Reviewer #1

#RC1.1. This study explored the sources of uncertainty in different components of the
model chain and investigated their contributions to two climate indicators and three
hydrological indicators. The variation in performance was evaluated based on different
regional characteristics. | consider the motivation of this paper very good, especially in
the context of using ensembles for climate projection. The structure of the paper is well
organized, and the presentation is good as well. However, | have a few concerns about
the calculation methods that need to be resolved before the paper can be accepted.

We thank the reviewer for the overall positive comment. We understand these concerns
and we will improve these aspects in the revised version. Most of these points have
been addressed in previous articles, in particular the methodological paper Evin et al.,
2019, https://doi.org/10.1175/JCLI-D-18-0606.1 and the application of the same
methodology to a EUROCORDEX MME (Evin et al., 2021,
https://doi.org/10.5194/esd-12-1543-2021). For this manuscript, the aim was 1/ to
present the results of the uncertainty analysis for a very large ensemble of hydrological
projections where uncertainty come from GCM, RCM, BAM and HM and 2/ to show how
such a method allows to better understand where uncertainty models come from (from
which model category first, but also from which individual models). We choose to explain
the main assumptions of the method in Section 2 and provide the technical details in the
Appendix. To answer the reviewer’s concerns, we will provide a few additional details in
Section 2 to clarify some technical points (e.g. estimation) and a new figure will be
provided in the Appendix to illustrate the different steps of QUALYPSO.
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#RC1.2. What is the purpose of applying cubic splines to the projection and what are the
effects on the trend analysis (Line 583)? What is the meaning of the smooth trend
denoted as CRIi(t)? Please elaborate on the calculation method. Additionally, is the
smoothing suitable for precipitation and hydrological indicators (especially max1D)?

The climate response of a simulation chain, denoted as CRi(t), corresponds to the
long-term trend of the simulated projection (section 2.3.1). It is assumed to have a
temporal variation that is inherently gradual and smooth. In this study, this long-term
trend is estimated using a cubic spline model applied to the corresponding projection
available for 1976-2099. As mentioned in the manuscript, other trend functions could be



used to extract the climate response of each chain in QUALYPSO (linear trend,
polynomial trend, etc.).

The calculation method is described in Section 2.3.2 and will be modified to clarify the
reviewer’s questions. Cubic smoothing splines are implemented by the function
smooth.spline in R. For all indicators except temperature (e.g. seasonal precipitation,
annual maxima of daily precipitation, and hydrological indicators), the inter-annual
variability is relatively large compared to the long-term trend, so the smoothing
parameter spar was set to 1.1 to reduce the model’s flexibility. This prevents
misattributing the low-frequency fluctuations caused by inter-annual variability to the
climate response. For temperature, we apply a lower smoothing parameter value of 1 to
provide more flexibility. The choice was defended in previous studies (Evin et al., 2021)
and checked by visual inspection of the climate responses for this study. However, we
agree that extracting the forced climate response can be difficult for some indicators, for
example when they often reach a bound (e.g. zero for positive values) and/or when the
interannual variability is large (as is the case for annual precipitation maxima). This point
will be discussed in a new paragraph in the discussion.

#RC1.3. The authors may need to showcase some results from this step.

We thank the reviewer for this suggestion. An illustration of the climate responses
obtained for one pixel and one catchment will be added to the manuscript in the
Appendix.

#RC1.4. In the estimation of internal variability (Lines 593—600), why does the method
first estimate Di(t) as the difference between the raw projection (Yi(t)) and CRi(t), rather
than directly simulating variability from the raw projection over the target period? Does
this step reduce or increase the internal variability? Based on the results, the internal
variability is super large—could this be because the smoothing is not applicable?

