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Abstract. In permafrost regions, freeze-thaw landslides (FTLs) are a typical geological hazard that poses significant threats to 

environments and infrastructure at local to regional scales. However, traditional visual interpretation and also new deep 

learning methods still have limitations in their ability to detect and recognize FTLs at high precision, especially for hidden and 

small FTLs. Here we propose a semi-automatic iterative recognition method that combines InSAR surface deformation, multi-

source images, and topographic factors to achieve a more accurate FTLs dataset for the Qilian Mountain permafrost region. 15 

The methodology involves four key steps: (1) acquiring surface deformation data from SBAS-InSAR with a deformation rate 

threshold of ≥50 mm·a⁻¹; (2) statistically analyzing topographic factors based on an existing FTLs inventory to determine 

initial threshold ranges; (3) extracting overlapping mask regions of these factors; and (4) verifying FTL boundaries through 

visual interpretation of multi-source remote sensing images and iteratively optimizing the sample database until deformation 

rates stabilize. Results indicate that after five iterations, 98 new FTLs were identified, primarily consisting of hidden and small-20 

scale FTLs. The method achieved a true positive rate of 93.3%, indicating high accuracy. In addition, we found that areas with 

larger absolute values of deformation rate and higher seasonal deformations are more prone to FTLs. The application of this 

method demonstrates highly accurate and efficient FTL identification, providing a new technical approach for monitoring and 

assessing the FTLs. 

1 Introduction 25 

The Qilian Mountains, located in the northeastern part of the Qinghai-Tibet Plateau in China, are characterized by complex 

terrain and represent a typical mountain permafrost environment that is highly fragile and sensitive to climate change (Wang 

et al., 2006; Chen et al., 2011; Guo et al., 2024). The region has experienced significant temperature increases, leading to 

accelerated permafrost degradation and a frequent occurrence of geologic hazards such as freeze-thaw landslides (FTLs; Niu 

et al., 2016; Jackson, 2022; Deng et al., 2024). Freeze-thaw-related landslides serve as direct indicators of permafrost 30 

degradation, typically exhibiting characteristic geomorphic features including crown cracks, subvertical scarps, radial flank 

fractures, and transverse toe ridges, often occurring on gentle slopes with well-preserved but distinctly bounded sliding bodies 

displaying circular to elongated morphologies (Highland and Bobrowsky, 2008; Zhang et al., 2024). Extending the classical 

landslide definition (Hungr et al., 2014), we define freeze-thaw landslides (FTLs) as a distinct class of slope failures where 

cyclic freeze-thaw processes serve as the dominant triggering mechanism (Streletskiy et al., 2025), encompassing but are not 35 

limited to retrogressive thaw slumps (RTS) and active layer detachments (ALD). Fundamentally, these FTLs are ultimately 

driven by climate-induced changes including increased rainfall, rising temperatures, and deepening of the active layer, which 

precondition slopes for freeze-thaw destabilization (Zhang et al., 2008; Harris et al., 2009; Jin et al., 2009; Yang et al., 2022;). 

In recent years, the elevation at which FTLs occur has increased, rising by an average of approximately 130 m over the past 

decade (Chen et al., 2024). These landslides not only damage local infrastructure (e.g., roads, bridges, buildings, etc.), they 40 
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threaten the lives and properties of residents and also negatively affect the environment by destroying vegetation and altering 

surface runoff, which in turn affects the balance and stability of the entire ecosystem (Li et al., 2022; Liang et al., 2023). 

Landslide activity triggered by permafrost degradation is a significant geologic hazards that is a direct consequence of climate 

change (Patton et al., 2019). The volume expansion during the phase change as water freezes leads to an increase in internal 

pore pressure and loosens the soil structure. During summer thaw and subsidence, the continuous infiltration of water leads to 45 

a decrease in both frictional resistance and shear strength, which increases the water content and weight of the soil slope, 

resulting in a loss of support of the subsoil layer due to softening, sliding of the superstructure, slope instability, and ultimately, 

the formation of FTLs (Gruber and Haeberli, 2007). 

