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Abstract. Multi-scenario, multi-model ensembles of hydrological projections are widely used to describe possible futures of

regional hydrology and inform adaptation strategies. The Explore2 dataset is such an ensemble of river flow projections in

Metropolitan France. It provides future simulations for 1,735 catchments with modeling chains composed of different hy-

drological models forced by 36 regional climate projections based on bias-adjusted EUROCORDEX simulations. This study

assesses the uncertainties of this ensemble with QUALYPSO, a method specifically designed to deal with incomplete ensem-5

bles and to disentangle and quantify all uncertainty sources, including that due to internal variability.

Focusing on results obtained at the end of the century, this study shows a strong agreement between modeling chains

towards decreases in low flows in a large southern part of France for a high-emission scenario, and very uncertain changes for

the annual mean and high flows. Emission scenario uncertainty is the dominant source of uncertainty for low flows over the

whole of France, and for mean annual flows in southeastern France. The contribution of the global and regional climate models10

is important for mean and high flows, especially in rainfall-dominated areas. Regional climate models contribute considerable

uncertainty to low flows, much more than global models. The contribution of hydrological model uncertainty is large for low
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flows, moderate for mean annual flows, and small for high flows. For all climate and hydrological indicators, internal variability

is often large and cannot be overlooked. It is often of the same order and sometimes larger than the uncertainty on the climate

change response.15

1 Introduction

Hydrological projections for future climates are often based on modeling chains driven by emission scenarios depicting future

emissions of greenhouse gases and aerosols. Modeling chains are composed of a global climate model (GCM) to simulate

global climate evolution for the chosen scenario, a regional climate model (RCM)
:
or

::::::::
statistical

:::::::::::
downscaling

:::::::
method

::::::
(SDM) to

refine the simulation for a specific region, a bias adjustment model (BAM) to adjust systematic errors in the regional climate20

scenario, and a hydrological model (HM) to assess hydrological impacts of projected climate changes for the targeted river

basin. Modeling chains made of different scenarios or different models for each category of models are expected to project

different climate responses to emission scenarios, i.e. different long-term evolutions of climate or hydroclimatic variables.

Multi-scenario, multi-model ensembles of projections (MMEs) provide the opportunity to characterize the spread and the

degree of agreement between projections as well as the different sources of uncertainty in the projections (Hawkins and Sutton,25

2009; Lehner et al., 2020; Evin et al., 2021).

Sources of uncertainty include uncertainty on future emissions (i.e. scenario uncertainty), model uncertainty, and internal

variability of the climate system (see, e.g., Hawkins and Sutton, 2009). Future emissions of greenhouse gases and aerosols

for the coming decades are highly uncertain. They will depend on a range of different socio-economic factors and decisions

around the world. In the Coupled Model Intercomparison Projects (CMIPs) designed to improve knowledge on climate change30

and its impacts, climate projections are produced for different emission scenarios (e.g. RCP and SSP scenarios, Moss et al.,

2010; Riahi et al., 2017).

Model uncertainty arises from model imperfections. Different models of the same natural system (e.g. climate models)

simulate different responses to the same forcing scenario. As shown by COordinated Regional Downscaling EXperiments

(CORDEX), where regional projections are obtained from multiple combinations of GCMs and RCMs, both GCMs and RCMs35

can have important contributions to model uncertainty (Bichet et al., 2020; Evin et al., 2021; Christensen and Kjellström,

2021). In MMEs obtained with multiple HMs, a substantial contribution can also come from HM uncertainty (Lafaysse et al.,

2014; Chegwidden et al., 2019; Lemaitre-Basset et al., 2021; Aitken et al., 2023). Scenario uncertainty and model uncertainty

make the climate response uncertain for all climate or hydroclimatic variables.

Additional uncertainty arises from climate internal variability (IV), resulting from the chaotic and nonlinear nature of the40

climate system (Deser et al., 2012). IV introduces erratic multiscale fluctuations to the climate response, potentially causing

unusual sequences of meteorological events, unusual years, or sequences of years. Unlike scenario or model uncertainty, IV is

irreducible. It decreases with temporal and/or spatial aggregation. IV is small for temperature-related indicators but significant

for precipitation and hydrology-related indicators (Hawkins and Sutton, 2009; Lehner et al., 2020; Evin et al., 2021; Vicente-

Serrano et al., 2025). While it can be an important component of the overall uncertainty in hydrological projections (Lafaysse45
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et al., 2014; Vidal et al., 2016; Chegwidden et al., 2019; Alder and Hostetler, 2019), IV is often overlooked in impact studies.

However, accounting for IV is crucial for designing robust adaptation strategies, particularly in addressing extreme or atypical

conditions.

The estimation of scenario uncertainty, model uncertainty components, and internal variability is often performed by apply-

ing Analysis of Variance (ANOVA) methods to large MMEs that combine multiple models across different emission scenarios.50

However, this estimation faces two challenges:

– Filtering out IV fluctuations for climate response estimation: Disentangling the climate response of a given chain

from stochastic fluctuations caused by IV is key for a relevant uncertainty analysis. Estimating the climate response

can be challenging, particularly for indicators such as precipitation, where IV is significant (Hingray et al., 2019). This

difficulty arises because climate outputs blend the climate responses with chaotic fluctuations from IV, which propagate55

through all the subsequent models in the chain. If for a given GCM multiple members are available and used for subse-

quent simulations, the climate response of a modeling chain forced by this GCM can be estimated with the multi-member

mean of the simulations, and IV can be estimated with the inter-member variability. However, many hydrological studies

rely on single-member and time-slice GCM experiments. As a consequence, IV cannot be properly filtered out and,

when they are not simply disregarded, stochastic fluctuations from IV are often attributed to GCM uncertainty (see, e.g.,60

Bosshard et al., 2013; Vetter et al., 2017; Gangrade et al., 2020).

– Dealing with incomplete or unbalanced MMEs: MMEs are often incomplete or unbalanced. This is usually the case

when climate projections are simulated by RCMs since many GCM/RCM combinations are often missing in GCM/RCM

MMEs. At the same time, some models of a given model category (GCM, RCM) are often over- or under-represented

in MMEs (see, e.g., the large EUROCORDEX MME assessed in Evin et al., 2021). When MMEs are incomplete or65

unbalanced, uncertainty analysis cannot be performed with a naive ANOVA approach, unless MMEs are subsampled

to produce a complete and balanced MME subset, but this can lead to a dramatic waste of information (Tramblay and

Somot, 2018; Christensen et al., 2019).

The “Quasi-Ergodic Analysis of Climate Projections Using Data Augmentation" approach (QUALYPSO) was specifically

designed to address these two challenges (Evin et al., 2019). Based on the quasi-ergodic assumption for transient climate70

projections (Hingray and Saïd, 2014), QUALYPSO separates long-term climate responses from multiscale fluctuations caused

by IV and applies an ANOVA to the differences of the climate responses between future and reference periods, a.k.a. climate

change responses (CCRs). This allows disentangling all uncertainty sources, including IV. QUALYPSO can also be applied to

incomplete and unbalanced MMEs, providing thorough uncertainty analyses even in those configurations, as is often the case

for hydroclimatic ensembles derived from CORDEX experiments. QUALYPSO has been used in various contexts, for regional75

climate projections in Europe (Evin et al., 2021), Africa (Bichet et al., 2020) and for climate-related indicators in different

sectoral applications such as renewable energy (Bichet et al., 2019) or hydrology (Lemaitre-Basset et al., 2021; Aitken et al.,

2023; Jeantet et al., 2023; Thirel et al., 2025).
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The present study aims to characterize uncertainty components in the Explore2 MME, a very large ensemble of climate and

hydrological projections developed for France from EUROCORDEX projections (Marson et al., 2024; Sauquet et al., 2025).80

The Explore2 MME was developed as part of the Explore2 research project. This project, funded by the French Ministry of

Ecological Transition (MTECT) and the French Biodiversity Agency (OFB), aims to support water management adaptation

for French rivers in the 21st century (Sauquet et al., 2025). To our knowledge, the Explore2 MME is the largest ensemble

of hydrological projections ever produced from regional climate experiments at the scale of a country. Analyses conducted

across numerous catchments throughout an entire country are particularly valuable for exploring how projected changes vary85

geographically, as they reflect differences in hydroclimatic conditions, sensitivities, and regional climate shifts (Addor et al.,

2014; Chegwidden et al., 2019; Aitken et al., 2023). This study leverages the large Explore2 MME and the wide hydroclimatic

diversity in France to address the following questions:

– What are the projected future changes for different hydrological metrics for
:
in
:

France and how much do the modeling

chains agree on the projections?90

– How large is the IV compared to CCR uncertainty?

– How do scenario and model uncertainties contribute to the CCR uncertainty?

– What is the influence of individual models on projections (so-called main effects), and are there important discrepancies

between them?

– How do results vary by location and hydroclimatic context?95

Section 2 summarizes the different hydrological regimes encountered in France, describes the Explore2 MME and provides a

summary of the climate and hydrological models used to produce the MME. It also describes QUALYPSO, the method used for

the uncertainty analysis. Section 3 presents projected changes and related uncertainties for different climate and hydrological

indicators. Section 4 highlights the key features of the different
::::::
various

:
sources of uncertainty. Section 5 further discusses these

results and some related aspects. Section 6 concludes.100

2 Data and methods

2.1 Hydrology of French rivers

France presents a large panel of hydrological regimes resulting from various physiographical contexts (e.g. geology, topogra-

phy, see Fig. 1a) but also from the large diversity of regional climates (oceanic influences in the West, Mediterranean in the

South-East, Strohmenger et al., 2024). Catchment regimes can be considered from a hydroclimatic perspective, as provided105

by the Budyko (1974) framework. The Budyko model, which provides a simplified representation of
:::
the mean annual water

balance, allows analyzing
::
for

:::
the

:::::::
analysis

:::
of interactions between energy and water limitations and their impact on catchment
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hydrology. More specifically, the ratio between total precipitation (P) and potential evapotranspiration (PET) provides a hu-

midity index that can be used as a proxy of
::
for different types of interactions and different

::::::
various impacts on runoff. P/PET

ratio values lower than one characterize water-limited regions, where dry conditions prevail and sensible heat fluxes are typ-110

ically high. In contrast, P/PET ratios greater than one denote energy-limited regions, which are generally wetter and exhibit

lower sensible heat fluxes (Sposito, 2017). In France, most regions are energy-limited, especially mountainous areas (Alps,

Jura, Vosges in the East, Pyrénées in the South, Massif Central in the center, see Fig. 1b). Water-limited regions are found in

the South (Mediterranean region), in a large area northwest of the Massif Central and in some small areas. As reported by Gan

et al. (2021) or Lemaitre-Basset et al. (2022), the projected evolution of hydrological changes can be interpreted according to115

this distinction.

