR uncertainty in climate projections frequently leads to similar
contributions for other climate or hydrological indicators. For example, the deviating signals produced by HadREM3-GA7-05
and WRF381P for projected changes of summer temperature are reflected in similar divergent patterns for changes in summer
ETO (Fig. S8 in the Supplement) and low flows (Fig. S12 in the Supplement).

A single or a small number of HMs can also lead to a large contribution of HM uncertainty to CCR uncertainty. As shown
by the maps of the main effects obtained for each individual HM (Fig. 12), the important HM uncertainty obtained for mean
annual flows in the Paris Basin region (lowland area around Paris) is mainly due to the ‘more humid’ (or ‘less dry’) signature
of ORCHIDEE. For high flows, the important HM uncertainty in the North-East is mainly due to CTRIP. HM main effects vary
more regionally (or by regime) for low flows than for mean and high flows. Higher uncertainty for low flows might be expected
where more complex processes are involved (e.g. snowmelt for the nival regime, groundwater-river exchange for the non-
contrasted pluvial regime) and are represented differently by the different HMs. High flows are mostly driven by precipitation

and are more easily represented by HMs when similar antecedent conditions are simulated.
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Note that the main effects of the different model categories often have different spatial scales. Spatial patterns of the main
effects of GCMs are mostly large scale, presenting smooth variations, whereas those of RCMs and HMs, often conditioned by
local topography for RCMs or by specific physiographic features for HMs, are more local, often depicting rough variations.
The spatial variation of these main effects can be related to the effective resolution of the corresponding models, which is often
larger than the resolution provided by the simulations (Klaver et al., 2020).

Models with very large main effects compared to the other ones can thus be identified using ANOVA approaches. These
deviating models inflate the corresponding uncertainty component. As large uncertainties may dampen important information
about future changes, it is important to examine these deviating models carefully and understand the reasons behind their
atypical behavior. If the models deviate for the wrong reasons (numerical artifacts, bugs, model inadequacy), a reasonable
choice could be to discard them from the MME. Large deviations by a single model can also indicate that other models are
overlooking or oversimplifying a key process that could become critical under future climate conditions. This raises concerns
about model transferability, particularly for models based on empirical or highly parameterized approaches.

In Explore2, recommendations were provided to help end users select or filter available projections for a catchment. Diag-
nostic assessments were carried out for all catchments to evaluate the performance of surface hydrology and hydrogeological
models when driven by the SAFRAN reanalysis (Sauquet et al., 2025). These diagnostics complement the uncertainty analysis
and aim to support the selection of a subset of models for prospective studies, rather than to rank them. Users are encouraged
to consult summary sheets at different spatial scales, from local to regional, and to make choices based on their specific needs.
Model selection can then depend on intended data use (e.g., streamflow only or additional variables) and on each model’s

ability to deliver the required variables at the desired locations.
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Figure 10. Main effects (i.e. deviations from the ensemble mean) of individual climate models for summer temperature changes (2071-2099

relative to 1976-2005). (A) GCMS. (B) RCMs.
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Figure 11. Main effects of individual climate models for winter precipitation changes (2071-2099 relative to 1976-2005). (A) GCMS. (B)
RCMs.
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Figure 12. Main effects of individual HMs (CTRIP, GRSD, ORCHIDEE and SMASH) for low flow (QMNA), mean annual flow (QA), and
high flow (QJXA) changes (2071-2099 relative to 1976-2005).
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5.3 Uncertainty contributions depend on projection lead time

CCRs and related uncertainties depend on the future period. Results obtained for other future periods, specifically 2020-
2050 (near future) and 2040-2070 (mid-century), are presented in Evin et al. (2024). As the analysis focuses on the CCR of
projections, the dispersion between the main effects of the different models in each category is almost zero for the near future
and increases with projection lead time, for all emission scenarios. The uncertainty of each model category and, in turn, total
CCR uncertainty thus also increases with projection lead time. As a consequence, CCR uncertainty tends to be much lower
than IV in the near future.

