

Multiscale Modeling for Coastal Cities: Addressing Climate Change Impacts on Flood Events at Urban-Scale

Michele Bendoni¹, Francesca Caparrini², Andrea Cucco³, Stefano Taddei⁴, Iulia Anton⁵, Roberta Paranunzio⁶, Rossella Mocali⁴,
 Massimo Perna⁴, Michele Sacco⁴, Giovanni Vitale^{8,4}, Manuela Corongiu⁴, Alberto Ortolani^{7,4}, Salem Gharbia⁵, Carlo Brandini^{8,4}.

6

1

2

- I. Institute of Marine Science, National Research Council of Italy (CNR-ISMAR), Forte Santa Teresa, snc, 19032 Lerici (SP),
 Italy.
- 9 2. Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR-IGG), Via G. Moruzzi 1, 56124 Pisa 10 (PI), Italy.
- 3. Institute for the study of Anthropic Impacts and Sustainability in marine environment, National Research Council (CNR- IAS),
 Loc. Sa Mardini Torregrande Oristano, Italy.
- 4. LaMMA Consortium, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy.
- 14 5. Atlantic Technological University, Ash Lane F91 YW50, Sligo, Ireland.
- 6. Institute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR-ISAC), Corso Fiume, 4, 10133 Torino
 (TO), Italy.
- 7. Institute of Bio-Economy, National Research Council of Italy (CNR-IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino
 (FI), Italy.
- 8. Institute of Marine Science, National Research Council of Italy (CNR-ISMAR), Via Madonna del Piano 10, 50019 Sesto
 Fiorentino (FI), Italy.
- Corresponding Author: Carlo Brandini, <u>brandini@lamma.toscana.it</u>, https://orcid.org/0000-0002-6509-4533

2223

Abstract

- 24 This study presents an integrated modeling framework designed to bridge scales from regional to urban,
- 25 enabling a detailed assessment of the impacts of future climate scenarios on three European coastal cities:
- 26 Massa (Italy) and Vilanova (Spain) in the Mediterranean, and Oarsoaldea (Spain) in the Atlantic. Conducted
- 27 as part of the SCORE EU Project (Smart Control of Climate Resilience in European Coastal Cities), the
- 28 framework employs a novel, non-standard downscaling approach to translate large-scale atmospheric
- 29 outputs from the EURO-CORDEX regional model ALADIN63 (for Historical, RCP4.5, and RCP8.5
- 30 scenarios) into high-resolution simulations of storm surges, wave climate, and river discharge using
- 31 SHYFEM, WAVEWATCH III, and LISFLOOD models.
- 32 The framework achieves coastal resolutions on the order of 100 m, providing time series of water levels
- 33 and wave runup, which are combined into total water levels. These results, together with extreme value
- 34 analysis of river discharge and projected relative sea level rise (RSLR), are used as boundary conditions for
- an urban-scale hydrodynamic model with resolutions as fine as 2–20 m. This multi-scale integration allows
- 36 for detailed analysis of changes in flooded areas and volumes under RCP4.5 and RCP8.5 scenarios, relative
- 37 to historical conditions, highlighting the influence of shifting extremes, RSLR, and site-specific features.
- 38 Results show that in Massa and Vilanova, increased extreme river discharges are projected, while moderate
- 39 changes in extreme water levels are overshadowed by RSLR, particularly for Massa. Oarsoaldea, well
- 40 protected from storm surges, is expected to experience a slight reduction in extreme river discharge. This
- 41 work demonstrates the capability of the integrated framework to address climate change impacts at urban
- 42 scales, providing valuable insights for the development of localized adaptation strategies.

1 Introduction

44 45 46

47

48

49

50

51 52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75 76

77

78

79

80

81

82

83

84

85

86

87

2009), especially in coastal regions, where their combination significantly increases the exposure of urban areas to extreme natural events. Coastal cities and settlements, home to more than 2 billion people worldwide, are among the most vulnerable areas to these events (IPCC, 2023; Vitousek et al., 2017; Oppenheimer et al., 2019). Approximately 900 million people live in low-elevation coastal zones (LECZ), areas situated less than 10 m above mean sea level (Reimann et al., 2023), with a projected global population density of around 400-500 people/square km by 2060 (Neumann et al., 2015). These regions, marked by increasing anthropogenic activity, hold crucial social and economic importance, with dense population and infrastructure that may further elevate their future vulnerability (Figueiredo et al., 2024; Paranunzio et al., 2022). Global mean sea level is projected to rise between 0.3 and 2 m by 2100 under scenarios of increasing global warming (Vitousek et al., 2017). In addition, the effects of land subsidence are expected to further exacerbate risks in most coastal areas, intensifying future impacts on population and infrastructure (Vousdoukas et al., 2018). In Europe alone, currently, over 50 million live in LECZ areas (Vousdoukas et al., 2020). With a relative sea level rise (RSLR) of just 0.15 m above 2020 levels, the coastal population potentially exposed to a 100year coastal flood could increase by about 20% in the medium to long term (IPCC, 2023). By 2100, the total number of people exposed to risk of flooding is projected to reach 1.61 million, and 3.9 million, under the two Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 (Vousdoukas et al., 2020). Coastal cities around the world are threatened not only from inundation due to storm surges or sea level rise (Hallegatte et al., 2013; Wahl et al., 2017) but also from river flooding which poses additional risk (Khanal et al., 2019). These areas are therefore impacted by a complex interplay of multiple flood-related systems including river, sea/oceans and coastal land (Laino et al., 2024). Assessing the local effects of such hazards to enhance coastal communities' resilience is one of the greatest challenges of our time, especially in the context of the ongoing climate change. High uncertainty in urban sprawl and flood risks leads to a generalized lack of preparedness to face future flood events (Sun et al., 2022). In this context, highresolution climate data are essential for defining downscaling strategies that begin with global climate services and are able to evaluate the impacts of multiple hazards at the local scale. Bensi et al. (2020) provides a broad overview of existing literature on hazard interaction, organized by different flooding hazard focus, i.e., studies that address several mechanisms in the fluvial and coastal flood processes alone and studies focusing on joint fluvial and coastal flood processes (e.g., Masina et al., 2015; Bevacqua et al., 2017). Many studies address the degree of dependence among different mechanisms, e.g., precipitation, river flow and storm surge events to assess coastal flood risk, also investigating how it changes over time (Bevacqua et al., 2017; Moftakhari et al. 2017; Orton et al., 2018; Zheng et al., 2013) and with respect to different climate change scenarios (e.g., Parodi et al. 2020; Zhong et al., 2023; Gori & Lin, 2022; Wahl et al., 2015). Despite the large number of methodologies, tools and models exploring the single or combined effect of climate-related hazards in coastal areas worldwide, studies which exploit different approaches to provide a global multidisciplinary framework to assess flood scenarios in the future at the fine resolution of the urban scale are not widespread (Bensi et al., 2020). Some promising studies pointing in this direction have been

developed during the last decade, especially in the US. Based on copulas and bivariate dependence analysis,

Moftakhari et al. (2017) quantified the increases in failure probabilities of coastal flood defenses for eight

estuarine systems along the coasts of United States caused by RSLR under multiple flood drivers ad RCP4.5

Rapid urban growth and climate change are two of the most pressing challenges of our time (Satterthwaite,

https://doi.org/10.5194/egusphere-2025-270 Preprint. Discussion started: 17 April 2025 © Author(s) 2025. CC BY 4.0 License.

and RCP8.5 in 2030 and 2050. To assess climate impacts for the US West Coast, Barnard et al. (2014) used wind fields from different Global Circulation Models (GCMs) under two RCPs scenarios, 4.5 and 8.5, to resolve 3 hours peak conditions into the WAVEWATCH III wave models within a deterministic, multidimensional framework in the Coastal Storm Modeling System (CoSMoS). Process-based modeling system proved to be able to dynamically transfer information from global atmospheric scale to the regional and local scale to predict impacts of multiple coastal hazards (i.e., coastal erosion and cliff failures and flooding) for a range of RSLR and storm scenarios at a resolution scale that is relevant for management and adaptation planning (meters scale) (Barnard et al., 2019). In Europe, some few attempts have been made to develop comprehensive models that scale down from the synoptic to the urban scale. Model framework to assess the coastal risks and morphological impacts induced by extreme storm events similar to CoSMoS has been developed in the context of European projects (e.g., Ciavola et al., 2011), but more in support of early warning and emergency response. Van den Hurk et al. (2015) studied the joint distribution of precipitation and storm surges for 1950 to 2000 using 800 years of simulated data using a RACMO2 Regional Circulation Model (RCM) at 12 km resolution to establish a relation between compound hazards in the Netherlands.

It follows that high resolution RCMs are needed to properly model climate impact at a higher resolution. Estimating the impacts of climate change on coastal cities requires increasing the resolution of city-scale models to unprecedented levels, simulating coastal and terrestrial flood conditions for different return periods and scenarios, and including considerations for the evaluation of financial resilience strategies or ecosystem-based adaptation solutions. Thus, a multidisciplinary framework is needed to foster, through coparticipatory and co-creative approach, the public engagement of scientists, policy-makers and citizens, to identify and share socially and technically acceptable solutions. This is part of SCORE project (Smart control of climate resilience in European coastal cities, https://score-eu-project.eu/) which aims, through an integrated and multidisciplinary approach, to monitor and validate reliable and robust adaptation measures in low-lying coastal cities to minimize the effects of climate-related hazards and enhance the overall resilience. This is addressed in the context of the Coastal City Living Labs (CCLLs), a novel participatory approach built upon the living lab concept that aims to involve scientists, decision makers, citizens and different stakeholders in the modeling process and in preparing climate risk assessment analysis, thus accelerating the systematic adoption (Paranunzio et al., 2023).

To assess the impacts of multiple climate-related hazards on coastal cities under different climate change scenarios, we present a downscaling procedure which consists of a dynamic multi-branch modeling chain ending with high-resolution (~2 m) flood simulations. Here, we use the term "downscaling" to indicate the transfer of information from the synoptic atmospheric scale to the urban scale of individual buildings and streets, rather than the increase in detail of a specific dataset coming from a numerical model with higher spatial and temporal resolution with respect to the parent one. An integrated approach blending oceanography, hydrology, hydraulics and extreme value analysis (EVA) has been used for the computation of flooded areas for both historical periods and future climate projections for different return periods and under two different RCP scenarios, 4.5 and 8.5 (IPCC, 2014). We used atmospheric data from an EURO-CORDEX RCM (Jacob et al., 2014), and three different models simulating the evolution of water level, wave dynamics, and rainfall-runoff transformation to create the boundary conditions to run hydrodynamic simulations in coastal cities, for both past and future periods. The modeling chain has been applied to the three different CCLLs based on the indications of the SCORE Project: Massa (Italy), Vilanova i la Geltrù and Oarsoaldea (Spain), as different test cases characterized by different phenomenological features.

The high computational demand of the simulation and the need for an extremely fine temporal resolution data are two major challenges in this context. Among the EURO-CORDEX models, only one RCM offers at least three-hourly data for the atmospheric variables required across all models and scenarios. We acknowledge that the use of a multi-RCM (GCM) ensemble is preferable with respect to a single RCM (GCM) to predict more rigorously spatial patterns and to estimate the uncertainty in the projections in response to climate change (Khanal et al., 2019; Gori & Lin, 2022; Bevacqua et al, 2020; Ghanbari et al, 2021). However, the computational cost of the procedure and the high-resolution of the model create challenges for multi-model impact assessment at urban scale. In addition, some studies make successful use of one GCM in dynamical downscaling and hydrological modeling (Vezzoli et al., 2015; Lima et al., 2023). To our knowledge, this is one of the first works for the European area dealing with projections of climate data at i) such a high spatio-temporal resolution, ii) exploiting various computational demanding models up to the urban scale, iii) seeking to develop a flood hazard modeling chain from multiple sources and iv) embracing a multidisciplinary modeling framework.