Hydrological regimes can also be classified based on the seasonal cycle of inter-annual mean monthly discharges, following

the work of Pardé (1933). Sauquet et al. (2024) propose seven regimes ranging from snow-dominated regimes in mountainous

areas to mixed regimes downstream and/or rainfall-dominated regimes in lowlands (Figure 1c,d). Snow-dominated regimes

are mainly characterized by a monthly peak flow in spring due to snowmelt which can be particularly large for high-elevation120

mountainous catchments. Three different snow-dominated regimes are considered: 1) a regime with a dominant nival con-

tribution (N) found in the highest regions of the Alps, 2) a Nivo-Pluvial regime (NP) observed at downstream locations, in

mid-elevation areas (e.g. Pyrénées, PreAlps regions) and in southeastern France where Mediterranean events can be impor-

tant, and 3) a Pluvial-Nival (PN) regime mainly found in downstream locations and low-elevation mountainous areas (Massif

Central, Vosges, Jura, Corsica).125

Rainfall-dominated regimes present a seasonality mostly derived from the seasonality of precipitation and evapotranspiration

losses, with high flows in winter and low flows in summer. The winter / summer contrast depends on the catchment. It is very

large in the Western and northeastern parts of France
:
, where catchments have a low storage capacity, large in the North and

the South-West, moderate in the Center and
::
in

:
the East, and very small in regions where river streamflows are sustained all

year long by important aquifers (e.g. in the Paris Basin region). This diversity is represented by four regimes: highly contrasted130

pluvial (HCP), contrasted pluvial (CP), pluvial (P),
:
and non-contrasted pluvial (NCP). Different hydrological responses to

climate change are expected according to these regimes (e.g., Sauquet et al., 2024).
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Figure 1. (a) Physical Map of Metropolitan France. (b) P/PET ratio values indicating limiting conditions as estimated for the reference

period 1976-2005 from SAFRAN meteorological reanalyses. Ratios greater than one (green colors) indicate energy-limited regions and

ratios smaller than one (brown colors) indicate water-limited regions. (c) The seven main hydrological regimes found in Metropolitan France,

classified according to the annual cycle of monthly discharges. They consist of four rainfall-dominated regimes: highly contrasted pluvial

(HCP), contrasted pluvial (CP), pluvial (P) and non-contrasted pluvial (NCP) and three snow-dominated regimes: Nival (N) , Nivo-Pluvial

(NP), Pluvial-Nival (PN). (d) Hydrological regimes estimated for the 1735 simulation points considered in this study. Estimation from

discharge time series simulated for the reference period 1976-2005 from SAFRAN meteorological reanalyses (Vidal et al., 2010). See

Sauquet et al. (2024) for details.
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2.2 Explore2: a large climate and hydrological multi-model ensemble

The Explore2 dataset, spanning the period 1976–2099, was generated using various scenarios and models shown in Figure

2. A detailed description is provided in Sauquet et al. (2025). The 36 climate projections correspond to a subset of the large135

CMIP5-EUROCORDEX ensemble (Jacob et al., 2014, 2020) and have been obtained with three emission scenarios (10 with

the RCP2.6, 9 with the RCP4.5, and 17 with the RCP8.5, see Marson et al., 2024). It is based on six CMIP5 GCMs (Taylor

et al., 2011) downscaled by nine RCMs. As summarized in Table 1, it considers 17 GCM/RCM combinations and is therefore

incomplete (e.g. not all GCMs have been used to force a given RCM)but
:
;
::::::::
however, the selected projections ensure a diverse

range of climate models and include at least two simulations for each GCM and RCM. This selection enhances the robustness140

of the uncertainty component estimates.

CTRIP

GRSD

ORCHIDEE

SMASH

GCMRCP

RCP2.6

RCP4.5

RCP8.5

CNRM−CM5-LR

EC−EARTH

HadGEM2−ES

IPSL−CM5A−MR

MPI−ESM−LR

NorESM1−M

RCM BAM
ADAMONT

➝ ➝ ➝ ➝

ALADIN63
CCLM4−8−17
HadREM3−GA7-05
HIRHAM5
RACMO22E
RCA4
RegCM4−6
REMO
WRF381P

HM

Figure 2. Modeling chain: Emission scenarios (RCP), Climate models (GCM, RCM), Bias Adjustment Model (BAM) and Hydrological

Models (HM) considered in this study.

The BAM ADAMONT (Verfaillie et al., 2017) was applied to adjust climate projections for some systematic errors using

the meteorological reanalysis SAFRAN (Vidal et al., 2010; Le Moigne et al., 2020) as the reference dataset. Adjusted climate

projections are produced on a regular horizontal 8 km grid covering Metropolitan France and a part of Switzerland. In this

study, we focus on the 8981 grid points that cover Metropolitan France. Reference evapotranspiration (ET0) is obtained from145

the Penman-Monteith formula (Allen et al., 1998) with a parameterization for short grass. The net radiation is derived from the

Hargreaves equation (Hargreaves and Samani, 1985).

Explore2 hydrological projections offer a ’natural reference hydrology’ as a foundation for future studies on water allocation.

Streamflow simulations are provided in the absence of any water management interventions—such as abstractions, releases, or

reservoir operations—thus representing natural flow conditions. In this study, we assess an ensemble of hydrological projec-150

tions obtained for 1735 simulation points with four HMs of different types (Table 2) covering almost all the country, namely

CTRIP, GRSD, ORCHIDEE and SMASH (Fig. 1). The Explore2 MME provides hydrological simulations with nine HMs,

but the five other HMs cover only specific regions of France and for fewer catchments (Sauquet et al., 2025). SMASH and

GRSD HMs are conceptual “bucket" type models. CTRIP and ORCHIDEE are land surface models and physically based. No

single model provided discharge simulations for all simulation points across the study area. Some simulation points could not155
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RCM \ GCM
CNRM-CM5-

LR

EC-EARTH HadGEM2-ES IPSL-CM5A-

MR

MPI-ESM-MR NorESM1-M

ALADIN63 ⊕⊗ #
CCLM4-8-17 ⊕ ⊕⊗
HadREM3-GA7-05 # ⊗ ⊗
HIRHAM5 # ⊕
RACMO22E ⊕⊗
RCA4 ⊕⊗ ⊕
RegCM4-6 ⊗ ⊗
REMO ⊕⊗ ⊕⊗
WRF381P #

Table 1. Unbalanced ensemble of EUROCORDEX GCM/RCM combinations used for Explore2 climate projections with the scenarios

RCP2.6 (×), RCP4.5 (+) and RCP8.5 (#). Only one run was used for each GCM (member r1i1p1 for all GCMs except for EC-EARTH

where the member r12i1p1 has been used). All HMs were forced by all climate projections.

be reliably paired with their corresponding locations in the hydrographic network (or were excluded due to large differences in

simulated versus physical catchment areas). All HMs used the same meteorological forcings: the reanalysis SAFRAN as the

reference dataset for the period 1976-2005 and adjusted scenarios for historical and future climate experiments. Calibration

of each HM, if required, was model-specific and carried out automatically or manually based on the expertise of the model

developers. To assess model performance, all HMs have been evaluated within a standardized framework, focusing on their160

ability to replicate various observed hydrological signatures for the current climate (see Sauquet et al., 2025, for evaluations).

Name # points Reference

CTRIP 2024 Munier and Decharme (2022)

GRSD 3712 de Lavenne et al. (2019)

ORCHIDEE 3587 Huang et al. (2024)

SMASH 3821 Jay-Allemand et al. (2020); Huynh et al. (2024)
Table 2. Names of the surface hydrological models, the associated number of streamflow simulation points and the corresponding reference.

We carried out our analyses for a selection of indicators representative of projected changes in climate and hydrology. Indi-

cators considered in the present work are surface air temperature (TAS), total precipitation (PR), reference evapotranspiration

(ET0) at a seasonal scale (summer and winter), annual maximum daily precipitation (RX1D), annual minimum monthly flow

(QMNA), mean annual daily discharge (QA), and annual maximum daily discharge (QJXA).165
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2.3 Multi-model ensemble characterization with QUALYPSO

To characterize how a given climate or hydrological indicator is projected to change, we use the QUALYPSO method (Evin

et al., 2019). QUALYPSO focuses on the climate change response (CCR) projected for the considered indicator. The CCR

projected by a given simulation chain defines, for any future time, the absolute or relative difference of the long-term climate

response for this future time compared to the reference period. The QUALYPSO method is implemented in an R package (Evin,170

2023) and was specifically designed to tackle the main challenges of uncertainty partitioning in unbalanced and incomplete

MMEs. More information is provided in Appendix A. ,
::::::::
including

:::
an

:::::::::
illustration

::
of

:::
the

:::::::
different

:::::
steps

::
in

:::
Fig.

::::
A1.

QUALYPSO aims to estimate, for any future time, the CCR of each modeling chain, the mean CCR of the MME, the

dispersion between the CCRs of individual chains, the sources of uncertainty explaining this dispersion, and the extra
::::::::
additional

potential dispersion in future realizations of climate indicators which
:::
that can result from IV.175

2.3.1 Main assumptions

Following Hawkins and Sutton (2009) and Hingray and Saïd (2014), QUALYPSO is based on two main hypotheses , expressed

as follows:

1. The climate response
::
We

::::::::
consider

:::
that

:::
the

:::::::::
projection of a simulation chain i has a temporal variation that is inherently

gradual and smooth and
:::::::
combines

::::
two

::::::::::
components:

:::
the

:::::::
climate

:::::::
response

::::
and

:::::::::
interannual

:::::::::
variability.

:::
For

::
a
:::::
future

::::
time

::
t,180

::
the

:::::::
climate

:::::::
response

:
corresponds to the long-term trend of the simulated projection.

