

# 1 Multiscale Modeling for Coastal Cities: Addressing Climate Change 2 Impacts on Flood Events at Urban-Scale

3  
4 Michele Bendoni<sup>1</sup>, Francesca Caparrini<sup>2</sup>, Andrea Cucco<sup>3</sup>, Stefano Taddei<sup>4</sup>, Iulia Anton<sup>5</sup>, Roberta Paranunzio<sup>6</sup>, Rossella Mocali<sup>4</sup>,  
5 Massimo Perna<sup>4</sup>, Michele Sacco<sup>4</sup>, Giovanni Vitale<sup>8,4</sup>, Manuela Corongiu<sup>4</sup>, Alberto Ortolani<sup>7,4</sup>, Salem Gharbia<sup>5</sup>, Carlo Brandini<sup>8,4</sup>.  
6

7 1. Institute of Marine Science, National Research Council of Italy (CNR-ISMAR), Forte Santa Teresa, snc, 19032 - Lerici (SP),  
8 Italy.

9 2. Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR-IGG), Via G. Moruzzi 1, 56124 - Pisa  
10 (PI), Italy.

11 3. Institute for the study of Anthropic Impacts and Sustainability in marine environment, National Research Council (CNR- IAS),  
12 Loc. Sa Mardini Torregrande - Oristano, Italy.

13 4. LaMMA Consortium, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy.

14 5. Atlantic Technological University, Ash Lane F91 YW50, Sligo, Ireland.

15 6. Institute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR-ISAC), Corso Fiume, 4, 10133 Torino  
16 (TO), Italy.

17 7. Institute of Bio-Economy, National Research Council of Italy (CNR-IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino  
18 (FI), Italy.

19 8. Institute of Marine Science, National Research Council of Italy (CNR-ISMAR), Via Madonna del Piano 10, 50019 Sesto  
20 Fiorentino (FI), Italy.

21 Corresponding Author: Carlo Brandini, [brandini@lamma.toscana.it](mailto:brandini@lamma.toscana.it), <https://orcid.org/0000-0002-6509-4533>

## 23 Abstract

24 This study presents an integrated modeling framework designed to bridge scales from regional to urban,  
25 enabling a detailed assessment of the impacts of future climate scenarios on three European coastal cities:  
26 Massa (Italy) and Vilanova (Spain) in the Mediterranean, and Oarsoaldea (Spain) in the Atlantic. Conducted  
27 as part of the SCORE EU Project (*Smart Control of Climate Resilience in European Coastal Cities*), the  
28 framework employs a novel, non-standard downscaling approach to translate large-scale atmospheric  
29 outputs from the EURO-CORDEX regional model ALADIN63 (for Historical, RCP4.5, and RCP8.5  
30 scenarios) into high-resolution simulations of storm surges, wave climate, and river discharge using  
31 SHYFEM, WAVEWATCH III, and LISFLOOD models.

32 The framework achieves coastal resolutions on the order of 100 m, providing time series of water levels  
33 and wave runup, which are combined into total water levels. These results, together with extreme value  
34 analysis of river discharge and projected relative sea level rise (RSLR), are used as boundary conditions for  
35 an urban-scale hydrodynamic model with resolutions as fine as 2–20 m. This multi-scale integration allows  
36 for detailed analysis of changes in flooded areas and volumes under RCP4.5 and RCP8.5 scenarios, relative  
37 to historical conditions, highlighting the influence of shifting extremes, RSLR, and site-specific features.

38 Results show that in Massa and Vilanova, increased extreme river discharges are projected, while moderate  
39 changes in extreme water levels are overshadowed by RSLR, particularly for Massa. Oarsoaldea, well  
40 protected from storm surges, is expected to experience a slight reduction in extreme river discharge. **This**  
41 **work demonstrates the capability of an integrated modeling framework to address climate change impacts**  
42 **at the urban scale. Local-scale modeling is essential: accurate flood hazard assessment in coastal cities**  
43 **requires high-resolution simulations to capture the influence of local topography and infrastructure,**  
44 **especially where global DEMs are inadequate. By linking climate projections to urban flood impacts, the**

45 framework enables a consistent evaluation of future extremes, sea level rise, and their interaction. A further  
46 key message of this study is the need to generate actionable insights to support the development of targeted  
47 and site-specific adaptation strategies. Adaptation must be tailored: only by quantifying future extremes  
48 and exposure is it possible to design effective, place-based responses.

49

## 50 **1 Introduction**

51

52 Rapid urban growth and climate change are two of the most pressing challenges of our time (Satterthwaite,  
53 2009), especially in coastal regions, where their combination significantly increases the exposure of urban  
54 areas to extreme natural events. Coastal cities and settlements, home to more than 2 billion people  
55 worldwide, are among the most vulnerable areas to these events (IPCC, 2023a; Vitousek et al., 2017;  
56 Oppenheimer et al., 2019). Approximately 900 million people live in low-elevation coastal zones (LECZ),  
57 areas situated less than 10 m above mean sea level (Reimann et al., 2023), with a projected global population  
58 density of around 400-500 people/square km by 2060 (Neumann et al., 2015). These regions, marked by  
59 increasing anthropogenic activity, hold crucial social and economic importance, with dense population and  
60 infrastructure that may further elevate their future vulnerability (Figueiredo et al., 2024; Paranunzio et al.,  
61 2022). Global mean sea level is projected to rise between 0.3 and 2 m by 2100 under scenarios of increasing  
62 global warming (Vitousek et al., 2017). In addition, the effects of land subsidence are expected to further  
63 exacerbate risks in most coastal areas, intensifying future impacts on population and infrastructure  
64 (Voudoukas et al., 2018).

65 In Europe alone, currently, over 50 million live in LECZ areas (Voudoukas et al., 2020). With a relative  
66 sea level rise (RSLR) of just 0.15 m above 2020 levels, coastal population potentially exposed to a 100-  
67 year coastal flood could increase by about 20% in the medium to long term (IPCC, 2023a). By 2100, the  
68 total number of people exposed to risk of flooding is projected to reach 1.61 million, and 3.9 million, under  
69 the two Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 (Voudoukas et al., 2020).

70 Coastal cities around the world are threatened not only from inundation due to storm surges or sea level  
71 rise (Hallegatte et al., 2013; Wahl et al., 2017) but also from river flooding which poses additional risk  
72 (Khanal et al., 2019). These areas are therefore impacted by a complex interplay of multiple flood-related  
73 systems including river, sea/oceans and coastal land (Laino et al., 2024). Assessing the local effects of such  
74 hazards to enhance coastal communities' resilience is one of the greatest challenges of our time, especially  
75 in the context of the ongoing climate change. High uncertainty in urban sprawl and flood risks leads to a  
76 generalized lack of preparedness to face future flood events (Sun et al., 2022). In this context, high-  
77 resolution climate data are essential for defining downscaling strategies that begin with global climate  
78 services and are able to evaluate the impacts of multiple hazards at the local scale. Bensi et al. (2020)  
79 provides a broad overview of existing literature on hazard interaction, organized by different flooding  
80 hazard focus, i.e., studies that address several mechanisms in the fluvial and coastal flood processes alone  
81 and studies focusing on joint fluvial and coastal flood processes (e.g., Masina et al., 2015; Bevacqua et al.,  
82 2017). Many studies address the degree of dependence among different mechanisms, e.g., precipitation,  
83 river flow and storm surge events to assess coastal flood risk, also investigating how it changes over time  
84 (Bevacqua et al., 2017; Moftakhar et al. 2017; Orton et al., 2018; Zheng et al., 2013) and with respect to  
85 different climate change scenarios (e.g., Parodi et al. 2020; Zhong et al., 2023; Gori & Lin, 2022; Wahl et  
86 al., 2015).

87 Despite the large number of methodologies, tools and models exploring the single or combined effect of  
88 climate-related hazards in coastal areas worldwide, studies which exploit different approaches to provide a  
89 global multidisciplinary framework to assess flood scenarios in the future at the fine resolution of the urban  
90 scale are not widespread (Bensi et al., 2020). Some promising studies pointing in this direction have been  
91 developed during the last decade, especially in the US. Based on copulas and bivariate dependence analysis,  
92 Moftakhar et al. (2017) quantified the increases in failure probabilities of coastal flood defenses for eight  
93 estuarine systems along the coasts of United States caused by RSLR under multiple flood drivers and  
94 RCP4.5 and RCP8.5 in 2030 and 2050. To assess climate impacts for the US West Coast, Barnard et al.  
95 (2014) used wind fields from different Global Circulation Models (GCMs) under two RCPs scenarios, 4.5  
96 and 8.5, to resolve 3 hours peak conditions into the WAVEWATCH III wave models within a deterministic,  
97 multidimensional framework in the Coastal Storm Modeling System (CoSMoS). Process-based modeling  
98 system proved to be able to dynamically transfer information from global atmospheric scale to the regional  
99 and local scale to predict impacts of multiple coastal hazards (i.e., coastal erosion and cliff failures and  
100 flooding) for a range of RSLR and storm scenarios at a resolution scale that is relevant for management and  
101 adaptation planning (meters scale) (Barnard et al., 2019). In Europe, some few attempts have been made to  
102 develop comprehensive models that scale down from the synoptic to the urban scale. Model framework to  
103 assess the coastal risks and morphological impacts induced by extreme storm events similar to CoSMoS  
104 has been developed in the context of European projects (e.g., Ciavola et al., 2011), but more in support of  
105 early warning and emergency response. Van den Hurk et al. (2015) studied the joint distribution of  
106 precipitation and storm surges for 1950 to 2000 using 800 years of simulated data using a RACMO2  
107 Regional Circulation Model (RCM) at 12 km resolution to establish a relation between compound hazards  
108 in the Netherlands.

109 It follows that high resolution RCMs are needed to properly model climate impact at a higher resolution.  
110 Estimating the impacts of climate change on coastal cities requires increasing the resolution of city-scale  
111 models to unprecedented levels, simulating coastal and terrestrial flood conditions for different return  
112 periods and scenarios, and including considerations for the evaluation of financial resilience strategies or  
113 ecosystem-based adaptation solutions. Thus, a multidisciplinary framework is needed to foster, through co-  
114 participatory and co-creative approach, the public engagement of scientists, policy-makers and citizens, to  
115 identify and share socially and technically acceptable solutions. This is part of SCORE project (Smart  
116 control of climate resilience in European coastal cities, <https://score-eu-project.eu/>) which aims, through an  
117 integrated and multidisciplinary approach, to monitor and validate reliable and robust adaptation measures  
118 in low-lying coastal cities to minimize the effects of climate-related hazards and enhance the overall  
119 resilience. This is addressed in the context of the Coastal City Living Labs (CCLLs), a novel participatory  
120 approach built upon the living lab concept that aims to involve scientists, decision makers, citizens and  
121 different stakeholders in the modeling process and in preparing climate risk assessment analysis, thus  
122 accelerating the systematic adoption (Paranunzio et al., 2023).

