
Reply to the Reviewers 
1. The claimed novelty of "dual encoder-decoder training framework" 
needs stronger differentiation from existing dual-learning 
architectures in literature. 
Thank you for your valuable comment. The core innovation of our method is the use of 

the Spatio-Temporal Information (STI) equation to address the issue of low accuracy 

in short-term precipitation forecasting with short-term data. We employ dual learning 

to implement the STI equation, rather than considering dual learning as the primary 

innovation. In fact, our dual learning framework is fundamentally derived from the 

inherent conjugate duality of the STI equation itself. Compared with other methods, 

STI-DEDN, guided by theoretical principles, can solve the conjugate dual components 

of the STI system simultaneously. As far as we know, we have not found any other 

literature on short-term precipitation forecasting using the Spatio-Temporal 

Information equation. 

We have revised the manuscript, and the specific changes are as follows: 

• Abstract, Page 1: the present work proposes a dual encoder-decoder training 

framework based on the STI equation and the idea of dual learning, which can 

map multidimensional spatial features to the temporal prediction of future 

precipitation variables. 

• Introduction, Page 4: Aiming at the prediction inaccuracies caused by existing 

STI equation solvers and the limitations of short-term data in forecasting short-

duration heavy precipitation, we have established a novel dual encoder-decoder 

neural network that enables precise computation of STI equations and robust 

nonlinear mapping between high‑dimensional meteorological and precipitation 

variables. 

2. A 60-minute forecast lead time is far from sufficient and fails to 
effectively highlight the model's performance. In operational 
precipitation nowcasting, the focus is typically on 0–3 hour forecasts. 
While the authors present 2h and 3h results in Section 5.3, the model's 
performance in MSE and PSNR metrics is inferior to Transformer-
based models and only comparable to RNN-based approaches (e.g., 



PredRNN and PhyDNet). This appears somewhat contradictory to the 
claim that the proposed model mitigates error accumulation in long-
term forecasting. The ADGLoss also seems to have limited 
effectiveness in improving longer lead-time predictions. To strengthen 
the analysis, the authors should: 1) Include visualizations of typical 
cases for 2h and 3h forecasts to illustrate the performance limitations. 
2) In the conclusion, propose future research directions to enhance the 
model’s effectiveness for extended forecasting periods. 
Thank you for your critical and insightful comments, which undoubtedly strengthen our 

experimental analysis. We fully agree with your statement that a 60-minute lead time 

for forecasting extreme precipitation from severe convection is insufficient and that the 

performance of long-term predictions needs further investigation. However, the focus 

of our model is not on extreme precipitation. Our primary research direction is short-

term precipitation forecasting within a 60-minute lead time [1][2][3], which is a popular 

direction in the field of short-term precipitation forecasting in recent years [4] and is 

crucial for operational meteorology, including emergency response, agricultural 

planning, and traffic management. Timely information can lead to better decision-

making and risk mitigation [5][7][8][9]. The performance of forecasts beyond two 

hours remains a highly challenging research area that requires further study [4]. 

Additionally, we conducted experimental analyses for 2-hour and 3-hour forecasts and 

for heavy precipitation in our experiments, to address these two aspects in the future. 

 

As you requested, we will continue to supplement our experiments and have added a 

visualization analysis and discussion of 2-hour and 3-hour prediction cases in Section 

5.3 of the revised manuscript, along with an explanation of the specific limitations of 

our model. Our model did not achieve the best performance in MSE/PSNR, indicating 

that Transformer-based models show higher clarity in image pixel processing. However, 

our task is precipitation forecasting, not purely in the image domain. Therefore, we 

focus more on the meteorological indicators in precipitation forecasting. Our method 

achieved the best performance in meteorological indicators (CSI and HSS), which 

means that our method is more accurate in the physical coherence and structure of 

precipitation distribution, as can be seen in Figure 1. The performance of ADGLoss is 

also similar in this regard, as we focus more on meteorological indicators. Moreover, 



to better summarize the innovations of this paper, we have revised the performance 

expression of ADGLoss to "Our proposed method alleviates the error amplification 

caused by the extension of prediction time." which can be proven in our loss function 

ablation experiments. 