Traditional methods for identifying FTLs primarily rely on visual interpretation of optical imagery and remote sensing image 

identification methods, combined with deep learning. Visual interpretation of optical images, as a conventional approach, 50 

benefits from interpreters' expertise in comprehensively analyzing complex terrain features, demonstrating successful 

identification capabilities. For example, Peng et al. (2024) used visual interpretation of optical images to compile the first 

inventory of hillslope thermokarst in the Qilian Mountains’ permafrost region, detailing the distribution of these terrain features 

in the area. Similarly, Zhang et al. (2024) compiled an inventory of FTLs in the Hexi Corridor by visual interpretation, and 

revealed the spatial distribution of landslides in the area. However, visual interpretation of optical images is limited by weather 55 

conditions, vegetation cover, and human experience, making it difficult to comprehensively and accurately identify hidden 

(ΔNDVI>-0.1) and small (<10 ha) FTLs (Fiorucci et al., 2019). The advantage of deep learning is that it is extremely efficient 

and can quickly process large areas of remote sensing imagery, which greatly reduces the recognition time. Once a model is 

trained, the recognition of new images can be completed quickly, making it suitable for large-scale landslide surveys. For 

example, Xia et al. (2022) utilized deep learning combined with a semi-automatic iterative approach to compile the first 60 

inventory of retrogressive thaw slumps (RTSs) along the Qinghai-Tibet Railway, significantly improving the efficiency and 

accuracy of RTS identification. Despite these advancements, identification accuracy still needs to be improved due to the 

complexity of the FTLs, and limitations arising from the sample data required for model training, which still makes the process 

time-consuming and laborious (Cheng et al., 2024). Therefore, the development of a semi-automatic iterative identification 

method by combining the advantages of the two methods is an important direction for improved FTLs identification. 65 

The occurrence of FTLs is closely related to soil freeze-thaw processes, which cause significant surface deformation that can 

trigger landslide hazards. Interferometric Synthetic Aperture Radar (InSAR) technology, with its all-weather, day-and-night 

monitoring capabilities, provides high-precision surface deformation data, offering essential support for the identification of 

FTLs (Du et al., 2023; Jiao et al., 2023). Combining InSAR with manual interpretation can further enhance identification 

efficiency and accuracy. This study therefore proposes a semi-automatic iterative identification method based on InSAR, 70 

leveraging the high-precision deformation monitoring capabilities and the experiential advantages of manual interpretation to 

achieve efficient and accurate FTL identification. This approach not only overcomes the limitations of traditional optical 

imagery but also provides a new technical framework for the early identification and warning of FTLs. 

2 Study Area and Data 

2.1 Study Area 75 

The Qilian Mountains, serving as a crucial ecological barrier and water conservation area in northwestern China, are 

characterized by extensive permafrost that underlays approximately 50% of the region's total area (Sheng, 2020; Peng et al., 

2024). The region experiences a continental alpine semi-humid mountain climate with an average annual temperature of 0.30°C 

(Jin et al., 2022), and precipitation primarily concentrated between May and September (Chen et al., 2018). Due to human 

activities, climate change, earthquakes, and other factors, permafrost has been continuously degraded, triggering geologic 80 

hazards such as shallow landslides, deep-seated landslides, debris flows, and rockfalls, all of which pose direct threats to local 
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economies, ecosystems, and safety. The study area is located in the eastern part of the Qilian Mountains’ permafrost region 

(99.6–101.1°E, 37.4–38.4°N; Fig. 1), with an elevation range of 3,355–4,809 m. The complex topography, variable climatic 

conditions, and frequent freeze-thaw cycles make it a high incidence area of FTLs (Fig. 1). The existing FTLs inventory for 

this area can serve as the basis for the semi-automatic iterative identification method based. 85 

 
Figure 1 The study area and the existing FTLs (red points). 