123 To assess the impacts of multiple climate-related hazards on coastal cities under different climate change  
124 scenarios, we present a downscaling procedure which consists of a dynamic multi-branch modeling chain  
125 ending with high-resolution (~2 m) flood simulations. Here, we use the term “downscaling” to indicate the  
126 transfer of information from the synoptic atmospheric scale to the urban scale of individual buildings and  
127 streets, rather than the increase in detail of a specific dataset coming from a numerical model with higher  
128 spatial and temporal resolution with respect to the parent one. An integrated approach blending  
129 oceanography, hydrology, hydraulics and extreme value analysis (EVA) has been used for the computation  
130 of flooded areas for both historical periods and future climate projections for different return periods and

131 under two different RCP scenarios, 4.5 and 8.5 (IPCC, 2014). We used atmospheric data from an EURO-  
132 CORDEX RCM (Jacob et al., 2014), and three different models simulating the evolution of water level,  
133 wave dynamics, and rainfall-runoff transformation to create the boundary conditions to run hydrodynamic  
134 simulations in coastal cities, for both past and future periods. The modeling chain has been applied to the  
135 three different CCLLs based on the indications of the SCORE Project: Massa (Italy), Vilanova i la Geltrù  
136 and Oarsoaldea (Spain), as different test cases characterized by different phenomenological features.  
137 The high computational demand of the simulation and the need for an extremely fine temporal resolution  
138 data are two major challenges in this context. Among the EURO-CORDEX models, only one RCM offers  
139 at least three-hourly data for the atmospheric variables required across all models and scenarios. We  
140 acknowledge that the use of a multi-RCM (GCM) ensemble is preferable with respect to a single RCM  
141 (GCM) to predict more rigorously spatial patterns and to estimate the uncertainty in the projections in  
142 response to climate change (Khanal et al., 2019; Gori & Lin, 2022; Bevacqua et al, 2020; Ghanbari et al,  
143 2021). However, the computational cost of the procedure and the high-resolution of the model create  
144 challenges for multi-model impact assessment at urban scale. In addition, some studies make successful use  
145 of one GCM in dynamical downscaling and hydrological modeling (Vezzoli et al., 2015; Lima et al., 2023).  
146 To our knowledge, this is one of the first works for the European area dealing with projections of climate  
147 data at i) such a high spatio-temporal resolution, ii) exploiting various computational demanding models  
148 up to the urban scale, iii) seeking to develop a flood hazard modeling chain from multiple sources and iv)  
149 embracing a multidisciplinary modeling framework.  
150 The work is organized as follows. Section 2 provides a brief overview of the project and description of the  
151 study sites. Section 3 describes the overall methodology, while Section 4 deals specifically with the  
152 implementation of the three numerical models. Section 5 describes the extreme value analysis and the urban  
153 scale model. Results of the overall methodology are then presented in Section 6 and discussed in the next  
154 section. Section 8 is dedicated to conclusion on outlook.  
155  
156

## 157 **2 The SCORE Project and the study sites**

158  
159 The SCORE project focuses on the resilience of coastal cities to the effects of climate change. Coastal  
160 cities, as climate change hotspots, are affected by numerous consequences resulting from changes in the  
161 marine, atmospheric, and terrestrial (hydrogeological) components of the Earth system. However, among  
162 the many risks related to climate change in coastal cities (which could include increasing marine and  
163 atmospheric heatwaves, fire risks, subsidence due to the over-exploitation of water resources in tourist  
164 areas, etc.), SCORE has focused on flood risk. This includes flooding from rivers, marine inundations, or a  
165 combination of both. Marine floods, as is well known, can result not only from extreme storm surges but  
166 from combinations of storm waves and high tidal levels (both astronomical and meteorological induced by  
167 wind and pressure), following a signal that is modulated in the long term by RSLR.

168 The selection of cities involved in the project was made during the project development phase. The choice  
169 was not driven by prioritizing cities with the highest exposure to these effects (e.g., the city of Venice), but  
170 rather those where there is an active and engaged community of citizens, stakeholders, and research centers  
171 collaborating on co-designing solutions to improve resilience to the effects of climate change. This process  
172 begins with ecosystem-based adaptation solutions (EbAs; Munang et al., 2013; Temmerman et al., 2013;  
173 Tiwari et al., 2022), which encourage practices that increase citizen participation and awareness, such as  
174 sharing meteorological observations following Citizen Science standards (Conrad & Hilchey, 2010). The

175 modeling components developed for these cities also contribute to the creation of urban-scale Digital Twins,  
176 which are part of a specific activity within the project. These digital tools, alongside advanced data  
177 representation, enable a better understanding of flood effects and allow the modeling of adaptation scenarios  
178 using a What-If methodology (Paranunzio et al., 2023).

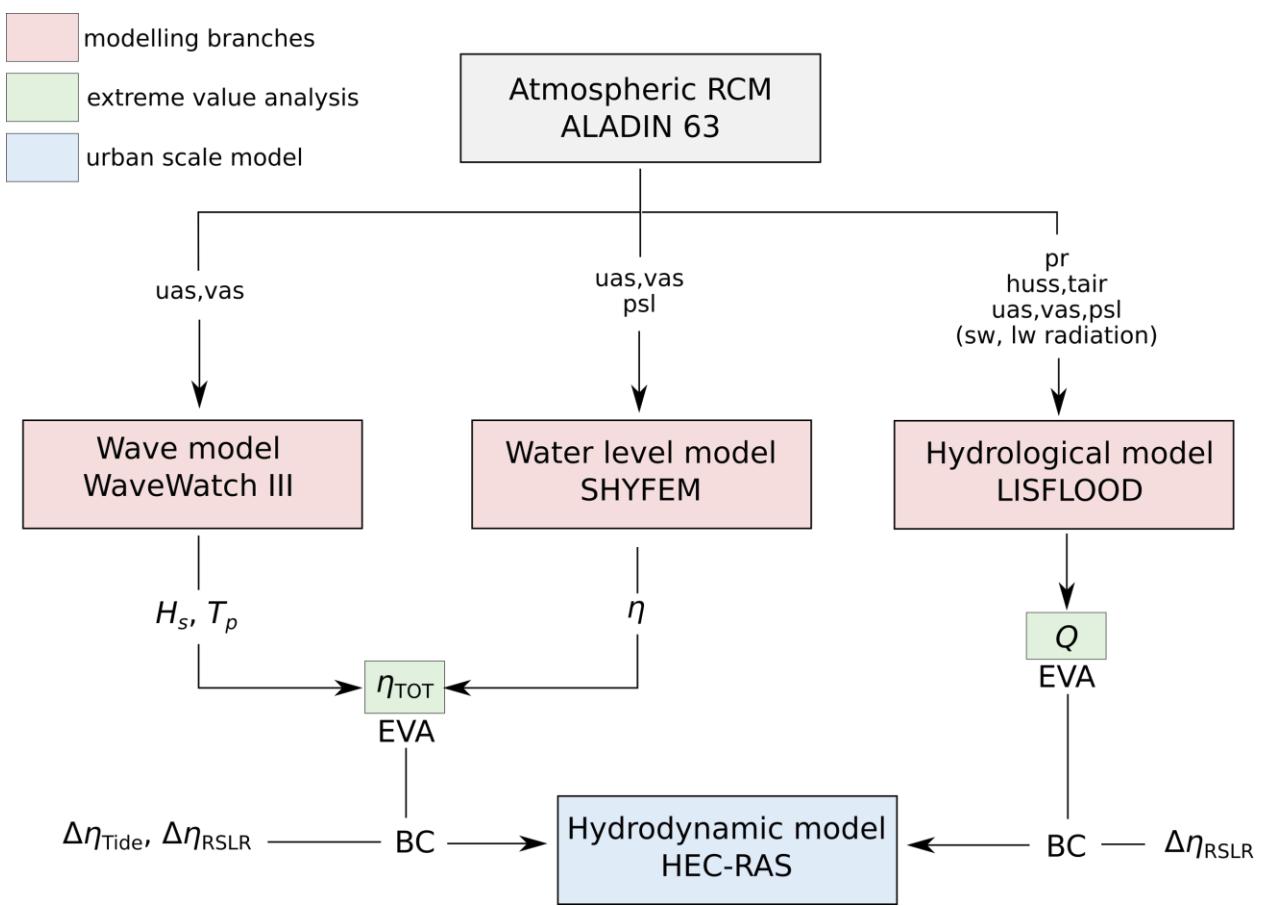
179 Within the project, local initiatives are built following the Living Lab paradigm (Bulkeley et al., 2018),  
180 forming Coastal Cities Living Labs, where local communities participate according to the quadruple helix  
181 model (Carayannis & Campbell, 2009). The decision of whether cities would act as frontrunners or  
182 followers for certain project activities (as organized through the project work packages) was made based  
183 on the specific themes of interest within the CCLLs.

184 Therefore, the selection of the study cases presented in this article: Massa, Vilanova i la Geltrù (from now  
185 on we will refer to the city simply as Vilanova), Oarsoaldea (Figure 1) was based on the presence of three  
186 frontrunners that followed a common analysis methodology, which is described in the next section. This  
187 methodology starts from the availability of data provided by climate services and, through downscaling  
188 techniques and urban and coastal hydraulic modeling, defines the design conditions expected for coastal  
189 cities. Defining case studies based on project guidance does not diminish the scientific value of this work  
190 or the approach used; rather, it demonstrates how the problem of coastal resilience is universal and not  
191 restricted to specific areas. Ultimately, this requires a careful analysis that can be more effectively carried  
192 out with a local and site-specific approach rather than relying solely on regional models, even when they  
193 have high-resolution.

194



195  
196 **Fig 1** View of the geographical area where the analyzed cities are located. Base map: Google Satellite imagery (©  
197 Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)


198

### 199 **3 Overall methodology**

200

201 The modeling chain implemented transfers information from the atmospheric synoptic scale (1000-100 km)  
202 up to the urban scale (2 m), and is aimed at obtaining time series of wave height  $H_s$ , water level  $\eta$ , and river  
203 discharge  $Q$  close to the coastal cities of interest, for both past periods and future climate projections. An  
204 extreme value analysis is then performed on the calculated time series to estimate the peak values associated  
205 with specific return periods. These values are eventually employed to build synthetic events to simulate

206 their effects in terms of flooded areas for the analyzed coastal cities. A sketch of the overall procedure is  
 207 reported in Figure 2.  
 208



209  
 210 **Fig 2** Sketch reporting the overall methodology to downscale data and run hydrodynamic simulations at the urban  
 211 scale. Light red boxes correspond to the models employed to downscale atmospheric variables, light green boxes  
 212 contain variables subject to extreme value analysis and the light blue box corresponds to the urban scale flood  
 213 modeling part.  $H_s$  is the significant wave height,  $T_p$  is the peak wave period,  $Q$  is the river discharge,  $\eta$  is the water  
 214 level,  $\Delta\eta_{\text{Tide}}$  and  $\Delta\eta_{\text{RSLR}}$  are the increases in water level due to tide and relative sea level rise, respectively  
 215

216 The modeling chain implemented employs atmospheric data from the ALADIN63 RCM (Coppola et al.,  
 217 2020; Vautard et al., 2020), provided by the EURO-CORDEX experiment (Jacob et al., 2014), and use it  
 218 as input for the following models: WaveWatch III (WW3DG, 2019) simulates the dynamic of wave height  
 219 taking as input the surface zonal and meridional wind velocities (uas, vas); SHYFEM (Umgiesser et al.,  
 220 2004) simulates the evolution of water levels forced by surface winds (uas, vas) and mean sea level pressure  
 221 (psl); LISFLOOD (Van Der Knijff et al., 2008) simulates the rainfall-runoff transformation and takes in  
 222 input several atmospheric variables such as rainfall rate (pr), air temperature (tair), specific humidity (huss),  
 223 sea level pressure (psl) shortwave and longwave radiation (rsds, rlds, rsus, rlus). A more detailed and  
 224 thorough description of the downscaling procedure for each variable is reported in Sections 4.1, 4.2 and  
 225 4.3.