:::
We

::::::::::
hypothesize

:::
that

::
it

:::
has

:
a
::::::::
temporal

:::::::
variation

::::
that

:
is
:::::::::
inherently

::::::
gradual

::::
and

:::::::
smooth. The high- to mid-frequency fluctuations in the simulated projections

:::
are

:::::::
assumed

::
to result solely from IV.

2. The CCR of
:
a
:
simulation chain i can be expressed as a linear sum of the ensemble mean CCR and of the main effects of

the different components of the chain (main effects of the scenario s, GCM g, RCM r,
:
and HM h).185

The first assumption implies that it is reasonable to consider a trend model to estimate the climate response of a chain ,

andin turn
:::
and,

::
in
:::::

turn, fluctuations due to IV (deviations from the climate response). Hingray et al. (2019) have shown that

this assumption allows providing,
:::
for

::::::::
providing

::::
more

::::::
precise

::::::::
estimates

:
for all uncertainty components , more precise estimates

than estimates
:::
than

:::::
those

:
obtained with time-slice approaches.

The additive and linear decomposition model of the second assumption can be derived for any future time using a fixed-190

effects ANOVA model (see Eq. A6 in the Appendix). In the case of a complete MME, the main effect of a given scenario or

model is easily interpreted as the mean difference between 1) the CCR of all the projections using this scenario or model and

2) the mean CCR of the ensemble.

2.3.2 Estimation of the climate response

In this study
::::::::::
QUALYPSO, the climate response of each modelling chain is estimated by applying a trend model to the corre-195

sponding projection available for
::
the

::::::
period 1976-2099. Cubic smoothing splines are considered

:::::::
Different

:::::
trend

::::::
models

:::
can

:::
be
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:::::::::
considered

::::
(e.g.,

::::::
linear,

::::::::::
polynomial,

:::::::
splines).

::
In

::::
this

:::::
study,

:::
we

:::::::
consider

:::::
cubic

:::::::::
smoothing

::::::
splines (function smooth.spline

in R {R Core Team}, 2022). For all indicators except temperature,
::
the

:
IV is relatively large compared to the long-term trend, so

the smoothing parameter spar was set to 1.1 to reduce the model’s flexibility. This prevents misattributing the low-frequency

fluctuations caused by IV to the climate response. For temperature, we apply a lower smoothing parameter value of 1 to provide200

more flexibility
:
,
::
in

:::::::::
agreement

::::
with

:::::::
previous

::::::
studies

:
(Evin et al., 2021).

2.3.3 Estimation of the climate change response and of internal variability

The CCR of each chain is obtained by computing the differences in the climate response between future periods and the

reference period 1976-2005. Absolute changes are considered for temperature (in °C) and relative changes otherwise
:::
for

:::
the

::::
other

:::::::::
indicators (in %). IV contribution is assumed to be constant over time, although this assumption could be relaxed as205

done in Hingray and Saïd (2014). For a given chain i, we estimate IV as the standard deviation of the annual deviations from

its climate response. IV varies from one chain to another. Here, we use the IV averaged over the different simulation chains to

characterize the IV component of the MME.

2.3.4 ANOVA model

A fixed-effect ANOVA model is used to estimate the ensemble mean CCR and the main effects of all scenarios and models210

belonging to the different scenario and model categories. The
:::::::
ANOVA

::::::::::
framework

:::
can

::::
also

:::
be

::::
used

::
to

:::::::
estimate

::::::::::
interaction

::::
terms

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., GCM-scenario interaction effects, Northrop and Chandler, 2014)

:
.
:::
For

:::
the

::::
sake

::
of

:::::::::
simplicity,

:::
we

::::::::
disregard

:::::
them

::
in

::
the

:::::::
present

:::::
work.

::::
The

:::::::::
estimation

:::
of

:::
our

:::::::
ANOVA

::::::
model

::::
(see

:::::::
Eq. A6)

::
is

::::::
carried

::::
out

:::
for

::::
each

::::::
future

::::
time

:::::::
horizon

:
t
:::::
using

::
a

:::::
linear

::::::
model,

:::::
where

::::
the

::::
least

:::::::
squares

::
of

:::
the

::::::::
residuals

::::::::
(denoted

::
as

:::::::::
ϵs,g,r,h(t) ::

in
:::::::
Eq. A6)

:::
are

::::::::::
minimized.

:::
For

:::
the

::::::::::
estimation,

::::::::::
QUALYPSO

:::::
relies

:::
on

:::
the

:
R
:::::::
function

:::
lm

:::::::
provided

::
by

:::
the

::::::
built-in

:::::::
stats

:::::::
package,

::
a
::::
core

::::::::
statistical

:::::
library

::
in
::
R
::::
that

:::
can

::::::
handle215

:::::::::
incomplete

:::
and

::::::::::
unbalanced

::::::
MMEs.

:

:::
The

:
CCR uncertainty of a given category (scenario uncertainty, GCM uncertainty, RCM uncertainty, HM uncertainty) is

estimated by the variance of the main effects of all models (or scenarios) belonging to this category. The residuals of the

ANOVA model (residual variability, see Eq. A6) arise from the imperfect estimation of the climate responses and
:::
the limitations

of the additive assumption. The residuals thus include potential interactions between scenarios and models and/or between220

models of different categories (e.g. Hingray and Saïd, 2014; Evin et al., 2021).

2.3.5 Characterization of the uncertainties

In the following, to characterize the CCR uncertainty of the MME, we use the square root of the CCR uncertainty variance,

calculated as the sum of the uncertainty variances of the different CCR uncertainty sources (scenarios, GCMs, RCMs, and

HMs) and of the residual variance of the ANOVA model. The CCR uncertainty is thus expressed in the unit of the considered225

indicator.
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Results of QUALYPSO analyses will be summarized , for each climate and hydrological indicator , with
::::
using

:
different

metrics:

– The 5 %, 50 %, and 95 % quantiles of the ensemble of CCR. They provide a quick overview of both the MME mean

CCR and its dispersion.230

– The CCR uncertainty and the IV of the MME. The CCR uncertainty also gives a synthetic view of
:::::::
quantifies

:
the

dispersion between projected CCRs. IV indicates the non-predictable variability component due to climate natural

variability
::::::
natural

::::::
climate

:::::::::
variability

::::
(by

:::::::::
definition,

:::
IV

:::
has

::::
thus

:::
no

::::::::::
contribution

:::
to

:::
the

:::::
CCR

::::::::::
uncertainty). IV is also

presented as
:::
the standard deviation and expressed in the unit

::::
units

:
of the considered indicator. CCR uncertainty and IV

::
IV

:::
and

:::::
CCR

::::::::::
uncertainty

:
can thus be compared.235

– The percentage variance contribution to CCR uncertainty variance (in %) of each CCR uncertainty source (scenario,

GCM, RCM, HM) and unexplained CCR uncertainty (residual variability, RV). This indicates the relative importance of

the different sources and the dominant ones.

Note that the CCR uncertainty can be compared to the ensemble mean CCR, giving also
:::
also

::::::::
providing

:
an indication of

the overall spread of the CCR compared
:
in

:::::::
relation to the mean change. If the CCR follows a normal distribution (which is240

roughly the case for the indicators considered here), 67 % of the simulation chains would have CCR values in the interval

[Q50-CCRU, Q50+CCRU] on average, where Q50 is the median CCR and CCRU is the CCR uncertainty. All these metrics

vary as a continuous function of future time. In the following, we mainly present results obtained for the end of the century

(period 2071-2099).

3 Climate change response, associated uncertainty, and internal variability245

In this section, we first present results for climate indicators obtained from the MME composed of 36 Explore2 transient

climate projections by applying QUALYPSO to each of the 8981 grid points covering France. We next show the results for

three hydrological indicators, namely the annual minimum monthly flow (QMNA), the mean annual discharge (QA),
:
and the

annual maximum daily discharge (QJXA). These indicators can be considered representative of low flows, mean discharge,

and high flows, respectively. QUALYPSO is applied to the MME for each of the 1735 simulation points available for the four250

HMs. In this study, each MME is thus composed of 144 transient hydrological projections obtained with the four HMs forced

by the 36 climate projections. We present the changes projected at the end of the century (2071-2099) with respect to the

reference period 1976-2005. For each indicator, we show the mean projected changes and the inter-model dispersion with the

scenario RCP8.5 which corresponds to greater changes in climatic and hydrological variables. This section then shows how IV

compares to CCR uncertainty and what climate changes are projected for lower emission scenarios RCP2.6 and RCP4.5.255
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3.1 Climate change response projected in France

Figure 3 shows the 5 %, 50 %, and 95 % quantiles of the CCR for the climate indicators, for the RCP8.5. These results confirm

those reported in previous publications based on EUROCORDEX ensembles (e.g. Jacob et al., 2014; Christensen and Kjell-

ström, 2020; Coppola et al., 2020; Evin et al., 2021; Marson et al., 2024; Corre et al., 2025). Projected climate change depends

on the indicator, season, and region. It is contrasted and uncertain.260

Temperature is projected to increase significantly, especially in summer. Depending on the region, the median projected

increase varies from 2.5 °C to 4.5 °C in winter and from 3.5 °C to 6 °C in summer. Summer warming is projected to be much

greater in mountainous areas (Alps, Pyrénées, Massif Central, Vosges) and in the south, particularly in the South-East. The

dispersion between modeling chains is important. The 5 % - 95 % interquantile range is around 1.5 °C in winter, up to 4 °C in

summer. The largest warming projected in summer is greater than 7.5 °C.265

In summer, precipitation is projected to significantly decrease, from -10 % to -40 % for the median CCR depending on

the region. Although there is considerable dispersion among the projections, they largely agree on the direction of change.

However, a few exceptions exist, notably in the Rhône River valley and some eastern regions, where some projections indicate

a slight increase. The most extreme projections lead to very large decreases, -60 % on average over France and up to -85 % in

the South.270

In contrast to summer, winter precipitation is mostly projected to increase (but less than the projected decrease in summer).

The median change is around 0 % in the South, South-Eastand
:
,
:::
and

::
it
:
exceeds 30 % over the northern half. The inter-model

dispersion remains significant, although it is less pronounced than in summer. Models almost always agree on the sign of the

changes and, except in the South, even the 5 % quantile projects slight increases.