To highlight how results vary over time throughout the 21% century, a summary sheet was created for all stations included
in the project, detailing projected changes and associated uncertainties. This summary sheet facilitates the identification of
key sources of uncertainty, notably including substantial contributions from individual models to the overall model-related
uncertainty. Furthermore, it provides a comprehensive depiction of the range of potential future projections, capturing both
systematic changes in climate response and stochastic variations arising from internal climate variability. For illustrative pur-
poses, the summary sheet developed for the Seine catchment at Bazoches-Les-Bray is presented in Figure 13. It summarizes

the different results shown above, notably:

— Panels A and B: A decrease in low flows and an increase in high flows under the scenario RCP8.5 (panel A), with an

overall agreement of the MME (80% of the CCR exhibiting the same sign for the projected changes).
— Panel C: A dominant contribution of IV to the total uncertainty (defined as the sum of CCR uncertainty and IV).

— Panels D-F: Individual models can have a large contribution to the corresponding component of the CCR uncertainty.
For example, the GCM IPSL-CM5A-MR leads to higher projected changes for high flows (panel D, last column); the
HM ORCHIDEE exhibits a ‘more humid’ (or ‘less dry’) signature for mean annual flows, and the HM CTRIP shows a

‘more dry’ (or ‘less humid’) signature for high flows (panel F).
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Figure 13. Climate Change Responses and Uncertainties in Explore2 projections of low flow (QMNA), mean annual flow (QA), and high
flow (QJXA) changes for the Seine catchment at Bazoches-Les-Bray. (A) Relative changes (%) for each scenario: median CCR (colored
line), dispersion (quantiles 5 % and 95 %) of the CCR (central colored band), envelop curves of interannual fluctuations around the CCR due
to Internal Variability (light colored band). (B) Agreement on the sign of the projected change. Triangles point upwards (resp. downwards)

if more than 80 % of the CCR are positive (resp. negative). (C) Fraction of total uncertainty CC RV (t) + IV (in variance) explained by the

different sources of uncertainty. (D-F) Main effects of GCMs, RCMs and HMs.
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5.4 Some model limitations must be acknowledged

Explore2 projections are obviously not free of limitations, partly due to model imperfections. Some known limitations are

reported here.
5.4.1 Climate models

GCM/RCM chains are powerful simulation tools that provide physically coherent climate scenarios at regional scales. How-
ever, the compatibility between a RCM and its forcing GCM is not always guaranteed (McSweeney et al., 2015). GCM/RCM
discrepancies exist in the large-scale EUROCORDEX projections for summer, mainly due to differences in the representation
of aerosols (Boé et al., 2020) and atmospheric physics (Taranu et al., 2023). The consequential effect on solar radiation may
impact the reference evapotranspiration ETO used in our study, particularly through its effect on surface temperature (Schu-
macher et al., 2024). In Explore2, this inconsistent radiation effect was clearly identified for some GCM/RCM combinations
(Ribes et al., 2022; Marson et al., 2024) that were thus discarded from the Explore2 ensemble.

As shown in this study, the downscaling step (i.e., the RCM uncertainty) is a major source of uncertainty. Alternative
downscaling approaches are also possible, one very popular approach using empirical statistical models based on statistical
relationships identified between large scale atmospheric features and regional indicators (Lafaysse et al., 2014; Erlandsen et al.,
2020; Benestad et al., 2025). Artificial intelligence methodologies have also emerged as an alternative for this downscaling step,
namely super-resolution techniques (Passarella et al., 2022). It can be expected that these independent downscaling methods
will produce similar results if they are all equally skillful. In practice, they exhibit different strengths and weaknesses and
often project different regional climate changes (see, e.g., Rastogi et al., 2025). In this study, the uncertainty range due to the

downscaling step would probably be larger if simulations using these alternative methods had been included in the MME.
5.4.2 Bias Adjustment Models

In Explore2, climate projections were adjusted using ADAMONT (Verfaillie et al., 2017) and CDF-t (Michelangeli et al.,
2009) methods. For consistency and simplicity, this study focuses exclusively on ADAMONT-adjusted projections. On the one
hand, adjusted projections from CDF-t are only available on a daily time scale and cannot be used to force HMs with hourly
meteorological inputs (e.g., ORCHIDEE, CTRIP). On the other hand, the contribution of BAM uncertainty to CCR uncertainty
for temperature and precipitation was found to be much smaller than for other sources of uncertainty (Evin et al., 2024).

