
Editor decision 
#EC1.1. The manuscript has now been evaluated in light of the referees’ reports and your 
replies. All three referees agree that the study is scientifically sound, well written, and makes 
a valuable contribution to the understanding of uncertainty propagation in climate–hydrology 
modeling chains. The motivation, structure, and scope of the work are particularly 
appreciated, as is the careful interpretation of results across contrasting hydroclimatic 
regimes. The reviewers’ main concerns focused on (i) clarification of several methodological 
aspects related to trend smoothing, internal variability estimation, and variance 
decomposition, and (ii) the interpretation and practical implications of cases where individual 
models or model chains contribute disproportionately to overall uncertainty. Based on your 
responses, these points have been addressed satisfactorily, notably through additional 
explanations and clarifications provided in the author replies and supplementary material. 

We thank the editor for this positive feedback. 
 
#EC1.2. 1. Methodological clarity: Please ensure that the explanations regarding the use of 
cubic spline smoothing, the definition and role of (CR_i(t)), the estimation of internal 
variability, and the construction of (ES_i(t)) are clearly and concisely integrated into the main 
text and/or appendices, so that readers can fully understand the rationale and implications 
without relying on the response documents alone. Where relevant, please briefly clarify the 
suitability of the smoothing approach for precipitation and extreme hydrological indicators. 

Some clarifications have been added to section 2.3 and in the Appendix. We believe that the 
new illustration provided in the Appendix of the revised version will also help to understand 
the differences between the different quantities. Concerning the suitability of the smoothing 
approach, we have added a comment in the new paragraph 5.4.4. 

2. Notation and definitions: Please double-check that the definitions and notation for IV, RV, 
and FV are fully consistent and unambiguous throughout the manuscript, and clarify their 
relationships where needed. 

Definition and notations have been checked and clarified if needed. Again, the illustration will 
probably help to understand the difference between IV, RV, and FV. 

3. Interpretation of discordant models 
While I acknowledge that a full diagnostic analysis is beyond the scope of the present paper, 
please slightly strengthen the Discussion to more explicitly guide readers on how the 
identification of strongly contributing or discordant models could be used in practice. 

A paragraph has been added at the end of Section 5.2. to answer this point. 

 



Reviewer #1 
 
#RC1.1. This study explored the sources of uncertainty in different components of the 
model chain and investigated their contributions to two climate indicators and three 
hydrological indicators. The variation in performance was evaluated based on different 
regional characteristics. I consider the motivation of this paper very good, especially in 
the context of using ensembles for climate projection. The structure of the paper is well 
organized, and the presentation is good as well. However, I have a few concerns about 
the calculation methods that need to be resolved before the paper can be accepted. 

We thank the reviewer for the overall positive comment. We understand these concerns 
and we have proposed some modifications in the revised version. Note that most of 
these points have been addressed in previous articles, in particular the methodological 
paper Evin et al., 2019, https://doi.org/10.1175/JCLI-D-18-0606.1 and the application of 
the same methodology to a EUROCORDEX MME (Evin et al., 2021, 
https://doi.org/10.5194/esd-12-1543-2021). For this manuscript, the aim was 1/ to 
present the results of the uncertainty analysis for a very large ensemble of hydrological 
projections where uncertainty come from GCM, RCM, BAM and HM and 2/ to show how 
such a method allows to better understand where uncertainty models come from (from 
which model category first, but also from which individual models). We choose to explain 
the main assumptions of the method in Section 2 and provide the technical details in the 
Appendix. To answer the reviewer’s concerns, we have added a few additional details in 
Section 2 to clarify some technical points (e.g. estimation) and a new figure has been 
provided in the Appendix to illustrate the different steps of QUALYPSO. We believe that 
this new figure is very helpful to understand the differences between the different 
quantities. 