The median reference evapotranspiration (ET0) is projected to increase, from 20 % to 30 % over most of France (and slightly275

more in summer). If all models agree on the sign of changes, the inter-model dispersion is large. In summer, the 5 % quantile

ranges from 10 % to 20 % and the 95 % quantile is larger than 40 %. In general, results roughly follow those obtained for

temperature, but spatial patterns of changes do not match the N-W, S-E gradients obtained for temperature. The South-East

and the mountainous areas do not appear as hot spots of changes.

The median annual maximum daily precipitation is projected to increase. Projected increases vary a lot from one location280

to the other
::::::
another, from 0 % to 20 % in a large southern part to (20 %, 30 %) in northern areas. Whatever

::::::::
Regardless

:::
of the

region, the inter-model dispersion is very large
::::::::::
considerable. In the south, for instance, models do not agree on the sign of the

changes, and the most extreme chains project decreases down to (-40 %, -20 %) and large increases up to (40 %, 60 %).

12



Figure 3. 5 %, 50 %, and 95 % quantiles of the climate change responses for seasonal temperature (TAS), precipitation (PR), reference

evapotranspiration (ET0) and annual daily precipitation maxima (RX1D) changes (2071-2099 relative to 1976-2005) in summer (JJA) and

winter (DJF) for the RCP8.5.
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Figure 3. (continued).
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3.2 Hydrological response to climate change projected in France

The 5 %, 50 %, and 95 % quantiles of the CCR for the hydrological indicators, for the RCP8.5 (Figure 4) are contrasted,285

uncertain, and depend on the region.

Low flows are mostly projected to decrease, from -10 % in the North to (-60 %, -45 %) in the South for the median CCR.

While the inter-model dispersion is very large, projections agree on a decrease for most southern regions (with the exception

of the Alps). The driest chains lead to very large decreases, greater than -60 % (except for a small area in the North where they

“only" reach -45 % to -60 %). Conversely, the most humid ones project large increases (40 % or more) in the Center-North.290

For median annual discharges, while slight increases are projected (often less than 15 %) in the North, decreases (up to

-30 %) are projected in the South. With the exception of the Pyrénées and the southern Alps, where most models project a

decrease, modeling chains do not agree on the sign of change. The inter-model dispersion is very important. Large decreases

are projected for the driest chains (up to -75 % in the South-East) while large to very large increases are projected for the most

humid ones (up to 75 % in the North).295

Results for high flows are roughly similar. The median high flow is projected to slightly increase (up to 15-30 %) in the

North and to decrease in the South. Whatever
:::::::::
Regardless

::
of the region, the inter-model dispersion is large, and models do not

agree on the sign changes. Large decreases are projected for the driest chains (up to -75 % in the South) while large to very

large increases are projected for the most humid ones (up to 75 % in the North). We refer to Tramblay et al. (2025) for further

analyses of projected high flows from the Explore2 dataset.300
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Figure 4. 5 %, 50 %, and 95 % quantiles of the climate change responses for low flow (QMNA), mean annual flow (QA), and high flow

(QJXA) changes (2071-2099 relative to 1976-2005) for the RCP8.5.
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3.3 Climate
::::::::::
Uncertainty

::
of

:::
the

:::::::
climate

:
change response uncertainty and internal variability

Figures 5 and 6 compare the CCR uncertainty (CCRU) and the internal variability IV for the climate and hydrological indica-

tors, respectively. Except for summer temperatures, IV is large to very large and
:
is
:
often of the same order

::
as,

:
or even greater

than CCR uncertainty.

For seasonal temperature, year-to-year fluctuations around the CCR are of the order of 1 °C (Fig. 5). IV is much lower than305

CCR uncertainty in summer but similar in winter. Results for ET0 are roughly similar (Fig. S5 in the Supplement). IV is rather

large, slightly smaller than CCR uncertainty in summer,
:::
and

:
slightly larger in winter.

For precipitation, IV is very large (> 30%), much larger than CCR uncertainty (between 10 % and 30 %), especially in

winter and along the Mediterranean sea (>50 %, Fig. 5). For maximum annual precipitation, IV is large (often greater than

40 %, see Fig. S5 in the Supplement). It is also much larger than CCR uncertainty (10 %-20 %).310

For the three hydrological indicators, IV is logically also very large (Fig. 6). For annual flows, IV is larger than 30-40 % in

many regions. For low and high flows, it is higher than 40 % almost everywhere (higher than 100 % for low flows locally). It is

often more than two times larger than CCR uncertainty.

3.4 Projections for lower emissions

Figures S1 and S2 in the Supplement show the 5 %, 50 %, and 95 % quantiles of the CCR projected for the climate indicators,315

for the lower emission scenarios RCP2.6 and RCP4.5 respectively. For temperature and related indicators, changes projected

with lower emission scenarios are generally smaller than those under RCP8.5, while exhibiting similar spatial patterns. In

contrast, projections for precipitation and hydrological indicators do not necessarily lead to the same conclusions. For these

indicators, inter-model spread remains substantial, with frequent disagreement among models regarding the sign of change.

Moreover, the direction of projected changes does not always align with those under RCP8.5. For instance, under RCP2.6,320

winter precipitation is projected to increase in the South-East, and some model chains also indicate increases in summer.

This pattern is also observed in hydrological projections. Changes projected for lower emission scenarios are not necessarily

smaller than changes projected for RCP8.5 (Fig. S3 and S4 in the Supplement). The mean annual flows are projected to increase

everywhere in RCP2.6 and almost everywhere in RCP4.5. Low flows are still projected to decrease (much less) for RCP4.5 but

they are projected to increase for RCP2.6, whatever
::::::::
regardless

::
of

:
the region. Projected changes for high flows are roughly the325

same for all scenarios.

4 Main uncertainty sources

This section provides key messages about the main sources of uncertainty. They are not the same for the different climate

and hydrological indicators. Furthermore, they vary regionally, and uncertainties in projected hydrological changes can be

interpreted according to the corresponding hydroclimatic regimes.330
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Figure 5. Uncertainty components for summer and winter temperature and precipitation changes (2071-2099 relative to 1976-2005) for

all emission scenarios. Climate change response uncertainty (CCRU) and internal variability IV (standard deviations expressed in ◦C for

temperature changes and % for precipitation changes).

4.1 Main uncertainty sources depend on the climate indicator

Figure 7 shows the main uncertainty components for seasonal temperature and precipitation changes and confirms the results

obtained for Europe (e.g. Christensen and Kjellström, 2020; Evin et al., 2021). The relative contributions of the different

uncertainty sources to CCR uncertainty depend on the indicator and region.

For temperature projections, scenario uncertainty is by far the main contribution for all seasons. A non-negligible contribu-335

tion of climate model uncertainty is found in summer. It comes from GCMs for coastal areas (Atlantic and Channel) and from

RCMs for mountainous areas and in the East.

For summer precipitation, the main contributions come from RCMs and then from scenarios (between 20 % and 40 %).

In winter, they mostly come from GCMs or from RCMs in mountainous areas and in the Mediterranean region. Scenario

uncertainty has a moderate contribution in the North-East. For maximum precipitation, the main contributions come from340

GCMs and RCMs (Fig. S5 in the Supplement).
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For summer ET0, results closely follow those for summer temperature (Fig. S5). However, the contribution of scenario

uncertainty is smaller, whereas the contribution of RCMs becomes much larger (> 20−40%). For winter ET0, the contribution

of scenario uncertainty is smaller to the benefit of RCM uncertainty, which reaches up to 40− 60% in the West.

With the exception of temperature, the contribution of residual variability to CCR uncertainty is moderate to important,345

which means that a moderate to large part of the CCR uncertainty cannot be explained by the additive effects of scenario,

GCM or RCM uncertainty. This is the case for precipitation in both seasons, for instance. In summer, the unexplained fraction

of CCR uncertainty varies from 10-20 % in the West to 20-40 % in the East. In winter, it varies from 20-40 % in the East to

40-60 % in the South-East. Evin et al. (2021) show that interactions between scenarios and climate models can be important

in France for winter precipitation (see their Figure S7). In particular, scenario/GCM and GCM/RCM interactions can partly350

explain this important residual variability in the current study.

Figure 6. Uncertainty components for low flow (QMNA), mean annual flow (QA), and high flow (QJXA) changes (2071-2099 relative

to 1976-2005) for all emission scenarios. Climate change response uncertainty (CCRU) and internal variability IV (standard deviations

expressed in % for hydrological changes).
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Figure 7. Uncertainty components for summer and winter temperature and precipitation changes (2071-2099 relative to 1976-2005). Per-

centage contribution of uncertainty sources (scenario, GCM, RCM, residual variability RV) to the CCR variance (CCRV).
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4.2 Main uncertainty sources depend on the hydrological indicator

Figure 8 presents the main uncertainty components for hydrological changes. These results are generally consistent with previ-

ous studies (e.g. Lafaysse et al., 2014; Chegwidden et al., 2019; Lemaitre-Basset et al., 2021; Aitken et al., 2023). The extent to

which each uncertainty source
:::::
source

::
of

::::::::::
uncertainty contributes to the spread in projected changes also depends on the region355

and indicator.

For low flows, CCR uncertainty comes from emission scenarios, especially in southern France (>40-60 %), from RCMs,

especially in the East (>20-40 %), and to a lesser extent from HMs in the North-West and in the Alps (>20-40 %). The

uncertainty from GCMs is significantly lower than that from RCMs. However, it remains notable in the northern regions, at

the expense of RCP uncertainty, especially in the energy-limited areas. In France, except in mountainous areas, low flows360

occur in summer when snow and soil moisture are depleted. They are mainly driven by soil processes, evapotranspiration, and

sometimes groundwater support. Low flows are thus mainly controlled by the climate conditions that determine the summer

water budget and by the HM choice
:::::
choice

::
of
:::
the

::::
HM.

For mean annual flows, CCR uncertainty mostly comes from RCMs, especially in the East (>40-60 %), from GCMs (ev-

erywhere except in the South-East), and from emission scenarios in the southern half of France (>20-40 %). A non-negligible365

contribution of HMs is obtained in the Paris Basin region (>10-20 %).