2.2 Data 

This study utilizes multiple data sources for the identification and dynamic monitoring of FTLs, including high-resolution 

satellite imagery, atmospheric data, digital elevation model (DEM), normalized difference vegetation index (NDVI), and field 90 

survey data. 

2.2.1 Sentinel-1 SAR 

The Sentinel-1A satellite is equipped with a C-band sensor (central frequency of 5.4 GHz, wavelength of approximately 5.55 

cm) and has a revisit cycle of 12 days. This study uses single look complex data from the descending orbit (path 33), with an 

image time span from March 25, 2017 to December 28, 2019, obtained from https://search.asf.alaska.edu/. A total of 82 scenes 95 

were acquired to extract time-series surface deformation data. 

2.2.2 Reanalysis Data 

The 5th generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) is used for 

atmospheric correction in InSAR data processing. ERA5 offers high temporal and spatial resolution, enabling precise modeling 

of atmospheric delays and improving the accuracy of deformation time series. Data are obtained for the period from 2017 to 100 

2019 and are critical for enhancing deformation monitoring precision (https://cds.climate.copernicus.eu/). 

2.2.3 Precision Orbit Data 

To improve the registration accuracy of SAR data and correct orbital errors, this study employs precision orbit data released 

by the Alaska Satellite Facility (ASF, https://s1qc.asf.alaska.edu/aux_poeorb/). 
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2.2.4 Digital Elevation Model 105 

The DEM data, sourced from the Shuttle Radar Topography Mission (SRTM1) by the United States Geological Survey (USGS), 

has a spatial resolution of 30 m (Farr et al., 2007; https://www.earthdata.nasa.gov/sensors/srtm). These data are used for 

enhanced spectral diversity registration in Sentinel-1 terrain observation by progressive scan mode, and removal of topographic 

phase. Additionally, they are utilized to extract topographic factors such as elevation, slope, and aspect. 

2.2.5 Normalized Difference Vegetation Index 110 

The Landsat NDVI dataset (Qilian Mountains region, 1986–2019) is generated from Landsat 5 TM, Landsat 7 ETM+, and 

Landsat 8 OLI imagery, with a spatial resolution of 30 m. The dataset provides the maximum NDVI values from May to 

September each year (http://www.ncdc.ac.cn/). NDVI data for 2017 and 2019 are selected to calculate the NDVI change 

(ΔNDVI = NDVI2019 − NDVI2017) . 

2.2.6 Remote Sensing Imagery 115 

We collect multi-source remote sensing imagery, including Google Earth Pro, ESRI World Imagery, Omap, PlanetScope, and 

UAV images (Table 1). Google Earth Pro provides high-resolution imagery (0.6–15 m) from the QuickBird and IKONOS 

satellites, offering intuitive visualization of surface cover and temporal changes in the study area. ESRI World Imagery offers 

historical remote sensing images since 2014 with a spatial resolution of <1 m, enabling the capture of dynamic changes in 

surface features through time-series comparisons. Omap, also with a spatial resolution of <1 m, is sourced from the JiLin-1 120 

satellite and provides high-resolution images from 2023 onwards. PlanetScope, acquired for July and August 2019, has a 

spatial resolution of 3–5 m. UAV images, with a spatial resolution of approximately 15 cm, were collected during field surveys 

in August 2024, supplementing satellite data. These multi-source remote sensing datasets provide multi-dimensional support 

for FTLs identification and dynamic monitoring. 

2.2.7 Freeze-Thaw Landslides  125 

The existing FTLs datasets are basic validation products primarily from the published (Peng et al., 2024; Zhang et al., 2024) 

that contain 167 FTLs and 17 RTSs in the study area. 
Table 1 List of data used for manual interpretation and mapping of FTL features. 

Software platform Acquisition time Resolution Source/reference 

Google Earth Pro Since 1999 0.6–15 m Quickbird, IKONOS 

ESRI World Imagery Since 2014 < 1 m WorldView-3, WorldView-4, etc. 