The work is organized as follows. Section 2 provides a brief overview of the project and description of the study sites. Section 3 describes the overall methodology, while Section 4 deals specifically with the implementation of the three numerical models. Section 5 describes the extreme value analysis and the urban scale model. Results of the overall methodology are then presented in Section 6 and discussed in the next section. Section 8 is dedicated to conclusion on outlook.

2 The SCORE Project and the study sites

The SCORE project focuses on the resilience of coastal cities to the effects of climate change. Coastal cities, as climate change hotspots, are affected by numerous consequences resulting from changes in the marine, atmospheric, and terrestrial (hydrogeological) components of the Earth system. However, among the many risks related to climate change in coastal cities (which could include increasing marine and atmospheric heatwaves, fire risks, subsidence due to the over-exploitation of water resources in tourist areas, etc.), SCORE has focused on flood risk. This includes flooding from rivers, marine inundations, or a combination of both. Marine floods, as is well known, can result not only from extreme storm surges but from combinations of storm waves and high tidal levels (both astronomical and meteorological induced by wind and pressure), following a signal that is modulated in the long term by RSLR

wind and pressure), following a signal that is modulated in the long term by RSLR. The selection of cities involved in the project was made during the project development phase. The choice was not driven by prioritizing cities with the highest exposure to these effects (e.g., the city of Venice), but rather those where there is an active and engaged community of citizens, stakeholders, and research centers collaborating on co-designing solutions to improve resilience to the effects of climate change. This process begins with ecosystem-based adaptation solutions (EbAs; Munang et al., 2013; Temmerman et al., 2013; Tiwari et al., 2022), which encourage practices that increase citizen participation and awareness, such as sharing meteorological observations following Citizen Science standards (Conrad & Hilchey, 2010). The modeling components developed for these cities also contribute to the creation of urban-scale Digital Twins, which are part of a specific activity within the project. These digital tools, alongside advanced data representation, enable a better understanding of flood effects and allow the modeling of adaptation scenarios using a What-If methodology (Paranunzio et al., 2023).

Within the project, local initiatives are built following the Living Lab paradigm (Bulkeley et al., 2018), forming Coastal Cities Living Labs, where local communities participate according to the quadruple helix

model (Carayannis & Campbell, 2009). The decision of whether cities would act as frontrunners or followers for certain project activities (as organized through the project work packages) was made based on the specific themes of interest within the CCLLs.

Therefore, the selection of the study cases presented in this article: Massa, Vilanova i la Geltrù (from now on we will refer to the city simply as Vilanova), Oarsoaldea (Figure 1) was based on the presence of three frontrunners that followed a common analysis methodology, which is described in the next section. This methodology starts from the availability of data provided by climate services and, through downscaling techniques and urban and coastal hydraulic modeling, defines the design conditions expected for coastal cities. Defining case studies based on project guidance does not diminish the scientific value of this work or the approach used; rather, it demonstrates how the problem of coastal resilience is universal and not restricted to specific areas. Ultimately, this requires a careful analysis that can be more effectively carried out with a local and site-specific approach rather than relying solely on regional models, even when they have high-resolution.

Fig 1 View of the geographical area where the analyzed cities are located. Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

3 Overall methodology

The modeling chain implemented transfers information from the atmospheric synoptic scale (1000-100 km) up to the urban scale (2 m), and is aimed at obtaining time series of wave height H_s , water level η , and river discharge Q close to the coastal cities of interest, for both past periods and future climate projections. An extreme value analysis is then performed on the calculated time series to estimate the peak values associated with specific return periods. These values are eventually employed to build synthetic events to simulate their effects in terms of flooded areas for the analyzed coastal cities. A sketch of the overall procedure is reported in Figure 2.

4.3.

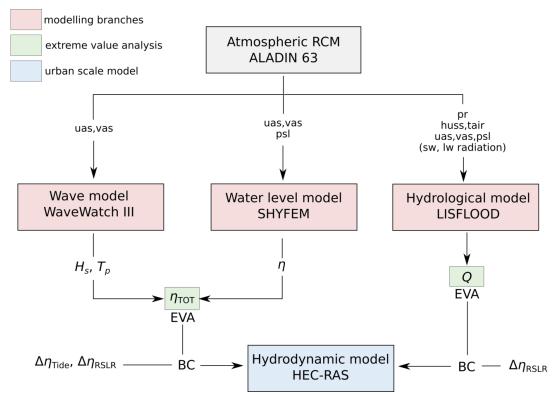


Fig 2 Sketch reporting the overall methodology to downscale data and run hydrodynamic simulations at the urban scale. Light red boxes correspond to the models employed to downscale atmospheric variables, light green boxes contain variables subject to extreme value analysis and the light blue box corresponds to the urban scale flood modeling part. H_s is the significant wave height, T_p is the peak wave period, Q is the river discharge, η is the water level, $\Delta \eta_{\text{Tide}}$ and $\Delta \eta_{\text{RSLR}}$ are the increases in water level due to tide and relative sea level rise, respectively

The modeling chain implemented employs atmospheric data from the ALADIN63 RCM (Coppola et al., 2020; Vautard et al., 2020), provided by the EURO-CORDEX experiment (Jacob et al., 2014), and use it as input for the following models: WaveWatch III (WW3DG, 2019) simulates the dynamic of wave height taking as input the surface zonal and meridional wind velocities (uas, vas); SHYFEM (Umgiesser et al., 2004) simulates the evolution of water levels forced by surface winds (uas, vas) and mean sea level pressure (psl); LISFLOOD (Van Der Knijff et al., 2008) simulates the rainfall-runoff transformation and takes in input several atmospheric variables such as rainfall rate (pr), air temperature (tair), specific humidity (huss), sea level pressure (psl) shortwave and longwave radiation (rsds, rlds, rsus, rlus). A more detailed and thorough description of the downscaling procedure for each variable is reported in Sections 4.1, 4.2 and

For each of the models, the Evaluation, Historical, RCP4.5 and RCP8.5 experiments are simulated. The Evaluation (Eval) experiment is employed to test the ability of the model to reproduce observable extreme events. In such a case the ALADIN63 RCM is forced by the ERA-Interim reanalysis (Dee et al., 2011). The Historical (Hist) experiment is used as a baseline for the two climate change scenarios expressed by the Representative Concentration Pathways defined by the fifth Assessment Report (AR5) of

226

227

228

229

230

231

232

233

234

235

236

237238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Intergovernmental Panel on Climate Change (IPCC, 2014). RCP4.5 and RCP8.5 data are used to analyze the effect of anthropogenic climate change in the future flooding pattern at urban scale. For this set of simulations, the ALADIN63 RCM was forced by the CNRM-CM5 GCM (Voldoire et al., 2011). The choice of such a RCM is due to the fact that this was the only one that provided at least three-hourly data for the atmospheric forcing variables for all the experiments, among the EURO-CORDEX models. Other RCMs provided those variables at different output frequencies or solely for specific temporal windows (e.g. RCP4.5 for the period 2050-2070 and RCP8.5 for the period 2030-2050). The consequences and limitations of such a choice are discussed in Section 7.

A summary of the simulated experiments with associated time windows is reported in Table 1.

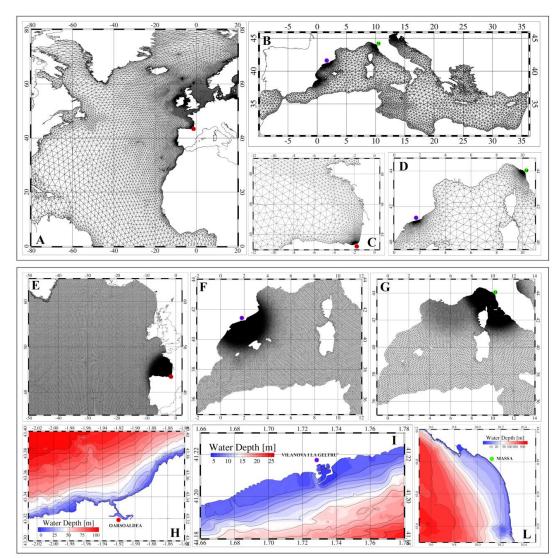
Experiment	Time window	Simulated RP [years]
Eval	1980-2012	-
Hist	1956-2005	25, 100
RCP4.5	2006-2100	25, 100 (2011-2060) 25, 100 (2051-2100)
RCP8.5	2006-2100	25, 100 (2011-2060) 25, 100 (2051-2100)

Table 1. Summary of the simulated experiments with associated time windows. Return periods (RP) refer to the values calculated through the extreme value analysis and used to create synthetic events simulated with the urban scale hydrodynamic model.

The hydrodynamic simulations of storm surges and river flood at urban scale have been performed using the HEC-RAS 6.4 model (Brunner & US Army Corps of Engineers, 2021), similarly to Gori and Lin (2022). The storm surge is modeled following a simplified approach consisting of the combination of time series of wave runup $R_{2\%}$ and water level. First, the wave runup $R_{2\%}$ is determined using wave height and period and the slope of the beach, following Atkinson et al. (2017), then, it is added to the water level η , to obtain the total water level η_{TOT} . The extreme value analysis is carried out on this last variable and on the river discharge O, separately, for all the simulated experiments (Table 1). Hazard maps reporting the water depth envelope associated with a specific return period event are produced for the flood due to the storm surge and for the riverine flood. Furthermore, to simulate the RSLR and the effect of the tide, an increased value for the mean water level is applied to each hydrodynamic simulation based on the associated experiment. A more detailed description of the urban scale hydrodynamic modeling activity is reported in Section 5. The projections of RSLR for RCP4.5 and RCP8.5 used in this paper can be found in two free-access datasets (Vousdoukas et al. 2016a for RCP4.5 data, Vousdoukas et al. 2016b for RCP8.5 data), downloadable from the European Commission Joint Research Centre (JRC) website. These datasets provide the Total Water Level (TWL), from which the RSLR can be extracted by subtracting the episodic extremes (wave runup and storm surge level) which are also provided, along with the tidal contribution. More information can be found in the related article (Vousdoukas et al. 2017). The dataset covers the European coastlines with a temporal resolution of 10 years. Europe is divided into 10 regions, within which all values are averaged. All values are given with respect to the 1985–2005 reference period.

4 Modeling branches

In this section, we describe the implementation of the three numerical models: WaveWatch III, SHYFEM and LISFLOOD, employed to perform the main part of the downscaling procedure. Each of the models has a particular setup on the basis of the analyzed coastal city.


4.1 Wave climate model

The numerical model used to simulate wind waves was WaveWatch III (WAVE-height, WATer depth and Current Hindcasting), v. 6.07 (WW3DG, 2019), a community third-generation wave model developed at the US National Centers for Environmental Prediction (NOAA/NCEP) that includes the latest scientific advancements in the field of wind-wave modeling and dynamics (https://github.com/NOAA-EMC/WW3/releases/download/6.07/wwatch3.v6.07.tar.gz).

WAVEWATCH III solves the random phase spectral action density balance equation for wavenumber-direction spectra, and includes options for shallow-water applications. Propagation of a wave spectrum can be solved using regular (rectilinear or curvilinear) and unstructured (triangular) grids. Source terms for physical processes include parameterizations for wave growth due to the actions of wind, nonlinear resonant wave-wave interactions, scattering due to wave-bottom interactions, triad interactions, dissipation due to whitecapping, bottom friction, surf-breaking, and interactions with mud and ice. Source terms are integrated in time using a dynamically adjusted time stepping algorithm.

