
Response to Reviewer Comments for MS egusphere-2025-2704 
 
Dear Dr. Wood, 

 
We sincerely appreciate your thorough evaluation and constructive suggestions for our 

manuscript "Stripe Patterns in Wind Forecasts Induced by Physics-Dynamic Coupling on a 
Staggered Grid in CMA-GFS 3.0". Your insightful comments not only affirm the value of this work 
but have also significantly helped us refine both the technical rigor and clarity of presentation. 
In particular, your detailed description of the UK Met Office model's solution to this issue has 
provided invaluable inspiration, guiding our next steps in adapting and implementing similar 
improvements in CMA-GFS. 

 
Below we respond point-by-point to your comments, outlining how we plan to address them 

in the revised manuscript pending all reviewer feedback. 
 

 

 



 

 

 
 

Your comments are highly insightful and have prompted us to more deeply consider the origin 
of the dispersion error demonstrated in our study. Eq. (C) is particularly interesting as it further 
clarifies that the true dispersion error stems from the second term in the equation. In response 
to your suggestions, we propose the following modifications: 
 
1. The variables configuration in staggered coupling using wave analysis is demonstrated in 

Figure R1. This configuration maintains consistent subscript notation with the formulas in 
Durran's book (Section 3.3). 

 

 

Figure R1. The configuration of second model of damping process shown as Eq. (10) in the following revised 

version 

 
2. This study focuses solely on the numerical coupling impact of local friction terms, not 

advection discretization—a distinction clarified in the revised manuscript. Our idealized 
experiments demonstrate that spatially varying friction induces non-uniform u distributions 
(e.g., spiked structures), whose differential responses depend on the discretization scheme. 
As Durran’s description in Section 3.3 of his book, central differencing of advection 
introduces dispersion artifacts near discontinuities, which is also why we employ first-order 
upwind scheme for advection in our idealized experiments to isolate the physics-dynamic 
coupling issue in this study.  

3. As noted in your Comment #13, our analysis in the manuscript considered only one 
component of the averaging process—specifically, the physics-to-dynamics interpolation 
(Eq.2) without accounting for the dynamics-to-physics averaging (Eq. 1). Following your 



suggestion, we confirm this revised derivation does yield additional terms with modified 

coefficients, as you anticipated (See Eq. (12), here ∆𝜶𝜶𝒋𝒋 = 𝜶𝜶𝒋𝒋+𝟏𝟏𝟐𝟐 − 𝜶𝜶𝒋𝒋−𝟏𝟏𝟐𝟐  based on your 

comment #16). 
4. Following your suggestion, we will incorporate a discussion of Equation C, which provides 

deeper insight into the underlying mechanism—benefiting both readers and our own 
understanding of this phenomenon's root cause. 

 
To reflect these, we will modify Line 263-296 as follows: 
 

For the one-dimensional linear damped wave equation: 

∂𝑢𝑢
∂𝑡𝑡

+ 𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝛼𝛼𝛼𝛼,         𝛼𝛼 > 0, (6) 

where c is the phase speed, −𝛼𝛼𝛼𝛼 the damping term and 𝛼𝛼 the damping coefficient. If the x-domain 

is periodic, the analytic solution for each individual mode takes the form: 

𝑢𝑢 = 𝑢𝑢0𝑒𝑒−𝛼𝛼𝛼𝛼𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥−𝑐𝑐𝑐𝑐). (7) 

Here 𝑢𝑢0 is the initial amplitude and k is the wavenumber. Equation (7) describes an exact, non-

dispersive wave propagation where all wavenumbers propagate at identical phase speed c. 