Omap Since 2023 < 1 m JiLin-1  

PlanetScope July, August 2019 3–5 m Planet Team (2017) 

UAV images August 2024 ~15 cm Field surveys 

3 Methods 

3.1 Semi-Automatic Iterative Identification  130 

3.1.1 SBAS-InSAR Processing 

This study employs InSAR Scientific Computing Environment (ISCE) and MintPy software to process Sentinel-1 SAR data 

for extracting time-series surface deformation. We used Small Baseline Subset InSAR (SBAS-InSAR) to reduce the effects of 

spatiotemporal decorrelation by selecting interferograms with small spatial and temporal baselines and utilizing multi-master 

image datasets (Berardino et al., 2002; Usai, 2003; Lanari et al., 2004), thus effectively removing interference from low 135 

https://doi.org/10.5194/egusphere-2025-2726
Preprint. Discussion started: 1 July 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

coherence regions. Studies have shown that SBAS-InSAR performs well in monitoring surface deformation in permafrost 

regions (Wang et al., 2020; Peng et al., 2023). 

The ISCE software is used to process SAR data, generating 395 interferograms between SAR images and their adjacent 

acquisitions. The orbital phase error is first corrected using precision orbit data to improve the accuracy of the interferograms. 

Considering the impact of noise and resolution, multi-looking processing with a 2×7 window in the azimuth and range 140 

directions is applied to the generated interferograms, resulting in a resolution of approximately 30 m. The topographic phase 

is simulated using the DEM and removed from the interferograms. Subsequently, an adaptive spectral filter is applied to 

generate differential interferograms, and the Goldstein filter algorithm is employed to suppress noise in all interferograms 

(Goldstein and Werner, 1998). Finally, phase unwrapping is performed using the minimum cost flow method (Costantini, 

1998). During interferogram generation, the master image is selected as March 25, 2017 with a connection number of 5, a 145 

temporal baseline limit of 60 days, and a spatial baseline limit of 150 m to ensure the quality and stability of the interferograms. 

Based on the interferograms generated by ISCE, the MintPy software is used to extract high-precision time-series surface 

deformation. The MintPy workflow includes a number of steps. First, the weights of the interferograms are determined by 

their coherence, and a coherence-based filtering method is used to construct the interferogram network, removing 

interferometric pairs with poor coherence (Perissin and Wang, 2012). Next, the time-series of the original phase is resolved by 150 

minimizing phase residuals and is corrected temporally relative to the first scene of the dataset and spatially relative to a 

reference point. The reference point is set on the bedrock of the central ridge in the study area (37.853°N, 100.753°E), which 

exhibits high coherence (0.98), minimal atmospheric influence, and negligible deformation, satisfying the requirements for 

high-precision deformation monitoring. During time-series analysis, the minimum coherence threshold is set to 0.5 to retain 

as many valid pixels as possible, and pixels with coherence below the threshold are masked. Additionally, to remove high-155 

frequency noise signals, the residual root mean square error (RMSE) truncation value is set to 2.5 to further optimize the 

accuracy of the deformation results. The MintPy workflow also includes a tropospheric delay correction using the PyAPS 

method (Jolivet et al., 2014) and topographic residuals are corrected according to (Fattahi and Amelung, 2013). Finally, the 

weighted least squares inversion method (Zhang et al., 2019b) is applied to derive the time-series surface deformation, and the 

results are transformed into the WGS 84 coordinate system to generate the final surface deformation data. 160 

3.1.2 Semi-Automatic Iterative Method 

The semi-automatic iterative identification method based on SBAS-InSAR proposed in this study integrates automated data 

processing with manual validation. It aims to utilize existing FTL datasets to preliminarily screen topographic factors and 

related data, rapidly locate potential landslide areas, and provide a foundation for subsequent detailed identification (Fig. 2). 