In this application, according to the project needs, two different implementations of the model were performed, with two different computational domains. The first one included the entire Mediterranean basin and a further area west of the Strait of Gibraltar, to improve accuracy in the Alboran Sea (Figure 3b). The second one was extended to the Atlantic Ocean (Figure 3a) to simulate the wave climate in front of the ocean-facing European cities. As for boundary conditions, domains were assumed to be closed at the farthest ocean boundaries. Both domains have been discretized by unstructured meshes with a variable resolution up to 500 m in the coastal areas surrounding the cities of interest (Figures 3c, and 3d). The resolution decreases in the rest of the domain and the minimum resolution in deep offshore areas reaches about 70 km for the Mediterranean grid, and about 300 km for the Atlantic one. GEBCO, EMODnet, and nautical chart bathymetries were used in different parts of the domains.

Fig. 3 Finite element meshes used by the WWIII wave model (upper panels labeled with A, B, C and D) and the SHYFEM hydrodynamic model (lower panels labeled with E, F, G, H, I and L). Panels A and B show portions of the WWIII domains, which include most of the Atlantic Ocean and the entire Mediterranean Sea. High-resolution areas for Oarsoaldea (red point), Vilanova (blue point), and Massa (green point) are displayed in panels C and D. Panels E, F, and G illustrate portions of the three SHYFEM domains, covering most of the North Atlantic Ocean and the entire Mediterranean Sea, highlighting the high-resolution areas. The bottom panels (H, I and L) depict the bathymetric details of the three study sites

The output of the wave model was recorded hourly at all grid points for the integrated quantities, in particular significant wave height (H_s) , mean wavelength (L_m) , mean wave period (T_m) , peak wave period (T_p) , mean wave direction (Dir_m) and peak wave direction (Dir_p) . The atmospheric dataset provided by ERA

Interim+EuroCordex (ALADIN63 RCM) for the evaluation data and CMIP5+EuroCordex for the other data, which includes wind (uas, vas) at a frequency of 3 hours, was used as forcing.

303 304

301

302

305 306

307

308

309

310311

312

313

314

315

316

317

4.2 Water level model

Future projections of storm surge events for the three study sites have been conducted using advanced numerical modeling techniques. Specifically, SHYFEM (System of Hydrodynamic Finite Element Modules, Umgiesser et al., 2004), an ocean model based on the finite element method, has been implemented for each coastal site to simulate the temporal and spatial variability of water levels influenced by atmospheric forcing, wind and atmospheric pressure.

SHYFEM is an open-source community model (freely downloadable at https://github.com/SHYFEM-model/shyfem.git), that resolves the 3D primitive equations system, integrated over z-layers, in their formulations with water levels and transports. It uses a semi-implicit algorithm for the discretization in time and finite element for the spatial integration. The model has been widely used to investigate the main hydrodynamics in coastal areas (e.g. Western Mediterranean Sea in Bonamano et al., 2024 and Cucco et al., 2023, 2022; Umgiesser et al., 2014, 2022; Quattrocchi et al., 2021; Maicu et al., 2018; Federico et al., 2017) and for real time prediction of storm surge events in several coastal sites in the Mediterranean sea, e.g. the Venice Lagoon (Umgiesser et al., 2022; Bajo et al., 2007, 2019). We refer to (Umgiesser et al., 2004) for a detailed overview of the model equation system, numerical treatment and parameters setup.

318 2004) for a detailed overview of the model equation system, numerical treatment and parameters setup.
319 In this application, SHYFEM has been implemented in 2D mode accounting for barotropic pressure
320 gradients, wind drag and bottom friction, which are the primary forces driving the storm surge events
321 (Bloemendaal et al., 2018; Wicks et al., 2017). The model was applied to simulate the atmospheric
322 contribution to water level η , thus neglecting the non-linear interaction with tides. This approach is
323 commonly used in ocean prediction systems, in fact, the non-linear interactions between tides and surge are
324 generally small enough to allow for the linear addition of tidal and surge components thus reducing the
325 complexity of numerical experiments (Yang et al., 2023; Zijl et al., 2013; Bajo et al., 2007).

The water levels including tides can be derived by adding the astronomical tide to the computed *η*. The impact on accuracy depends on tidal amplitudes, which are minimal in the Western Mediterranean Sea due to very low tides (0.2-0.3 m) and slightly more significant for the Atlantic site where tidal amplitudes exceed 1.5 m (around 3 m, as estimated by Fernández-Montblanc et al., 2018 for the whole European coastal seas).

The same assumption was applied to other factors such as general circulation and climate-induced RSLR,

which contribute to a lesser extent to water level fluctuations in case of extreme events.

Three different finite element meshes have been implemented to reproduce, with varying spatial resolution, the geomorphological features of the three coastal sites (Figure 3h, i, 1). Each domain extends to the entire basin facing each study site (the Western Mediterranean Sea for Villanova and Massa, and most of the

North Atlantic for Oarsoaldea) to cover the full area influenced by the main wind fetches and to eliminate

336 the need for ad hoc open boundary conditions.

The atmospheric dataset provided by the ALADIN63 RCM, which includes wind and atmospheric pressure data (uas, vas and psl) at a 3-hour frequency, was used as forcing.

338 339 340

341

342

343

344

4.3 River discharge model

River floods occur when the stream or channel geometry is not sufficient to contain the incoming volume of water. In order to model river floods, it is necessary to define the discharge hydrographs, i.e. the evolution in time of flow rate in given cross sections. The shape of the hydrograph, the time and value of its peak, and in general the streamflow generated in the channel network as a response to precipitation events, are

https://doi.org/10.5194/egusphere-2025-270 Preprint. Discussion started: 17 April 2025 © Author(s) 2025. CC BY 4.0 License.

- 345 the consequences of the hydrological processes in the upstream basin. Such processes include several
- 346 complex mechanisms occurring at land surface (infiltration, evapotranspiration, runoff generation, hillslope
- 347 routing, snowmelt, groundwater recharge) that depend on many factors like basin topography, soil hydraulic
- properties, vegetation cover and structure of the river network.
- 349 In this work, we have used LISFLOOD (https://ec-jrc.github.io/lisflood/), a spatially distributed
- 350 hydrological model developed by the Joint Research Centre (JRC) of the European Commission since 1997
- (Van Der Knijff et al., 2008). LISFLOOD has been applied to a wide range of applications and is currently
- 352 used in the EFAS (European Flood Awareness System) and GLOFAS (Global Flood Awareness System)
- 353 (Alfieri et al., 2019). In LISFLOOD, the soil is schematised with three layers and all the main hydrological
- 354 processes are modeled: surface runoff, exchange of soil moisture between layers and drainage to the
- groundwater, sub-surface and groundwater flow and flow through river channels.
- 356 For the calculation of potential reference evapotranspiration, potential evaporation from bare soil and open
- water, LISFLOOD can be coupled to the LISVAP preprocessing routine (JRC, 2013), especially developed
- for this purpose (https://ec-jrc.github.io/lisflood-lisvap/).
- 359 In this work LISFLOOD model was applied to the main rivers that cross the selected coastal cities: Frigido
- 360 river for Massa (catchment size ~70 km²), Torrent de la Piera and Torrent de San Juan for Villanova (total
- 361 size of the two catchments ~40 km²), and Oiartzun river for Oarsoaldea (catchment size ~85 km²). Such
- watersheds were represented as gridded domains with 100x100 m cell size (Figure 4a, b, c).
- 363 For Frigido river, geomorphological and land cover characteristics were obtained from data available from
- Tuscany Region (hydrologically conditioned DEM at 10x10 m resolution, land cover at 1:10000 scale),
- 365 while for the other basins data were obtained from EU-DEM v 1.1 25x25 m resolution, Copernicus Land
- 366 Monitoring Service (https://land.copernicus.eu) and ISRIC Soil Grids 250x250 m
- 367 (https://www.isric.org).
- 368 The meteorological forcing fields extracted from EURO-CORDEX necessary to run the LISFLOOD-
- 369 LISVAP models, as reported in section 3, are precipitation (1h), sea level pressure (3h), wind speed (3h),
- 370 minimum and maximum air temperature (daily), humidity (daily), shortwave and longwave radiation
- 371 (daily)
- 372 Output of LISFLOOD are the times series of hourly river discharge in selected points, for each
- 373 climatological scenario. Extreme value analysis can then be applied on these long-term time series to obtain
- design flood peaks for the selected return periods and the resulting hydrographs to be used as BC for the
- 375 hydraulic simulations (whose domains are shown in figure 4d, e, f), as described in Section 5.

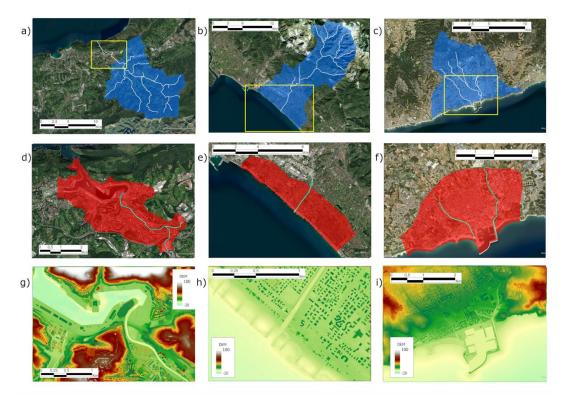


Fig 4 Top row: View of the domains (blue shading) for the rainfall-runoff hydrological model: a) basin of Oiartzun river, with outlet in Oarsoaldea, b) basin of Frigido river, with outlet in Massa b), basins of Torrent de San Juan and Torrent de la Piera, with outlet in Vilanova c). Middle row: View of the domains of the 2D hydrodynamic modeling (red shading): d) Oarsoaldea, e) Massa, f) Vilanova. Bottom row: Enlargement of the area close to the river mouth, showing the resolution of the employed DEM to create the 2D computational domain: g) Oarsoaldea, h) Massa, i) Vilanova. Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

5 Modeling floods at urban-scale

In this section, we describe the extreme value analysis to obtain the boundary conditions for the flood simulations at urban scale using the hydrodynamic model implemented at each analyzed city.

5.1 Extreme value analysis

The extreme value analysis has been performed for the variables river discharge Q and total water level η_{TOT} . Two return period values were determined, 25 and 100 years for each experiment (Historical, RCP4.5, RCP8.5). Furthermore, for the climate projections, two different time windows were analyzed, 2011-2060 and 2051-2100 (Table 1).

In this study, the Generalized Extreme Value (GEV) distribution was employed to model the occurrence of annual maxima values of river discharge Q and total water level η_{TOT} , separately. Since our principal

objective is the comparison among different experiments, such a distribution allowed us to be consistent and to use the same number of events (50) for all the experiments.

The total water level η_{TOT} for the Massa and Vilanova cases is equal to the sum of η and the runup value, which is calculated with the Atkinson et al. (2016) equation: $R_{2\%} = 0.92 tan \beta \sqrt{H_S L_P} + 0.16 H_S$, where tanß is the slope of the beach and L_P is the deep water wavelength at the peak period. Before the calculation of $R_{2\%}$, the wave height is projected along the orthogonal direction to the coastline, to account for wave direction. For Oarsoaldea the effect of runup is not included in the computations since we do not simulate waves within the port.

The Generalized Extreme Value (GEV) distribution can be written as follows (cumulative distribution function):

408
$$F(x) = e^{-(1+\xi \frac{x-\mu}{\sigma})^{-\frac{1}{\xi}}}$$

defined for values of x for which $\xi \cdot x > \xi \cdot \mu - \sigma$. In this equation, μ is the location parameter, ξ is the shape parameter, and σ is the scale parameter. The shape parameter ξ governs the distribution type: $\xi = 0$, Type I, Gumbel distribution; $\xi > 0$, Type II, Fréchet distribution; $\xi < 0$, Type III, Weibull distribution (Coles, 2001)

The parameters μ , σ , ξ are estimated from data using the maximum likelihood method. Then, the return levels x_{RP} for a given return period can be calculated as follows:

415
$$x_{RP} = \mu + \frac{\sigma}{\xi} \left(\left(-ln(1 - \frac{1}{RP})^{-\xi} \right) - 1 \right).$$

To ensure robust estimates of the uncertainties associated with the return levels, the confidence intervals (CI) at the 95% significance level were calculated using parametric bootstrapping with 500 iterations (Gilleland, 2020). The statistical analysis has been performed using the R package extRemes: Extreme Value Analysis (Gilleland and Katz, 2016).