In Eq. (6), the term  𝑐𝑐 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 represents the advection term, while the damping term −𝛼𝛼𝛼𝛼 acts as 

physical forcing. Based on the idealized experimental configuration outlined in the preceding 

section but with explicit damping time discretization, the right-hand side term of Eq. (6) can be 

discretized through two distinct numerical treatments. The first approach computes the damping 

term directly at the advection scheme's collocated grid points (xj), giving 

∆𝑢𝑢𝑗𝑗𝑃𝑃 = −∆𝑡𝑡𝛼𝛼𝑗𝑗𝑢𝑢𝑗𝑗, (8) 

where the subscript 𝑗𝑗  represents the value at grid point xj. Equation (8) corresponds to the 

Ideal_Ctrl configuration in the idealized experiment. This lead to the solution of Eq. (6) as: 

𝑢𝑢𝑗𝑗 = 𝑢𝑢𝑗𝑗𝐷𝐷𝑒𝑒−𝛼𝛼𝛼𝛼, (9) 

where 𝑢𝑢𝑗𝑗𝐷𝐷 is the wave solution of the advection term at xj after spatiotemporal differencing. The 

specific form of 𝑢𝑢𝑗𝑗𝐷𝐷 depends on the finite difference scheme employed (Durran, 2010). In Eq. (9), 

the numerical solution of the discretized damping term matches the analytical solution in Eq. (7), 

where the damping term solely causes exponential decay of the wave amplitude. 

The alternative approach, analogous to the treatment in Eqs. (1) and (2), involves performing two 

averaging operations during the physics-dynamic coupling, similar to the Ideal_Test configuration. 



Consequently, the damping term in Eq. (6) leads to the following change in u at grid point xj:  
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where the notation 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑗𝑗
 denotes the partial derivatives of u at location xj and  ∆𝑥𝑥 = 𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗 is 

the Equidistant grid space. Substituting Eq. (11) into Eq. (10) and systematically neglecting fourth-

order terms (𝑂𝑂(∆𝑥𝑥4)), the individual wavelike solution to Eq. (6) becomes: 

𝑢𝑢𝑗𝑗 = 𝑢𝑢𝑗𝑗𝐷𝐷𝑒𝑒−𝛼𝛼�𝑗𝑗𝑡𝑡𝑒𝑒
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,∆𝛼𝛼𝑗𝑗 = 𝛼𝛼𝑗𝑗+12 − 𝛼𝛼𝑗𝑗−12. Equation (12) exhibits three additional terms in its wave 

solutions at 𝑥𝑥𝑗𝑗 compare to Eq. (9): 

1) The term 𝑒𝑒−𝑖𝑖
𝑘𝑘∆𝛼𝛼𝑗𝑗∆𝑥𝑥

4 𝑡𝑡 introduces a non-dispersive phase velocity modification. 

2) The term 𝑒𝑒
𝑘𝑘2𝛼𝛼�𝑗𝑗∆𝑥𝑥
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4 𝑡𝑡 enhances the wave amplitude (equivalently reducing damping). 

3) The term 𝑒𝑒𝑖𝑖
𝑘𝑘3∆𝛼𝛼𝑗𝑗∆𝑥𝑥

3

24 𝑡𝑡 generates wavenumber-dependent phase modifications, a characteristic 

signature of dispersive wave propagation. 

The phase velocity in Eq. (12) combines non-dispersive and a dispersive modifications as 𝑐𝑐′ =

𝑐𝑐𝐷𝐷 + 𝑘𝑘∆𝛼𝛼𝑗𝑗∆𝑥𝑥
4
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24
, where 𝑐𝑐𝐷𝐷 is the phase velocity of advection, depending on the numeric 

scheme applied. 

When α exhibits no spatial variation (hence ∆𝛼𝛼𝑗𝑗 = 0), Eq. (12) reduces to: 

𝑢𝑢𝑗𝑗 = 𝑢𝑢𝑗𝑗𝐷𝐷𝑒𝑒−𝛼𝛼�𝑗𝑗𝑡𝑡𝑒𝑒
𝑘𝑘2𝛼𝛼�𝑗𝑗∆𝑥𝑥2

4 𝑡𝑡, (1) 

where only the amplitude-modifying term persists, producing exclusively damping reduction 

without any phase velocity modifications (neither non-dispersive shifts nor dispersive effects). 

Comparing Eqs. (9), (12) and (13) leads to the following conclusions: 

1) The staggered-grid discretization scheme, where advection and damping terms are 

computed at offset grid points, fundamentally modifies wave solutions when compared to 

collocated approaches.  



2) For spatially varying damping coefficients (α), this numerical framework introduces 

coupled amplitude-phase distortions, including wavenumber-dependent propagation speeds 

characteristic of dispersive systems. 