Evin, Guillaume, Benoit Hingray, Juliette Blanchet, Nicolas Eckert, Samuel Morin, and 
Deborah Verfaillie. « Partitioning Uncertainty Components of an Incomplete Ensemble of 
Climate Projections Using Data Augmentation ». Journal of Climate 32, no 8 (2019): 
2423‑40. https://doi.org/10.1175/JCLI-D-18-0606.1. 

Evin, Guillaume, Samuel Somot, and Benoit Hingray. « Balanced Estimate and 
Uncertainty Assessment of European Climate Change Using the Large EURO-CORDEX 
Regional Climate Model Ensemble ». Earth System Dynamics 12, no 4 (2021): 1543‑69. 
https://doi.org/10.5194/esd-12-1543-2021. 

#RC1.2. What is the purpose of applying cubic splines to the projection and what are the 
effects on the trend analysis (Line 583)? What is the meaning of the smooth trend 
denoted as CRi(t)? Please elaborate on the calculation method. Additionally, is the 
smoothing suitable for precipitation and hydrological indicators (especially max1D)?  

The climate response of a simulation chain, denoted as CRi(t), corresponds to the 
long-term trend of the simulated projection (section 2.3.1). It is assumed to have a 
temporal variation that is inherently gradual and smooth. In this study, this long-term 

https://doi.org/10.1175/JCLI-D-18-0606.1
https://doi.org/10.5194/esd-12-1543-2021
https://doi.org/10.1175/JCLI-D-18-0606.1
https://doi.org/10.5194/esd-12-1543-2021
https://doi.org/10.5194/esd-12-1543-2021


trend is estimated using a cubic spline model applied to the corresponding projection 
available for 1976-2099. As mentioned in the manuscript, other trend functions could be 
used to extract the climate response of each chain in QUALYPSO (linear trend, 
polynomial trend, etc.). 

The calculation method is described in Section 2.3.2 and will be modified to clarify the 
reviewer’s questions. Cubic smoothing splines are implemented by the function 
smooth.spline in R. For all indicators except temperature (e.g. seasonal precipitation, 
annual maxima of daily precipitation, and hydrological indicators), the inter-annual 
variability is relatively large compared to the long-term trend, so the smoothing 
parameter spar was set to 1.1 to reduce the model’s flexibility. This prevents 
misattributing the low-frequency fluctuations caused by inter-annual variability to the 
climate response. For temperature, we apply a lower smoothing parameter value of 1 to 
provide more flexibility. The choice was defended in previous studies (Evin et al., 2021) 
and checked by visual inspection of the climate responses for this study. However, we 
agree that extracting the forced climate response can be difficult for some indicators, for 
example when they often reach a bound (e.g. zero for positive values) and/or when the 
interannual variability is large (as is the case for annual precipitation maxima). This point 
is now discussed in paragraph 5.4.4 in the discussion. 

#RC1.3. The authors may need to showcase some results from this step. 

We thank the reviewer for this suggestion. An illustration of the climate responses 
obtained for one pixel and one catchment has been added to the manuscript in the 
Appendix (new figure A1). 

#RC1.4. In the estimation of internal variability (Lines 593–600), why does the method 
first estimate Di(t) as the difference between the raw projection (Yi(t)) and CRi(t), rather 
than directly simulating variability from the raw projection over the target period? Does 
this step reduce or increase the internal variability? Based on the results, the internal 
variability is super large—could this be because the smoothing is not applicable? 

As indicated in Section 2.3.1, The high- to mid-frequency fluctuations in the simulated 
projections result solely from interannual variability. Our approach assumes that it is 
reasonable to consider a trend model to estimate the climate response of a chain, and in 
turn fluctuations around, due to interannual variability (deviations from the climate 
response). Hingray et al. (2019) have shown that this assumption allows providing, for all 
uncertainty components, more precise estimates than estimates obtained with time-slice 
approaches. It does not reduce neither it increases the interannual variability but rather 
separate two components of the total uncertainty: variability of the climate responses 
and interannual variability. This point is also discussed in the introduction: “Disentangling 
the climate response of a given chain from stochastic fluctuations caused by IV is key for 
a relevant uncertainty analysis. Estimating the climate response can be challenging, 
particularly for indicators such as precipitation, where IV is significant (Hingray et al., 
2019). This difficulty arises because climate outputs blend the climate responses with 
chaotic fluctuations from IV, which propagate through all the subsequent models in the 
chain. If for a given GCM multiple members are available and used for subsequent 
simulations, the climate response of a modeling chain forced by this GCM can be 