226 For each of the models, the Evaluation, Historical, RCP4.5 and RCP8.5 experiments are simulated. The  
 227 Evaluation (Eval) experiment is employed to test the ability of the model to reproduce observable extreme

228 events. In such a case the ALADIN63 RCM is forced by the ERA-Interim reanalysis (Dee et al., 2011). The  
 229 Historical (Hist) experiment is used as a baseline for the two climate change scenarios expressed by the  
 230 Representative Concentration Pathways defined by the fifth Assessment Report (AR5) of  
 231 Intergovernmental Panel on Climate Change (IPCC, 2014). RCP4.5 and RCP8.5 data are used to analyze  
 232 the effect of anthropogenic climate change in the future flooding pattern at urban scale. For this set of  
 233 simulations, the ALADIN63 RCM was forced by the CNRM-CM5 GCM (Voldoire et al., 2011). The choice  
 234 of such a RCM is due to the fact that this was the only one that provided at least three-hourly data for the  
 235 atmospheric forcing variables for all the experiments, among the EURO-CORDEX models. Other RCMs  
 236 provided those variables at different output frequencies or solely for specific temporal windows (e.g.  
 237 RCP4.5 for the period 2050-2070 and RCP8.5 for the period 2030-2050). The consequences and limitations  
 238 of such a choice are discussed in Section 7.

239 A summary of the simulated experiments with associated time windows is reported in Table 1.

240

| Experiment    | Time window | Simulated RP [years]                       |
|---------------|-------------|--------------------------------------------|
| <b>Eval</b>   | 1980-2012   | -                                          |
| <b>Hist</b>   | 1956-2005   | 25, 100                                    |
| <b>RCP4.5</b> | 2006-2100   | 25, 100 (2011-2060)<br>25, 100 (2051-2100) |
| <b>RCP8.5</b> | 2006-2100   | 25, 100 (2011-2060)<br>25, 100 (2051-2100) |

241 Table 1. Summary of the simulated experiments with associated time windows. Return periods (RP) refer to the values calculated  
 242 through the extreme value analysis and used to create synthetic events simulated with the urban scale hydrodynamic model.

243

244 The hydrodynamic simulations of storm surges and river flood at urban scale have been performed using  
 245 the HEC-RAS 6.4 model (Brunner & US Army Corps of Engineers, 2021), similarly to Gori and Lin (2022).  
 246 The storm surge is modeled following a simplified approach consisting of the combination of time series  
 247 of wave runup  $R_{2\%}$  and water level. First, the wave runup  $R_{2\%}$  is determined using wave height and period  
 248 and the slope of the beach, following Atkinson et al. (2017), then, it is added to the water level  $\eta$ , to obtain  
 249 the total water level  $\eta_{TOT}$ . The extreme value analysis is carried out on this last variable and on the river  
 250 discharge  $Q$ , separately, for all the simulated experiments (Table 1). Hazard maps reporting the water depth  
 251 envelope associated with a specific return period event are produced for the flood due to the storm surge  
 252 and for the riverine flood. Furthermore, to simulate the RSLR and the effect of the tide, an increased value  
 253 for the mean water level is applied to each hydrodynamic simulation based on the associated experiment.  
 254 A more detailed description of the urban scale hydrodynamic modeling activity is reported in Section 5.  
 255 The projections of RSLR for RCP4.5 and RCP8.5 used in this paper can be found in two free-access datasets  
 256 (Vousdoukas et al. 2016a for RCP4.5 data, Vousdoukas et al. 2016b for RCP8.5 data), downloadable from  
 257 the European Commission Joint Research Centre (JRC) website. These datasets provide the Total Water  
 258 Level (TWL), from which the RSLR can be extracted by subtracting the episodic extremes (wave runup  
 259 and storm surge level) which are also provided, along with the tidal contribution. More information can be  
 260 found in the related article (Vousdoukas et al. 2017). The dataset covers the European coastlines with a  
 261 temporal resolution of 10 years. Europe is divided into 10 regions, within which all values are averaged.  
 262 All values are given with respect to the 1985–2005 reference period.

263

264

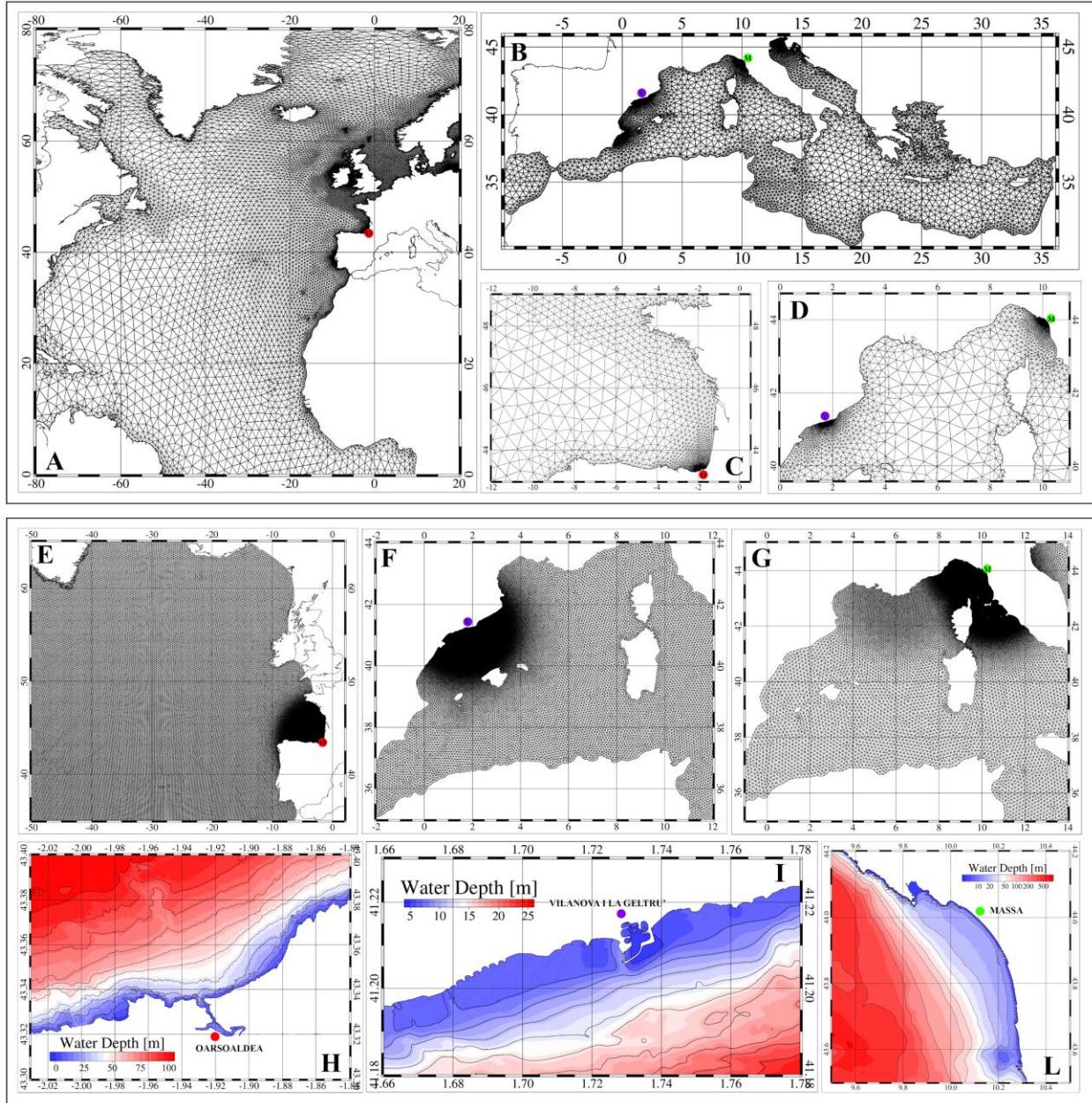
## 265 **4 Modeling branches**

266

267 In this section, we describe the implementation of the three numerical models: WaveWatch III, SHYFEM  
268 and LISFLOOD, employed to perform the main part of the downscaling procedure. Each of the models has  
269 a particular setup on the basis of the analyzed coastal city. Furthermore, a calibration/validation procedure  
270 has been carried out for each of them to have an estimate of their skill to reproduce observed events. The  
271 detailed description of the different procedures is reported in the Supplementary Material.

272

### 273 **4.1 Wave climate model**


274 The numerical model used to simulate wind waves was WaveWatch III (WAVE-height, WATer depth and  
275 Current Hindcasting), v. 6.07 (WW3DG, 2019), a community third-generation wave model developed at  
276 the US National Centers for Environmental Prediction (NOAA/NCEP) that includes the latest scientific  
277 advancements in the field of wind-wave modeling and dynamics (<https://github.com/NOAA-EMC/WW3/releases/download/6.07/wwatch3.v6.07.tar.gz>).

278 WAVEWATCH III solves the random phase spectral action density balance equation for wavenumber-  
279 direction spectra, and includes options for shallow-water applications. Propagation of a wave spectrum can  
280 be solved using regular (rectilinear or curvilinear) and unstructured (triangular) grids. Source terms for  
281 physical processes include parameterizations for wave growth due to the actions of wind, nonlinear resonant  
282 wave-wave interactions, scattering due to wave-bottom interactions, triad interactions, dissipation due to  
283 whitecapping, bottom friction, surf-breaking, and interactions with mud and ice. Source terms are integrated  
284 in time using a dynamically adjusted time stepping algorithm.

285 In this application, according to the project needs, two different implementations of the model were  
286 performed, with two different computational domains. The first one included the entire Mediterranean basin  
287 and a further area west of the Strait of Gibraltar, to improve accuracy in the Alboran Sea (Figure 3b). The  
288 second one was extended to the Atlantic Ocean (Figure 3a) to simulate the wave climate in front of the  
289 ocean-facing European cities. As for boundary conditions, domains were assumed to be closed at the  
290 farthest ocean boundaries. Both domains have been discretized by unstructured meshes with a variable  
291 resolution up to 500 m in the coastal areas surrounding the cities of interest (Figures 3c, and 3d). The  
292 resolution decreases in the rest of the domain and the minimum resolution in deep offshore areas reaches  
293 about 70 km for the Mediterranean grid, and about 300 km for the Atlantic one. GEBCO, EMODnet, and  
294 nautical chart bathymetries were used in different parts of the domains.

295

296



297  
298  
299  
300  
301  
302  
303  
304  
305

**Fig. 3** Finite element meshes used by the WWIII wave model (upper panels labeled with A, B, C and D) and the SHYFEM hydrodynamic model (lower panels labeled with E, F, G, H, I and L). Panels A and B show portions of the WWIII domains, which include most of the Atlantic Ocean and the entire Mediterranean Sea. High-resolution areas for Oarsoaldea (red point), Vilanova (blue point), and Massa (green point) are displayed in panels C and D. Panels E, F, and G illustrate portions of the three SHYFEM domains, covering most of the North Atlantic Ocean and the entire Mediterranean Sea, highlighting the high-resolution areas. The bottom panels (H, I and L) depict the bathymetric details of the three study sites

306  
307  
308  
The output of the wave model was recorded hourly at all grid points for the integrated quantities, in particular significant wave height ( $H_s$ ), mean wavelength ( $L_m$ ), mean wave period ( $T_m$ ), peak wave period ( $T_p$ ), mean wave direction ( $Dir_m$ ) and peak wave direction ( $Dir_p$ ). The atmospheric dataset provided by ERA

309 Interim+EuroCordex (ALADIN63 RCM) for the evaluation data and CMIP5+EuroCordex for the other  
310 data, which includes wind (uas, vas) at a frequency of 3 hours, was used as forcing.

311  
312 **4.2 Water level model**  
313 Future projections of storm surge events for the three study sites have been conducted using advanced  
314 numerical modeling techniques. Specifically, SHYFEM (System of Hydrodynamic Finite Element  
315 Modules, Umgieser et al., 2004), an ocean model based on the finite element method, has been  
316 implemented for each coastal site to simulate the temporal and spatial variability of water levels influenced  
317 by atmospheric forcing, wind and atmospheric pressure.