3) In contrast, uniform α fields restrict the influence of staggered-grid effects solely to 

amplitude modulation, preserving the original non-dispersive wave kinematics.  

 

Then we will add the discussion of Eq.(C). In this part, we modified Eq.(C) into three terms. 
 

The reformulated Eq. (10) can be expressed as: 

∆𝑢𝑢𝑗𝑗𝑃𝑃 = −∆𝑡𝑡𝛼𝛼�𝑗𝑗𝑢𝑢𝑗𝑗 −
𝛼𝛼�𝑗𝑗∆𝑡𝑡

4
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8

�𝑢𝑢𝑗𝑗+1−𝑢𝑢𝑗𝑗−1�. (14) 

The right-hand side of Eq. (14) contains three distinct terms. The first term is identical to Eq. (8). 

The second term exhibits the form of second-order horizontal diffusion - note its negative coefficient, 

which actually suppresses small-scale fluctuations in the damping process itself and clearly cannot 

generate 2Δx oscillations. This term corresponds to the amplitude modification term in Eq. (12), 

reducing the damping influence. The third term represents a second-order centered difference 

scheme. As discussed by Durran (2010), second-order centered differencing introduces dispersion 

in solutions to one-dimensional linear wave equations, producing upstream-propagating noise near 

spikes - precisely as demonstrated in our idealized experiments. Evidently, the noise source we 

examine originates specifically from the third term of the right-hand side of Eq. (14). 

 
Line 297-302 will be unchanged. 
 

 
We appreciate your suggestion and will adopt the following more rigorous description in our 

revised manuscript: 

The structural mismatch between static field variations and the observed 2Δx noise amplitude 

suggests that locally forced mechanisms from surface inhomogeneity alone cannot explain the wind 

stripe patterns. Meanwhile, pure dynamical core simulations exhibit no such noise, confirming that 



the dynamical core itself does not generate these patterns. 

 

 

We sincerely appreciate you sharing how the UK Met Office model addresses this issue. Based 
on the analysis presented in this study, we are confident that this approach will effectively 
resolve the noise problem. We will implement and evaluate corresponding improvements in 
CMA-GFS. Please also refer to our response to Comment #21 for additional clarification on this 
point. 

 

 
As shown in Figure 3, the amplitude of the stripes remains approximately unchanged with 

forecast days despite pronounced diurnal variations. Therefore, we will modify the original 
sentence to: 

The 2Δx oscillations exhibit continuous presence throughout the integration period. Their 

amplitude shows strong diurnal variations but no systematic growth with forecast days, suggesting 

that this noise is unlikely to directly induce model instability. 

 

 
We sincerely appreciate your attention to this detail. Spectral analysis in Fig. R2 demonstrates 

small-scale fluctuations in both standard deviation of sub-grid orography and roughness length, 
which are also visually evident in Fig. R3. These results demonstrate the existence of small-scale 
fluctuations in the static fields. However, as shown in Fig. 5 of our manuscript, these static fields 
do not exhibit the stripe patterns observed in the wind field distribution, thereby excluding them 
as direct sources of the stripe noise. Their spectral characteristics differ from the wind field noise: 
the static fields' energy spectra decay at smaller scales (Fig. R2), whereas the Ctrl_EA wind field 
spectra intensify at these scales (Fig. 9). This contrast suggests that small-scale static 
inhomogeneities are probably not the primary direct source of the observed wind stripes. 

Critically, static field inhomogeneity (particularly the prominent spikes in Fig. R3) serves as 
triggering factors for the noise through wave dispersion effects - as discussed in Sections 3.3 and 
3.4. Based on these considerations, the term 'complete absence' is scientifically inappropriate. 



To align with the overall logic of our analysis, we will modify Lines 177–179 as follows:  
 

The distributions of the two static fields in Fig. 5 differ markedly from the wind stripe patterns 

in Fig. 2, indicating that surface parameter inhomogeneity is not the direct origin of the stripe noise. 

 

 
Figure R2. PSD of static field over the East Asia (70°-145°E, 10°-65°N): roughness length along x-direction: solid 

line; roughness length along y-direction: dashed line; orography standard deviation along x-direction: dash-dot 

line; orography standard deviation along y-direction dotted line  

 

 
Figure R3. The roughness length along 100°E  

 

 

We appreciate this suggestion. The islands discussed in our study are located at 
approximately 93°E, 11–13°N. This information will be added to the revised manuscript. 