estimated with the multi-member mean of the simulations, and IV can be estimated with 
the inter-member variability. However, many hydrological studies rely on single-member 
and time-slice GCM experiments. As a consequence, IV cannot be properly filtered out 
and, when they are not simply disregarded, stochastic fluctuations from IV are often 
attributed to GCM uncertainty (see, e.g., Bosshard et al., 2013; Vetter et al., 2017; 
Gangrade et al., 2020).” It is true that interannual variability is often large in hydrological 
impact studies, because precipitation and hydrological indicators are highly variable from 
one year to the next. 

Hingray, Benoit, Juliette Blanchet, Guillaume Evin, and Jean-Philippe Vidal. « 
Uncertainty Component Estimates in Transient Climate Projections ». Climate 
Dynamics 53, no 5 (2019): 2501‑16. https://doi.org/10.1007/s00382-019-04635-1. 

#RC1.5. Please elaborate on the calculation of ESi(t), using one example (e.g., RCP, s).  
Why is a linear regression model applied, and how is it used (Line 608)?For Equation 
(A7), does this equation still work if incomplete or unbalanced ensembles are used? 
How are the effects of incomplete ensembles reflected in the results? Authors failed to 
explain this in detail since this is the second major question to be solved. 

We thank the reviewer for this comment. The description of the estimation step has been 
improved in the revised version (paragraph 2.3.4). In short, the individual effects are 
estimated at once using the linear model A7 which describes a sum of additive terms 
(Samson et al., 2013). The estimation is implemented by the R function lm using 
least-squares and standard recipes of numerical linear algebra (QR-decomposition). 

Note that in a former application of QUALYPSO, the ANOVA was estimated with a 
Bayesian approach combined with a data augmentation technique (Evin et al. 2019). 
Estimates obtained with both approaches are almost identical. Both approaches provide 
unbiased estimates even when the ensemble is incomplete (see also section 8.1 in Evin 
et al., 2021). Compared to the regression approach, the Bayesian approach has the 
advantage of providing the uncertainty of these estimates. However, it is computationally 
demanding (roughly 100 times more than the regression approach). Estimates using the 
regression method are also more stable because they do not rely on the sampling of 
posterior distributions.  

Evin, G.; Hingray, B.; Blanchet, J.; Eckert, N.; Morin, S.; Verfaillie, D. Partitioning 
Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data 
Augmentation. J. Climate 2019, 32 (8), 2423–2440. 
https://doi.org/10.1175/JCLI-D-18-0606.1. 
Evin, G.; Somot, S.; Hingray, B. Balanced Estimate and Uncertainty Assessment of 
European Climate Change Using the Large EURO-CORDEX Regional Climate Model 
Ensemble. Earth System Dynamics 2021, 12 (4), 1543–1569. 
https://doi.org/10.5194/esd-12-1543-2021. 
Sansom, Philip G., David B. Stephenson, Christopher A. T. Ferro, Giuseppe Zappa, et 
Len Shaffrey. Simple Uncertainty Frameworks for Selecting Weighting Schemes and 
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Interpreting Multimodel Ensemble Climate Change Experiments. Journal of Climate. 15 
juin 2013. https://doi.org/10.1175/JCLI-D-12-00462.1 . 
 

#RC1.8. What is the difference between IV, RV, and FV? Should they use the same 
definition but with different superscripts/subscripts? 

