Von Neumann Analysis for Pure Damping Equation

For the pure damping equation neglecting advection term:
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where —au the damping term and a the damping coefficient. Using forward Euler in time, the

discretization equation takes the form:
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Assume that the numerical solution at /™ point at n'" time step is a single Fourier component of
the form:
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where k is the wavenumber, and V" the time-dependent complex amplitude at time step n.
Substituting the Fourier mode from Eqg. (3) into Eq. (2), the amplification factor is obtained:
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Equation (4) shows that G is purely real so that the discretization scheme (2) is non-dispersive.
If the damping term is discretized in a staggered manner, similar to the Eq. (1) and (2) in our

manuscript, Eq. (2) becomes:
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Substituting Eq. (3) into Eqg. (5) yields the amplification factor:
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where a = Z Aa = aj+% — aj_%.

For waves with wavelengths greater than 2Ax, we have 0 < kAx <m and therefore
sin(kAx) # 0. If Aa # 0, the imaginary part of Eq. (6) becomes non-zero. This indicates that the
discrete scheme represented by Eq. (5) exhibits dispersive behavior, since the amplification factor
now possesses an imaginary component, which introduces a phase shift between wave
components. Variations in amplitude are therefore accompanied by changes in phase, leading to

frequency-dependent wave propagation speeds.

This analysis leads to the same conclusion as presented in our manuscript.