Compared to other studies (e.g Alder and Hostetler, 2019; Senatore et al., 2022; Lafferty and Sriver, 2023), the uncertainty
due to BAMs is likely underestimated in Explore2 as only two similar approaches relying on quantile mapping were considered.
Two critical issues associated with BAMs can potentially influence the realism of some features of projected scenarios. They
are related to the strong hypotheses that are needed: 1) for the adjustment of high and extreme precipitation values, and 2) for
the application of the methods in modified climates (transferability assumption). Individual BAMs may also present specific
limitations. For example, the adjustment applied by ADAMONT is conditional on the weather regimes from the GCMs, which
are not necessarily those of the RCMs (Boé et al., 2020).
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5.4.3 Hydrological Models

Similarly, HM uncertainty might be underestimated in this study. Including more HMs tends to increase the spread of hydro-
climate projections, as shown in Explore2 results for French sub-regions using 6-9 HMs (e.g., Evin et al., 2024, for the Loire
basin). HMs provide a simplified representation of catchment characteristics and hydrological processes, which vary widely
in space and time. A broad range of models exists globally, offering different perspectives on future hydrology. Our findings
highlight the importance of using a diverse set of HMs to better capture this range. The optimal number of HMs remains an
open question. It likely depends on the hydroclimatic context and may require as much diversity as climate models.

Model diversity does not guarantee the relevance of hydroclimate projections and must also represent a large variety of hy-
drological processes that are accounted for. In Explore2 for instance, HMs are not really suitable for catchments with important
glacier coverage (found in some high-elevation alpine catchments) or with strong surface-groundwater interactions, notably
in the case of karstic basins. The transferability of HMs in a modified climate context is also not guaranteed. For instance,
with the exception of ORCHIDEE, Explore2 HMs do not account for the rising effect of CO2 on vegetation physiology, and
in turn, on evapotranspiration and land hydrology (Vicente-Serrano et al., 2022; Lemaitre-Basset et al., 2022). Accounting for
this effect makes ORCHIDEE simulate lower evapotranspiration losses and higher runoff (not shown). Finally, as indicated in
Section 2, streamflow projections from the Explore2 dataset are based on ’natural” hydrology and do not account for human in-
fluences such as water management infrastructure, water usage, or land use, all of which will clearly affect future hydrological

conditions.
5.4.4 Characterizing uncertainty sources

Our uncertainty analysis is not free of limitations. A critical step is the estimation of the climate response for each projection,
as the reliability of this estimation directly influences the relevance of all subsequent results. However, estimating the climate
response can be challenging for certain indicators, particularly when interannual variability is high (e.g., annual precipitation
maxima) and/or when indicators frequently reach a bound (such as zero, which may occur for low flows).

A time-series approach such as QUALYPSO is generally expected to yield more precise climate response estimates than a
time-slice approach (Hingray et al., 2019). In this study, the climate responses are estimated using cubic splines with ad hoc
smoothing parameters. Alternative trend models and/or smoothing choices could also have been considered (e.g. Scherrer et al.,
2024). Selecting an appropriate specification is not straightforward and requires careful judgment, often involving a degree of
expertise and subjectivity. Here, the choice was guided by previous studies (Evin et al., 2021) and further validated through
visual inspection across numerous pixels and catchments.

As highlighted in our results, residual variability in the ANOVA model remains large for some indicators, suggesting the
presence of important interactions between different sources of uncertainty. In particular, GCM/RCM interactions may play an

important role (Evin et al., 2021), potentially linked to the GCM/RCM compatibility issue discussed above.
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6 Conclusion

Explore2 projections reflect the current state of scientific knowledge on climate change and natural hydrology for Metropolitan
France. They have been produced for a large number of stations along French rivers using a variety of hydrological models
from a large ensemble of bias-adjusted regional climate projections.

We use QUALYPSO to assess how a specific climate or hydrological indicator is expected to change. This method, designed
to tackle the main challenges of uncertainty partitioning in multi-model multi-scenario ensembles, leverages the very large
Explore2 dataset, which is based on the rich but incomplete and unbalanced EUROCORDEX ensemble. Although the con-
figuration is complex to work with, QUALYPSO enables the characterization of projected climate change responses (CCRs)
across various climate and hydrological indicators. Specifically, it provides insights into the mean and the dispersion of the
CCRs obtained from different modeling chains. Moreover, it facilitates the estimation of all sources of uncertainty—scenario,
GCM, RCM, and HM uncertainties—as well as potential additional dispersion in future changes arising from internal variabil-
ity. Lastly, it enables the identification of the main effects associated with each model within each model category, providing
a clearer understanding of how individual models compare and where the primary sources of uncertainty arise. The key take-
aways from our analysis are as follows.