For high flows, CCR uncertainty is predominantly attributable to climate models, with GCMs and RCMs contributing to

a comparable extent. This substantial contribution can partly be explained by the considerable uncertainty in projections of

extreme precipitation (Fig. 3), but may also reflect uncertainties in other climatic variables. High flows are driven by a combi-

nation of factors, including the magnitude and spatiotemporal distribution of precipitation, as well as antecedent hydrological370

conditions resulting from preceding precipitation events (Tarasova et al., 2023). Using the GRSD hydrological model, Tram-

blay et al. (2025) demonstrate that projected changes in soil saturation exert an influence on high flows comparable to that of

projected changes in intense rainfall. In the current study, the pronounced sensitivity to hydrological model selection in eastern

France further supports the role of antecedent conditions in shaping high flow responses.

The unexplained fraction of CCR uncertainty can also be large for hydrological indicators. It varies from 10-20 % in the375

South to 20-40 % in the North for low flows, mostly between 20-40 % for mean annual flows, from 20-40 % to more than 60 %

in a number of sites for high flows (Fig. 8).
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Figure 8. Uncertainty components for low flow (QMNA), mean annual flow (QA), and high flow (QJXA) changes (2071-2099 relative to

1976-2005). Percentage contribution of uncertainty sources (scenario, GCM, RCM, HM and residual variability RV) to the CCR variance

(CCRV).
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4.3 Main uncertainty sources
:
of

:::::::::::
uncertainty by hydroclimatic regimes

The hydrology of French rivers is expected to undergo marked changes in the coming decades, but the high uncertainty sur-

rounding future precipitation makes the nature of these changes mostly unpredictable. However, the projected increase in380

temperature is robust and, as a consequence, some changes are very likely, especially for some specific hydroclimatic regimes.

As already shown by previous studies in the area (e.g. Lafaysse et al., 2014; Vidal et al., 2016; Dayon et al., 2018; Huang et al.,

2022) and by additional Explore2 analyses (Sauquet et al., 2024; Strohmenger et al., 2025)
:::::::::::::::::
(Sauquet et al., 2024), warming will

deeply
:::::::::
profoundly modify the hydrological regimes where discharges are significantly influenced by snow accumulation and

melt. Snow-dominated regimes will shift to mixed regimes, while mixed regimes will become predominantly rainfall-driven.385

As a result, snowmelt floods will occur earlier in
:::
the spring and be less intense.

Figure 9 aggregates the different results shown in this study by hydrological regime (obtained for the reference period 1976-

2005). As indicated above, median CCRs (Fig. 9A) highlight more pronounced changes for low flows than for mean and high

flows. For low flows, strong decreases are obtained across most hydrological regimes (around -40%)
:
, and scenario uncertainty

emerges as the dominant source of variability (Fig. 9B, first row), primarily due to the strong dependence of evapotranspiration390

losses on temperature, as previously discussed. There are two exceptions. The first concerns catchments with a non-contrasted

pluvial (NCP) regime, where low flows are likely to remain supported by deep aquifer contributions regardless of the emission

scenario. In this case, the main source of uncertainty arises from climate models, but hydrological models (HMs) also contribute

due to their varying representations of deep groundwater storage. The second exception involves catchments with a nival (N)

regime, where low flows typically occur in winter due to a high proportion of solid precipitation during this season (Fig. 1C).395

Under warmer conditions, this proportion is expected to decrease, leading to increased winter discharges. As HMs vary in their

representation of snow processes, HM uncertainty plays a particularly significant role in this case.

For mean annual and high flows, the combined uncertainty from GCMs and RCMs is relatively consistent across all regimes.

In contrast, the contributions of scenario and HM uncertainties vary by regime. For mean annual discharges, scenario uncer-

tainty is minor in rainfall-dominated regimes but more significant in snow-dominated ones. HM uncertainty is generally low,400

except in catchments where low flows make up a substantial portion of the mean annual flow (i.e., P and PNC regimes). For

high flows, scenario uncertainty is negligible across all regimes. HM uncertainty, while also similar across regimes, is more pro-

nounced due to differing representations of runoff generation in the models—particularly in snow-dominated regimes, where

high flows are primarily driven by snowmelt.

A qualitative comparison between Figures 1B, 4 and 8 shows that projected changes are only partially influenced by whether405

catchments are water- or energy-limited. In the South, the decrease of mean annual flows, which highly depends on the interplay

between precipitation and evapotranspiration, tends to be larger in water-limited areas. In the North, mean annual flows tend to

decline in water-limited catchments, while they increase in energy-limited ones. However, projected changes in high and low

flows appear largely independent of the hydroclimatic regime. For example, the significant reduction in low flows projected

for the South is widespread across different regimes. A notable exception is the case of high flows in the South, which tend to410

increase more in water-limited areas. Across most locations and hydrological variables, the sources of uncertainty contributing
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to CCR uncertainty are quite similar between water- and energy-limited regimes, especially regarding HM uncertainty. An

exception occurs in the energy-limited catchments of the North, where HM uncertainty is greater for projections of both low

and mean annual flows compared to other regions.
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Figure 9. Results for the different hydrological regimes. A) Median CCR (2071-2099 relative to 1976-2005) for low flow (QMNA), mean

annual flow (QA), and high flow (QJXA) changes for the RCP8.5 and B) Percentage contributions of uncertainty sources to CCR vari-

ance (CCRV). Rainfall-dominated regimes: highly contrasted pluvial (HCP), contrasted pluvial (CP), pluvial (P) and non-contrasted pluvial

(NCP); snow-dominated regimes: Nival (N), Nivo-Pluvial (NP), Pluvial-Nival (PN).
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5 Discussion415

5.1 IV is substantial and should not be overlooked

Our results show that IV can be a substantial source of uncertainty in hydrological projections and are in agreement with most

other analyses where IV has been considered (e.g. Lafaysse et al., 2014; Vidal et al., 2016; Chegwidden et al., 2019; Alder and

Hostetler, 2019; Ye et al., 2024). The influence of IV is strong when precipitation is a key driver and is particularly pronounced

for low and high flow projections (Fig. 6). For the three variables considered here, IV is larger than CCR uncertainty at the end420

of the century,
:::
and much larger for less far projection periods

::::::::
projected

::::::
periods

::::
that

:::
are

:::
not

::
far

:
(not shown).

Our results show that IV should not be overlooked or disregarded in hydrological impact studies. IV expresses the range of

possible future realizations around the climate response. IV is likely to cause substantial deviations from the climate response,

potentially leading to unusual or critical years or sequences of years. Disregarding IV could be detrimental for interpretations

and use of projections. It could prevent a fair evaluation of the resilience and robustness of natural and anthropogenic systems425

to climate change, variability, and extremes (Doss-Gollin et al., 2019; Bonnet et al., 2020).

5.2 A single or a few individual models can have a large contribution to model uncertainty

As shown in Evin et al. (2021) for Europe, a large contribution of GCM (resp. RCM) uncertainty to CCR uncertainty is often

due to a single or a small number of individual GCM models (resp. RCM models). This can be easily identified from the

maps of the main effects obtained for each individual model. For summer temperature, for instance (Fig. 10), the large RCM430

contribution comes mainly from the higher warming signature of HadREM3-GA7-05 and the lower warming signature of

WRF381P. For winter precipitation (Fig. 11), the important GCM uncertainty comes mainly from the ‘wet signature’ of IPSL-

CM5A-MR; the large RCM contribution in mountainous areas comes mainly from the large differences between four RCMs

(RACMO22E and RCA4 are much drier than HIRHAM5 and WRF381P).

A large contribution of a specific climate model to the CCR uncertainty in climate projections frequently leads to similar435

contributions for other climate or hydrological indicators. For example, the deviating signals produced by HadREM3-GA7-05

and WRF381P for projected changes of summer temperature are reflected in similar divergent patterns for changes in summer

ET0 (Fig. S8 in the Supplement) and low flows (Fig. S12 in the Supplement).

A single or a small number of HMs can also lead to a large contribution of HM uncertainty to CCR uncertainty. As shown

by the maps of the main effects obtained for each individual HM (Fig. 12), the important HM uncertainty obtained for mean440

annual flows in the Paris Basin region (lowland area around Paris) is mainly due to the ‘more humid’ (or ‘less dry’) signature

of ORCHIDEE. For high flows, the important HM uncertainty in the North-East is mainly due to CTRIP. HM main effects vary

more regionally (or by regime) for low flows than for mean and high flows. Higher uncertainty for low flows might be expected

where more complex processes are involved (e.g. snowmelt for the nival regime, groundwater-river exchange for the non-

contrasted pluvial regime) and are represented differently by the different HMs. High flows are mostly driven by precipitation445

and are more easily represented by HMs when similar antecedent conditions are simulated.
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Note that the main effects of the different model categories often have different spatial scales. Spatial patterns of the main

effects of GCMs are mostly large scale, presenting smooth variations,
:
whereas those of RCMs and those of HMs, often con-

ditioned by local topography for RCMs or by some specific physiographic features for HMs, are more local, often depicting

rough variations. The spatial variation of these main effects can be related to the effective resolution of the corresponding450

models, which is often larger than the resolution provided by the simulations (Klaver et al., 2020).

Models with very large main effects compared to the other ones can thus be identified using ANOVA approaches. These

deviating models inflate the corresponding uncertainty component. As large uncertainties may dampen important information

about future changes, it is important to look carefully at
:::::::
examine

:
these deviating models

::::::::
carefully and understand the reasons

behind the
::::
their

:
atypical behavior. If the models are deviating for

::::::
deviate

:::
for

:::
the

:
wrong reasons (numerical artifacts, bugs,455

model inadequacy), a reasonable choice can
::::
could

:
be to discard them from the MME. Large deviations by a single model can

also indicate that other models are overlooking or oversimplifying a key process that could become critical under future climate

conditions. This raises concerns about model transferability, particularly for models based on empirical or highly parameterized

approaches.

::
In

::::::::
Explore2,

::::::::::::::
recommendations

:::::
were

:::::::
provided

::
to

::::
help

:::
end

:::::
users

:::::
select

::
or

::::
filter

:::::::
available

::::::::::
projections

::
for

::
a

:::::::::
catchment.