Finally, in response to your request, we have added a dedicated paragraph in the 

conclusion to outline future research directions, acknowledging that our model has 

shortcomings in long-term prediction. We will explore new methods, possibly 

combining the structure of STI-DEDN with Transformer-based long-range dependency 

models to improve the effectiveness of our method in long-term heavy precipitation 

forecasting. 

We have revised the manuscript, and the specific changes are as follows: 

• Abstract, Page 1: due to the rapid pace of climate change, long-term time series 

data are often inadequate for accurately addressing precipitation forecasting for 

extreme weather events in a short period of time, as past meteorological time 

series data may not accurately reflect current atmospheric conditions. 

• Abstract, Page 1: Additionally, an adaptive weighted gradient loss (ADGLoss) 

is proposed to mitigate the error amplification caused by the extension of 

prediction time and rectify systematic underestimation of high-intensity 

precipitation regions. 

• 1 Introduction, Page 2: The rapid evolution of observational technologies has 

driven a surge in demand for short-term precipitation nowcasting, particularly 

for operational applications requiring precise forecasting in time windows from 

30 minutes to 1-h. This is a popular direction in the field of short-term 

precipitation forecasting in recent years and is crucial for operational 

meteorology, including emergency response, agricultural planning, and traffic 

management. Timely information can lead to better decision-making and risk 

mitigation. The performance of forecasts beyond two hours remains a highly 

challenging research area that requires further study. 

• 1 Introduction, Page 4: This loss function dynamically adjusts error gradients 

based on rainfall magnitude, effectively mitigating the error amplification issue 

that models face as prediction time extends, while preserving the fine-scale 

precipitation structures. 

• 1 Introduction, Page 4: To improve the issue of precipitation underestimation 



in heavy rainfall areas and the problem of increasing error in existing 

precipitation models as prediction time extends, we propose an adaptive 

weighted gradient loss function that can effectively enhance the model's 

accuracy in spatiotemporal prediction tasks. 

• 3.3 Loss Function, Page 10: which strengthens the GDL loss’s ability to 

capture high-frequency precipitation patterns globally and simultaneously 

refines prediction accuracy for heavy precipitation areas, thereby reducing the 

error amplification issue in precipitation forecasting tasks. 

• 5.3 Results of Long-Term Forecasting, Page 21: Table 5 and Fig. 9 presents 

the forecasting results of our proposed method alongside other methods on the 

SEVIR dataset for the three-hour prediction interval. 

• 5.3 Results of Long-Term Forecasting, Page 21: In contrast, the Transformer-

based model achieved the highest MSE and PSNR values, which corresponded 

to the clearest image resolution obtained by Earthformer in Fig. 9. However, the 

task we conducted was weather precipitation forecasting, which does not fully 

align with the objectives of image processing. We place greater emphasis on 

meteorological indicators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure. 1 Visualization of precipitation maps and error heatmaps for all 

methods in the long-term experiment of Case 3. 



In summary, the Transformer-based model performed better in terms of 

producing smoother radar echo images in forecasting; however, it was not as 

effective as STI-DEDN in predicting the distribution and structure of 

precipitation areas, with STI-DEDN being able to predict relatively larger local 

precipitation amounts. The inherent limitations of RNN-based methods restrict 

STI-DEDN's ability to capture long-term dependencies, while the attention 

mechanism can effectively address long-term dependency issues at the pixel 

level of images. These points pave the way for our future research areas. 

• 6 Conclusions, Page 27: Future work will explore incorporating richer 

meteorological variables and addressing data imbalance issues and long-term 

forecasting error accumulation through improved augmentation strategies and 

effective attention mechanisms. 

3. The computational requirements (Section 4.3) are underspecified. 
The authors should provide training time and inference speed. 
 
We have added the computational requirements into Section 4.3 in response to the 

suggestion.  