The effect of extreme storm surge and river flood on the analyzed coastal cities was determined using the HEC-RAS 6.4 hydrodynamic model (Brunner & US Army Corps of Engineers, 2021). The software couples the simulation of the flow within a river, solving the one-dimensional Saint-Venant equation, to the two-dimensional flow on the floodable areas, solving the shallow water equations. Once the water level within the river bed exceeds the elevation of the levees, water flows on the two-dimensional computational mesh (the opposite flow is also possible).

The computational domains associated with the three cities are reported in Figure 4d, e, f. Each mesh is created by overlapping the HEC-RAS computational grid to the digital elevation model (DEM) of the analyzed area. The system calculates specific elevation-volume relationships for each computational cell, representing the details of the underlying layer. This allows us to save computational time by setting a lower resolution for the HEC-RAS mesh with respect to the DEM. For the three cities of Massa, Vilanova and Oarsoaldea, the DEM is obtained from the LIDAR dataset, at a resolution of 2 m (Figure 4g, h, i). The HEC-RAS mesh elements have a reference size from 10 to 20 m, except for specific areas (e.g. close to the

HEC-RAS mesh elements have a reference size from 10 to 20 m, except for specific areas (e.g. close to the coastline, complex urban patterns, etc..) where they are reduced to 5 m. The river geometry is composed by the river cross sections and additional information of hydraulic structures. For the Massa and Oarsoaldea cases the geometry comes from a topographic survey, whereas for Vilanova it was extracted from the LIDAR dataset.

Boundary conditions (BCs) are differently set based on the simulation carried out, as reported in Table 2. For the river flood simulations the upstream BC is a time series $Q_{RP}(t)$, with peak discharge value Q_{RP} equal to the return period value. The shape of the hydrograph $Q_{RP}(t)$ is determined as follows: i) the 24 hours preceding and following the annual maxima are extracted for each year; ii) these 49 hours time series are superimposed to have maxima in phase and then averaged; iii) the averaged time series is normalized to obtain q(t), having maximum equal to 1; iv) the $Q_{RP}(t)$ boundary is obtained multiplying q(t) by Q_{RP} . Such a procedure is applied to every run to get the appropriate BC. The downstream BC at the sea is the mean sea level plus the RSLR, based on the reference scenario $\Delta \eta_{RSLR}$ as reported in Table 2.

	River (upstream) BC	Sea (downstream) BC
River flood	Time series hydrograph $Q_{RP}(t)$	Mean sea level + $\Delta\eta_{ m RSLR}$
Coastal flood	Constant hydrograph Q	Time series hydrograph $\eta(t)_{\rm RP}$ + $\Delta\eta_{\rm Tide}$ + $\Delta\eta_{\rm RSLR}$

Table 2. Combination of upstream and downstream boundary conditions for the river and coastal flood simulations.

 For the coastal flood simulations, considering the inaccuracies inherent in long-term predictions on a century time scale (Dessay et al., 2009), a statistical approach was preferable to take into account tides and other factors contributing to the water level of the downstream BC. Specifically, for each site, delta water levels representing the maximum spring tidal amplitudes $\Delta \eta_{\rm Tide}$ (0.2 m for Massa and for Villanova) and the predicted sea level rise on a decadal time scale $\Delta \eta_{\rm RSLR}$ (Table 3) were linearly added to the $\eta_{RP}(t)$ time series to estimate the worst-case scenario for coastal flooding. $\eta_{RP}(t)$ is calculated following the same procedure employed for the river discharge, with peak value equal to $\eta_{\rm TOT,RP}$. The upstream BC is a constant value for the river discharge such as the model can run without instabilities and no flood occurs.

$\Delta\eta_{ m RSLR}$	Massa	Villanova	Oarsoaldea	
RCP4.5 2011-2060	0.150 (-0.036, +0.05)	0.15 (-0.044, +0.056)	0.192 (-0.057, +0.061)	
RCP4.5 2051-2100	0.351 (-0.096, 0.131)	0.349 (-0.105, +0.138)	0.412 (-0.155, +0.150)	
RCP8.5 2011-2060	0.168 (-0.042, +0.057)	0.173 (-0.053, +0.062)	0.229 (-0.079, +0.073)	
RCP8.5 2051-2100	0.464 (-0.137, +0.173)	0.458 (-0.136, +0.185)	0.537 (-0.208, +0.203)	

In Oarsoaldea, we used a slightly different approach for the coastal flood simulations since the tidal excursion is larger than the extreme return period values: the downstream BC is a semidiurnal tide (up to

Table 3. Values of RSLR referred to the RCP4.5 and RCP8.5 scenarios, averaged over the reference period, for the analyzed cities.

2.3 m) added to the $\Delta \eta_{RSLR}$ and to the increase due to the return period value $\Delta \eta_{RP}$.

For the city of Massa a single river called Frigido is simulated and the urban area is divided into two portions adjacent to the sides of the river (Figure 4d). In Villanova, two river streams are modeled, the easternmost is the main one, called Torrent de la Piera, whereas the other one (Torrent de Sant Joan) is forced underground for about 500 meters, just before the rivermouth (Figure 4e). The two-dimensional domain is

split in three subdomains, one between the two rivers and two on their sides. Oiartzun is the main river modeled for Oarsoaldea, while Lintzirin is its tributary forced underground for most of its length (Figure 4g). In this case the peak discharge of the minor river is scaled in proportion to the basin area (47.4 km² and 8.7 km², respectively). The two-dimensional domain is divided into two parts including the Pasaia bay area.

6 Results

6.1 Extremes for wave climate, water level and river discharge

A first comparison is performed between the annual maxima of the Historical and Evaluation runs. For the former, the years from 1973 to 2005 are considered, whereas for the latter those from 1980 to 2012, for an overall amount of 33 years each. This allows us to have an estimate of the degree of over/under-estimation we can have on the projections with respect to the actual scenario.

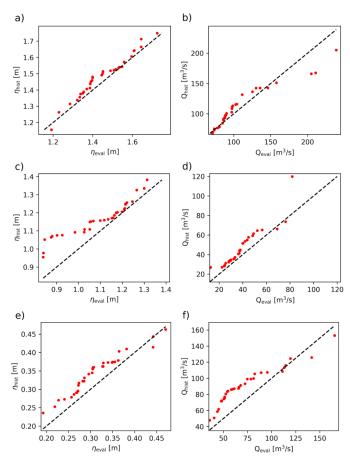


Fig 5 Quantile-quantile plots between annual maxima from evaluation and historical runs, for the city of Massa a) and b), Villanova c) and d), and Oarsoaldea d) and e) for the total water level η TOT (first column), and the peak discharge

Q (second column). For the city of Oarsoaldea η is reported since no runup contribution is considered. Red dots represent the annual maxima, black dashed line is the 1:1 line

In Figure 5, the quantile-quantile plots for the three analyzed cities for both river discharge and total water level are reported. Historical and Evaluation annual maxima total water levels in Massa are in agreement (Figure 5a), whereas Historical river discharge is subject to underestimation only for the highest values (Figure 5b). Total water levels in Villanova are generally larger for the Historical run with respect to Evaluation (Figure 5c), whereas river discharge extreme values are correctly estimated except for a single data (Figure 5d). Oarsoaldea water levels are slightly overestimated by the Historical up to 0.4 m. Also river discharge values are generally overestimated up to 100 m³/s, then, the largest values tend to be underestimated (Figure 5f).

4	9	Č
4	9	9

Massa	$\eta_{ ext{TOT,RP}}\left[extbf{m} ight]$		$Q_{\rm RP}$ [m ³ /s]	
Run	25 yr (95% CI)	100 yr (95% CI)	25 yr (95% CI)	100 yr (95% CI)
	[variation to hist %]	[variation to hist %]	[variation to hist %]	[variation to hist %]
Historical	1.736 (-0.062, +0.057)	1.804 (-0.098, +0.094)	172 (-31, +42)	227 (-63, +109)
RCP4.5	1.781 (-0.068, +0.041)	1.838 (-0.095, +0.057)	177 (-34, +53)	233 (-72, +155)
2011-2060	[+2.6%]	[+1.9%]	[+2.9%]	[+2.6%]
RCP4.5 2051-	1.770 (-0.076, + 0.084)	1.861 (-0.124, + 0.157)	210 (-51, +96)	307 (-115, +332)
2100	[+1.95%]	[+3.2%]	[+22.1%]	[+35.2%]
RCP8.5	1.719 (-0.032, +0.013)	1.741 (-0.039, 0.014)	201 (-36, +52)	259 (-74, +136)
2011-2060	[-1.0%]	[-3.5%]	[+16.9%]	[+14.1%]
RCP8.5 2051-	1.739 (-0.050, +0.032)	1.783 (-0.066, +0.047)	253 (-70, +103)	386 (-160 +367)
2100	[+0.2%]	[-1.2%]	[+47.1%]	[+70.0%]

Table 4. Return period values associated with 25 and 100 years for the different runs for the city of Massa for both the total water level $\eta_{\text{TOT,RP}}$ and the peak discharge Q_{RP} . Numbers in % (in square brackets) represent the variation relative to the historical value.

Table 4, Table 5 and Table 6, show the results of the extreme value analysis of $\eta_{\text{TOT,RP}}$ and Q_{RP} for the city of Massa, Villanova and Oarsoaldea, respectively, together with the confidence intervals at 95% significance level (round brackets) and the percentage increase/decrease (square brackets) with respect to the Historical values.

 For η_{TOT} in Massa, the RCP4.5 scenario shows slightly larger values with respect to the historical run, whereas the RCP8.5 has similar or slightly lower values. Conversely, extreme Q values tend to grow for both time windows and further forward in the future for both RCP4.5 and RCP8.5. Nevertheless, the estimated 100 years peak discharge shows large uncertainty values, especially for the 2051-2100 case for both RCP4.5 and RCP8.5 runs (Table 4).

Vilanova	Run 25 yr (95% CI) 100 yr (95% CI) [variation to hist %] [variation to hist %]		$Q_{ m RP} \ [{ m m}^3/{ m s}]$	
Run				
Historical	1.360 (-0.055, +0.034)	1.409 (-0.079, +0.056)	91 (-20, +27)	125 (-39, +79)
RCP4.5	1.340 (-0.039, +0.022)	1.375 (-0.053, + 0.031)	87 (-15, +18)	107 (-27, +42)
2011-2060	[-1.5%]	[-2.4%]	[-4.4%]	[-14.4%]
RCP4.5	1.375 (-0.080, +0.058)	1.450 (-0.131, +0.097)	107 (-22, +25)	137 (-41, +59)
2051-2100	[+1.1%]	[+2.9%]	[+17.6%]	[+9.6%]
RCP8.5	1.401 (-0.075, +0.053)	1.473 (-0.108, +0.089)	109 (-19, +26)	139 (-35, +57)
2011-2060	[+3.0%]	[+4.5%]	[+19.8%]	[+11.2%]
RCP8.5	1.360 (-0.059, +0.040)	1.411 (-0.081, +0.064)	116 (-23, +36)	154 (-46, +83)
2051-2100	[+0%]	[+0.1%]	[+27.5%]	[+23.2%]

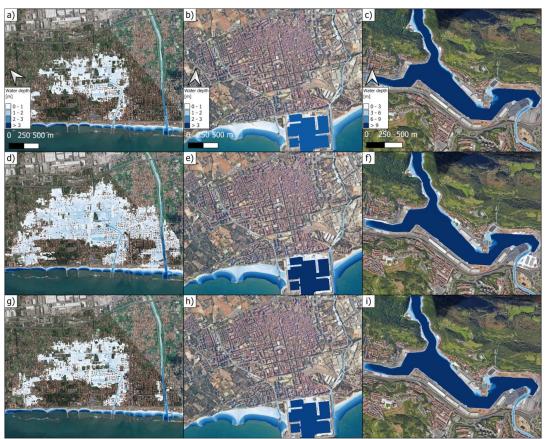
Table 5. Return period values associated with 25 and 100 years for the different runs for the city of Villanova for both the total water level $\eta_{\text{TOT,RP}}$ and the peak discharge Q_{RP} . Numbers in % (in square brackets) represent the variation relative to the historical value

Extreme η_{TOT} values for the city of Villanova show an increase for the RCP4.5 2051-2100 and for the RCP8.5 2011-2060 scenarios (both 25 and 100 yr RPs), whereas a decrease is found for the RCP4.5 2011-2060. Analogously, Q extreme values are lower than the historical for the RCP4.5 2011-2060 scenario (both 25 and 100 yr RPs), but an increase is observed for all the other cases (Table 5).