IV is the internal variability, i.e. the standard deviation of the fluctuations around the 
climate change responses (Eq. A8). RV is the variance of the residuals of the ANOVA 
model. It corresponds to the unexplained variance of the ANOVA model, i.e the variance 
of the climate changes responses that can not be explained by the sum of the main 
effects of the different models (GCM, RCM, HM) considered in the modelling chains. 
FVis the fraction of total uncertainty variance CCRV(t) resulting from each source of 
uncertainty (Eq. A10). For a given future time, one FV value is computed for each 
category of uncertainty source (i.e. for scenario uncertainty, GCM uncertainty, RCM 
uncertainty, HM uncertainty and RV) and those FV values sum to 1. They are different 
quantities, with different definitions. As indicated above, we choose to describe these 
technical details in the Appendix. However, we understand that it might be difficult to 
understand how all these quantities differ. The illustration of QUALYPSO which has been 
added in the Appendix should clarify these differences. 

#RC1.9. Does the selection of the time span length (i.e., 30 years in this study) affect the 
results, since a longer time span would likely lead to larger internal variability? 

As indicated at l. 591-592, the climate change responses are taken as the absolute or 
relative differences of the climate responses for the center of the 30-year time period. As 
the climate response is estimated with a trend model (here a cubic spline), no time span 
is considered to estimate it. For the sake of simplicity, we refer to 30-year periods but the 
climate response of a given such period is the value of the trend model for the year at 
the center of this period. Consequently, the time span does not affect the climate change 
response. It neither affects the internal variability which is estimated from the annual 
deviations from the climate response (i.e. the long-term trend). 

 

https://doi.org/10.1175/JCLI-D-12-00462.1


Reviewer #2 

#2.1. The manuscript “Uncertainty sources in a large ensemble of hydrological 
projections: Regional Climate Models and Internal Variability matter” by Evin et al. 
investigates the outcomes of several climate-to-hydrology modeling chains over the area 
of France. The perspective is to quantify the uncertainty introduced at any level of the 
chain by the various combinations of models that can be used at any level of the chain. 
This study is of great interest because it highlights the value and limitations of future 
hydrological projections, providing advice on which hydrological indicators can be 
predicted more robustly and where within the study area. 

We thank the reviewer for this positive feedback.  

#2.2. The work is a great effort of synthesis but leaves incomplete a fundamental point 
that I believe should be extended and integrated in the work. In the Discussion section 
(and recalled also in the Conclusions) the authors note that, in some cases, some 
models/combinations of models are discordant, then contributing significantly to the 
overall uncertainty. They suggest (page 26) to “look carefully at these deviating models 
and understand the reasons behind the atypical behavior”; then, if the model deviates for 
“wrong reasons (numerical artifacts, bugs, model inadequacy)” should be discarded, 
otherwise the analyst should investigate the reason of the dissimilarity further. In this 
case, the authors acknowledge the possibility that the model is superior to others. This 
point is extremely important, and the authors also acknowledge it at the end of page 26 
and in the Conclusions section. 

However, I would have expected a more thorough investigation of this point, i.e. a 
deeper analysis of “what to do” in these cases. Clearly, it is not possible to provide 
general instructions valid for any case, but the study provides a very good base to 
identify a few specific cases to develop in more detail. For instance, one could look at a 
specific catchment/climate regime and decide whether one model/model chain should be 
discarded or, on the contrary, should be preferred because more reliable in a specific 
context (see e.g. the cases reported in section 5.4.3). I understand that this is not an 
easy task, but it is necessary to make the paper much more than a descriptive product. 
 

We thank the reviewer for this comment and we agree that this is a crucial point that was 
a bit eluded in the manuscript. A paragraph has been added in the subsection 5.2 of the 
revised version. We also agree that a detailed and motivated selection for a specific 
case would be interesting. However, this is not an easy task and this would probably 
require an additional section. As the manuscript is already rather long, we leave this 
detailed illustration for a further analysis. 

The recommendation made to the end users of the simulations is to examine summary 
sheets produced at different levels of aggregation, from local (station level) to regional 
(hydrographic region level), and make their own choices. In our opinion, it is not possible 
to recommend a set of models a priori without knowing how the data will be used. 
Indeed, the choice must be guided by users’ needs—for example, whether only 



streamflow is required, or streamflow together with other variables, or streamflow at a 
prescribed set of simulation points available. The choice is constrained by the models’ 
ability to provide all desired variables at the points of interest.  