318 SHYFEM is an open-source community model (freely downloadable at <https://github.com/SHYFEM-model/shyfem.git>), that resolves the 3D primitive equations system, integrated over z-layers, in their  
319 formulations with water levels and transports. It uses a semi-implicit algorithm for the discretization in time  
320 and finite element for the spatial integration. The model has been widely used to investigate the main  
321 hydrodynamics in coastal areas (e.g. Western Mediterranean Sea in Bonamano et al., 2024 and Cucco et  
322 al., 2023, 2022; Umgieser et al., 2014, 2022; Quattrochi et al., 2021; Maicu et al., 2018; Federico et al.,  
323 2017) and for real time prediction of storm surge events in several coastal sites in the Mediterranean sea,  
324 e.g. the Venice Lagoon ( Umgieser et al., 2022; Bajo et al., 2007, 2019). We refer to (Umgieser et al.,  
325 2004) for a detailed overview of the model equation system, numerical treatment and parameters setup.

326 In this application, SHYFEM has been implemented in 2D mode accounting for barotropic pressure  
327 gradients, wind drag and bottom friction, which are the primary forces driving the storm surge events  
328 (Bloemendaal et al., 2018; Wicks et al., 2017). The model was applied to simulate the atmospheric  
329 contribution to water level  $\eta$ , thus neglecting the non-linear interaction with tides. This approach is  
330 commonly used in ocean prediction systems, in fact, the non-linear interactions between tides and surge are  
331 generally small enough to allow for the linear addition of tidal and surge components thus reducing the  
332 complexity of numerical experiments (Yang et al., 2023; Zijl et al., 2013; Bajo et al., 2007).

333 The water levels including tides can be derived by adding the astronomical tide to the computed  $\eta$ . The  
334 impact on accuracy depends on tidal amplitudes, which are minimal in the Western Mediterranean Sea due  
335 to very low tides (0.2-0.3 m) and slightly more significant for the Atlantic site where tidal amplitudes exceed  
336 1.5 m (around 3 m, as estimated by Fernández-Montblanc et al., 2018 for the whole European coastal seas).  
337 The same assumption was applied to other factors such as general circulation and climate-induced RSLR,  
338 which contribute to a lesser extent to water level fluctuations in case of extreme events.

339 Three different finite element meshes have been implemented to reproduce, with varying spatial resolution,  
340 the geomorphological features of the three coastal sites (Figure 3h, i, l). Each domain extends to the entire  
341 basin facing each study site (the Western Mediterranean Sea for Villanova and Massa, and most of the  
342 North Atlantic for Oarsoaldea) to cover the full area influenced by the main wind fetches and to eliminate  
343 the need for ad hoc open boundary conditions.

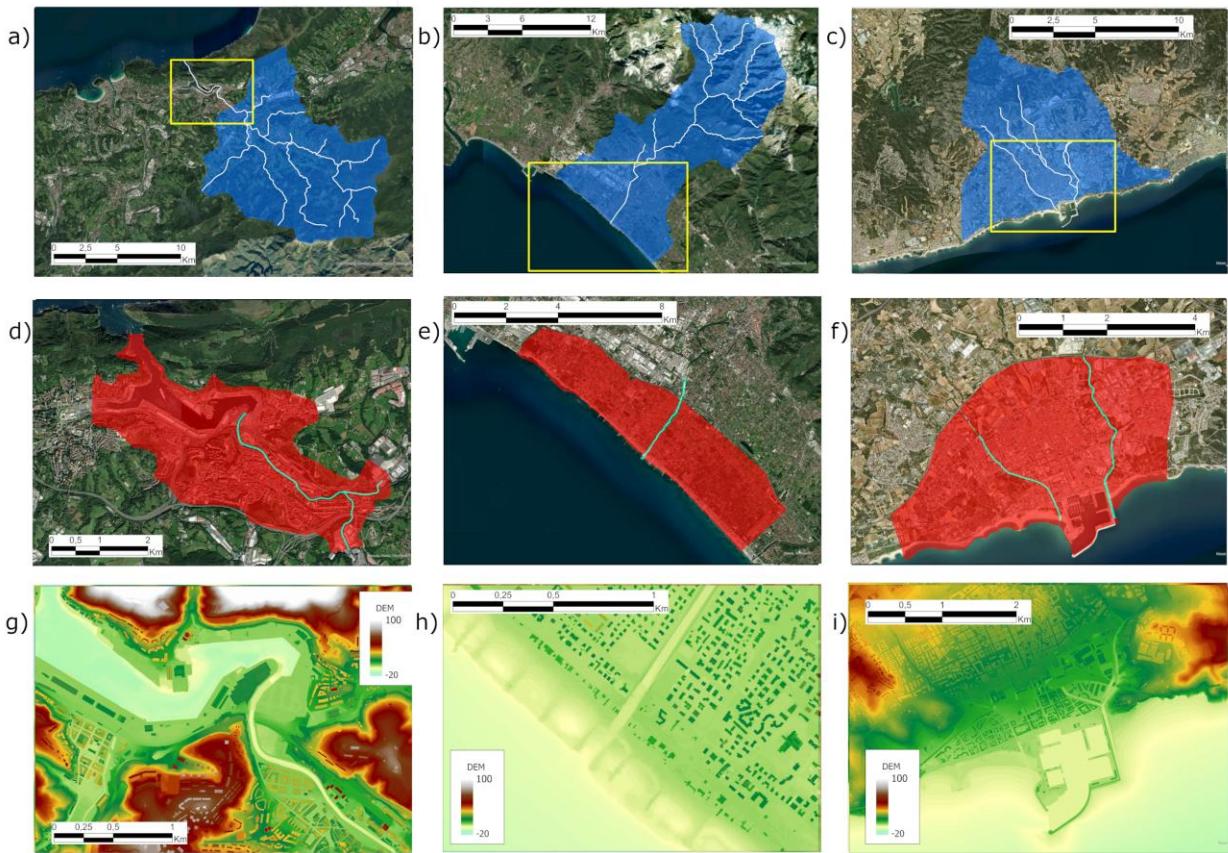
344 The atmospheric dataset provided by the ALADIN63 RCM, which includes wind and atmospheric pressure  
345 data (uas, vas and psl) at a 3-hour frequency, was used as forcing.

346  
347  
348 **4.3 River discharge model**  
349 River floods occur when the stream or channel geometry is not sufficient to contain the incoming volume  
350 of water. In order to model river floods, it is necessary to define the inflow discharge hydrograph as a  
351 boundary condition, i.e. the evolution in time of flow rate in the upstream cross section. The shape of the  
352 hydrograph, the time and value of its peak, and in general the streamflow generated in the channel network

353 as a response to precipitation events, are the consequences of the hydrological processes in the upstream  
354 basin. Such processes include several complex mechanisms occurring at land surface (infiltration,  
355 evapotranspiration, runoff generation, hillslope routing, snowmelt, groundwater recharge) that depend on  
356 many factors like basin topography, soil hydraulic properties, vegetation cover and structure of the river  
357 network. Moreover, the downstream boundary condition defined by the water level at the outlet affects the  
358 evolution of the hydrograph while traveling along the river (see Section 5.2).

359 In this work, we have used LISFLOOD (<https://ec-jrc.github.io/lisflood/>), a spatially distributed  
360 hydrological model developed by the Joint Research Centre (JRC) of the European Commission since 1997  
361 (Van Der Knijff et al., 2008). LISFLOOD has been applied to a wide range of applications and is currently  
362 used in the EFAS (European Flood Awareness System) and GLOFAS (Global Flood Awareness System)  
363 (Alfieri et al., 2019). In LISFLOOD, the soil is schematised with three layers and all the main hydrological  
364 processes are modeled: surface runoff, exchange of soil moisture between layers and drainage to the  
365 groundwater, sub-surface and groundwater flow and flow through river channels.

366 For the calculation of potential reference evapotranspiration, potential evaporation from bare soil and open  
367 water, LISFLOOD can be coupled to the LISVAP preprocessing routine (JRC, 2013), especially developed  
368 for this purpose (<https://ec-jrc.github.io/lisflood-lisvap/>).


369 In this work LISFLOOD model was applied to the main rivers that cross the selected coastal cities: Frigido  
370 river for Massa (catchment size ~70 km<sup>2</sup>), Torrent de la Piera and Torrent de San Juan for Villanova (total  
371 size of the two catchments ~40 km<sup>2</sup>), and Oiartzun river for Oarsoaldea (catchment size ~85 km<sup>2</sup>). Such  
372 watersheds were represented as gridded domains with 100x100 m cell size (Figure 4a, b, c).

373 For Frigido river, geomorphological and land cover characteristics were obtained from data available from  
374 Tuscany Region (hydrologically conditioned DEM at 10x10 m resolution, land cover at 1:10000 scale),  
375 while for the other basins data were obtained from EU-DEM v 1.1 25x25 m resolution, Copernicus Land  
376 Monitoring Service (<https://land.copernicus.eu>) and ISRIC Soil Grids 250x250 m  
377 (<https://www.isric.org>).

378 The meteorological forcing fields extracted from EURO-CORDEX necessary to run the LISFLOOD-  
379 LISVAP models, as reported in section 3, are precipitation (1h), sea level pressure (3h), wind speed (3h),  
380 minimum and maximum air temperature (daily), humidity (daily), shortwave and longwave radiation  
381 (daily).

382 Output of LISFLOOD are the times series of hourly river discharge in selected points, for each  
383 climatological scenario. Extreme value analysis can then be applied on these long-term time series to obtain  
384 design flood peaks for the selected return periods and the resulting hydrographs to be used as BC for the  
385 hydraulic simulations (whose domains are shown in figure 4d, e, f), as described in Section 5.

386



387

388 **Fig 4** Top row: View of the domains (blue shading) for the rainfall-runoff hydrological model: a) basin of Oiartzun  
 389 river, with outlet in Oarsoaldea, b) basin of Frigido river, with outlet in Massa b), basins of Torrent de San Juan and  
 390 Torrent de la Piera, with outlet in Vilanova c). Middle row: View of the domains of the 2D hydrodynamic modeling  
 391 (red shading): d) Oarsoaldea, e) Massa, f) Vilanova. Bottom row: Enlargement of the area close to the river mouth,  
 392 showing the resolution of the employed DEM to create the 2D computational domain: g) Oarsoaldea, h) Massa, i)  
 393 Vilanova. Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies,  
 394 Airbus)

395

## 396 **5 Modeling floods at urban-scale**

397

398 In this section, we describe the extreme value analysis to obtain the boundary conditions for the flood  
 399 simulations at urban scale using the hydrodynamic model implemented at each analyzed city.

400

### 401 **5.1 Extreme value analysis**

402 The extreme value analysis has been performed for the variables river discharge  $Q$  and total water level  
 403  $\eta_{TOT}$ . Two return period values were determined, 25 and 100 years for each experiment (Historical, RCP4.5,  
 404 RCP8.5). Furthermore, for the climate projections, two different time windows were analyzed, 2011-2060  
 405 and 2051-2100 (Table 1).

406 In this study, the Generalized Extreme Value (GEV) distribution was employed to model the occurrence of  
 407 annual maxima values of river discharge  $Q$  and total water level  $\eta_{TOT}$ , separately. Since our principal

408 objective is the comparison among different experiments, such a distribution allowed us to be consistent  
409 and to use the same number of events (50) for all the experiments.