Oarsoaldea	η _{RP} [m]		$Q_{ m RP} \ [{ m m}^3/{ m s}]$		
Run	25 yr (95% CI) [variation to hist %]	100 yr (95% CI) [variation to hist %]	25 yr (95% CI) 100 yr (95% CI) [variation to hist %] [variation to hist %]		
Historical	0.433 (-0.025, +0.018)	0.456 (-0.035, +0.025)	169 (-30, +34)	209 (-54, +87)	
RCP4.5 2011-	0.444 (-0.039, 0.031)	0.486 (-0.061, +0.060)	168 (-27, +27)	201 (-46, +56)	
2060	[+2.5%]	[+6.6%]	[-0.6%]	[-3.8%]	
RCP4.5	0.395 (-0.021, 0.016)	0.416 (-0.030, +0.026)	176 (-19, +12)	195 (-27, +22)	
2051-2100	[-8.8%]	[-8.8%]	[+4.1%]	[-6.7%]	
RCP8.5 2011-	0.423 (-0.039, +0.035)	0.462 (-0.059, +0.077)	163 (-18, +15)	182 (-27, +32)	
2060	[-2.3%]	[+1.7%]	[-3.5%]	[-12.9%]	
RCP8.5 2051-	0.416 (-0.022, +0.013)	0.436 (-0.030, +0.018)	173 (-20, +18)	194 (-31, +35)	
2100	[-3.9%]	[-4.4%]	[+2.4%]	[-7.2%]	

Table 6. Return period values associated with 25 and 100 years for the different runs for the city of Oarsoaldea for both the water level η_{RP} and the peak discharge Q_{RP} . Numbers in % (in square brackets) represent the variation relative to the historical value.

Concerning extreme water levels in Oarsoaldea, an increase for the RCP4.5 2011-2060 (both 25 and 100 yr RPs) is observed, while all the other cases show decrease or substantial invariance. The extreme river discharge is not subject to significant variations for the 25 years RP, whereas a general slight decrease is observed for the 100 years RP for all scenarios.

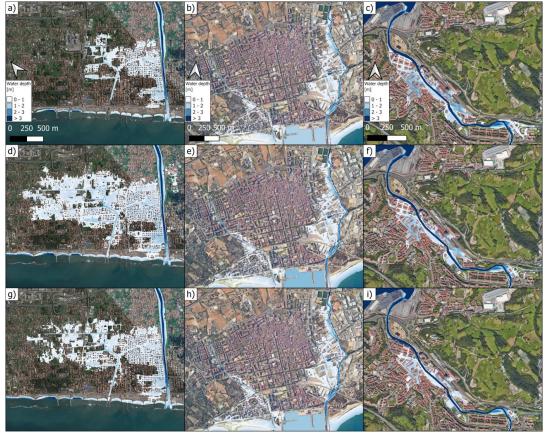

6.2 Flooded areas

The envelope of the water depth simulated through the hydrodynamic model for coastal and riverine floods with a 100 yr RP are reported in Figure 6 and Figure 7, respectively.

More specifically, results are reported for the RCP4.5 2051-2100 and RCP8.5 2011-2060 for the three analyzed cities. The remaining figures of flooded areas, that is: the 100 yr RP coastal floods (Figure S1) and 100 yr RP riverine floods (Figure S2) cases, and all the 25 y RP cases (Figure S3 for coastal flood and Figure S4 for riverine flood), are reported in the Supplementary material.

For the city of Massa, the simulations of the future scenarios show an increase in flooded areas, especially for the RCP4.5 2051-2100 (Figure 6a, d, g). Such a case shows a rise of 60% in flooded volume with respect to the Historical case, whereas the increase is 7% for the RCP8.5 2011-2060 100 yr RP (Table 7). In general, coastal flood volume increase in Massa is larger for the furthest time window in the future.

Storm surges in Villanova mainly impact the beach area and the surroundings of the port (Figure 6b, e, h), and the rise in flooded volume compared to the Historical case is at most 20% (RCP4.5 2051-2100 25 yr RP, Table 7).


Fig 6 Hazard maps associated to the 100 years return period coastal flood event for the city of Massa: Historical a), RCP4.5 2051-2100 d), RCP8.5 2011-2060 g); for the city of Vilanova: Historical b), RCP4.5 2051-2100 e), RCP8.5

2011-2060 h); for the city of Oarsoaldea: Historical c), RCP4.5 2051-2100 f), RCP8.5 2011-2060 i). Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

For Oarsoaldea, the hydrodynamic simulations of coastal flooding do not show substantial variations between the Historical case and the projections (Figure 6c, f, i). This is confirmed by the flooded volume variation which is at most 3% for the RCP8.5 2051-2100 100 yr RP (Table 7).

Fig 7 Hazard maps associated to the 100 years return period riverine flood event for the city of Massa: Historical a), RCP4.5 2051-2100 d), RCP8.5 2011-2060 g); for the city of Vilanova: Historical b), RCP4.5 2051-2100 e), RCP8.5 2011-2060 h); for the city of Oarsoaldea: Historical c), RCP4.5 2051-2100 f), RCP8.5 2011-2060 i). Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

The results of the 100 yr RP riverine floods hydrodynamic simulations are reported in Figure 7. For the city of Massa a substantial increase in the flooded area for the RCP4.5 2051-2100 (Figure 7d) and RCP8.5 2011-2060 (Figure 7g) with respect to Historical case (Figure 7a), is observed. This is consistent with the rise in flooded volume reported in Table 7, where an increase larger than 200% is seen for both the RPs associated with the RCP8.5 2051-2100 case.

The visual comparison of Figure 7b, e, h does not allow to clearly detect an increase/decrease in flooded area with respect to the Historical case for the city of Vilanova. However, the computation of flooded

volume variation shows an increase up to 33% for all cases except for RCP4.5 2011-2060 for both RPs (Table 7).

Oarsoaldea exhibits a different behavior since the Historical events cause larger floods with respect to most part of the projections. Even for this city the visual comparison of water depths does not allow us to identify increase/decrease in flooded areas (Figure 7c, f, i), but the results reported in Table 6 show that rise in flooded volume around 11% is observed only for the 25 yr RPs for the RCP4.5 for the 2051-2100 time window. All other cases show a decrease in flooded volume, up to -38% for RCP8.5 2011-2060 100 yr RP.

Analyzed city	Run	Coastal flood		Riverine flood	
		25 years	100 years	25 years	100 years
	RCP4.5 2011-2060	+20%	+18%	+7%	+9%
Massa	RCP4.5 2051-2100	+49%	+60%	+84%	+124%
	RCP8.5 2011-2060	+14%	+7%	+51%	+44%
	RCP8.5 2051-2100	+68%	+68%	+218%	+261%
	RCP4.5 2011-2060	+1%	+0%	-8%	-20%
Vilanova	RCP4.5 2051-2100	+8%	+10%	+17%	+11%
	RCP8.5 2011-2060	+6%	+8%	+23%	+15%
	RCP8.5 2051-2100	+9%	+9%	+30%	+33%
	RCP4.5 2011-2060	+1%	+1%	-3%	-11%
Oarsoaldea	RCP4.5 2051-2100	+1%	+1%	+11%	-17%
	RCP8.5 2011-2060	+1%	+1%	-14%	-33%
	RCP8.5 2051-2100	+2%	+3%	+1%	-38%

Table 7. Percentage change of the flooded volume with respect to the historical run for the three cities of Massa, Vilanova and Oarsoaldea, for the RCP4.5 and RCP8.5 (2011-2060, 2051-2100) scenarios for both the 25 and 100 years return periods.

7 Discussion

https://doi.org/10.5194/egusphere-2025-270 Preprint. Discussion started: 17 April 2025 © Author(s) 2025. CC BY 4.0 License.

582 Assessing the impacts of future climate scenarios on extreme flood events in coastal cities requires a huge 583 effort due to the need to integrate processes across multiple scales, from synoptic scale (i.e. storms spanning 584 ~100-1000 km) to local scale. At the urban scale, specific geomorphic features such as landscape elevation 585 and structural elements can significantly influence flood extent. To address this complexity, we 586 implemented a multiscale modeling chain tailored for three of the CCLLs under the SCORE Project, but that can be easily generalized to other coastal cities. We employed unstructured grids modelling approaches 587 588 to simulate wave climate (WWIII) and water levels (SHYFEM). These were integrated with the distributed 589 hydrological model LISFLOOD, and finally coupled within high-resolution urban hydrodynamic 590 simulations, to capture the interaction between extreme events and urban-specific characteristics, achieving 591 the spatial granularity needed to capture critical urban-scale flood dynamics. However, this level of detail 592 comes with a huge computational effort: each of the three models ran simulations equivalent to nearly 300 593 years, repeated for all analyzed cities.

594 This consideration was the most significant factor influencing our choice of using a single RCM (and GCM) 595 rather than a multi-model ensemble approach. In addition, data availability from EURO-CORDEX for all 596 required variables at a sufficient output frequency and covering the Evaluation, Historical, RCP4.5 and 597 RCP8.5 runs was ensured only by the ALADIN63 model driven by the ERA-Interim reanalysis and the 598 CNRM-CM5 GCM. We have given priority to have a continuous dataset at the cost of giving up an 599 uncertainty estimate based on multi-model ensemble. However, such an estimate, associated with the 600 extreme values from the analyzed time series, was recovered in the statistical analysis by calculating 601 confidence intervals through the bootstrap method.

The comparison between the annual maxima from the Evaluation and Historical runs (Figure 5), together with the information reported in Tables 4, 5 and 6, enables us to assess the reliability of the coastal and riverine hazard maps (Figures 6 and Figure 7).

605 Future coastal floods in Massa do not show significant variations in terms of event magnitude compared to 606 the Historical period. Indeed, the increase/decrease ranges from -3.5% to +3.2 with a predominance of 607 positive values (Table 3). Considering the 95% CIs, the variability generally lies between -+2.5% and -+5% 608 of the calculated extreme value for the 2011-2060 and 2051-2100 time windows, respectively. Although an increase in wave height is projected for the Ligurian-Tyrrhenian Sea (De Leo et al., 2024), several factors 609 610 may contribute to the observed invariance in total water levels for Massa. The shallow bathymetry in front 611 of Massa (Figure 3) can act as a sort of filter for the highest offshore waves, leading to a sort of upper limit 612 for the wave height close to the shoreline which, in turn, affects the total water level through the runup 613 equation. Additionally, the very high resolution of the modeling near the coast captures local-scale effects 614 that are often missed by lower-resolution models. Furthermore, the sensitivity of runup to wave height for 615 Massa's beach slope, combined with the wavelengths associated with the highest waves (70-95 m) is 616 modest, approximately 0.2-0.25 m. This means that a 1 m increase in wave height produces 0.2-0.25 m 617 increase in runup. As a consequence, any increase/decrease in wave climate is partially damped. Actually, 618 the main driver in producing significant differences in flooded volume is the RSLR (Table 3), which causes the storm surge to penetrate farther inland, resulting in larger flooded volumes (Table 7).

the storm surge to penetrate farther inland, resulting in larger flooded volumes (Table 7).