The Andaman Islands (11–13°N, 93°E), 
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We sincerely appreciate this insightful suggestion. As you correctly noted, both linear 
advection and constant eddy viscosity (K) successfully reproduce the 2Δx waves near surface 
friction point (Fig. R4). However, our analysis reveals that nonlinear advection amplifies these 
2Δx fluctuations, which may explain why the stripe noise is so obvious in the CMA-GFS's wind 
forecasts. Additionally, larger K values enhance the friction impact on upper boundary layer (Fig. 
R4, Right panel). 

To balance realism with simplicity, we retain nonlinear advection (to best replicate the full 
model's behavior) while adopting constant K for idealized experiments. This configuration (Fig. 
R4, middle panel) will be selected for consistency, and we will accordingly revise Line 215 and 
Equation (5) as 

where K is given by: 

�𝐾𝐾(𝑧𝑧) = 10, 𝑧𝑧 ≤ 𝐻𝐻
0,                           𝑧𝑧 > 𝐻𝐻 (2) 

 

 
Figure R4. Left: Linear advection with c=10m s-1, but retain height-dependent K; Middle: nonlinear advection 

with constant K=10 m2 s-1; Right: nonlinear advection with constant K=50 m2 s-1. 

 

 
Thank you for your suggestion. Consistent with our stated experimental design (Response #6), 

we will employ the constant eddy viscosity (K) configuration for the idealized simulations. 
 

 



We thank you for prompting deeper consideration of this issue. As shown in Fig. R5, u*-
dependent K becomes highly localized (peaking at the friction point). With a constant 500-m 
boundary layer height, our setup approximates an unstable boundary layer in all x points. Since 
unstable boundary layer involves both thermal-driven turbulence effects (absent here) and wind 
shear-driven turbulence, using 𝒖𝒖∗ -dependent K would demand simultaneous heat flux 
modeling. Our constant-K choice (as detailed in Response #6) avoids this complexity while 
maintaining physical consistency with the prescribed constant boundary layer depth. 

 
Figure R5. Linear advection with u*-dependent K 

 

 
I am very sorry I forgot to state it. The time step is 300s and it will be added in Table 1. Thank 

you very much for your careful attention to this detail. 
 

 
Thank you for this important clarification. As shown in Fig. 7b, the 2Δx wave amplitude 

remains nearly constant throughout the integration period, mirroring the behavior in CMA-GFS. 
This stability will be explicitly stated in the revised manuscript: 

These 2Δx waves persist throughout the integration period with temporally quasi-constant 

amplitude, consistent with their behavior in CMA-GFS 3.0. 

 

 
We appreciate this clarification. The caption will be revised as:  

Figure 7. Idealized experiment results (domain (grid point number): x-grid = 41-59; z-grid = 1-60): 
 



 

We appreciate these nuanced observations. The wording will be to more precisely 
characterize the mechanisms: 
1. Surface effects: The original text suggested surface forcing directly creates noise, which was 

inaccurate. Instead, surface roughness variations (Fig. R3) interact with the model’s 
numerical dispersion, amplifying pre-existing 2Δx waves. 

2. Grid staggering: The term 'inconsistent' was misleading. The issue arises because advection 
and diffusion use different grid arrangements (staggered vs. non-staggered), which can 
artificially enhance certain wave modes. 

This sentence will be modified as: 
 

The idealized experiments reveal that the noise generation involves two coupled processes: (1) 

dispersive effects inherent to the advection-diffusion discretization (grid staggering), and (2) 

selective amplification and phase organization of small-scale components in surface forcing through 

these dispersive mechanisms. 

 

 
We appreciate your insightful suggestion regarding the averaging process. As noted in our 

response to the Main Point comment, we have revised the derivation in Section 3.3 to explicitly 
include the averaging of winds to cell centers before applying Taylor series expansions. Following 
your comment #16, this adjustment now modifies the coefficients in Eq. (12) (originally Eq.(10)) 
to 4, 4, and 24, which more accurately represents the model's numerical formulation. 
 