:::::::::
Diagnostic460

::::::::::
assessments

::::
were

::::::
carried

:::
out

:::
for

::
all

::::::::::
catchments

::
to

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

::::::
surface

:::::::::
hydrology

:::
and

:::::::::::::
hydrogeological

:::::::
models

::::
when

::::::
driven

::
by

:::
the

::::::::
SAFRAN

:::::::::
reanalysis

:::::::::::::::::
(Sauquet et al., 2025)

:
.
:::::
These

::::::::::
diagnostics

::::::::::
complement

:::
the

:::::::::
uncertainty

:::::::
analysis

:::
and

::::
aim

::
to

::::::
support

:::
the

::::::::
selection

::
of

:
a
:::::
subset

:::
of

::::::
models

:::
for

:::::::::
prospective

:::::::
studies,

:::::
rather

::::
than

::
to

::::
rank

:::::
them.

:::::
Users

:::
are

:::::::::
encouraged

::
to
:::::::
consult

:::::::
summary

::::::
sheets

::
at

:::::::
different

::::::
spatial

::::::
scales,

:::::
from

::::
local

::
to
::::::::

regional,
::::
and

::
to

:::::
make

::::::
choices

::::::
based

::
on

::::
their

:::::::
specific

::::::
needs.

::::::
Model

:::::::
selection

:::
can

:::::
then

::::::
depend

::
on

::::::::
intended

::::
data

:::
use

:::::
(e.g.,

:::::::::
streamflow

::::
only

:::
or

::::::::
additional

:::::::::
variables)

:::
and

:::
on

::::
each

:::::::
model’s

::::::
ability

::
to465

:::::
deliver

:::
the

::::::::
required

:::::::
variables

::
at

:::
the

::::::
desired

:::::::::
locations.
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Figure 10. Main effects (i.e. deviations from the ensemble mean) of individual climate models for summer temperature changes (2071-2099

relative to 1976-2005). (A) GCMS. (B) RCMs.
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Figure 11. Main effects of individual climate models for winter precipitation changes (2071-2099 relative to 1976-2005). (A) GCMS. (B)

RCMs.
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Figure 12. Main effects of individual HMs (CTRIP, GRSD, ORCHIDEE and SMASH) for low flow (QMNA), mean annual flow (QA), and

high flow (QJXA) changes (2071-2099 relative to 1976-2005).
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5.3 Uncertainty contributions depend on projection lead time

CCRs and related uncertainties depend on the future period. Results obtained for other future periods, specifically 2020-

2050 (near future) and 2040-2070 (mid-century), are presented in Evin et al. (2024). As the analysis focuses on the CCR of

projections, the dispersion between the main effects of the different models of
:
in
:

each category is almost zero for the near470

future and increases with projection lead time, for all emission scenarios. The uncertainty of each model category andin turn

:
,
::
in

::::
turn, total CCR uncertainty thus also increases with projection lead time. As a consequence, CCR uncertainty tends to be

much lower than IV in the near future.

To highlight how results vary over time throughout the 21st century, a summary sheet was created for all stations included

in the project, detailing projected changes and associated uncertainties. This summary sheet facilitates the identification of475

key sources of uncertainty, notably including substantial contributions from individual models to the overall model-related

uncertainty. Furthermore, it provides a comprehensive depiction of the range of potential future projections, capturing both

systematic changes in climate response and stochastic variations arising from internal climate variability. For illustrative pur-

poses, the summary sheet developed for the Seine catchment at Bazoches-Lès-Bray is presented in Figure 13. It summarizes

the different results shown above, notably:480

– Panels A and B: A decrease in low flows and an increase in high flows with
::::
under

:
the scenario RCP8.5 (panel A), with

an overall agreement of the MME (80% of the CCR with
::::::::
exhibiting

:
the same sign for the projected changes).

– Panel C: A dominant contribution of IV to the total uncertainty (defined as the sum of CCR uncertainty and IV).

– Panels D-F: Individual models can have a large contribution to the corresponding component of the CCR uncertainty.

For example, the GCM IPSL-CM5A-MR leads to higher projected changes for high flows (panel D, last column); the485

HM ORCHIDEE exhibits a ‘more humid’ (or ‘less dry’) signature for mean annual flows, and the HM CTRIP shows a

‘more dry’ (or ‘less humid’) signature for high flows (panel F).
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Figure 13. Climate Change Responses and Uncertainties in Explore2 projections of low flow (QMNA), mean annual flow (QA), and high

flow (QJXA) changes for the Seine catchment at Bazoches-Lès-Bray. (A) Relative changes (%) for each scenario: median CCR (colored

line), dispersion (quantiles 5 % and 95 %) of the CCR (central colored band), envelop curves of interannual fluctuations around the CCR due

to Internal Variability (light colored band). (B) Agreement on the sign of the projected change. Triangles point upwards (resp. downwards)

if more than 80 % of the CCR are positive (resp. negative). (C) Fraction of total uncertainty CCRV (t)+ IV (in variance) explained by the

different sources of uncertainty. (D-F) Main effects of GCMs, RCMs and HMs.
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5.4 Some model limitations are to
:::::
must be acknowledged

Explore2 projections are obviously not free of limitations, partly due to model imperfections. Some known limitations are

reported here.490

5.4.1 Climate models

The
:::::::::
GCM/RCM

::::::
chains

:::
are

::::::::
powerful

:::::::::
simulation

:::::
tools

::::
that

::::::
provide

:::::::::
physically

::::::::
coherent

::::::
climate

::::::::
scenarios

:::
at

:::::::
regional

::::::
scales.

::::::::
However,

::
the

:
compatibility between a RCM and its forcing GCM is not always guaranteed (McSweeney et al., 2015). GCM/RCM

discrepancies exist in the large-scale EUROCORDEX projections for summer, mainly due to differences in the representation

of aerosols (Boé et al., 2020) and atmospheric physics (Taranu et al., 2023). The consequential effect on solar radiation may495

impact the reference evapotranspiration ET0 used in our study, in particular
:::::::::
particularly through its effect on surface temper-

ature (Schumacher et al., 2024). In Explore2, this non-consistent
:::::::::
inconsistent

:
radiation effect was clearly identified for some

GCM/RCM combinations (Ribes et al., 2022; Marson et al., 2024) that were thus discarded from the Explore2 ensemble.

::
As

::::::
shown

:::
in

:::
this

::::::
study,

:::
the

:::::::::::
downscaling

::::
step

::::
(i.e.,

:::
the

::::::
RCM

::::::::::
uncertainty)

::
is
::

a
:::::
major

::::::
source

:::
of

::::::::::
uncertainty.

::::::::::
Alternative

::::::::::
downscaling

::::::::::
approaches

:::
are

::::
also

:::::::
possible,

::::
one

::::
very

:::::::
popular

::::::::
approach

:::::
using

::::::::
empirical

::::::::
statistical

:::::::
models

:::::
based

:::
on

::::::::
statistical500

::::::::::
relationships

::::::::
identified

:::::::
between

:::::
large

::::
scale

::::::::::
atmospheric

:::::::
features

:::
and

:::::::
regional

::::::::
indicators

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lafaysse et al., 2014; Erlandsen et al., 2020; Benestad et al., 2025)

:
.
:::::::
Artificial

::::::::::
intelligence

:::::::::::::
methodologies

::::
have

::::
also

:::::::
emerged

::
as

:::
an

:::::::::
alternative

::
for

::::
this

::::::::::
downscaling

:::::
step,

::::::
namely

::::::::::::::
super-resolution

:::::::::
techniques

:::::::::::::::::::
(Passarella et al., 2022).

::
It

:::
can

::
be

::::::::
expected

:::
that

:::::
these

::::::::::
independent

::::::::::
downscaling

::::::::
methods

:::
will

:::::::
produce

::::::
similar

::::::
results

:
if
::::
they

:::
are

:::
all

::::::
equally

:::::::
skillful.

::
In

::::::::
practice,

:::
they

:::::::
exhibit

:::::::
different

::::::::
strengths

:::
and

::::::::::
weaknesses

:::
and

:::::
often

::::::
project

::::::::
different

:::::::
regional

::::::
climate

:::::::
changes

::::::::::::::::::::::::
(see, e.g., Rastogi et al., 2025)

:
.
::
In

:::
this

:::::
study,

:::
the

::::::::::
uncertainty

:::::
range

:::
due

::
to

:::
the

::::::::::
downscaling

::::
step

:::::
would

::::::::
probably505

::
be

:::::
larger

::
if

:::::::::
simulations

:::::
using

:::::
these

:::::::::
alternative

:::::::
methods

:::
had

:::::
been

:::::::
included

::
in

:::
the

::::::
MME.

5.4.2 Bias Adjustment Models

In Explore2, climate projections were adjusted with
::::
using

:
ADAMONT (Verfaillie et al., 2017) and CDF-t (Michelangeli et al.,

2009) methods. For consistency and simplicity, this study focuses exclusively on ADAMONT-adjusted projections. On the one

hand, adjusted projections from CDF-t are only available at
::
on a daily time scale and cannot be used to force HMs with hourly510

meteorological inputs (e.g., ORCHIDEE, CTRIP). On the other hand, the contribution of BAM uncertainty to CCR uncertainty

for temperature and precipitation was found to be much smaller than that of the
:::
for other sources of uncertainty (Evin et al.,

2024).

Compared to other studies (e.g Alder and Hostetler, 2019; Senatore et al., 2022; Lafferty and Sriver, 2023),
::
the

:
uncertainty

due to BAMs is likely underestimated in Explore2 as only two similar approaches relying on quantile mapping were considered.515

Two potentially critical issues associated with BAMs are also to be reported as they
:::
can potentially influence the realism of

some features of projected scenarios. They come from
:::
are

:::::
related

::
to

:
the strong hypotheses respectively required

:::
that

:::
are

:::::::
needed:

1) for the adjustment of high and extreme precipitation values,
:
and 2) for the application of the methods in modified climates

(transferability assumption).
:::::::::
Individual

:::::
BAMs

::::
may

::::
also

:::::::
present

::::::
specific

::::::::::
limitations.

:
For example, the adjustment applied by
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ADAMONT is conditional on the weather regimes from the GCMs, which are not necessarily those of the RCMs (Boé et al.,520

2020).

5.4.3 Hydrological Models

Similarly, HM uncertainty might be underestimated in this study. Including
::::
more

:
HMs tends to increase the spread of hydro-

climate projections, as shown in Explore2 results for French sub-regions using 6–9 HMs (e.g., Evin et al., 2024, for the Loire

basin). HMs provide a simplified representation of catchment characteristics and hydrological processes, which vary widely525

in space and time. A broad range of models exists globally, offering different perspectives on future hydrology. Our findings

highlight the importance of using a diverse set of HMs to better capture this range. However, the optimal type and
:::
The

:::::::
optimal

number of HMs likely depend
:::::::
remains

::
an

:::::
open

:::::::
question.