Riverine floods for the RCPs projections in Massa show a substantial increase, even more evident for the 2051-2100 time window. However, this is accompanied by an equal increase in uncertainty. Indeed, the width of the 95% CI is almost 1.5 times the 100 yr RP for both the RCP4.5 and RCP8.5 2051-2100. Despite this, the overall increase in extreme Q_{RP} for all the analyzed scenarios and time windows confirms an increment in future peak river discharges. However, such extremes could be slightly underestimated as observable from the QQ-plot of Evaluation and Historical annual maxima (Figure 5b). Notwithstanding,

661

their impact on the ground is further augmented by the increase in relative sea level, whereby the higher

627 downstream boundary condition hinders the flow toward the sea, resulting in a substantial increase in the

flooded volume (Table 7).

The extension of the flooded area for Vilanova appears not to be affected by storm surges principally due

to the characteristics of the beach zone which is separated from the urban area by a steep positive gradient

in the land elevation which makes the latter higher. A substantial equivalence between the Historical and

the RCP4.5 and RCP8.5 extreme values is observed and the $\Delta\eta_{RSLR}$ ranges between 0.15 and 0.458 m

(Table 3). Even though the increase in flooded volume is always positive (Table 7), the flooded area is not

634 enlarged (Figure 6b, e, h) and the only area which is interested in an enlargement of the flooded surface is

the one adjacent to the port.

The riverine floods associated with projections are generally characterized by an increase in flooded volume

637 with respect to the Historical (from +11% to +33%), but for the RCP4.5 2011-2060 25 and 100 yr RPs (-

638 8% and -20%), as reported in Table 7. Concerning the O_{RP} values, the higher the extreme value, the larger

639 the CI width. However, a substantial increase in river discharge is observable, in agreement with the flooded

of volume. The comparison of annual maxima from Evaluation and Historical (Figure 5d) suggests no

641 underestimation/overestimation, even if the largest value could lead one to think of an overestimation. The

642 additional increase in flooded volume (Table 7) compared to the maxima in river discharge (Table 5) is

primarily attributed to the RSLR, similar to the findings for Massa.

For the city of Oarsoaldea the port area has been designed to face tidal excursions around 2 m. The extreme

values associated with both 25 and 100 yr RP range between 0.395 and 0.486 m. Table 5 reports increases

646 (RCP4.5 2011-2060) and decreases (RCP4.5 2051-2100 and RCP8.5 2051-2100) of the extreme water level

for the projections compared to the Historical, consistent with the findings of Vousdoukas et al. (2017).

The modest rise in flooded volume (+1% to +3%, Table 7) is mainly attributable to the RSLR.

For river discharge, a generalized decrease in peak Q_{RP} values is observed, with the width of the 95% CI of

650 the same order of magnitude of the variation with respect to the Historical period, and an expected slight

underestimation of the projected extremes (Figure 5f).

The use of annual maxima to perform the EVA has the disadvantage of eliminating a lot of significant data.

To make greater use of the time series produced, we performed two additional analyses for the city of Massa

for both $\eta_{\text{TOT}}(t)$ and Q(t). We calculated the cumulative time a variable persists over a fixed threshold, that

is chosen as the 99.5%-ile and the 99.9%-ile of the Historical period time series for the total water level and

656 river discharge, respectively (Figure 8a and 9a). Furthermore, we determined the number of events per year

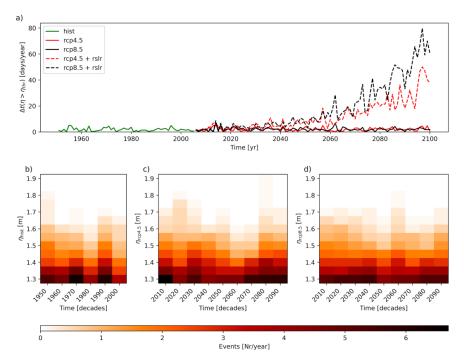

higher than specific values, clustering the events by decade (Figure 8b and 9b).

Figure 8a shows that the increase in RSL is the main driver for the η_{TOT} increase for the cumulative time

above a certain high level. It is also confirmed by Figure 8b where a trend in the increase of extreme events,

without the effect of RSLR, is not clearly observable.

Fig 8 a) Cumulative duration of total water level above the 99.5 %-ile in days per year for HIST (green line), RCP4.5 (red line), RCP4.5 (black line), RCP4.5 and RCP8.5 plus the effect of RSLR (red dashed line and black dashed line, respectively), for the city of Massa. Number of events per year with peak values larger than specific values, grouped by decades for: HIST b), RCP4.5 c) and RCP8.5 d)

Concerning river discharge, a slight positive trend for the cumulative time Q(t) persists above the 99.9%-ile Historical value, is detectable (Figure 9a). Moreover, an increase in the number of extreme events is observed, especially for the RCP8.5 scenario, even if the obtained patch is quite noisy. This can be ascribed to the fact that we used only one RCM.

675

676

677

678 679

680

681

682

683 684

685

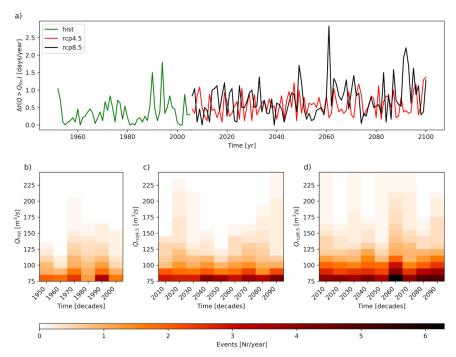
686 687

688

689

690

691


692

693

694

695

696

Fig 9 a) Cumulative duration of water discharge above the 99.9 %-ile in days per year for HIST (green line), RCP4.5 (red line), RCP4.5 (black line), RCP4.5 and RCP8.5 plus the effect of RSLR (red dashed line and black dashed line, respectively), for the city of Massa. Number of events per year with peak values larger than specific values, grouped by decades for: HIST b), RCP4.5 c) and RCP8.5 d)

A potential limitation concerning the analysis of extreme events is related to compound events (Ghanbari et al., 2020; Gori & Lin, 2022). In this work we consider non-interacting storm surges and river discharges. Such a choice is aimed at simplifying the approach and having greater control on each driver of a flood event. Furthermore, the extreme value analysis of compound events lead to some difficulties and approximations related to the identification of a "compound event". In general, focusing only on two variables, we look for large values, in one or both variables, which are temporally distant less than a specific threshold. The method to identify "compound events" varies on the basis of the different studies and scales. This aspect, together with the choice of the couple of values associated with a specific RP curve, tends to enhance the complexity and the degrees of freedom of the problem. Considering the present work as an introductory paper describing the whole modeling chain and its applications, and given the availability of continuous time series, we intend to pursue future research by focusing directly on impacts. That is, we intend to run the hydrodynamic model using as BCs the whole time series (excluding the periods where both Q and η_{TOT} are low), and analyze the statistical properties of the water depth as a consequence of flood events. In such a way it is possible to by-pass all the issues related to the definition and identification of compound events. Nevertheless, the availability of these long term simulated discharge time series can also be a valuable dataset for further analysis on hydrological regimes e.g. droughts.

It is important to stress that the errors which accumulate along the modeling chains are difficult to estimate and are the results of unavoidable approximations. Furthermore, we are running hydrodynamic simulations

701

702

703

704

705

706 707

708

709

710

711

712

713

714

715

716

717

718

where the environment (e.g. buildings, structure, etc...) do not change in time, which is an unlikely circumstance. As a consequence, obtained results have to be considered as an indication of a trend rather than a solid prediction of the future.

On the one hand, we are making a strong assumption, considering the surrounding environment does not change over time. On the other hand, the knowledge of specific characteristics of the analyzed area are crucial in modeling the impact of flood events. A coarse starting DEM of around 20 m resolution cannot even resolve streets and spaces between buildings, potentially blocking the flow and significantly changing the flooding pattern. These are aspects that have to be taken into account when evaluating the obtained results associated with uncertain future scenarios.

8 Conclusion and outlook

In this work we present a modeling chain to transfer synoptic scale atmospheric information to the scale of coastal cities with the goal of estimating changes in the impact of extreme riverine and coastal flood events - specifically in terms of flooded area and volume - under the RCP4.5 and RCP8.5 climate change scenarios, compared to Historical conditions. We use atmospheric data from the ALADIN63 RCM from the EURO-CORDEX dataset to drive three numerical models: WWIII for wave climate, SHYFEM for water levels, and LISFLOOD for river discharge. Model outputs are then processed to generate synthetic extreme events, which are then used to simulate coastal and riverine floods through a high-resolution hydrodynamic model (HEC-RAS). This model is specifically implemented for the domains of three coastal cities selected within the SCORE Project: Massa (Italy), Vilanova i la Geltrù, and Oarsoaldea (Spain). Wave climate data are further used to calculate wave runup, which is combined with water levels to determine total water levels

The extreme value analysis of total water levels η_{TOT} and river discharge Q reveals both increase and decrease in RCP4.5 and RCP8.5 extremes compared to Historical extremes, depending on the different locations, with larger uncertainties associated with high extreme values and longer-term projections (2051-2100). The increase/decrease in flooded volume is not necessarily related to increase/decrease in extremes

but it depends by relative sea-level rise RSLR and to specific local features of each coastal city.

Massa is particularly vulnerable to RSLR, which facilitates the inland propagation of coastal floods,

increasing the water volume up to 68%. Additionally, RSLR hinders river flow into the sea, exacerbating

726 riverine floods and potentially doubling water volume. This is further compounded by an increase in future

extreme river discharge (ranging from +2.9% to +70%), especially under the RCP8.5 scenario. In contrast, Vilanova i la Geltrù is not significantly affected by storm surges due to its geomorphic structure, whereas

the riverine extreme floods tend to generally increase in the future according to RCP4.5 and RCP8.5 (up to

730 +27.5% for peak river discharge and +33% for water volume). Oarsoaldea, on the other hand, is well

protected against storm surges and the flood extension appears to be relatively insensitive to the differences

between Historical, RCP4.5 and RCP8.5 scenarios. Riverine floods in Oarsoaldea show a decrease in extent

for the 100 yr RP but slightly increase for the 25 yr RP in the 2051-2100 timeplay. These results reflect the

complex interplay between extreme events and RSLR.

735 This study highlights the importance of employing high resolution modeling, as local characteristics

significantly influence flood impacts and the analysis of the effects of future extreme events.

737 Future developments include the use of long-term time series of η_{TOT} and Q to continuously force the

738 hydrodynamic model, excluding periods associated with low values. This impact-based approach could

739 eliminate the need for EVA for different events, including compound events and enables a direct analysis

of their interaction on the ground, providing a statistical assessment of water depth, flood extent and water volume time series.

742 743

Author contributions

744 **B.M.**: conceptualization, formal analysis, investigation, methodology, software, visualization, writing -745 original draft, writing - review and editing. C.F.: conceptualization, investigation, methodology, writing -746 original draft. C.A.: conceptualization, investigation, methodology, visualization, writing - original draft. 747 T.S.: conceptualization, investigation, methodology, writing - original draft. A.I.: formal analysis, project 748 administration, investigation. P.R.: writing - original draft, writing - review & editing. M.R.: investigation, 749 visualization, writing - review & editing. P.M.: data curation, investigation, visualization. S.M.: formal 750 analysis, investigation, writing - review & editing. V.G.: data curation. O.A.: conceptualization, funding 751 acquisition, project administration, writing - review and editing. C.M.: project administration. G.S.: 752 funding acquisition, project administration, writing - review and editing. B.C.: conceptualization, 753 supervision, funding acquisition, project administration, writing - review and editing.

754 755

756

757

Competing interests

The authors declare that they have no conflict of interest.