As indicated in Section 2.3.1, The high- to mid-frequency fluctuations in the simulated
projections result solely from interannual variability. Our approach assumes that it is
reasonable to consider a trend model to estimate the climate response of a chain, and in
turn fluctuations around, due to interannual variability (deviations from the climate
response). Hingray et al. (2019) have shown that this assumption allows providing, for all
uncertainty components, more precise estimates than estimates obtained with time-slice
approaches. It does not reduce neither it increases the interannual variability but rather
separate two components of the total uncertainty: variability of the climate responses
and interannual variability. This point is also discussed in the introduction: “Disentangling
the climate response of a given chain from stochastic fluctuations caused by IV is key for
a relevant uncertainty analysis. Estimating the climate response can be challenging,
particularly for indicators such as precipitation, where 1V is significant (Hingray et al.,
2019). This difficulty arises because climate outputs blend the climate responses with
chaotic fluctuations from |V, which propagate through all the subsequent models in the
chain. If for a given GCM multiple members are available and used for subsequent
simulations, the climate response of a modeling chain forced by this GCM can be
estimated with the multi-member mean of the simulations, and IV can be estimated with
the inter-member variability. However, many hydrological studies rely on single-member



and time-slice GCM experiments. As a consequence, |V cannot be properly filtered out
and, when they are not simply disregarded, stochastic fluctuations from |V are often
attributed to GCM uncertainty (see, e.g., Bosshard et al., 2013; Vetter et al., 2017;
Gangrade et al., 2020).” It is true that interannual variability is often large in hydrological
impact studies, because precipitation and hydrological indicators are highly variable from
one year to the next.
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#RC1.5. Please elaborate on the calculation of ESi(t), using one example (e.g., RCP, s).
Why is a linear regression model applied, and how is it used (Line 608)?For Equation
(A7), does this equation still work if incomplete or unbalanced ensembles are used?
How are the effects of incomplete ensembles reflected in the results? Authors failed to
explain this in detail since this is the second major question to be solved.

We thank the reviewer for this comment. The description of the estimation step will be
extended and improved in the revised version. In short, the individual effects are
estimated at once using the linear model A7 which describes a sum of additive terms
(Samson et al., 2013). The estimation is implemented by the R function Im using
least-squares (see I. 608 of the original manuscript) and standard recipes of numerical
linear algebra (QR-decomposition).

Note that in a former application of QUALYPSO, the ANOVA was estimated with a
Bayesian approach combined with a data augmentation technique (Evin et al. 2019).
Estimates obtained with both approaches are almost identical. Both approaches provide
unbiased estimates even when the ensemble is incomplete (see also section 8.1 in Evin
et al., 2021). Compared to the regression approach, the Bayesian approach has the
advantage of providing the uncertainty of these estimates. However, it is computationally
demanding (roughly 100 times more than the regression approach). Estimates using the
regression method are also more stable because they do not rely on the sampling of
posterior distributions.
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#RC1.8. What is the difference between IV, RV, and FV? Should they use the same
definition but with different superscripts/subscripts?

IV is the internal variability, i.e. the standard deviation of the fluctuations around the
climate change responses (Eq. A8). RV is the variance of the residuals (l. 580) of the
ANOVA model. It corresponds to the unexplained variance of the ANOVA model, i.e the
variance of the climate changes responses that can not be explained by the sum of the
main effects of the different models (GCM, RCM, HM) considered in the modelling
chains. FVis the fraction of total uncertainty variance CCRV(t) resulting from each
source of uncertainty (Eq. A10). For a given future time, one FV value is computed for
each category of uncertainty source (i.e. for scenario uncertainty, GCM uncertainty, RCM
uncertainty, HM uncertainty and RV) and those FV values sum to 1. They are different
quantities, with different definitions. The illustration of QUALYPSO which will be added
should clarify these differences.

#RC1.9. Does the selection of the time span length (i.e., 30 years in this study) affect the
results, since a longer time span would likely lead to larger internal variability?

As indicated at |. 591-592, the climate change responses are taken as the absolute or
relative differences of the climate responses for the center of the 30-year time period. As
the climate response is estimated with a trend model (here a cubic spline), no time span
is considered to estimate it. For the sake of simplicity, we refer to 30-year periods but the
climate response of a given such period is the value of the trend model for the year at
the center of this period. Consequently, the time span does not affect the climate change
response. It neither affects the internal variability which is estimated from the annual
deviations from the climate response (i.e. the long-term trend).