410 The total water level  $\eta_{TOT}$  for the Massa and Vilanova cases is equal to the sum of  $\eta$  and the runup value,  
411 which is calculated with the Atkinson et al. (2016) equation:  $R_{2\%} = 0.92\tan\beta\sqrt{H_S L_P} + 0.16H_S$ , where  
412  $\tan\beta$  is the slope of the beach and  $L_P$  is the deep water wavelength at the peak period. Before the calculation  
413 of  $R_{2\%}$ , the wave height is projected along the orthogonal direction to the coastline, to account for wave  
414 direction. For Oarsoaldea the effect of runup is not included in the computations since we do not simulate  
415 waves within the port.

416 The Generalized Extreme Value (GEV) distribution can be written as follows (cumulative distribution  
417 function):

$$418 F(x) = e^{-(1+\xi\frac{x-\mu}{\sigma})^{-\frac{1}{\xi}}}$$

419 defined for values of  $x$  for which  $\xi\cdot x > \xi\mu-\sigma$ . In this equation,  $\mu$  is the location parameter,  $\xi$  is the shape  
420 parameter, and  $\sigma$  is the scale parameter. The shape parameter  $\xi$  governs the distribution type:  $\xi = 0$ , Type I,  
421 Gumbel distribution;  $\xi > 0$ , Type II, Fréchet distribution;  $\xi < 0$ , Type III, Weibull distribution (Coles, 2001)  
422 .

423 The parameters  $\mu$ ,  $\sigma$ ,  $\xi$  are estimated from data using the maximum likelihood method. Then, the return  
424 levels  $x_{RP}$  for a given return period can be calculated as follows:

$$425 x_{RP} = \mu + \frac{\sigma}{\xi} \left( \left( -\ln\left(1 - \frac{1}{RP}\right) \right)^{-\xi} - 1 \right).$$

426 To ensure robust estimates of the uncertainties associated with the return levels, the confidence intervals  
427 (CI) at the 95% significance level were calculated using parametric bootstrapping with 500 iterations  
428 (Gilleland, 2020). The statistical analysis has been performed using the R package extRemes: Extreme  
429 Value Analysis (Gilleland and Katz, 2016).

## 430 5.2 Hydrodynamic model

431 The effect of extreme storm surge and river flood on the analyzed coastal cities was determined using the  
432 HEC-RAS 6.4 hydrodynamic model (Brunner & US Army Corps of Engineers, 2021). The software couples  
433 the simulation of the flow within a river, solving the one-dimensional Saint-Venant equation, to the two-  
434 dimensional flow on the floodable areas, solving the shallow water equations. Once the water level within  
435 the river bed exceeds the elevation of the levees, water flows on the two-dimensional computational mesh  
436 (the opposite flow is also possible).

437 The computational domains associated with the three cities are reported in Figure 4d, e, f. Each mesh is  
438 created by overlapping the HEC-RAS computational grid to the digital elevation model (DEM) of the  
439 analyzed area. The system calculates specific elevation-volume relationships for each computational cell,  
440 representing the details of the underlying layer. This allows us to save computational time by setting a lower  
441 resolution for the HEC-RAS mesh with respect to the DEM. For the three cities of Massa, Vilanova and  
442 Oarsoaldea, the DEM is obtained from the LIDAR dataset, at a resolution of 2 m (Figure 4g, h, i), merging  
443 it to information from nautical charts, except for the city of Massa, where two single beam surveys were  
444 available for the years 2012 and 2017. The HEC-RAS mesh elements have a reference size from 10 to 20  
445 m, except for specific areas (e.g. close to the coastline, complex urban patterns, etc..) where they are reduced  
446 to 5 m. The river geometry is composed by the river cross sections and additional information of hydraulic  
447 structures. For the Massa and Oarsoaldea cases the geometry comes from a topographic survey, whereas  
448 for Vilanova it was extracted from the LIDAR dataset.

450 Boundary conditions (BCs) are differently set based on the simulation carried out, as reported in Table 2.  
 451 For the river flood simulations the upstream BC is a time series  $Q_{RP}(t)$ , with peak discharge value  $Q_{RP}$  equal  
 452 to the return period value. The shape of the hydrograph  $Q_{RP}(t)$  is determined as follows: i) the 24 hours  
 453 preceding and following the annual maxima are extracted for each year; ii) these 49 hours time series are  
 454 superimposed to have maxima in phase and then averaged; iii) the averaged time series is normalized to  
 455 obtain  $q(t)$ , having maximum equal to 1; iv) the  $Q_{RP}(t)$  boundary is obtained multiplying  $q(t)$  by  $Q_{RP}$ . Such  
 456 a procedure is applied to every run to get the appropriate BC. The figures showing the superimposition of  
 457 the annual maxima events for river discharge and water level for the three cities of Massa, Villanova and  
 458 Oarsoladea, are reported in the Supplementary Material. The downstream BC at the sea is the mean sea  
 459 level plus the RSLR, based on the reference scenario  $\Delta\eta_{RSLR}$  as reported in Table 2.  
 460  
 461

|                      | River (upstream) BC                | Sea (downstream) BC                                                           |
|----------------------|------------------------------------|-------------------------------------------------------------------------------|
| <b>River flood</b>   | Time series hydrograph $Q_{RP}(t)$ | Mean sea level + $\Delta\eta_{RSLR}$                                          |
| <b>Coastal flood</b> | Constant hydrograph $Q$            | Time series hydrograph $\eta(t)_{RP} + \Delta\eta_{Tide} + \Delta\eta_{RSLR}$ |

462 Table 2. Combination of upstream and downstream boundary conditions for the river and coastal flood simulations.  
 463

464 For the coastal flood simulations, considering the inaccuracies inherent in long-term predictions on a  
 465 century time scale (Dessay et al., 2009), a statistical approach was preferable to take into account tides and  
 466 other factors contributing to the water level of the downstream BC. Specifically, for each site, delta water  
 467 levels representing the maximum spring tidal amplitudes  $\Delta\eta_{Tide}$  (0.2 m for Massa and for Villanova) and  
 468 the predicted sea level rise on a decadal time scale  $\Delta\eta_{RSLR}$  (Table 3) were linearly added to the  $\eta_{RP}(t)$  time  
 469 series to estimate the worst-case scenario for coastal flooding.  $\eta_{RP}(t)$  is calculated following the same  
 470 procedure employed for the river discharge, with peak value equal to  $\eta_{TOT,RP}$ . This approach does not take  
 471 into account long-term trends potentially present in the tidal constituents as observed by Santamaría-Aguilar  
 472 et al. (2017). The upstream BC is a constant value for the river discharge such as the model can run without  
 473 instabilities and no flood occurs.  
 474

| $\Delta\eta_{RSLR}$ [m] | Massa                  | Villanova              | Oarsoaldea             |
|-------------------------|------------------------|------------------------|------------------------|
| <b>RCP4.5 2011-2060</b> | 0.150 (-0.036, +0.05)  | 0.15 (-0.044, +0.056)  | 0.192 (-0.057, +0.061) |
| <b>RCP4.5 2051-2100</b> | 0.351 (-0.096, 0.131)  | 0.349 (-0.105, +0.138) | 0.412 (-0.155, +0.150) |
| <b>RCP8.5 2011-2060</b> | 0.168 (-0.042, +0.057) | 0.173 (-0.053, +0.062) | 0.229 (-0.079, +0.073) |
| <b>RCP8.5 2051-2100</b> | 0.464 (-0.137, +0.173) | 0.458 (-0.136, +0.185) | 0.537 (-0.208, +0.203) |

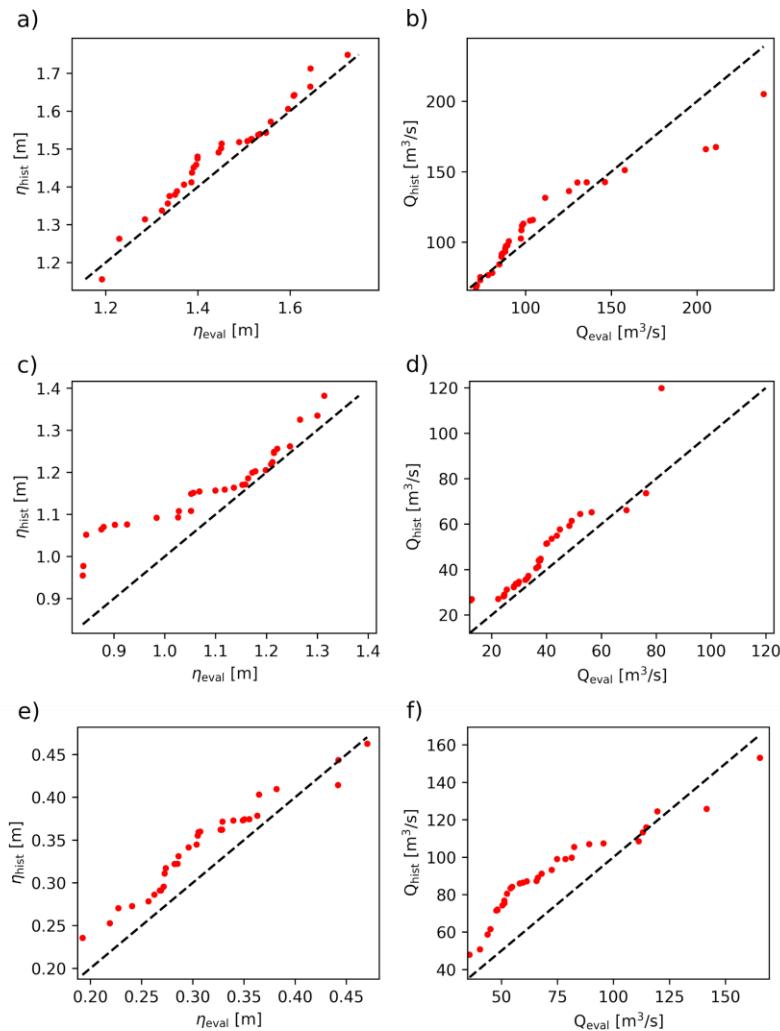
475 Table 3. Values of RSLR referred to the RCP4.5 and RCP8.5 scenarios, averaged over the reference period, for the analyzed cities.  
 476 All values are given with respect to the 1985-2005 reference period. Data extracted from Vousdoukas et al. 2016a ( RCP4.5 data)  
 477 and Vousdoukas et al. 2016b (RCP8.5 data).  
 478  
 479

480 In Oarsoaldea, we used a slightly different approach for the coastal flood simulations since the tidal  
 481 excursion is larger than the extreme return period values: the downstream BC is a semidiurnal tide (up to  
 482 2.3 m) added to the  $\Delta\eta_{RSLR}$  and to the increase due to the return period value  $\Delta\eta_{RP}$ .  
 483

483 For the city of Massa a single river called Frigido is simulated and the urban area is divided into two portions  
484 adjacent to the sides of the river (Figure 4d). In Villanova, two river streams are modeled, the easternmost  
485 is the main one, called Torrent de la Piera, whereas the other one (Torrent de Sant Joan) is forced  
486 underground for about 500 meters, just before the river mouth (Figure 4e). The two-dimensional domain is  
487 split in three subdomains, one between the two rivers and two on their sides. Oiartzun is the main river  
488 modeled for Oarsoaldea, while Lintzirin is its tributary forced underground for most of its length (Figure  
489 4g). In this case the peak discharge of the minor river is scaled in proportion to the basin area ( $47.4 \text{ km}^2$   
490 and  $8.7 \text{ km}^2$ , respectively). The two-dimensional domain is divided into two parts including the Pasaia bay  
491 area.