758759760

761

762

Funding

This research was supported by the project SCORE (Smart Control of the Climate Resilience in European Coastal Cities), funded by the European Commission's Horizon 2020 research and innovation programme under grant agreement No. 101003534.

763 764 765

766

767768

769

770

771

Acknowledgments

Thanks also to the European Union—NextGenerationEU and the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.5, project "RAISE—Robotics and AI for Socio-economic Empowerment" (ECS00000035); and the EU - Next Generation EU Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures" - Project IR0000032 – ITINERIS - Italian Integrated Environmental Research Infrastructures System.

772773774

References

775

Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., & Salamon, P. (2019). A global streamflow reanalysis for 1980–2018. *Journal of Hydrology X*, 6, 100049. https://doi.org/10.1016/j.hydroa.2019.100049.

779

Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., & Baldock, T. E. (2016).

Assessment of runup predictions by empirical models on non-truncated beaches on the south-east

Australian coast. *Coastal Engineering*, 119, 15–31. https://doi.org/10.1016/j.coastaleng.2016.10.001.

- 784 Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., & Canestrelli, P. (2007). A finite element operational
- 785 model for storm surge prediction in Venice. Estuarine, Coastal and Shelf Science, 75(1-2), 236-249.
- 786 https://doi.org/10.1016/j.ecss.2007.02.025.

- 788 Bajo, M., Međugorac, I., Umgiesser, G., & Orlić, M. (2019). Storm surge and seiche modelling in the
- 789 Adriatic Sea and the impact of data assimilation. Quarterly Journal of the Royal Meteorological Society,
- 790 145(722), 2070–2084. https://doi.org/https://doi.org/10.1002/qj.3544.

791

- Barnard, P. L., Van Ormondt, M., Erikson, L. H., Eshleman, J., Hapke, C., Ruggiero, P., Adams, P. N., &
- Foxgrover, A. C. (2014). Development of the Coastal Storm Modeling System (CoSMoS) for predicting
- 794 the impact of storms on high-energy, active-margin coasts. Natural Hazards, 74(2), 1095-1125.
- 795 https://doi.org/10.1007/s11069-014-1236-y.

796

- Barnard, P. L., Erikson, L. H., Foxgrover, A. C., Hart, J. a. F., Limber, P., O'Neill, A. C., Van Ormondt,
- M., Vitousek, S., Wood, N., Hayden, M. K., & Jones, J. M. (2019). Dynamic flood modeling essential to
- assess the coastal impacts of climate change. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-
- 800 40742-z.

801

- Bensi, M., Mohammadi, S., Kao, S., & Deneale, S. (2020). Multi-Mechanism Flood Hazard Assessment:
- Critical Review of Current Practice and Approaches. United States. https://doi.org/10.2172/1649363

804

- 805 Bevacqua, E., Maraun, D., Haff, I. H., Widmann, M., & Vrac, M. (2017). Multivariate statistical modeling
- of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). Hydrology and
- 807 Earth System Sciences, 21(6), 2701–2723. https://doi.org/10.5194/hess-21-2701-2017

808

- 809 Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., &
- 810 Feyen, L. (2020). More meteorological events that drive compound coastal flooding are projected under
- 811 climate change. Communications Earth & Environment, 1(1). https://doi.org/10.1038/s43247-020-00044-
- 812 <u>z</u>

813

- Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., De Moel, H., Ward, P. J., &
- 815 Aerts, J. C. J. H. (2018). Global modeling of tropical cyclone storm surges using high-resolution forecasts.
- 816 Climate Dynamics, 52(7–8), 5031–5044. https://doi.org/10.1007/s00382-018-4430-x

817

- 818 Bonamano, S., Federico, I., Causio, S., Piermattei, V., Piazzolla, D., Scanu, S., Madonia, A., Madonia, N.,
- 819 De Cillis, G., Jansen, E., Fersini, G., Coppini, G., & Marcelli, M. (2024). River-coastal-ocean continuum
- 820 modeling along the Lazio coast (Tyrrhenian Sea, Italy): Assessment of near river dynamics in the Tiber
- 821 delta. Estuarine Coastal and Shelf Science, 297, 108618. https://doi.org/10.1016/j.ecss.2024.108618

822

- 823 Brunner, G. W. & US Army Corps of Engineers. (2021). HEC-RAS, River Analysis System Hydraulic
- 824 Reference Manual (Computer Program Documentation CPD-69). US Army Corps of Engineers.

https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 6.0 Reference Manual.pdf

- 827 Bulkeley, H., Marvin, S., Palgan, Y. V., McCormick, K., Breitfuss-Loidl, M., Mai, L., Von Wirth, T., &
- 828 Frantzeskaki, N. (2018). Urban living laboratories: Conducting the experimental city? European Urban
- 829 and Regional Studies, 26(4), 317–335. https://doi.org/10.1177/0969776418787222

- Carayannis, E. G., & Campbell, D. F. (2009). "Mode 3" and "Quadruple Helix": toward a 21st century
- 832 fractal innovation ecosystem. International Journal of Technology Management, 46(3/4), 201.
- 833 https://doi.org/10.1504/ijtm.2009.023374

834

- Ciavola, P., Ferreira, O., Haerens, P., Van Koningsveld, M., & Armaroli, C. (2011). Storm impacts along
- 836 European coastlines. Part 2: lessons learned from the MICORE project. Environmental Science & Policy,
- 837 14(7), 924-933.

838

- Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. *In Springer series in statistics*.
- 840 <u>https://doi.org/10.1007/978-1-4471-3675-0</u>

841

- 842 Conrad, C. C., & Hilchey, K. G. (2010). A review of citizen science and community-based environmental
- monitoring: issues and opportunities. Environmental Monitoring and Assessment, 176(1-4), 273-291.
- 844 https://doi.org/10.1007/s10661-010-1582-5

845

- Coppola, E., Nogherotto, R., Ciarlo, J. M., Giorgi, F., Van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L.,
- 847 Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J.,
- 848 Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., . . . Wulfmeyer, V. (2020). Assessment of the
- 849 European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate
- 850 Model Ensemble. Journal of Geophysical Research Atmospheres, 126(4).
- 851 https://doi.org/10.1029/2019jd032356

852

- 853 Cucco, A., Martín, J., Quattrocchi, G., Fenco, H., Umgiesser, G., & Fernández, D. A. (2022). Water
- 854 Circulation and Transport Time Scales in the Beagle Channel, Southernmost Tip of South America. *Journal*
- 855 of Marine Science and Engineering, 10(7), 941. https://doi.org/10.3390/jmse10070941
- 856
- 857 Cucco, A., Rindi, L., Benedetti-Cecchi, L., Quattrocchi, G., Ribotti, A., Ravaglioli, C., Cecchi, E., Perna,
- 858 M., & Brandini, C. (2023). Assessing the risk of oil spill impacts and potential biodiversity loss for coastal
- 859 marine environment at the turn of the COVID-19 pandemic event. The Science of the Total Environment,
- 860 894, 164972. https://doi.org/10.1016/j.scitotenv.2023.164972
- 861 De Leo, F., Briganti, R. & Besio, G. Trends in ocean waves climate within the Mediterranean Sea: a review.
- 862 Clim Dyn 62, 1555–1566 (2024). https://doi.org/10.1007/s00382-023-06984-4.

863

- 864 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
- M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N.,
- Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., . . . Vitart, F. (2011). The ERA-Interim reanalysis:
- 867 configuration and performance of the data assimilation system. Quarterly Journal of the Royal
- 868 *Meteorological Society*, 137(656), 553–597. https://doi.org/10.1002/qj.828

- 870 Fernández-Montblanc, T., Vousdoukas, M., Ciavola, P., Voukouvalas, E., Mentaschi, L., Breyiannis, G.,
- 871 Feyen, L., & Salamon, P. (2018). Towards robust pan-European storm surge forecasting. Ocean Modelling,
- 872 133, 129-144. https://doi.org/10.1016/j.ocemod.2018.12.001

- 874 Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., & Mossa, M. (2017). Coastal ocean forecasting
- 875 with an unstructured grid model in the southern Adriatic and northern Ionian seas. Natural Hazards and
- 876 Earth System Sciences, 17(1), 45–59. https://doi.org/10.5194/nhess-17-45-2017

877

- 878 Figueiredo, R., Rangel-Parra, R., Bussi, G., Ceresa, P., Coccia, G., & Martina, M. L. (2024). A semi-
- 879 quantitative multi-hazard risk assessment framework for European coastal urban areas. Geomatics Natural
- 880 Hazards and Risk, 15(1). https://doi.org/10.1080/19475705.2024.2378994

881

- 882 Gilleland, E., & Katz, R. W. (2016). extRemes2.0: An Extreme Value Analysis Package inR. Journal of
- 883 Statistical Software, 72(8). https://doi.org/10.18637/jss.v072.i08

884

- 885 Gilleland, E. (2020). Bootstrap Methods for Statistical Inference. Part II: Extreme-Value Analysis. Journal
- of Atmospheric and Oceanic Technology, 37(11), 2135-2144. https://doi.org/10.1175/jtech-d-20-0070.1 886

887

- 888 Ghanbari, M., Arabi, M., Kao, S., Obeysekera, J., & Sweet, W. (2021). Climate Change and Changes in
- 889 Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts. Earth's Future, 9(5).
- 890 https://doi.org/10.1029/2021ef002055

891 892

- Gori, A., & Lin, N. (2022). Projecting Compound Flood Hazard Under Climate Change With Physical
- 893 Models and Joint Probability Methods. Earth's Future, 10(12). https://doi.org/10.1029/2022ef003097

894

- 895 Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal
- 896 cities. Nature Climate Change, 3(9), 802-806. https://doi.org/10.1038/nclimate1979

897

- 898 Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2022 - Impacts, Adaptation
- 899 and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental
- 900 Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009325844

901

- 902 Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2013 – The Physical Science
- 903 Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
- 904 Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

905

- 906 Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A.,
- Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., 907
- 908 Hempelmann, N., Jones, C., Keuler, K., Kovats, S., . . . Yiou, P. (2014). EURO-CORDEX: new high-
- 909 resolution climate change projections for European impact research. Regional Environmental Change,
- 910 14(2), 563–578. https://doi.org/10.1007/s10113-013-0499-2

- 913 Joint Research Centre (JRC): Institute for Environment and Sustainability, Burek, P., Ntegeka, V. and
- Knijff van der, J. (2013) LISVAP, evaporation pre-processor for the LISFLOOD water balance and flood
- 915 simulation model Revised user manual. Publications Office. https://data.europa.eu/doi/10.2788/26160

- Jongman B, Hochrainer-Stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G,
- 918 Rojas R, Ward PJ (2014) Increasing stress on disaster-risk finance due to large floods. Nature Climate
- 919 *Change*. 4:264–268. https://doi.org/10.1038/nclimate2124

920

- 921 Khanal, S., Ridder, N., De Vries, H., Terink, W., & Van Den Hurk, B. (2019). Storm Surge and Extreme
- 922 River Discharge: A Compound Event Analysis Using Ensemble Impact Modeling. Frontiers in Earth
- 923 Science, 7. https://doi.org/10.3389/feart.2019.00224.

924

- 925 Laino, E., Paranunzio, R., & Iglesias, G. (2024). Scientometric review on multiple climate-related hazards
- 926 indices. The Science of the Total Environment, 945, 174004.
- 927 https://doi.org/10.1016/j.scitotenv.2024.174004.

928

- 929 Lima, F. N., Freitas, A. C. V., & Silva, J. (2023). Climate Change Flood Risk Analysis: Application of
- 930 Dynamical Downscaling and Hydrological Modeling. Atmosphere, 14(7), 1069.
- 931 https://doi.org/10.3390/atmos14071069.