The core workflow of this method consists of the following steps: 165 

(1) Initial Masking and Factor Analysis 

The existing FTLs dataset is used to mask topographic factors (e.g., aspect, slope, elevation), and the potential deformation 

area is extracted using an absolute deformation rate threshold of ≥50 mm·a⁻¹, as regions exceeding this threshold account for 

less than 1% of the known FTLs area. By statistically analyzing the distribution of topographic factors at landslide points, the 

masking thresholds for each factor are determined, and single-factor mask regions are generated (Table 2). Subsequently, 170 

overlapping mask regions from these factors are extracted to obtain a relatively small but highly probable prediction range that 

includes the majority of potential FTLs. This step significantly narrows down the target area, providing a precise prediction 

region for subsequent visual interpretation of multi-source remote sensing imagery, thereby greatly improving identification 

efficiency and reducing unnecessary data analysis workload. 

(2) Visual Interpretation  175 

After completing the initial masking and determining the prediction range, manual visual interpretation is conducted using 

multi-source remote sensing imagery including Google Earth Pro, ESRI World Imagery, Omap, and PlanetScope. Based on 
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the typical characteristics of FTLs (e.g., irregular slope morphology, abnormal soil or vegetation zones, distribution and 

orientation of surface cracks, and potential deformation signs in shaded areas), potential landslide bodies are identified, one 

by one, on the multi-source imagery. For areas with ambiguous or disputed boundaries, the actual boundaries and ranges of 180 

FTLs are determined by local zoom-in of high-resolution images, comparison of different time-phase images, and reference 

comparison with the surrounding stable areas. 

(3) Iterative Optimization and Validation 

Based on the visual interpretation results, the newly identified FTL regions are included in the next iteration, and the initial 

masking thresholds are updated and optimized. Through repeated iterations, the identification results are more accurate until 185 

the surface deformation rate tends to stabilize. Because most permafrost regions are relatively stable with deformation rates 

ranging from −10 to 10 mm·a⁻¹ (Jiao et al., 2023), we performed five semi-automatic iterative identifications by the InSAR-

based semi-automatic iterative identification method (Table 2), and finally generate accurate and reliable inventories of FTLs. 

 
Figure 2 Semi-automatic iterative identification workflow based on InSAR. 190 

 

 

 

 

 195 
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Table 2 Semi-automatic iterative identification method. 

Iteration Elevation (m) Slope (°) Aspect (°) Deformation rate (mm·a⁻¹) Result 

1 3600-4000 1-30 0-315 abs≥50 9 

2 3600-4100 1-35 0-315 abs≥40 3 

3 3600-4200 1-35 0-315 abs≥30 26 

4 3600-4300 1-35 0-315 abs≥20 22 

5 3600-4400 1-40 0-112.5&135-360 abs≥10 38 

3.2 Seasonal Deformation Modeling 

Generally, the surface deformation results in permafrost regions are considered to consist of two components, long-term linear 

deformation rates and seasonal deformation values (Daout et al., 2017, 2020). In this study, nonlinear modeling is applied to 200 

fit the time-series surface deformation data, extracting seasonal deformation values within the study area. The nonlinear model 

is expressed as follows Eq. (1): 

𝑦𝑦(𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑡𝑡 + 𝑐𝑐 ∙ cos �
2π
T
∙ 𝑡𝑡� + 𝑑𝑑 ∙ sin �

2π
T
∙ 𝑡𝑡� ,                                                                                                                            (1) 

where a represents the initial deformation value; b is the long-term trend term; c and d are the amplitudes of the cosine and 

sine terms, respectively; T is the soil freeze-thaw cycle (assumed to be one year); and t denotes the time span with respect to 205 

the first SAR acquisition time. The seasonal deformation value can be calculated using Eq. (2): 

𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∙ �𝑐𝑐2 + 𝑑𝑑2 ,                                                                                                                                                                             (2) 

where 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the seasonal deformation value of each pixel.   