 
We agree with your observation. In Eq. (12) [modification of (10)], 𝛂𝛂�𝒋𝒋  and ∆𝛂𝛂𝒋𝒋  are 



evaluated at a given grid point 𝒙𝒙𝒋𝒋 . This approach is valid for diagnosing local dispersion 
properties, as reflected in our response to the 'Main Point.' 
 

 

We fully agree with this suggestion and will implement the proposed changes. Please see our 
response to the 'Main Point' comment. 
 

 
We agree and have removed the factor of 1/2 from the definition of ∆𝛂𝛂𝒋𝒋, carrying it explicitly 

in subsequent equations. This correction aligns with standard notation and avoids scaling 
inconsistencies. The coefficients in Eq. (12) have been updated accordingly, as detailed in our 
response to the 'Main Point' section. 
 

 

Thank you for this critical insight. As now clarified before Eq. (11), our Taylor expansions are 
strictly valid for numerically resolved scales (|kΔx| ≤ π/2). While higher-order terms become 
significant near kΔx = π, this doesn't affect our analysis of 2Δx waves (kΔx = π/2). Line 272 will 
be rewritten as: 

For numerically resolved scales (|𝑘𝑘Δ𝑥𝑥| ≤ 𝜋𝜋/2) where Taylor expansions remain valid, the 

variable u at neighboring grid points can be approximated as: 

 
This ensures the convergence of Taylor series expansions, thereby justifying the omission of 

higher-order terms and enhancing the robustness of our analysis.  
 

 
We appreciate your suggestion. While the current piecewise-constant sampling introduces 

directional bias (e.g., choosing u(x) over u(x+Δx)), this quick experiment demonstrates that 
unstaggered coupling can effectively suppress the targeted 2Δx noise. Based on your suggestion, 



we have conducted the experiment using upwind approximation scheme define by Eq. (R1)-(R2).  
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and feedback to the dynamics point via: 
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Figure R6 confirms that this methodological alteration does not affect our core conclusions. 

While we recognize the advantage of implementing an upwind sampling scheme, this 
improvement would require substantial additional effort to refine ‒ particularly in determining 
whether to use dynamical-point winds or midpoint-averaged winds as the sampling criterion, 
along with the rigorous code verification and comprehensive evaluation. Given these 
requirements, we maintain the current piecewise-constant sampling approach for this study but 
will add discussion in Section 5, identifying the upwind scheme as a viable near-term option for 
future implementation (notably simpler than the method in your Comment #2). Please see our 
response to Comment #21. 

 
Figure R6. Same as Fig.8 in manuscript, but using Eqs. (R1-R2) 

 
 

 
Thanks for your suggestion. We will clarify Line 309-314 as: 

In Fig. 1, the physical-point u-component can be expanded as 𝑢𝑢𝑝𝑝 �𝑥𝑥 + ∆𝑥𝑥
2
� = 𝑢𝑢(𝑥𝑥) + 𝑂𝑂(∆𝑥𝑥). In 

Exp_Test, we retain solely the zeroth-order approximation, enforcing 𝑢𝑢𝑝𝑝 �𝑥𝑥 + ∆𝑥𝑥
2
� = 𝑢𝑢(𝑥𝑥). The 



same treatment is applied to the v- component (𝑣𝑣𝑝𝑝 �𝑦𝑦 + ∆𝑦𝑦
2
� = 𝑣𝑣(𝑦𝑦)), ensuring consistent dynamics-

physics coupling for both horizontal velocity components. In correspondence with Eqs. (1)-(2), we 

now present the modified formulations: 
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When mapping from physics point back to the dynamics point, we have: 
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 (16) 

This conformal alignment ensures dynamical and physical processes are computed at coincident 

grid points, eliminating the need for interpolation-based coupling shown in Eqs. (1) and (2). 

 

 
We sincerely appreciate your attention to the subtle spectral differences observed over 

oceanic regions at small scales. The observed small-scale fluctuations appear to originate 
primarily from islands in our study domain (20°S-20°N, 160°E-120°W). While most of this central 
Pacific region features flat oceanic surfaces, resolvable islands exist - including Hawaii and 
numerous small islands east of Australia. As shown in Fig. 10 of the revised manuscript (showing 
near-surface winds over eastern Australian waters), the Ctrl experiment exhibits clear stripe 
patterns in low-level winds on the upwind side of islands like Fiji’s islands (16-19°S, 177°-180°E) 
and Vanuatu (14-20°S, 166-171°E), while the Test experiment does not. This observation aligns 
perfectly with the description in Line 182 (Comment #5) and further validates our study's 
conclusions regarding the noise generation mechanism.  