::
It
:::::
likely

::::::::
depends on the hydroclimatic context and may require as

much diversity as climate models.

Model diversity does not guarantee the relevance of hydroclimate projections and must also represent a large variety of hy-530

drological processes that are accounted for. In Explore2 for instance, HMs are not really suitable for catchments with important

glacier coverage (found in some high-elevation alpine catchments) or with strong surface-groundwater interactions, notably in

the case of karstic basins. The transferability of HMs in a modified climate context is also not ensured
:::::::::
guaranteed. For instance,

with the exception of ORCHIDEE, Explore2 HMs do not account for the CO2 rising effect
:::::
rising

:::::
effect

::
of

::::
CO2

:
on vegetation

physiology, and in turn
:
, on evapotranspiration and land hydrology (Vicente-Serrano et al., 2022; Lemaitre-Basset et al., 2022).535

Accounting for this effect makes ORCHIDEE simulate lower evapotranspiration losses and higher runoff (not shown). Finally,

as indicated in Section 2, streamflow projections from the Explore2 dataset are based on ’natural’ hydrology and do not account

for human influences such as water management infrastructure, water usage, or land use, all of which will clearly affect future

hydrological conditions.

5.4.4
:::::::::::::
Characterizing

::::::::::
uncertainty

:::::::
sources540

:::
Our

::::::::::
uncertainty

:::::::
analysis

:
is
::::
not

:::
free

::
of

::::::::::
limitations.

::
A

::::::
critical

::::
step

::
is

:::
the

::::::::
estimation

:::
of

:::
the

::::::
climate

::::::::
response

::
for

:::::
each

:::::::::
projection,

::
as

:::
the

::::::::
reliability

::
of

::::
this

::::::::
estimation

:::::::
directly

:::::::::
influences

:::
the

::::::::
relevance

::
of

:::
all

:::::::::
subsequent

::::::
results.

::::::::
However,

:::::::::
estimating

:::
the

:::::::
climate

:::::::
response

:::
can

:::
be

::::::::::
challenging

:::
for

::::::
certain

:::::::::
indicators,

:::::::::
particularly

:::::
when

::::::::::
interannual

:::::::::
variability

:
is
:::::
high

::::
(e.g.,

::::::
annual

:::::::::::
precipitation

:::::::
maxima)

::::::
and/or

:::::
when

::::::::
indicators

:::::::::
frequently

::::
reach

::
a
:::::
bound

:::::
(such

::
as

:::::
zero,

:::::
which

::::
may

:::::
occur

:::
for

:::
low

::::::
flows).

:

:
A
::::::::::

time-series
::::::::
approach

::::
such

::
as

:::::::::::
QUALYPSO

::
is

::::::::
generally

::::::::
expected

::
to

::::
yield

:::::
more

::::::
precise

:::::::
climate

:::::::
response

::::::::
estimates

::::
than

::
a545

::::::::
time-slice

::::::::
approach

::::::::::::::::::
(Hingray et al., 2019).

::
In
::::

this
:::::
study,

:::
the

:::::::
climate

::::::::
responses

:::
are

:::::::::
estimated

::::
using

:::::
cubic

:::::::
splines

::::
with

::
ad

::::
hoc

::::::::
smoothing

::::::::::
parameters.

:::::::::
Alternative

:::::
trend

::::::
models

::::::
and/or

::::::::
smoothing

:::::::
choices

:::::
could

:::
also

::::
have

::::
been

:::::::::
considered

::::::::::::::::::::::
(e.g. Scherrer et al., 2024)

:
.
::::::::
Selecting

::
an

::::::::::
appropriate

:::::::::::
specification

::
is
::::

not
:::::::::::::
straightforward

::::
and

:::::::
requires

::::::
careful

:::::::::
judgment,

:::::
often

::::::::
involving

::
a
::::::
degree

:::
of

:::::::
expertise

::::
and

::::::::::
subjectivity.

:::::
Here,

:::
the

::::::
choice

::::
was

::::::
guided

:::
by

:::::::
previous

::::::
studies

::::::::::::::::
(Evin et al., 2021)

:::
and

::::::
further

::::::::
validated

:::::::
through

:::::
visual

::::::::
inspection

::::::
across

::::::::
numerous

::::::
pixels

:::
and

::::::::::
catchments.

:
550
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::
As

::::::::::
highlighted

::
in

:::
our

:::::::
results,

:::::::
residual

:::::::::
variability

::
in

:::
the

:::::::
ANOVA

::::::
model

:::::::
remains

:::::
large

:::
for

::::
some

:::::::::
indicators,

::::::::::
suggesting

:::
the

:::::::
presence

::
of

::::::::
important

::::::::::
interactions

:::::::
between

::::::::
different

::::::
sources

::
of

::::::::::
uncertainty.

::
In

:::::::::
particular,

::::::::::
GCM/RCM

::::::::::
interactions

:::
may

::::
play

:::
an

::::::::
important

:::
role

:::::::::::::::
(Evin et al., 2021)

:
,
:::::::::
potentially

:::::
linked

::
to
:::
the

::::::::::
GCM/RCM

::::::::::::
compatibility

::::
issue

::::::::
discussed

::::::
above.

:

6 Conclusion

Explore2 projections reflect the current state of scientific knowledge on climate change and natural hydrology for Metropolitan555

France. They have been produced for a large number of stations along French rivers with
:::::
using a variety of hydrological models

from a large ensemble of bias-adjusted regional climate projections.

We use QUALYPSO to assess how a specific climate or hydrological indicator is expected to change. This method, designed

to tackle the main challenges of uncertainty partitioning in multi-model multi-scenario ensembles, leverages the very large

Explore2 dataset,
:::::
which

::
is based on the rich but incomplete and unbalanced EUROCORDEX ensemble. Although the con-560

figuration is complex to work with, QUALYPSO enables the characterization of projected climate change responses (CCRs)

across various climate and hydrological indicators. Specifically, it provides insights into the mean and the dispersion of the

CCRs obtained from different modeling chains. Moreover, it facilitates the estimation of all sources of uncertainty—scenario,

GCM, RCM, and HM uncertainties—as well as potential additional dispersion in future changes arising from internal variabil-

ity. Lastly, it enables the identification of the main effects associated with each model within each model category, providing565

a clearer understanding of how individual models compare and where the primary sources of uncertainty arise. The key take-

aways from our analysis are as follows.

France is projected to experience warming, with greater temperature increases expected under higher future greenhouse gas

emissions. It is also projected to warm more in
:::
the summer, especially in southern France, and in mountainous areas in

:::
the

winter. Warming will lead to an increase in potential evapotranspiration everywhere, particularly in
::
the

:
summer. In contrast, the570

future patterns of seasonal precipitation are more uncertain. For the RCP8.5, models mostly agree on a summer precipitation

decrease
:::::::
decrease

::
in
:::::::
summer

:::::::::::
precipitation

:
in the South and a winter precipitation increase

::
an

:::::::
increase

::
of

::::::
winter

:::::::::::
precipitation

in the North. Annual maxima of daily precipitation are projected to increase, particularly in a large northern half of France.

For all precipitation indicators, the inter-model dispersion is large and climate models often disagree on the direction of the

projected changes.575

The future of French river hydrology is mostly
:::::::
primarily

:
shaped by the projected warming and the uncertain future of

precipitation. For hydrological regimes sensitive to temperatures, larger greenhouse gas emissions will lead to larger hydro-

logical changes. For water-limited regimes in southern France, both annual discharges and low flows are projected to de-

crease. As shown by Sauquet et al. (2025), snow-dominated catchments will evolve into mixed regimes, while mixed regimes

will shift toward rainfall-dominated systems. For almost all catchments, the increased potential for evapotranspiration should580

increase
:::::::
intensify

:
the severity of low flow periods. This increase should be smaller for catchments with snow-dominated or

non-contrasted pluvial regimes. Low flows are expected to increase
::
rise

:
due to altered snowpack dynamics in the first case,

while in the latter, they should remain supported by deep aquifer contributions.
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Whatever the climate and/or hydrological indicator, the dispersion of the CCR between modeling chains is large. The main

uncertainty sources
::::::
sources

::
of

::::::::::
uncertainty

:
depend, however, on the indicator. Scenario uncertainty has the greatest impact in585

snow-dominated regimes—where snowpack dynamics are crucial—and in water-limited regions or seasons, such as Mediter-

ranean areas or during summer low flows, where evapotranspiration losses play a key role. As climate projections are very

uncertain, the choice of the climate model is very important for mean annual flow projections, especially for the rainfall-

dominated regimes. In contrast to the choice of the GCM, the choice of the RCM also matters for low flows. The choice of the

HM can be important. It is high for low flows, moderate for annual discharge, and low but not negligible for high flows.590

A significant contribution of GCM (or RCM or HM) uncertainty to CCR uncertainty is often attributed to one or a few

individual models within each category. Determining the main effects of each model can offer valuable insights that can guide

future model evaluations, improvements, or adjustments.

Explore2 highlights slow and long-term changes in different hydroclimatic indicators. Additionally, natural variability is

an inherent characteristic of all hydroclimatic indicators. Our results confirm that IV can be substantial compared to CCR595

uncertainty. As a result, it may lead to significant departures from the climate response, potentially giving rise to anomalous or

critical years or multi-year periods. IV is frequently overlooked in hydrological impact studies. Our results confirm that IV can

be large and should be carefully considered to ensure the robustness of adaptation studies.

While Explore2 is the largest ever produced MME of hydrological projections from regional climate projections and at the

scale of a country, it must not be over-interpreted and needs to be presented as it truly is. The Explore2 MME is conditional on600

scenarios and models chosen and available at the time the project was carried out. Models are imperfect representations of real

systems and necessitate various simplifications. A probabilistic approach to characterize the ensemble would not be relevant.

Despite its size, the Explore2 ensemble may not encompass the exact climate evolution that will occur in the coming decades.

The chance to encounter
::
of

:::::::::::
encountering

:
unexpected climate events remains, and the possibility for climate surprise must be

acknowledged.605
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Code and data availability615

The QUALYPSO approach is implemented in an R package available on CRAN (Evin, 2023). The codes used to produce the

analyses and figures shown in this study are shared on GitHub and are available at https://github.com/guillaumeevin/Explore2/.