492

493


## 494 **6 Results**

495

### 496 **6.1 Extremes for wave climate, water level and river discharge**

497 A first comparison is performed between the annual maxima of the Historical and Evaluation runs. For the  
498 former, the years from 1973 to 2005 are considered, whereas for the latter those from 1980 to 2012, for an  
499 overall amount of 33 years each. This allows us to have an estimate of the degree of over/under-estimation  
500 we can have on the projections with respect to the actual scenario.

501



502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519

**Fig 5** Quantile-quantile plots between annual maxima from evaluation and historical runs, for the city of Massa a) and b), Villanova c) and d), and Oarsoaldea d) and e) for the total water level  $\eta_{TOT}$  (first column), and the peak discharge  $Q$  (second column). For the city of Oarsoaldea  $\eta$  is reported since no runup contribution is considered. Red dots represent the annual maxima, black dashed line is the 1:1 line

In Figure 5, the quantile-quantile plots for the three analyzed cities for both river discharge and total water level are reported. Historical and Evaluation annual maxima total water levels in Massa are in agreement (Figure 5a), whereas Historical river discharge is subject to underestimation only for the highest values (Figure 5b). Total water levels in Villanova are generally larger for the Historical run with respect to Evaluation (Figure 5c), whereas river discharge extreme values are correctly estimated except for a single data (Figure 5d). Oarsoaldea water levels are slightly overestimated by the Historical up to 0.4 m. Also river discharge values are generally overestimated up to 100 m<sup>3</sup>/s, then, the largest values tend to be underestimated (Figure 5f). As a result of the calibration and validation procedure, we also noticed the tendency of the evaluation run to underestimate observed extremes measured by wave buoys (see Supplementary Material, Figure S12).

| Massa                        | $\eta_{TOT,RP}$ [m]                     |                                          | $Q_{RP}$ [m <sup>3</sup> /s]            |                                          |
|------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| Run                          | 25 yr (95% CI)<br>[variation to hist %] | 100 yr (95% CI)<br>[variation to hist %] | 25 yr (95% CI)<br>[variation to hist %] | 100 yr (95% CI)<br>[variation to hist %] |
| <b>Historical</b>            | 1.736 (-0.062, +0.057)                  | 1.804 (-0.098, +0.094)                   | 172 (-31, +42)                          | 227 (-63, +109)                          |
| <b>RCP4.5<br/>2011-2060</b>  | 1.781 (-0.068, +0.041)<br>[+2.6%]       | 1.838 (-0.095, +0.057)<br>[+1.9%]        | 177 (-34, +53)<br>[+2.9%]               | 233 (-72, +155)<br>[+2.6%]               |
| <b>RCP4.5 2051-<br/>2100</b> | 1.770 (-0.076, + 0.084)<br>[+1.95%]     | 1.861 (-0.124, + 0.157)<br>[+3.2%]       | 210 (-51, +96)<br>[+22.1%]              | 307 (-115, +332)<br>[+35.2%]             |
| <b>RCP8.5<br/>2011-2060</b>  | 1.719 (-0.032, +0.013)<br>[-1.0%]       | 1.741 (-0.039, 0.014)<br>[-3.5%]         | 201 (-36, +52)<br>[+16.9%]              | 259 (-74, +136)<br>[+14.1%]              |
| <b>RCP8.5 2051-<br/>2100</b> | 1.739 (-0.050, +0.032)<br>[+0.2%]       | 1.783 (-0.066, +0.047)<br>[-1.2%]        | 253 (-70, +103)<br>[+47.1%]             | 386 (-160 +367)<br>[+70.0%]              |

520 Table 4. Return period values associated with 25 and 100 years for the different runs for the city of Massa for both the total water  
 521 level  $\eta_{TOT,RP}$  and the peak discharge  $Q_{RP}$ . Numbers in % (in square brackets) represent the variation relative to the historical value.

522  
 523 Table 4, Table 5 and Table 6, show the results of the extreme value analysis of  $\eta_{TOT,RP}$  and  $Q_{RP}$  for the city  
 524 of Massa, Villanova and Oarsoaldea, respectively, together with the confidence intervals at 95%  
 525 significance level (round brackets) and the percentage increase/decrease (square brackets) with respect to  
 526 the Historical values.

527 For  $\eta_{TOT}$  in Massa, the RCP4.5 scenario shows slightly larger values with respect to the historical run,  
 528 whereas the RCP8.5 has similar or slightly lower values. Conversely, extreme  $Q$  values tend to grow for  
 529 both time windows and further forward in the future for both RCP4.5 and RCP8.5. Nevertheless, the  
 530 estimated 100 years peak discharge shows large uncertainty values, especially for the 2051-2100 case for  
 531 both RCP4.5 and RCP8.5 runs (Table 4).

| Villanova                   | $\eta_{TOT,RP}$ [m]                     |                                          | $Q_{RP}$ [m <sup>3</sup> /s]            |                                          |
|-----------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| Run                         | 25 yr (95% CI)<br>[variation to hist %] | 100 yr (95% CI)<br>[variation to hist %] | 25 yr (95% CI)<br>[variation to hist %] | 100 yr (95% CI)<br>[variation to hist %] |
| <b>Historical</b>           | 1.360 (-0.055, +0.034)                  | 1.409 (-0.079, +0.056)                   | 91 (-20, +27)                           | 125 (-39, +79)                           |
| <b>RCP4.5<br/>2011-2060</b> | 1.340 (-0.039, +0.022)<br>[-1.5%]       | 1.375 (-0.053, + 0.031)<br>[-2.4%]       | 87 (-15, +18)<br>[-4.4%]                | 107 (-27, +42)<br>[-14.4%]               |
| <b>RCP4.5<br/>2051-2100</b> | 1.375 (-0.080, +0.058)<br>[+1.1%]       | 1.450 (-0.131, +0.097)<br>[+2.9%]        | 107 (-22, +25)<br>[+17.6%]              | 137 (-41, +59)<br>[+9.6%]                |
| <b>RCP8.5<br/>2011-2060</b> | 1.401 (-0.075, +0.053)<br>[+3.0%]       | 1.473 (-0.108, +0.089)<br>[+4.5%]        | 109 (-19, +26)<br>[+19.8%]              | 139 (-35, +57)<br>[+11.2%]               |
| <b>RCP8.5<br/>2051-2100</b> | 1.360 (-0.059, +0.040)<br>[+0%]         | 1.411 (-0.081, +0.064)<br>[+0.1%]        | 116 (-23, +36)<br>[+27.5%]              | 154 (-46, +83)<br>[+23.2%]               |

533 Table 5. Return period values associated with 25 and 100 years for the different runs for the city of Villanova for both the total  
 534 water level  $\eta_{TOT,RP}$  and the peak discharge  $Q_{RP}$ . Numbers in % (in square brackets) represent the variation relative to the historical  
 535 value.

536  
537  
538  
539  
540  
541

Extreme  $\eta_{TOT}$  values for the city of Villanova show an increase for the RCP4.5 2051-2100 and for the RCP8.5 2011-2060 scenarios (both 25 and 100 yr RPs), whereas a decrease is found for the RCP4.5 2011-2060. Analogously,  $Q$  extreme values are lower than the historical for the RCP4.5 2011-2060 scenario (both 25 and 100 yr RPs), but an increase is observed for all the other cases (Table 5).

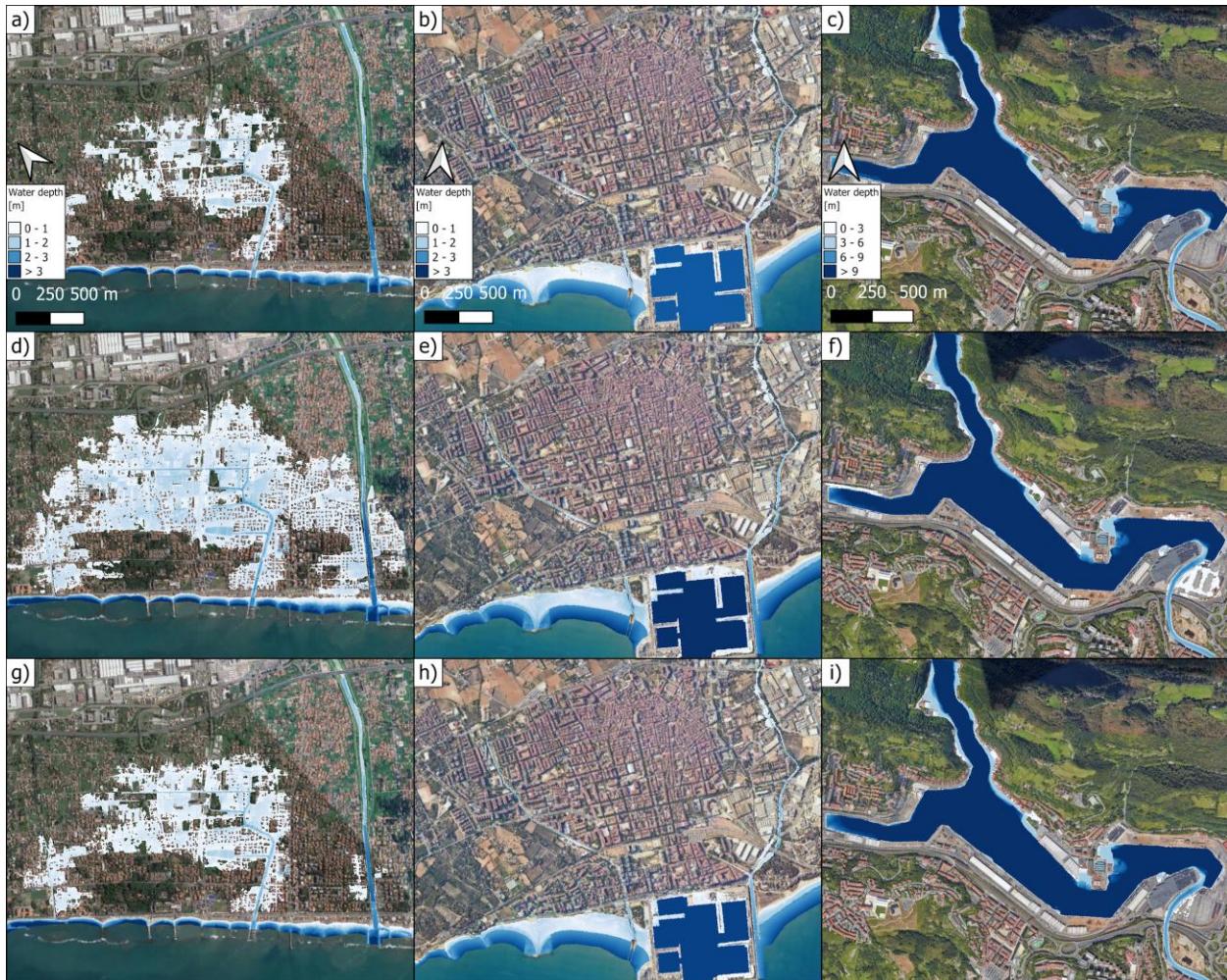
| Oarsoaldea       | $\eta_{RP}$ [m]                   |                                         | $Q_{RP}$ [ $m^3/s$ ]                     |                                         |
|------------------|-----------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|
|                  | Run                               | 25 yr (95% CI)<br>[variation to hist %] | 100 yr (95% CI)<br>[variation to hist %] | 25 yr (95% CI)<br>[variation to hist %] |
| Historical       | 0.433 (-0.025, +0.018)            | 0.456 (-0.035, +0.025)                  | 169 (-30, +34)                           | 209 (-54, +87)                          |
| RCP4.5 2011-2060 | 0.444 (-0.039, 0.031)<br>[+2.5%]  | 0.486 (-0.061, +0.060)<br>[+6.6%]       | 168 (-27, +27)<br>[-0.6%]                | 201 (-46, +56)<br>[-3.8%]               |
| RCP4.5 2051-2100 | 0.395 (-0.021, 0.016)<br>[-8.8%]  | 0.416 (-0.030, +0.026)<br>[-8.8%]       | 176 (-19, +12)<br>[+4.1%]                | 195 (-27, +22)<br>[-6.7%]               |
| RCP8.5 2011-2060 | 0.423 (-0.039, +0.035)<br>[-2.3%] | 0.462 (-0.059, +0.077)<br>[+1.7%]       | 163 (-18, +15)<br>[-3.5%]                | 182 (-27, +32)<br>[-12.9%]              |
| RCP8.5 2051-2100 | 0.416 (-0.022, +0.013)<br>[-3.9%] | 0.436 (-0.030, +0.018)<br>[-4.4%]       | 173 (-20, +18)<br>[+2.4%]                | 194 (-31, +35)<br>[-7.2%]               |

542 Table 6. Return period values associated with 25 and 100 years for the different runs for the city of Oarsoaldea for both the water  
543 level  $\eta_{RP}$  and the peak discharge  $Q_{RP}$ . Numbers in % (in square brackets) represent the variation relative to the historical value.