For your information, note that the Explore2 project produced two reports (Sauquet and 
Héraut, 2023, Sauquet et al., 2025, in French) dedicated to the diagnostic assessments 
that have been performed for all catchments. They provide an overview of the qualities 
and performance of surface hydrology and hydrogeological models when driven by the 
SAFRAN reanalysis. Sauquet and Héraut (2023) also provide recommendations to the 
end users to help them select or filter some model chains for a specific catchment. 
Uncertainty assessments shown in the manuscript are thus complemented by a series of 
thorough diagnostics on the reference period. The purpose of these diagnostics is not to 
pit the models against one another; rather, it aims to support the selection of a group of 
models—when several are available—to be prioritized in a prospective exercise. In 
addition, Héraut et al. (2024) describes some choices which have been to identify 
atypical simulations: 1. Using the mean annual flow QA on the reference period: a 
simulation is not plausible if its QA is outside the range [0.5*med(QA), 2*med(QA)], 
where med(QA) is the multi-model median of all QA values; 2. Using the QA anomaly 
between the end-of-century QA and the QA for the reference period ∆QA: a simulation is 
not plausible if ∆QA is outside the range [med(∆QA) +/- 3*𝜎(∆QA)], where med(∆QA) 
and 𝜎(∆QA) are the multi-model median and standard deviation of all ∆QA values, 
respectively. If, for one catchment, 50% of the projections corresponding to an 
hydrological model are not plausible, then, it can be considered that hydrological 
projections are flawed for this model (imperfect representation of the hydrological 
processes, wrong drained area) and they are all rejected. This loose set of criteria 
mainly aims at automatically filtering simulations which exhibit obvious shortcomings. 

As an illustration, these recommendations have been followed for a study dedicated to 
the future water resources of the Isere department, an area located in the French Alps 
(see report in French: 
https://www.isere.fr/sites/default/files/2025-05/livrets-methodologiques.pdf). A 
compromise between models’ performances and diversity was made and the set of 
selected hydrological models were MORDOR-SD, GRSD, SMASH, SIM2 et J2000 for 
high flows, MORDOR-SD, GRSD, SMASH et SIM2 for mean flows, and MORDOR-SD, 
GRSD, SMASH and J2000 for low flows. 

It is worth pointing out that the discrepancies observed between reference data and 
simulated data are not solely attributable to the models. The analysis relied on reference 
datasets. Despite the care taken during the selection of reference points and the filtering 
of outlier data, reference datasets may still contain errors or residual influences. In 
addition, forcings in mountainous areas (which are inherently heterogeneous) may lack 
precision or, more generally, may fail to capture convective precipitation. 

Before any use of hydrological projections, it should be recalled that strong model 
performance under present-day conditions does not necessarily imply reliability under 
climate change. This limitation is particularly pronounced for empirically based or 

https://www.isere.fr/sites/default/files/2025-05/livrets-methodologiques.pdf


conceptual models, which rely on empirical relationships and parameterizations 
calibrated to recent climate conditions. Such models are often finely tuned to reproduce 
observed behavior as closely as possible. This is, for example, the case for conceptual 
hydrological models in which snowmelt is represented using temperature-index 
approaches (e.g., degree-day methods) and evapotranspiration losses are estimated 
from potential evapotranspiration formulations. As a result, these carefully calibrated 
models often exhibit high performance and may outperform physically based models that 
represent processes more explicitly. However, the ability to reproduce past observations 
does not guarantee that a model will adequately represent processes under altered 
hydroclimatic conditions. Model evaluation is therefore a critical issue in model selection. 
While it must assess the capacity to reproduce observations, it should also 
examine—when possible—the temporal transferability of models. This second aspect of 
evaluation is difficult, and often impossible, but remains essential. A particularly critical 
issue concerns evapotranspiration losses. The feedbacks of increasing atmospheric 
CO2 on plant phenology and, consequently, on evapotranspiration are typically not 
represented in hydrological models. These feedbacks may lead to substantially different 
future water balances. Physically based models that allow exploration of such 
interactions therefore deserve consideration, even if their performance is lower than that 
of highly calibrated empirical models. Ongoing climate and hydrological changes may 
provide opportunities to assess model behavior under modified conditions, although 
targeted and enhanced observations will likely be required to support such evaluations. 