We have revised the manuscript, and the specific changes are as follows: 

• 4.3 Environment Setup, Page 14: The training batch size is set to 2. On a single 

NVIDIA GeForce RTX 3090 (24GB) GPU card, the average training time per 

epoch is about 2.55 hours, and the total training time for 100 epochs is about 

255.55 hours. For inference, the model takes approximately 0.54 seconds to 

process a radar sequence (18 frames), corresponding to an inference speed of 

about 34 frames per second. 

 
4. The exclusion of lightning data (Section 4.1) requires more rigorous 
justification given its potential relevance to extreme precipitation 
events. The authors should discuss how this exclusion might impact 
model performance. 
 
Thank you for your valuable comment. Lightning does exhibit a certain correlation with 

convective activity and may, in some cases, help identify extreme precipitation events. 

To make it more clear, we provide a more detailed explanation of the reasons for not 



incorporating lightning data in this study and suggest potential directions for 

improvement in future research. We will ensure that these aspects are adequately 

addressed in the revised manuscript. 

First, in the SEVIR dataset, lightning is stored as point events (with precise 

spatiotemporal coordinates), while other modalities such as infrared, visible light, and 

VIL are represented as gridded matrices. Converting these sparse point events into a 

gridded format requires additional interpolation and aggregation methods, which 

inevitably introduce more artificial patterns and noise. It will deviate from the true 

physical processes. This spatiotemporal mismatch will interfere with the model learning 

and reduce the prediction performance. Second, lightning is a byproduct of strong 

convective activity, however, strong convective activity does not necessarily 

accompany lightning events [6]. Therefore, in current short-term precipitation 

forecasting research, lightning is rarely used as a core predictive input. Additionally, 

the contribution of lightning data to precipitation forecasting is very low [7]. 

 

We have revised the manuscript, and the specific changes are as follows: 

• 4.1 Dataset, Page 11: Lightning data is stored as site events (precise 

spatiotemporal coordinates), while the other modalities (IR, VIS, VIL) are all 

rasterized images. Converting sparse point events into raster format requires 

additional interpolation and aggregation methods, which inevitably introduce 

artificial patterns and noise, deviating from the true physical process. This 

spatiotemporal mismatch can interfere with model learning and reduce the 

reliability of predictions. Lightning is a byproduct of strong convective activity, 

and strong convective activity does not necessarily accompany lightning events. 

Moreover, the contribution of lightning data to precipitation forecasting is very 

low. 

 
5. The authors utilized bicubic interpolation to standardize the spatial 
resolution of various meteorological factors. While this approach 
resolves the resolution mismatch, please consider and discuss the 
following concerns: 1. Could this interpolation method introduce 
artificial errors into the dataset? 2. Might this processing lead to 
misalignment in the spatial representation of precipitation patterns 



among the different factors? 
 
We sincerely appreciate the reviewer’s insightful comments regarding our use of 

bicubic interpolation in the preprocessing stage. In the revised manuscript, there is a 

dedicated paragraph to discuss this issue. First, we chose bicubic interpolation to 

standardize the spatial resolution for the balance between computational efficiency and 

output quality. Compared to nearest-neighbor or other traditional methods, bicubic 

interpolation produces smoother results , which is beneficial for maintaining the 

continuity of meteorological fields. Any interpolation method may introduce slight 

artifacts or smooth out fine-scale features, but the original SEVIR dataset has already 

been spatially and temporally aligned. Our interpolation process only alters the 

resolution and does not affect the spatial patterns among different variables. 

Furthermore, we have conducted additional experiments where we retrained and tested 

the model using the original resolution data without interpolation. There is virtually no 

difference, as summarized in the table below. This essentially confirms that our use of 

bicubic interpolation will not introduce significant artificial errors and spatial 

misalignment. 
Table. 1 Comparison of results with and without interpolation for STI-DEDN on the SEVIR test 

set. 

Method MSE SSIM PSNR FAR CSI HSS 

Interpolation 2.3794 0.9567 46.5231 0.4686 0.4410 0.5595 

Original 

resolution 
2.3947 0.9569 46.507 0.4781 0.4388 0.5579 

 

We have revised the manuscript, and the specific changes are as follows: 

• 4.1 Dataset, Page 12: Although bicubic interpolation may introduce slight 

artifacts or smooth fine-scale features in the data, the original SEVIR dataset 

has already been aligned in spatial location and time. Our interpolation only 

changes the pixel resolution and does not affect the spatial patterns between 

different variables. Moreover, bicubic interpolation can balance computational 

efficiency, producing smoother results than nearest-neighbor or bilinear 

methods, which helps maintain the continuity of meteorological fields. 