Instead of Line 342-347, a more detailed description will be given in the revised manuscript: 

Over oceanic regions, the homogeneous ocean surfaces produce broadly similar spectral 

characteristics in both experiments. Although this general spectral agreement suggests that the 

horizontally homogeneous sea surface lacks the strong physical forcing inhomogeneity required to 

generate prominent wind stripe patterns, minor differences can still be observed at the smallest 

resolved scale (2Δx). While most of the central Pacific study region features homogeneous oceanic 

surfaces, resolvable islands (e.g., Hawaii and numerous small islands east of Australia) introduce 

observable heterogeneity. As demonstrated in Fig. 10 (depicting near-surface winds over the eastern 

Australian waters), the Exp_Ctrl exhibits clear stripe patterns in low-level winds over some of the 

islands and their upwind regions, such as parts of Fiji (16-19°S, 177°-180°E) and Vanuatu (14-20°S, 



166-171°E), whereas Exp_Test shows no such artifacts. This contrast highlights the role of surface 

inhomogeneity in noise generation. 

 
Figure 10. 18-hour forecasts of (a) u - and (b) v - component for Exp_Ctrl, and (c) u - and (d) v - component 

for Exp_Test, at the lowest model level from CMA - GFS 3.0. 

 

 
We appreciate this valuable suggestion. While implementing the physics scheme directly on 

the native wind points in CMA-GFS presents significant technical challenges, we recognize—
based on Comment #2—that modifying the boundary-layer code remains a viable pathway. We 
will therefore remove the concluding statement about implementation difficulty from this 
section and expanded the discussion in the end of Section 5 to explicitly consider adapting the 
Met Office's Unified Model approach as a potential future improvement. Line 408-409 will be 
deleted: 

Consequently, this method also proves extremely difficult to implement in CMA-GFS. 

Line 418-422 will be revised as follows: 

Higher-order horizontal diffusion can serve as a practical remedy for unexplained noise. 

However, this study has definitively pinpointed the specific sources of wind-field noise in CMA-

GFS. We therefore propose the following targeted recommendations: 

1. While the piecewise-constant sampling method (Eqs. (15) and (16)) effectively suppresses 

numerical noise, it may introduce directional biases. A more physically consistent approach 

would be upwind sampling, where: 



�
𝑢𝑢𝑝𝑝 �𝑥𝑥 +

∆𝑥𝑥
2
� = 𝑢𝑢(𝑥𝑥)                      if 𝑢𝑢 ≥ 0

𝑢𝑢𝑝𝑝 �𝑥𝑥 +
∆𝑥𝑥
2
� = 𝑢𝑢(𝑥𝑥 + ∆𝑥𝑥)      otherswise

 (17) 

This straightforward approach offers immediate operational feasibility and can be rapidly 

implemented to address the issue. We recommend trial implementation in the operational 

system followed by comprehensive impact assessment. 

2. The strong connection between wind and heat transfer in the boundary layer turbulent diffusion 

makes it difficult to compute momentum diffusion directly at wind grid points. As 

demonstrated in Chen et al. (2020), interpolating the diffusivity (rather than prognostic 

variables) effectively eliminated vertical grid-scale noise in thermodynamic fields — a 

numerical artifact originally induced by staggered-grid coupling between dynamic and 

physical processes. Following this approach, we recommend averaging the diffusion 

coefficient back to the wind points and performing the vertical diffusion on the wind points, 

thereby avoiding interpolation of prognostic wind variables. Given its demonstrated efficacy 

in addressing similar discretization challenges in our previous studies (Chen et al., 2020), this 

approach merits implementation and systematic evaluation. 

 
 

 

We sincerely appreciate your meticulous attention to detail. All typographical and editorial 
errors identified will be carefully verified and corrected in the revised manuscript. 

 
Best regards, 
Jiong Chen 
 
 