France is projected to experience warming, with greater temperature increases expected under higher future greenhouse gas
emissions. It is also projected to warm more in the summer, especially in southern France, and in mountainous areas in the
winter. Warming will lead to an increase in potential evapotranspiration everywhere, particularly in the summer. In contrast,
the future patterns of seasonal precipitation are more uncertain. For the RCP8.5, models mostly agree on a decrease in summer
precipitation in the South and an increase of winter precipitation in the North. Annual maxima of daily precipitation are
projected to increase, particularly in a large northern half of France. For all precipitation indicators, the inter-model dispersion
is large and climate models often disagree on the direction of the projected changes.

The future of French river hydrology is primarily shaped by the projected warming and the uncertain future of precipi-
tation. For hydrological regimes sensitive to temperatures, larger greenhouse gas emissions will lead to larger hydrological
changes. For water-limited regimes in southern France, both annual discharges and low flows are projected to decrease. As
shown by Sauquet et al. (2025), snow-dominated catchments will evolve into mixed regimes, while mixed regimes will shift
toward rainfall-dominated systems. For almost all catchments, the increased potential for evapotranspiration should intensify
the severity of low flow periods. This increase should be smaller for catchments with snow-dominated or non-contrasted plu-
vial regimes. Low flows are expected to rise due to altered snowpack dynamics in the first case, while in the latter, they should
remain supported by deep aquifer contributions.

Whatever the climate and/or hydrological indicator, the dispersion of the CCR between modeling chains is large. The main
sources of uncertainty depend, however, on the indicator. Scenario uncertainty has the greatest impact in snow-dominated
regimes—where snowpack dynamics are crucial—and in water-limited regions or seasons, such as Mediterranean areas or
during summer low flows, where evapotranspiration losses play a key role. As climate projections are very uncertain, the

choice of the climate model is very important for mean annual flow projections, especially for the rainfall-dominated regimes.
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In contrast to the choice of the GCM, the choice of the RCM also matters for low flows. The choice of the HM can be important.
It is high for low flows, moderate for annual discharge, and low but not negligible for high flows.

A significant contribution of GCM (or RCM or HM) uncertainty to CCR uncertainty is often attributed to one or a few
individual models within each category. Determining the main effects of each model can offer valuable insights that can guide
future model evaluations, improvements, or adjustments.

Explore2 highlights slow and long-term changes in different hydroclimatic indicators. Additionally, natural variability is
an inherent characteristic of all hydroclimatic indicators. Our results confirm that IV can be substantial compared to CCR
uncertainty. As a result, it may lead to significant departures from the climate response, potentially giving rise to anomalous or
critical years or multi-year periods. IV is frequently overlooked in hydrological impact studies. Our results confirm that IV can
be large and should be carefully considered to ensure the robustness of adaptation studies.

While Explore? is the largest ever produced MME of hydrological projections from regional climate projections and at the
scale of a country, it must not be over-interpreted and needs to be presented as it truly is. The Explore2 MME is conditional on
scenarios and models chosen and available at the time the project was carried out. Models are imperfect representations of real
systems and necessitate various simplifications. A probabilistic approach to characterize the ensemble would not be relevant.
Despite its size, the Explore2 ensemble may not encompass the exact climate evolution that will occur in the coming decades.

The chance of encountering unexpected climate events remains, and the possibility for climate surprise must be acknowledged.
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Appendix A: QUALYPSO

This appendix provides additional details about the key steps of the approach for an application on an ensemble of hydrological
projections or climate projections (in that case, the effect ' Hj,(t) of the HMs is irrelevant hereafter). Figure Al provides an

illustration of these different steps for one pixel and one catchment. The different steps can be summarized as follows:

— Estimation of the climate response C R;(t) of each projection: As discussed in Section 2, a key stage in the analysis
is the estimation of the climate response for each projection Y;(t). We used a trend model based on cubic splines applied
to the transient projections available over the entire simulation period. For each projection, the smooth trend predicted

by the cubic spline corresponds to the climate response C' R;(t).

— Estimation of the climate change response CCR;(t) of each projection: In line with current practice, absolute
changes are considered for temperature (Eq. A1) and relative changes for the other indicators (Eq. A2). These changes are

relative to the reference period (1976-2005), using the climate response estimated for its central year (i.e. t,..y = 1990):

CCRZ(t) = CRZ(t) — CRi(tre'f)7 (A])
o CRi(t) = CRi(trey)
CCR;(t) = Ciltrer) ; (A2)

with ¢ the central year of the future period considered, ¢,.; the central year of the reference period, C'R; the climate

response of the projection ¢ and CC'R; the corresponding climate change response.