Summary sheets of the uncertainties are available on the following dataverse repository: https://doi.org/10.57745/3LP5EN

(Evin, 2025). The Explore2 dataset is associated with the following digital object identifier https://doi.org/10.57745/YHMBHC.

The hydrological data can be downloaded in netCDF file format through the open platform for French public data dedicated620

to the Explore2 project (https://entrepot.recherche.data.gouv.fr/dataverse/explore2) and the DRIAS-Eau website (https://www.

drias-eau.fr/). SAFRAN is available at https://meteo.data.gouv.fr/datasets/6569b27598256cc583c917a7.
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Appendix A: QUALYPSO

This appendix provides additional details about the key steps of the approach , for an application on an ensemble of hydrological

projections or climate projections (in that case, the effect EHh(t) of the HMs is irrelevant hereafter)
:
.
::::::
Figure

:::
A1

:::::::
provides

:::
an

:::::::::
illustration

::
of

::::
these

::::::::
different

::::
steps

:::
for

:::
one

:::::
pixel

:::
and

::::
one

:::::::::
catchment.

::::
The

:::::::
different

::::
steps

::::
can

::
be

::::::::::
summarized

:::
as

::::::
follows:

– Estimation of the climate response CRi(t) of each projection: As discussed in Section 2, a key stage in the analysis is635

the estimation of the climate response for each projection i
::::
Yi(t). We used a trend model based on cubic splines applied

to the transient projections available over the entire simulation period. For each projection, the smooth trend predicted

by the cubic spline corresponds to the climate response CRi(t).

– Estimation of the climate change response CCRi(t) of each projection: In line with current practice, absolute

changes are considered for temperature (Eq. A1) and relative changes for the other indicators (Eq. A2). These changes are640

relative to the reference period (1976-2005), using the climate response estimated for its central year (i.e. tref = 1990):

CCRi(t) = CRi(t)−CRi(tref ), (A1)

CCRi(t) =
CRi(t)−CRi(tref )

CRi(tref )
, (A2)

with t the central year of the future period considered, tref the central year of the reference period, CRi the climate

response of the projection i and CCRi the corresponding climate change response.645

– Estimation of the internal variability: We assumed that the internal variability of a projection is constant over time

(in variance). For each projection i and each time horizon t, we first consider the differences between the raw projection

Yi(t) and the climate response CRi(t) as follows:

Di(t) = Yi(t)−CRi(t), (A3)

Di(t) =
Yi(t)−CRi(t)

CRi(tref )
. (A4)650

depending on whether we are considering absolute or relative changes, respectively. Internal variability is then estimated

by the time variance of these differences Di(t), throughout the period under consideration:

IVi = Var{Di(t)}. (A5)

– Estimation of the ensemble mean and the main effect of each scenario/model: For a given emission scenario s, the

climate change response CCRi(t) of a projection i obtained with a simulation chain composed of a GCM g, an RCM r,655

and an HM h is assumed to be the sum of the individual main effects, as follows:

CCRi(t) =M(t)+ESs(t)+EGg(t)+ERr(t)+EHh(t)+ ϵs,g,r,h(t), (A6)

where M(t) is the ensemble mean for a future period t, and ESs(t), EGg(t), ERr(t), EHh(t) arerespectively
:
,

::::::::::
respectively,

:
the main effect of the RCP scenario s, the GCM g, the RCM r, and the HM h and where ϵs,g,r,h(t) is
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the residual term, i.e. the part of the CCR that is not explained by the sum of the main individual
::::::::
individual

::::
main

:
effects.660

This estimation is carried out for each future time horizon t using a linear regression model, where the least squares of

the residuals ϵs,g,r,h(t) are minimized
:
,
::
as

:::::::::::
implemented

::
by

:::
the

::
R
:::::::
function

:::
lm

::
of

::
the

::::::
library

:::::::
stats.

In a complete ensemble of projections, the main effect of a model is easily interpreted as the mean difference between

1) the CCR of all the projections using this model and 2) the mean CCR of the ensemble. By construction, the sum of

the main effects of the different models belonging to a given category of models is zero (Eq. A7):665 ∑
s

ESs(t) =
∑
g

EGg(t) =
∑
r

ERr(t) =
∑
h

EHh(t) = 0. (A7)

– Estimation of the different sources of uncertainty: The internal variability of the ensemble is estimated by the average

standard deviation of the fluctuations around the CCR, i.e. the square root of the ensemble mean of the internal variability

variances estimated for the N projections of the ensemble:

IV =

√√√√ 1

N
∗

N∑
i

IVi. (A8)670

For a future time horizon t, the uncertainty associated with the emission scenarios and the uncertainties associated with

each model category (GCM, RCM, and HM) corresponds
:::::::::
correspond to the variance of the corresponding main effects.

For example, GCM uncertainty is estimated by the variance of the main effects EGg(t), g = 1..Ng , estimated for the Ng

GCMs considered. Finally, the residual variability RV (t) is the variance of the residuals ϵs,g,r,h(t).

The total uncertainty variance CCRV(t) of the CCR is obtained as the sum of the residual variability and the variance of675

each model category:

CCRV (t) = Var(ESs(t))+Var(EGg(t))+Var(ERr(t))+Var(EHh(t))+RV (t), (A9)

and CCRU(t) =
√

CCRV (t) is the corresponding standard deviation. These different estimates can be used to estimate

the fraction of the total uncertainty resulting from each source of uncertainty:

FVx(t) = Varx(t)/CCRV (t), (A10)680

where FVx(t) is the fraction of the total uncertainty
::::
total

::::::::::
uncertainty

:::::::
variance

::::::::
CCRV(t)

:
explained by the source of

uncertainty associated with x (here x = scenario, GCM, RCM, HM, or RV).

38



Figure A1.
:::::::

Illustration
::
of
:::
the

::::::::::
QUALYPSO

::
for

:::
(a)

::::::
summer

:::::::::
temperature

:::
and

::
(b)

:::::
winter

::::::::::
precipitation,

:::
for

:::
one

::::
pixel

::::::::::
corresponding

::
to

:::
the

:::
city

::
of

::::
Paris

:::
and

::
(c)

:::
for

::
the

::::
mean

::::::
annual

::::::::
streamflow,

:::
for

::
the

:::::
Seine

::::::::
catchment

:
at
:::::::::::::::
Bazoches-lès-Bray.

::::
From

:::
left

::
to

::::
right,

::
for

::
a
::::::::
simulation

::::
chain

:
i:
:::::
Yi(t)

:
is
:::
the

:::
raw

::::::::
projection,

::::::
CRi(t)::

is
::
the

:::::::::::
corresponding

::::::
climate

:::::::
response

::::::
obtained

::::
with

:
a
::::
cubic

:::::::::
smoothing

:::::
spline,

:::::::
CCRi(t)::

is
::
the

::::::
climate

::::::
change

::::::
response

::::::
which,

::
by

::::::::::
construction,

::
is

::::
equal

::
to
::::

zero
:::
for

:::::::
t= 1990,

:::::
M(t)

::
is

:::
the

:::::::
estimated

::::::::
ensemble

::::
mean

:::::
(black

:::::
curve)

:::
and

:::::::::::::
M(t)+ESs(t)

:::
adds

:::
the

:::::::
estimated

::::
main

:::::
effect

::
for

::::
each

::
of

::
the

::::
RCP

:::::::
scenario

:
s
::::::
(colored

:::::::
curves),

::::::
EGg(t),:::::::

ERr(t) :::
and

::::::
EHh(t):::

are
::
the

::::
main

:::::
GCM,

:::::
RCM

:::
and

:::
HM

::::::
effects,

:::::::::
respectively

:::
(see

:::::
legend

::
in
::::

Fig.
:::
13),

::::::::
FV(2085)

:::::
shows

::
the

::::::::::
contributions

::
to
:::
the

:::::
CCRV

::
in
::::
2085

::::
(i.e.

::
the

::::::::::
contributions

::
to
:::
the

::::
total

::::::
variance

::
of

::::::
climate

::::::
change

::::::::
responses),

:::::
Di(t):::

are
::
the

::::::
annual

::::::::
deviations

::::
from

::
the

::::::
climate

:::::::
response

::
as

:
a
:::::
result

::
of

::::::::
interannual

:::::::::
variability,

:::
and

:::::::::
CCRV(t)+IV

:::::
shows

:::
the

:::::::::
contribution

::
of

::::
each

:::::
source

::
of

::::::::
uncertainty

::
to
:::
the

::::
total

:::::::::
uncertainty.
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M. E., Bataineh, S., El Khalki, E. M., Robaa, S., Boucetta, A., Alsafadi, K., Mamassis, N., Mohammed, S., Fernández-Duque, B., Cheval,

S., Moutia, S., Stevkov, A., Stevkova, S., Luna, M. Y., and Potopová, V.: High temporal variability not trend dominates Mediterranean895

precipitation, Nature, 639, 658–666, https://doi.org/10.1038/s41586-024-08576-6, publisher: Nature Publishing Group, 2025.

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-resolution atmospheric reanalysis over France

with the Safran system, International Journal of Climatology, 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.

Vidal, J.-P., Hingray, B., Magand, C., Sauquet, E., and Ducharne, A.: Hierarchy of climate and hydrological uncertainties in transient low-flow

projections, Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, 2016.900

Ye, Y., Li, Z., and Li, X.: Quantifying the contributions of multi-source uncertainty to multi-time scale indicators in hydrological modeling

under climate change, Journal of Hydrology: Regional Studies, 53, 101 845, https://doi.org/10.1016/j.ejrh.2024.101845, 2024.

45

https://doi.org/10.1080/27678490.2025.2484192
https://doi.org/10.1007/s10584-018-2300-5
https://doi.org/10.5194/hess-29-7023-2025
https://doi.org/10.5194/gmd-10-4257-2017
https://doi.org/10.1007/s10584-016-1794-y
https://doi.org/10.1016/j.earscirev.2022.104055
https://doi.org/10.1038/s41586-024-08576-6
https://doi.org/10.1002/joc.2003
https://doi.org/10.5194/hess-20-3651-2016
https://doi.org/10.1016/j.ejrh.2024.101845