544  
545  
546  
547  
548  
549

Concerning extreme water levels in Oarsoaldea, an increase for the RCP4.5 2011-2060 (both 25 and 100 yr RPs) is observed, while all the other cases show decrease or substantial invariance. The extreme river discharge is not subject to significant variations for the 25 years RP, whereas a general slight decrease is observed for the 100 years RP for all scenarios.

6.2 Flooded areas


The envelope of the water depth, that is the spatial distribution of the maximum water depth reached at each computational cell during the hydrodynamic simulation, are reported in Figure 6 and Figure 7 for coastal and riverine floods with a 100 yr RP, respectively.

More specifically, results are reported for the RCP4.5 2051-2100 and RCP8.5 2011-2060 for the three analyzed cities. The remaining figures of flooded areas, that is: the 100 yr RP coastal floods (Figure S1) and 100 yr RP riverine floods (Figure S2) cases, and all the 25 y RP cases (Figure S3 for coastal flood and Figure S4 for riverine flood), are reported in the Supplementary material.

For the city of Massa, the simulations of the future scenarios show an increase in flooded areas, especially for the RCP4.5 2051-2100 (Figure 6a, d, g). Such a case shows a rise of 60% in flooded volume with respect to the Historical case, whereas the increase is 7% for the RCP8.5 2011-2060 100 yr RP (Table 7). In general, coastal flood volume increase in Massa is larger for the furthest time window in the future.

Storm surges in Villanova mainly impact the beach area and the surroundings of the port (Figure 6b, e, h), and the rise in flooded volume compared to the Historical case is at most 20% (RCP4.5 2051-2100 25 yr RP, Table 7).


565



566  
567  
568  
569  
570  
571  
572  
573  
574  
575

**Fig 6** Hazard maps associated to the 100 years return period coastal flood event for the city of Massa: Historical a), RCP4.5 2051-2100 d), RCP8.5 2011-2060 g); for the city of Vilanova: Historical b), RCP4.5 2051-2100 e), RCP8.5 2011-2060 h); for the city of Oarsoaldea: Historical c), RCP4.5 2051-2100 f), RCP8.5 2011-2060 i). Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

For Oarsoaldea, the hydrodynamic simulations of coastal flooding do not show substantial variations between the Historical case and the projections (Figure 6c, f, i). This is confirmed by the flooded volume variation which is at most 3% for the RCP8.5 2051-2100 100 yr RP (Table 7).



576  
577  
578  
579  
580  
581

**Fig 7** Hazard maps associated to the 100 years return period riverine flood event for the city of Massa: Historical a), RCP4.5 2051-2100 d), RCP8.5 2011-2060 g); for the city of Vilanova: Historical b), RCP4.5 2051-2100 e), RCP8.5 2011-2060 h); for the city of Oarsoaldea: Historical c), RCP4.5 2051-2100 f), RCP8.5 2011-2060 i). Base map: Google Satellite imagery (© Google 2024; Imagery © CNES / Airbus, Maxar Technologies, Airbus)

582  
583  
584  
585  
586

The results of the 100 yr RP riverine floods hydrodynamic simulations are reported in Figure 7. For the city of Massa a substantial increase in the flooded area for the RCP4.5 2051-2100 (Figure 7d) and RCP8.5 2011-2060 (Figure 7g) with respect to Historical case (Figure 7a), is observed. This is consistent with the rise in flooded volume reported in Table 7, where an increase larger than 200% is seen for both the RPs associated with the RCP8.5 2051-2100 case.

587  
588  
589  
590

The visual comparison of Figure 7b, e, h does not allow to clearly detect an increase/decrease in flooded area with respect to the Historical case for the city of Vilanova. However, the computation of flooded volume variation shows an increase up to 33% for all cases except for RCP4.5 2011-2060 for both RPs (Table 7).

591  
592  
593

Oarsoaldea exhibits a different behavior since the Historical events cause larger floods with respect to most part of the projections. Even for this city the visual comparison of water depths does not allow us to identify increase/decrease in flooded areas (Figure 7c, f, i), but the results reported in Table 6 show that rise in

594 flooded volume around 11% is observed only for the 25 yr RPs for the RCP4.5 for the 2051-2100 time  
 595 window. All other cases show a decrease in flooded volume, up to -38% for RCP8.5 2011-2060 100 yr RP.  
 596

| Analyzed city | Run                     | Coastal flood |           | Riverine flood |           |
|---------------|-------------------------|---------------|-----------|----------------|-----------|
|               |                         | 25 years      | 100 years | 25 years       | 100 years |
| Massa         | <b>RCP4.5 2011-2060</b> | +20%          | +18%      | +7%            | +9%       |
|               | <b>RCP4.5 2051-2100</b> | +49%          | +60%      | +84%           | +124%     |
|               | <b>RCP8.5 2011-2060</b> | +14%          | +7%       | +51%           | +44%      |
|               | <b>RCP8.5 2051-2100</b> | +68%          | +68%      | +218%          | +261%     |
| Vilanova      | <b>RCP4.5 2011-2060</b> | +1%           | +0%       | -8%            | -20%      |
|               | <b>RCP4.5 2051-2100</b> | +8%           | +10%      | +17%           | +11%      |
|               | <b>RCP8.5 2011-2060</b> | +6%           | +8%       | +23%           | +15%      |
|               | <b>RCP8.5 2051-2100</b> | +9%           | +9%       | +30%           | +33%      |
| Oarsoaldea    | <b>RCP4.5 2011-2060</b> | +1%           | +1%       | -3%            | -11%      |
|               | <b>RCP4.5 2051-2100</b> | +1%           | +1%       | +11%           | -17%      |
|               | <b>RCP8.5 2011-2060</b> | +1%           | +1%       | -14%           | -33%      |
|               | <b>RCP8.5 2051-2100</b> | +2%           | +3%       | +1%            | -38%      |

597 Table 7. Percentage change of the flooded volume with respect to the historical run for the three cities of Massa, Vilanova and  
 598 Oarsoaldea, for the RCP4.5 and RCP8.5 (2011-2060, 2051-2100) scenarios for both the 25 and 100 years return periods.  
 599

600

## 601 7 Discussion

602

603 Assessing the impacts of future climate scenarios on extreme flood events in coastal cities requires a huge  
 604 effort due to the need to integrate processes across multiple scales, from synoptic scale (i.e. storms spanning  
 605 ~100-1000 km) to local scale. At the urban scale, specific geomorphic features such as landscape elevation  
 606 and structural elements can significantly influence flood extent. To address this complexity, we  
 607 implemented a multiscale modeling chain tailored for three of the CCLLs under the SCORE Project, but  
 608 that can be easily generalized to other coastal cities. We employed unstructured grids modelling approaches

609 to simulate wave climate (WWIII) and water levels (SHYFEM). These were integrated with the distributed  
610 hydrological model LISFLOOD, and finally coupled within high-resolution urban hydrodynamic  
611 simulations, to capture the interaction between extreme events and urban-specific characteristics, achieving  
612 the spatial granularity needed to capture critical urban-scale flood dynamics. However, this level of detail  
613 comes with a huge computational effort: each of the three models ran simulations equivalent to nearly 300  
614 years, repeated for all analyzed cities.

615 This consideration was the most significant factor influencing our choice of using a single RCM (and GCM)  
616 rather than a multi-model ensemble approach. In addition, data availability from EURO-CORDEX for all  
617 required variables at a sufficient output frequency and covering the Evaluation, Historical, RCP4.5 and  
618 RCP8.5 runs was ensured only by the ALADIN63 model driven by the ERA-Interim reanalysis and the  
619 CNRM-CM5 GCM. We have given priority to have a continuous dataset at the cost of giving up an  
620 uncertainty estimate based on a multi-model ensemble. We tried to partially compensate for the lack of  
621 such an uncertainty estimation, by calculating confidence intervals through the bootstrap method in the  
622 statistical analysis, although this is a different source of uncertainty.

623 The comparison between the annual maxima from the Evaluation and Historical runs (Figure 5), together  
624 with the information reported in Tables 4, 5 and 6, enables us to assess the reliability of the coastal and  
625 riverine hazard maps (Figures 6 and Figure 7).