By integrating long-term trends and seasonal variations into the modeling process, this method enhances the accuracy of 

surface deformation feature extraction, providing a scientific basis for understanding surface dynamic processes in the study 210 

area. 

3.3 Accuracy of Updated Inventory 

To evaluate the accuracy of the InSAR-based semi-automatic iterative identification method, this study combines optical 

remote sensing imagery with field verification to validate the identification results. The validation process consists of two 

parts—optical imagery verification and field verification—as detailed below: 215 

(1) Optical Imagery Verification 

Optical remote sensing imagery verification is primarily applied to areas that are difficult to access due to complex terrain or 

transportation challenges. First, high-resolution optical remote sensing imagery is used to visually interpret the identified FTLs 

points, delineating their boundaries to assess the reliability of the identification results. Simultaneously, the optical imagery is 

re-examined to identify potential false negative (FN) points—FTLs that exist but were not detected by the method. 220 

(2) Field Verification 

Field investigations were carried out to confirm the existence and boundary ranges of the FTL points. High-resolution UAV 

images of the FTL points were captured to obtain detailed slope morphology and surface characteristics. Mobile photography 

was used to document typical features of the FTLs such as surface cracks, slope deformation, and vegetation anomalies. 

(3) Precision Evaluation Calculation 225 

Based on the statistical results from the optical imagery verification and field verification, the accuracy metrics of the 

identification method were calculated, including the true positive rate (TPR), false positive rate (FPR), and false negative rate 

(FNR). The specific formulas are as follows, with N representing the total number of FTLs (Zhang et al., 2019a): 

True Positive (TP): when the identification result matches the actual result, the FTL point is defined as a true positive. The 

TPR is calculated as follows Eq. (3):  230 
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𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑁𝑁TP
𝑁𝑁

∙ 100%,                                                                                                                                                                                        (3) 

False Positive (FP): when an FTL point is identified but not confirmed during field investigation, it is defined as a false 

positive. The FPR is calculated as follows Eq. (4):  

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑁𝑁FP
𝑁𝑁

∙ 100%,                                                                                                                                                                                        (4) 

False Negative (FN): when an FTL point is confirmed during field investigation but not identified by the method, it is defined 235 

as a false negative. The FNR is calculated as follows Eq. (5):  

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑁𝑁FN
𝑁𝑁

∙ 100%,                                                                                                                                                                                       (5) 

4 Results 

4.1 Updated Freeze-Thaw Landslides Inventory 

Using the InSAR-based semi-automatic iterative identification method, we conducted a comprehensive and in-depth 240 

identification of FTLs in the study area. A comparison of the FTLs inventory before and after the update reveals the addition 

of 98 new FTL points (Fig. 3). Most FTLs are distributed along the transitional zone between permafrost and seasonal frozen 

ground. 

The perimeter ranges from 0 to 6 km, and 65% of FTLs have a perimeter of less than 1 km (Fig. 4a). The area of FTLs ranges 

from 0 to 60 ha, with 78% of FTLs covering less than 10 ha (Fig. 4b). FTLs predominantly occur on north-facing slopes that 245 

receive less solar radiation, with the highest concentration on northwest-facing slopes and the lowest on southeast-facing slopes 

(Fig. 5c). The elevation of FTLs mainly ranges from 3650 to 4000 m (Fig. 5d), influenced by freeze-thaw cycles. The slope of 

FTLs is concentrated between 2° and 30°, with a peak between 10° and 16°, suggesting a predominance of moderate slopes 

(Fig. 5e). The ΔNDVI distribution is relatively symmetrical, peaking near 0 (Fig. 5f). However, the proportion of negative 

ΔNDVI values exceeds that of positive values, suggesting an overall trend of vegetation degradation. 250 
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Figure 3 The spatial distribution of new freeze-thaw landslide in each iteration. 