— Estimation of the internal variability: We assumed that the internal variability of a projection is constant over time
(in variance). For each projection ¢ and each time horizon ¢, we first consider the differences between the raw projection

Y;(t) and the climate response C'R;(t) as follows:

D;(t) =Yi(t) — CR;(t), (A3)
Dit) = W (Ad)

depending on whether we are considering absolute or relative changes, respectively. Internal variability is then estimated

by the time variance of these differences D;(t), throughout the period under consideration:

1V, =Var{D;(t)}. (A5)

— Estimation of the ensemble mean and the main effect of each scenario/model: For a given emission scenario s, the
climate change response C'C R;(t) of a projection 4 obtained with a simulation chain composed of a GCM g, an RCM r,

and an HM £ is assumed to be the sum of the individual main effects, as follows:
CCR;(t)=M(t)+ ESs(t) + EGy4(t) + ER,(t) + EHp(t) + €5,9,r.1(t), (A6)

where M (t) is the ensemble mean for a future period t, and ES;(t), EG4(t), ER,(t), EHp(t) are, respectively, the
main effect of the RCP scenario s, the GCM g, the RCM r, and the HM h and where es}w,h(t) is the residual term,
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i.e. the part of the CCR that is not explained by the sum of the individual main effects. This estimation is carried out
for each future time horizon ¢ using a linear model, where the least squares of the residuals €, 4 ., (t) are minimized, as

implemented by the R function 1m of the library stats.

In a complete ensemble of projections, the main effect of a model is easily interpreted as the mean difference between
1) the CCR of all the projections using this model and 2) the mean CCR of the ensemble. By construction, the sum of

the main effects of the different models belonging to a given category of models is zero (Eq. A7):

Y ES(t)=) EG,(t)=)Y ER.(t)=> EH(t)=0. (A7)
S g r h

Estimation of the different sources of uncertainty: The internal variability of the ensemble is estimated by the average
standard deviation of the fluctuations around the CCR, i.e. the square root of the ensemble mean of the internal variability

variances estimated for the [V projections of the ensemble:

(A8)

For a future time horizon ¢, the uncertainty associated with the emission scenarios and the uncertainties associated with
each model category (GCM, RCM, and HM) correspond to the variance of the corresponding main effects. For example,
GCM uncertainty is estimated by the variance of the main effects EG4(t), g = 1..N,, estimated for the N, GCMs

considered. Finally, the residual variability RV (t) is the variance of the residuals €; 4 , 5 (%).

The total uncertainty variance CCRV(t) of the CCR is obtained as the sum of the residual variability and the variance of

each model category:
CCRV (t) = Var(ESs(t)) + Var(EG,(t)) + Var(ER,(t)) + Var(EH(t)) + RV (t), (A9)

and CCRU (t) = y/CCRV (t) is the corresponding standard deviation. These different estimates can be used to estimate

the fraction of the total uncertainty resulting from each source of uncertainty:
FV,(t) =Var,(t)/CCRV (¢), (A10)

where F'V,(t) is the fraction of total uncertainty variance CCRV(t) explained by the source of uncertainty associated

with x (here x = scenario, GCM, RCM, HM, or RV).
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Figure A1l. Illustration of the QUALYPSO for (a) summer temperature and (b) winter precipitation, for one pixel corresponding to the city of
Paris and (c) for the mean annual streamflow, for the Seine catchment at Bazoches-1&s-Bray. From left to right, for a simulation chain ¢: Y; ()
is the raw projection, C'R; (t) is the corresponding climate response obtained with a cubic smoothing spline, CC R;(¢) is the climate change
response which, by construction, is equal to zero for ¢ = 1990, M (t) is the estimated ensemble mean (black curve) and M (¢t) + ESs(t)
adds the estimated main effect for each of the RCP scenario s (colored curves), EGy(t), ER,(t) and EH},(t) are the main GCM, RCM and
HM effects, respectively (see legend in Fig. 13), FV(2085) shows the contributions to the CCRV in 2085 (i.e. the contributions to the total
variance of climate change responses), D;(t) are the annual deviations from the climate response as a result of interannual variability, and

CCRV(t)+1V shows the contribution of each source of uncertainty to the total uncertainty.
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