In an ideal world, the research community should examine the divergences between 
models driven by the same climate projections and investigate their origins (e.g. by 
running additional experiments). For example, in Explore2, the hydrological model 
ORCHIDEE shows important discrepancies with the other hydrological models for many 
catchments. In continuation of Explore2, developers of the model ORCHIDEE have 
clearly identified what parts of the land surface processes could be better represented 
(groundwater module for drainage, snow representation in mountainous catchments, 
Huand et al., 2024). On the other hand, developers of conceptual models have also 
many perspectives to improve the transferability of their modelling framework for future 
climates, in particular regarding the evolution of the vegetation (land use, vegetation 
type, interactions between vegetation and the carbon cycle). 

Héraut, Louis; Vidal, Jean-Philippe; Évin, Guillaume; Sauquet, Éric,"Notice de lecture 
des fiches de résultats des modèles hydrologiques de surface", Recherche Data Gouv, 
2024. INRAE. https://doi.org/10.57745/6YNIUF 

Huang, Peng, Agnès Ducharne, Lucia Rinchiuso, et al. « Multi-Objective Calibration and 
Evaluation of the ORCHIDEE Land Surface Model over France at High Resolution ». 
Hydrology and Earth System Sciences 28, no 19 (2024): 4455‑76. 
https://doi.org/10.5194/hess-28-4455-2024. 
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https://doi.org/10.57745/6YNIUF
https://doi.org/10.5194/hess-28-4455-2024
https://doi.org/10.5194/hess-28-4455-2024


Sauquet, Éric, Louis Héraut, Jérémie Bonneau, Alix Reverdy, Laurent Strohmenger, and 
Jean-Philippe Vidal. Diagnostic des modèles hydrologiques : Des données aux résultats. 
Recherche Data Gouv, 2025. INRAE. https://doi.org/10.57745/S6PQXD   

Sauquet, E, and L. Héraut. « Notice de lecture des fiches « diagnostic » des modèles 
hydrologiques ». Recherche Data Gouv, 2024, INRAE. 
https://doi.org/10.57745/MDHS0D.  

https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/S6PQXD
https://doi.org/10.57745/S6PQXD
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Reviewing #3 

#3.1. The manuscript titled Uncertainty sources in a large ensemble of hydrological 
projections: Regional Climate Models and Internal Variability matter by Evin et al. is well 
written and presents a comprehensive and carefully structured discussion, along with 
clearly articulated limitations and conclusions. I particularly appreciated the depth and 
clarity of the discussion section. The proposed methodology provides a robust 
framework to quantify uncertainties arising from multiple sources, including GCMs, 
RCMs, HMs, and internal variability, across different hydrological regimes, which I found 
both insightful and highly relevant. 

The discussion provides a comprehensive interpretation of the results and highlights key 
findings regarding the relative contributions of individual models to overall uncertainty. In 
particular, the finding such as that one or a small number of models can contribute 
disproportionately to the total uncertainty is both interesting and well-supported. A 
deeper investigation into the underlying reasons for inter-model differences or the 
identification of hydrological conditions under which certain models may perform better 
could form the basis of a separate study. Nevertheless, by focusing solely on model 
output (data alone), the present work opens up a wide range of future research 
directions. 

Overall, the manuscript is scientifically sound, clearly presented, and well-motivated, and 
I wholeheartedly recommend it for publication. 

We sincerely thank the reviewer for this very encouraging and positive feedback. 
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