 
Figure 4 The geometric characteristics and terrain and vegetation factors frequencies of the newly identified FTLs. (a) Histogram showing 
the perimeter sizes of all FTLs; (b) histogram showing the sizes of all FTLs; (c) polar plot of the aspect distribution; (d) histogram of 255 
elevation distribution; (e) histogram of slope distribution; and (f) histogram of ΔNDVI distribution. 

4.2 Inventory Validation 

To assess the reliability of the InSAR-based semi-automatic iterative identification method, we selected 15 FTLs in three 

regions to verify the accuracy of the inventory (Fig. 5). Field investigations were conducted in August 2024 in region b and 

Region c. Region a was verified using optical imagery, with all 8 FTLs identified as TP. Region b was verified through field 260 

surveys, with 1 FTL identified as TP. Region c combined optical imagery verification and field surveys, involving 6 FTLs of 

which 5 were verified in the field and one (OID95) was verified using optical imagery. During the field investigation in region 

c, one FN FTL ( OID59) was discovered. Through comparison of multi-source remote sensing imagery, we found that although 

this FTL exhibited significant surface deformation and was in the potential landslide range, a lack of noticeable vegetation 
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cover changes led to its misidentification. The final calculated validation metrics of our method show a TPR of 93.3%, FPR 265 

of 0%, and FNR 6.7%, which demonstrates the high overall identification accuracy of the method. 

 
Figure 5 Regions a–c were selected to evaluate the inventory accuracy based on optical imagery (OID2, OID17, OID18, OID19, OID20, 
OID43, OID44, OID45, and OID95), field verification using UAV images (OID38, OID58, OID61, and OID62), and mobile photography 
(OID59 and OID60). 270 

4.3 Surface Deformation of Freeze-Thaw Landslides 

Across the whole study area, the deformation rates range from −155 to 78 mm·a⁻¹. Most of the area (73%) experienced 

deformation rates within ±10 mm·a⁻¹, indicating relative stability (Fig. 6a). The seasonal deformation ranged from 0 to 45 mm, 

with 77% of the area showing seasonal deformation between 0 and 10 mm, further confirming the overall surface stability in 

the study area (Fig. 6b). In regions where the absolute deformation rate exceeds 15 mm·a⁻¹, the proportion of FTLs is higher 275 

than that of the overall study area (Fig. 7a). The trend is particularly pronounced in areas with absolute deformation rates 

greater than 20 mm·a⁻¹, where the frequency of FTLs substantially increases. Similarly, in regions with seasonal deformation 

values between 9 and 21 mm (Fig. 7b), the proportion of FTLs is also higher than that of the overall study area. 

 
Figure 6 Deformation characteristics of the study area: (a) surface deformation rate (−155 to 78 mm·a⁻¹) and (b) seasonal deformation 280 
amplitude (0–45 mm). 
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Figure 7 Distribution of deformation parameters: (a) deformation rate and (b) seasonal deformation. Left panels show probability density 
distributions and right panels present scatter point distributions with overlain boxplots. 

5 Discussion 285 

5.1 Advantages of the Proposed Method 

The InSAR-based semi-automatic iterative identification method proposed in this study demonstrates significant advantages 

in the identification of FTLs. First, by integrating the high-precision deformation monitoring capabilities of InSAR technology 

with the visual interpretation of multi-source remote sensing imagery, we significantly improve the accuracy of FTL 

identification. Compared to traditional visual interpretation methods using optical imagery (Xia et al., 2022; Peng et al., 2024; 290 

Zhang et al., 2024), our new approach effectively overcomes interference from weather conditions and vegetation cover, 

particularly showing strong ability in identifying hidden and small-scale FTLs (Du et al., 2023; Jiao et al., 2023). Second, the 

iterative optimization approach of our method progressively narrows the prediction range, reduces incorrect identification rates, 

and ultimately generates a highly reliable FTL inventory (Almudevar and De Arruda, 2012). Additionally, the method exhibits 

notable efficiency advantages. By extracting regions with higher surface deformation rates to narrow the prediction range, it 295 

significantly reduces the time required for FTL identification, thereby making it suitable for large-scale FTL surveys. 