932

- 933 Maicu, F., De Pascalis, F., Ferrarin, C., & Umgiesser, G. (2018). Hydrodynamics of the Po River-Delta-
- 934 Sea System. Journal of Geophysical Research Oceans, 123(9), 6349-6372.
- 935 https://doi.org/10.1029/2017jc013601

936

- 937 Marcos, M., Jordà, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a
- 938 regional model under climate change scenarios. Global and Planetary Change, 77(3-4), 116-128.
- 939 https://doi.org/10.1016/j.gloplacha.2011.04.002

940

- 941 Masina, M., Lamberti, A., & Archetti, R. (2015). Coastal flooding: A copula based approach for estimating
- 942 the joint probability of water levels and waves. Coastal Engineering, 97, 37-52.
- 943 https://doi.org/10.1016/j.coastaleng.2014.12.010

944

- 945 Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017).
- Ompounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of
- 947 *Sciences*, 114(37), 9785–9790. https://doi.org/10.1073/pnas.1620325114

948

- 949 Munang, R., Thiaw, I., Alverson, K., Liu, J., & Han, Z. (2013). The role of ecosystem services in climate
- 950 change adaptation and disaster risk reduction. Current Opinion in Environmental Sustainability, 5(1), 47-
- 951 52. https://doi.org/10.1016/j.cosust.2013.02.002.

952

- 953 Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future Coastal Population Growth
- and Exposure to Sea-Level Rise and Coastal Flooding A Global Assessment. *PLoS ONE*, 10(3), e0118571.
- 955 https://doi.org/10.1371/journal.pone.0118571.

- 957 Oppenheimer, M., Hinkel, J., Magnan, A., Cai, R., Cifuentes-Jara, M., Deconto, R., Ghosh, T., Biesbroek,
- 958 R., Buchanan, M., Duvat, V., Ekaykin, A., Ford, J., Fortes, M., Gattuso, J., Kopp, R., Lawrence, J.,
- 959 Mackintosh, A., Melet, A., Mcleod, E., ... Zhai, P. (2019). Sea Level Rise and Implications for Low-Lying
- 960 Islands, Coasts and Communities. In The Ocean and Cryosphere in a Changing Climate: Special Report of
- 961 the Intergovernmental Panel on Climate Change (pp. 321–446). chapter, Cambridge University Press
- 962 eBooks (pp. 321–446). https://doi.org/10.1017/9781009157964.012

- 964 Orton, P. M., Conticello, F. R., Cioffi, F., Hall, T. M., Georgas, N., Lall, U., Blumberg, A. F., & MacManus,
- 965 K. (2018). Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary. *Natural*
- 966 *Hazards*, 102(2), 729–757. https://doi.org/10.1007/s11069-018-3251-x

967

- Paranunzio, R., Anton, I., Adirosi, E., Ahmed, T., Baldini, L., Brandini, C., Giannetti, F., Meulenberg, C.,
- 969 Ortolani, A., Pilla, F., Iglesias, G., & Gharbia, S. (2023). A New Approach towards a User-Driven Coastal
- 970 Climate Service to Enhance Climate Resilience in European Cities. Sustainability, 16(1), 335.
- 971 https://doi.org/10.3390/su16010335

972

- 973 Paranunzio, R., Guerrini, M., Dwyer, E., Alexander, P. J., & O'Dwyer, B. (2022). Assessing Coastal Flood
- 974 Risk in a Changing Climate for Dublin, Ireland. *Journal of Marine Science and Engineering*, 10(11), 1715.
- 975 https://doi.org/10.3390/jmse10111715

976

- 977 Parodi, M. U., Giardino, A., Van Dongeren, A., Pearson, S. G., Bricker, J. D., & Reniers, A. J. H. M. (2020).
- 978 Uncertainties in coastal flood risk assessments in small island developing states. Natural Hazards and Earth
- 979 System Sciences, 20(9), 2397–2414. https://doi.org/10.5194/nhess-20-2397-2020

980

- 981 Quattrocchi, G., Simeone, S., Pes, A., Sorgente, R., Ribotti, A., & Cucco, A. (2021). An Operational
- 982 Numerical System for Oil Stranding Risk Assessment in a High-Density Vessel Traffic Area. Frontiers in
- 983 *Marine Science*, 8. https://doi.org/10.3389/fmars.2021.585396

984

- 985 Reimann, L., Vafeidis, A. T., & Honsel, L. E. (2023). Population development as a driver of coastal risk:
- 986 Current trends and future pathways. Cambridge Prisms Coastal Futures, 1
- 987 https://doi.org/10.1017/cft.2023.3

988

- 989 Satterthwaite, D. (2009). The implications of population growth and urbanization for climate change.
- 990 Environment and Urbanization, 21(2), 545–567. https://doi.org/10.1177/0956247809344361

991

- 992 Sun, Q., Fang, J., Dang, X., Xu, K., Fang, Y., Li, X., & Liu, M. (2022). Multi-scenario urban flood risk
- 993 assessment by integrating future land use change models and hydrodynamic models. Natural Hazards and
- 994 Earth System Sciences, 22(11), 3815–3829. https://doi.org/10.5194/nhess-22-3815-2022

995

- 996 Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011). An Overview of CMIP5 and the Experiment Design.
- 997 Bulletin of the American Meteorological Society, 93(4), 485-498. https://doi.org/10.1175/bams-d-11-
- 998 00094.1

- 1000 Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., & De Vriend, H. J. (2013).
- 1001 Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79-83.
- 1002 https://doi.org/10.1038/nature12859

- 1004 Tiwari, A., Rodrigues, L. C., Lucy, F. E., & Gharbia, S. (2022). Building Climate Resilience in Coastal
- 1005 City Living Labs Using Ecosystem-Based Adaptation: A Systematic Review. Sustainability, 14(17), 10863.
- 1006 https://doi.org/10.3390/su141710863

1007

- 1008 Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice
- 1009 Lagoon. Development, set up, calibration and validation. *Journal of Marine Systems*, 51(1–4), 123–145.
- 1010 https://doi.org/10.1016/j.jmarsys.2004.05.009

1011

- 1012 Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F., Bellafiore, D., Ghezzo, M., & Bajo, M. (2014).
- 1013 Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. Journal of
- 1014 Geophysical Research Oceans, 119(4), 2212–2226. https://doi.org/10.1002/2013jc009512

1015

- 1016 Umgiesser, G., Ferrarin, C., Bajo, M., Bellafiore, D., Cucco, A., De Pascalis, F., Ghezzo, M., McKiver, W.,
- 1017 & Arpaia, L. (2022). Hydrodynamic modeling in marginal and coastal seas The case of the Adriatic Sea
- 1018 as a permanent laboratory for numerical approach. Ocean Modelling, 179, 102123.
- 1019 https://doi.org/10.1016/j.ocemod.2022.102123

1020

- Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K., & Gooijer, J. (2015). Analysis of
- a compounding surge and precipitation event in the Netherlands. Environmental Research Letters, 10(3),
- 1023 035001. https://doi.org/10.1088/1748-9326/10/3/035001

1024

- 1025 Van Der Knijff, J. M., Younis, J., & De Roo, A. P. J. (2008). LISFLOOD: a GIS-based distributed model
- 1026 for river basin scale water balance and flood simulation. International Journal of Geographical Information
- 1027 Science, 24(2), 189–212. https://doi.org/10.1080/13658810802549154

1028

- Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K., Coppola, E., Corre, L., Van
- 1030 Meijgaard, E., Nogherotto, R., Sandstad, M., Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O.
- 1031 B., Ciarlo, J. M., Demory, M., Giorgi, F., Jacob, D., . . . Wulfmeyer, V. (2020). Evaluation of the Large
- 1032 EURO-CORDEX Regional Climate Model Ensemble. Journal of Geophysical Research Atmospheres,
- 1033 126(17). https://doi.org/10.1029/2019jd032344

1034

- 1035 Vezzoli, R., Mercogliano, P., Pecora, S., Zollo, A., & Cacciamani, C. (2015). Hydrological simulation of
- 1036 Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. The
- 1037 Science of the Total Environment, 521–522, 346–358. https://doi.org/10.1016/j.scitotenv.2015.03.096

1038

- 1039 Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling
- 1040 of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7(1).
- 1041 https://doi.org/10.1038/s41598-017-01362-7

- Voldoire, A., Sanchez-Gomez, E., Mélia, D. S. Y., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau,
- 1044 I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave,
- 1045 E., Moine, M., Planton, S., Saint-Martin, D., . . . Chauvin, F. (2012). The CNRM-CM5.1 global climate
- 1046 model: description and basic evaluation. Climate Dynamics, 40(9–10), 2091–2121.
- 1047 https://doi.org/10.1007/s00382-011-1259-y

- 1049 Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. (2016a): Extreme Sea level -
- 1050 RCP4.5. European Commission, Joint Research Centre (JRC) [Dataset] PID:
- 1051 http://data.europa.eu/89h/e9e42344-119d-479e-9bc7-57400d12a8a2 A (Accessed on 10 june 2024)

1052

- 1053 Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. (2016b): Extreme Sea level -
- 1054 RCP85. European Commission, Joint Research Centre (JRC) [Dataset] PID:
- 1055 http://data.europa.eu/89h/a565eea4-5422-4c7d-a000-2e10ae872da7 B (Accessed on 10 june 2024)

1056

- 1057 Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M. and Feyen, L. (2017), Extreme sea levels
- on the rise along Europe's coasts. *Earth's Future*, 5: 304-323. https://doi.org/10.1002/2016EF000505

1059

- 1060 Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., & Feyen, L.
- 1061 (2018). Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard.
- 1062 Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04692-w

1063

- Vousdoukas, M. I., Mentaschi, L., Hinkel, J., Ward, P. J., Mongelli, I., Ciscar, J., & Feyen, L. (2020).
- 1065 Economic motivation for raising coastal flood defenses in Europe. Nature Communications, 11(1).
- 1066 https://doi.org/10.1038/s41467-020-15665-3

1067

- Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., & Slangen, A. B. A. (2017).
- 1069 Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nature
- 1070 *Communications*, 8(1). https://doi.org/10.1038/ncomms16075

1071

- 1072 Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding
- 1073 from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093-1097.
- 1074 https://doi.org/10.1038/nclimate2736

1075

- 1076 WAVEWATCH III Development Group (WW3DG), (2019). User manual and system documentation of
- 1077 WAVEWATCH III version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA,
- 1078 465 pp. + Appendices. https://github.com/NOAA-EMC/WW3/wiki/files/manual.pdf

1079

- 1080 Wicks, A. J., & Atkinson, D. E. (2016). Identification and classification of storm surge events at Red Dog
- 1081 Dock, Alaska, 2004–2014. Natural Hazards, 86(2), 877–900. https://doi.org/10.1007/s11069-016-2722-1

1082

- 1083 Yang, S., Sheng, J., Ohashi, K., Yang, B., Chen, S., & Xing, J. (2023). Non-linear interactions between
- tides and storm surges during extreme weather events over the eastern Canadian shelf. Ocean Dynamics,
- 1085 73(5), 279–301. https://doi.org/10.1007/s10236-023-01556-w

https://doi.org/10.5194/egusphere-2025-270 Preprint. Discussion started: 17 April 2025 © Author(s) 2025. CC BY 4.0 License.

1087	Zheng, F., Westra, S., & Sisson, S. A. (2013). Quantifying the dependence between extreme rainfall and
1088	storm surge in the coastal zone. Journal of Hydrology, 505, 172–187.
1089	https://doi.org/10.1016/j.jhydrol.2013.09.054
1090	
1091	Zijl, F., Verlaan, M., & Gerritsen, H. (2013). Improved water-level forecasting for the Northwest European
1092	Shelf and North Sea through direct modelling of tide, surge and non-linear interaction. Ocean Dynamics,
1093	63(7), 823–847. https://doi.org/10.1007/s10236-013-0624-2
1094	
1095	Zhong, M., Xiao, L., Li, X., Mei, Y., Jiang, T., Song, L., & Chen, X. (2023). A study on compound flood
1096	prediction and inundation simulation under future scenarios in a coastal city. Journal of Hydrology, 628,
1097	130475. https://doi.org/10.1016/j.jhydrol.2023.130475
1098	