Additionally, we conducted extra experiments to retrain and test the model 

without interpolation at the original resolution. As shown in Table 2, there was 

almost no difference. 

 
6. The 0-3-hour nowcasting is aimed at sudden severe convective or 
heavy rainfall processes. Therefore, the first case study in this paper 
has essentially no practical significance and is insufficient to 
demonstrate the model performance. The selection of the second case 
is reasonable; however, in terms of the performance in this localized 
heavy precipitation case, STI-DEDN is inferior to operational models 
such as NowcastNet (Sheng et al. 2025). Such results are insufficient to 
support the publication of this paper in GMD. 
 
Thank you for your thoughtful and constructive feedback on our manuscript. We need 

to clarify our work. Our method is not designed for long-term forecasting of heavy 

precipitation events, but rather focuses on short-term precipitation forecasting within a 

one-hour time frame. This has become a prominent focus in the field of short-term 

precipitation forecasting [4], and is crucial for meteorological applications such as 

emergency response, agricultural planning, and traffic management [5][7][8][9]. In our 

experiments, we used our model to achieve 2-3 hour short-term precipitation forecasts 

through recursive reasoning. The prediction performance did not achieve the best scores 

in MSE and PSNR due to accumulated errors, but the precipitation indicators still 

outperformed mainstream models. In the future, we will also gradually improve the 

prediction accuracy for longer lead times. 

Regarding the first case study in our experiments, we believe it serves as a baseline for 

evaluating our model's forecasting performance under typical precipitation conditions. 

This is essential for establishing the reliability of our method in everyday scenarios. 

The second case study involves localized heavy precipitation, which highlights our 

model's capability in predicting severe weather events, even if its performance may not 

surpass that of larger models like NowcastNet [10]. We have studied the NowcastNet, 

which has made significant progress in the 0-3 hour forecasting. And we must 

emphasize the difference between our approach and this approach. Our model is a 

standard deep neural network. It is impractical to make direct comparisons between it 



and large model. Additionally, our primary focus is on 0-1 hour forecasting tasks, while 

their work primarily addresses 0-3 hour predictions. The training datasets used in both 

approaches also differ significantly, which can have a substantial impact on model 

performance. Thank you for your help to improve our work. 

 

We have revised the manuscript, and the specific changes are as follows: 

• Abstract, Page 1: due to the rapid pace of climate change, long-term time series 

data are often inadequate for accurately addressing precipitation forecasting for 

extreme weather events in a short period of time, as past meteorological time 

series data may not accurately reflect current atmospheric conditions. 

• 1 Introduction, Page 2: The rapid evolution of observational technologies has 

driven a surge in demand for short-term precipitation nowcasting, particularly 

for operational applications requiring precise forecasting in time windows from 

30 minutes to 1-h. This is a popular direction in the field of short-term 

precipitation forecasting in recent years and is crucial for operational 

meteorology, including emergency response, agricultural planning, and traffic 

management. Timely information can lead to better decision-making and risk 

mitigation. The performance of forecasts beyond two hours remains a highly 

challenging research area that requires further study. 

• 5.2.1 Case 1, Page 17: We believe it serves as a baseline for evaluating our 

model's forecasting performance under typical precipitation conditions. This is 

essential for establishing the reliability of our method in everyday scenarios. 

• 5.2.2 Case 2, Page 19: The second case involves a localized heavy precipitation 

event, which highlights our model's capability in predicting severe weather 

events. 

 

Finally, Thank you for your valuable feedback on our work. We will incorporate all the 

suggested modifications into our revised manuscript to better clarify our research focus 

and contributions. Your insights are greatly appreciated, and we are committed to 

enhancing the quality of our paper based on your recommendations. Once again, thank 

you for your constructive comments. 
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