5.2 Limitations and Challenges 

Although the proposed method demonstrates high accuracy and efficiency in identifying FTLs, it still faces limitations. For 

instance, he method relies heavily on the temporal coverage, data quality, and resolution of InSAR. Some FTLs occurred 
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outside the time range covered by the InSAR data, making it difficult to identify both new and old FTLs. InSAR technology 300 

encounters issues such as atmospheric delays and phase noise (Nico et al., 2011). Although these issues are mitigated through 

atmospheric correction and filtering, they cannot be entirely eliminated, potentially affecting the accuracy of deformation 

monitoring (Li et al., 2019). 

Additionally, the threshold settings in the iterative identification process are based on statistical analysis of existing landslide 

characteristics, which may not fully encompass the entire range of features for all FTLs, particularly those with atypical 305 

geomorphologic or kinematic characteristics (Kim and Park, 2020). While the manual visual interpretation step leverages the 

expertise of professionals to accurately assess complex areas, it is not entirely free from subjectivity (Ramli et al., 2010). 

Differences in interpretation among analysts regarding the same image features may lead to discrepancies in boundary 

delineation and landslide type classification. 

6 Conclusions 310 

Due to the limited accuracy of traditional visual interpretation methods using optical imagery and deep learning-based remote 

sensing techniques, this study introduces surface deformation rate as a key factor and proposes a semi-automatic iterative 

identification method based on InSAR. This method effectively addresses the challenges of identifying hidden and small-scale 

FTLs, achieving a true positive rate of 93.3% with the updated inventory that also adds 98 new FTL points. Areas with higher 

absolute rates of deformation (especially greater than 20 mm·a⁻¹) and higher values of seasonal deformation (greater than 10 315 

mm) are more susceptible to FTLs compared to stable terrain. The research characterizes the spatial predisposition of FTLs, 

showing pronounced aggregation on northwest aspects (receiving minimal solar radiation), in the 3650–4000 m altitudinal belt 

(most active freeze-thaw cycle), and areas exhibiting vegetation degradation (ΔNDVI<0). These parameters, when integrated 

with surface deformation rates (≥10 mm·a⁻¹), establish diagnostic environmental thresholds for permafrost landslide 

susceptibility. 320 

Although the introduction of surface deformation factors improves identification accuracy to some extent, the method still has 

limitations. These include the limited temporal coverage of InSAR, a strong dependence on data quality and resolution, and 

the inherent subjectivity of manual visual interpretation. Therefore, future research could explore combining InSAR-derived 

surface deformation factors with deep learning-based semi-automatic iterative identification methods to further enhance 

efficiency and performance. 325 

Data availability 

The Sentinel-1A data can be obtained from ASF (https://search.asf.alaska.edu/); ERA5 data can be obtained from CDS 

(https://cds.climate.copernicus.eu/); POD data can be accessed through the ASF (https://s1qc.asf.alaska.edu/aux_poeorb/); 

DEM data can be accessed through NASA (https:// www.earthdata.nasa.gov/sensors/srtm, Farr et al., 2007); The Landsat 

NDVI dataset are available from the NCDC (http://www.ncdc.ac.cn/); ESRI World Imagery can be accessed through ESRI 330 

Wayback Imagery at https://livingatlas.arcgis.com/wayback/; Some JiLin-1 imagery is also available online through the Omap 

software (https://www.ovital.com/283-2/, JiLin-1); High-resolution 3D satellite imagery of the Qilian Mountains region can 

be viewed in Google Earth Pro software; The PlanetScope CubeSat images are copyrighted by Planet Labs Inc., restricted by 

commercial policies and are not open to the public; The existing FTLs datasets accessible through Peng et al. (2024) and Zhang 

et al. (2024), TPDC, https://data.tpdc.ac.cn/; The study data are available from the corresponding author upon request 335 

(pengxq@lzu.edu.cn). 
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