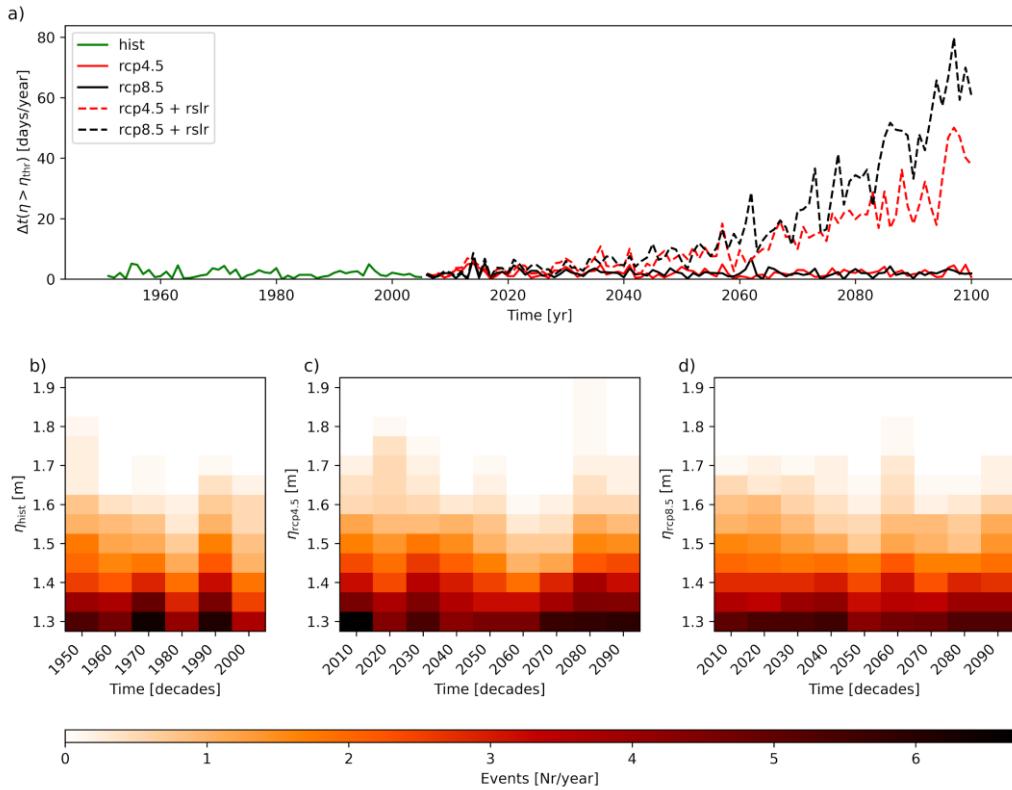
626 If we only look at the return period values of total water level for the city of Massa, we do not observe  
627 significant variations in terms of event magnitude compared to the Historical period. Indeed, the  
628 increase/decrease ranges from -3.5% to +3.2 with a predominance of positive values (Table 3). Considering  
629 the 95% CIs, the variability generally lies between +2.5% and +5% of the calculated extreme value for  
630 the 2011-2060 and 2051-2100 time windows, respectively. Although an increase in wave height is projected  
631 for the Ligurian-Tyrrhenian Sea (De Leo et al., 2024), several factors may contribute to the observed  
632 invariance in total water levels for Massa. The shallow bathymetry in front of Massa (Figure 3) can act as  
633 a sort of filter for the highest offshore waves, leading to a sort of upper limit for the wave height close to  
634 the shoreline which, in turn, affects the total water level through the runup equation. Additionally, the very  
635 high resolution of the modeling near the coast captures local-scale effects that are often missed by lower-  
636 resolution models. Furthermore, the sensitivity of runup to wave height for Massa's beach slope, calculated  
637 using wavelengths ranging between 70 and 95 m (those associated with the highest waves) is modest,  
638 approximately 0.2-0.25 m. This means that a 1 m increase in wave height produces 0.2-0.25 m increase in  
639 runup. As a consequence, any increase/decrease in wave climate is partially damped. Actually, the main  
640 driver behind the significant differences in flooded volume is the Relative Sea Level Rise (RSLR) (Table  
641 3), which allows storm surges to penetrate farther inland, resulting in larger flooded volumes (Table 7).  
642 This finding is consistent with the conclusions of the IPCC Sixth Assessment Report (IPCC, 2023b), which  
643 states that regional sea level change will be the primary factor contributing to a substantial increase in the  
644 frequency of extreme still water levels over the next century, even assuming other contributors to extreme  
645 sea levels to remain constant. Therefore, all uncertainties in sea level rise projections can significantly affect  
646 the flood extension and volume associated with extreme events. In addition, the projected sea level rise by  
647 the end of the century could be significantly higher if the less likely, but still plausible, ice-sheet-related  
648 dynamics were to occur (IPCC, 2023b; IPCC, 2014).

649 Riverine floods for the RCPs projections in Massa show a substantial increase, even more evident for the  
650 2051-2100 time window. However, this is accompanied by an equal increase in uncertainty. Indeed, the  
651 width of the 95% CI is almost 1.5 times the 100 yr RP for both the RCP4.5 and RCP8.5 2051-2100. Despite  
652 this, the overall increase in extreme  $Q_{RP}$  for all the analyzed scenarios and time windows confirms an

653 increase in future peak river discharges. However, such extremes could be slightly underestimated as  
654 observable from the QQ-plot of Evaluation and Historical annual maxima (Figure 5b). Indeed, we make  
655 the hypothesis that the Evaluation run, being a reanalysis, is close to reality given that it benefits from a  
656 data assimilation procedure, thus incorporating the information from observations. Notwithstanding, their  
657 impact on the ground is further augmented by the increase in relative sea level, whereby the higher  
658 downstream boundary condition hinders the flow toward the sea, resulting in a substantial increase in the  
659 flooded volume (Table 7).

660 The extension of the flooded area for Vilanova appears not to be affected by storm surges principally due  
661 to the characteristics of the beach zone which is separated from the urban area by a steep positive gradient  
662 in the land elevation which makes the latter higher. A substantial equivalence between the Historical and  
663 the RCP4.5 and RCP8.5 extreme values is observed and the  $\Delta\eta_{RSLR}$  ranges between 0.15 and 0.458 m  
664 (Table 3). Even though the increase in flooded volume is always positive (Table 7), the flooded area is not  
665 enlarged (Figure 6b, e, h) and the only area which is interested in an enlargement of the flooded surface is  
666 the one adjacent to the port.

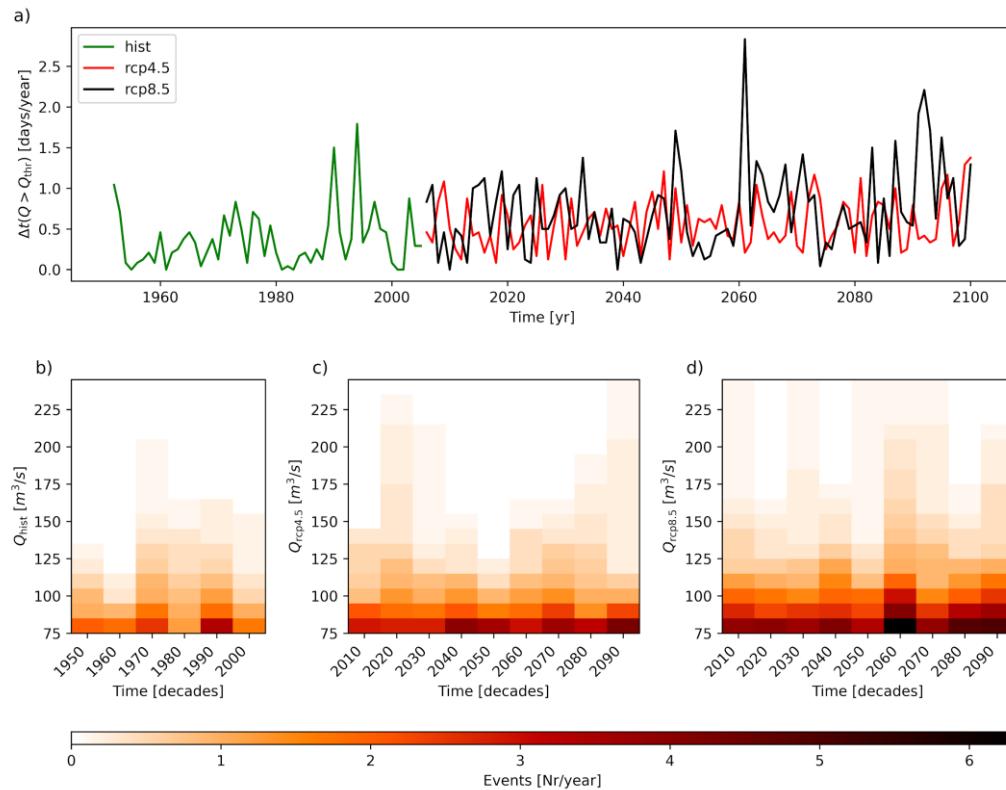
667 The riverine floods associated with projections are generally characterized by an increase in flooded volume  
668 with respect to the Historical (from +11% to +33%), but for the RCP4.5 2011-2060 25 and 100 yr RPs (-  
669 8% and -20%), as reported in Table 7. Concerning the  $Q_{RP}$  values, the higher the extreme value, the larger  
670 the CI width. However, a substantial increase in river discharge is observable, in agreement with the flooded  
671 volume. The comparison of annual maxima from Evaluation and Historical (Figure 5d) suggests no  
672 underestimation/overestimation, even if the largest value could lead one to think of an overestimation. The  
673 additional increase in flooded volume (Table 7) compared to the maxima in river discharge (Table 5) is  
674 primarily attributed to the RSLR, similar to the findings for Massa.


675 For the city of Oarsoaldea the port area has been designed to face tidal excursions around 2 m. The extreme  
676 values associated with both 25 and 100 yr RP range between 0.395 and 0.486 m. Table 5 reports increases  
677 (RCP4.5 2011-2060) and decreases (RCP4.5 2051-2100 and RCP8.5 2051-2100) of the extreme water level  
678 for the projections compared to the Historical, consistent with the findings of Vousdoukas et al. (2017).  
679 The modest rise in flooded volume (+1% to +3%, Table 7) is mainly attributable to the RSLR.

680 For river discharge, a generalized decrease in peak  $Q_{RP}$  values is observed, with the width of the 95% CI of  
681 the same order of magnitude of the variation with respect to the Historical period, and an expected slight  
682 underestimation of the projected extremes (Figure 5f).

683 The use of annual maxima to perform the EVA has the disadvantage of eliminating a lot of significant data.  
684 To make greater use of the time series produced, we performed two additional analyses for the city of Massa  
685 for both  $\eta_{TOT}(t)$  and  $Q(t)$ . (The same analysis for the city of Villanova and Oarsoaldea is reported in the  
686 Supplementary Material, Figures from S14 to S17). We calculated the cumulative time a variable persists  
687 over a fixed threshold, that is chosen as the 99.5%-ile and the 99.9%-ile of the Historical period time series  
688 for the total water level and river discharge, respectively (Figure 8a and 9a). Furthermore, we determined  
689 the number of events per year (coloured patches) higher than specific values of  $\eta$  and  $Q$  (reported in the  
690 abscissa), clustering the events by decade (Figure 8b, c, d and 9b, c, d, for Historical, RCP4.5 and RCP8.5  
691 run, respectively).

692 Figure 8a shows that the increase in RSL is the main driver for the  $\eta_{TOT}$  increase for the cumulative time  
693 above a certain high level. It is also confirmed by Figure 8b where a trend in the increase of extreme events,  
694 without the effect of RSLR, is not clearly observable.


695



696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706

**Fig 8** a) Cumulative duration of total water level above the 99.5 % -ile in days per year for HIST (green line), RCP4.5 (red line), RCP8.5 (black line), RCP4.5 and RCP8.5 plus the effect of RSLR (red dashed line and black dashed line, respectively), for the city of Massa. Number of events per year with peak values larger than specific values, grouped by decades for: HIST b), RCP4.5 c) and RCP8.5 d)

Concerning river discharge, a slight positive trend for the cumulative time  $Q(t)$  persists above the 99.9%-ile Historical value, is detectable (Figure 9a). Moreover, an increase in the number of extreme events is observed, especially for the RCP8.5 scenario, even if the obtained patch is quite noisy. This can be ascribed to the fact that we used only one RCM.



707  
708 **Fig 9** a) Cumulative duration of water discharge above the 99.9 % -ile in days per year for HIST (green line), RCP4.5  
709 (red line), RCP8.5 (black line), RCP4.5 and RCP8.5 plus the effect of RSLR (red dashed line and black dashed line,  
710 respectively), for the city of Massa. Number of events per year with peak values larger than specific values, grouped  
711 by decades for: HIST b), RCP4.5 c) and RCP8.5 d).

712  
713 The use of an empirical formula to calculate the wave runup (Atkinson et al., 2017), while avoiding us to  
714 fully simulate the dynamical swash process and getting at least the order of magnitude of runup values,  
715 introduces uncertainties due to the degree of alongshore variability of the beach or due to the reduced  
716 knowledge of the underwater bathymetry. Indeed, for the city of Massa two bathymetric surveys were  
717 available (2012 and 2016), but for Villanova the submerged part of the domain principally comes from  
718 nautical charts. Specific efforts to recover the detailed bathymetry of the area are recommended to make  
719 the resolution of the hydrodynamic domain as uniform as possible.

720 A potential limitation concerning the analysis of extreme events is related to compound events (Ghanbari  
721 et al., 2020; Gori & Lin, 2022). In this work we consider non-interacting storm surges and river discharges.  
722 Such a choice is aimed at simplifying the approach and having greater control on each driver of a flood  
723 event. Furthermore, the extreme value analysis of compound events leads to some difficulties and  
724 approximations related to the identification of a “compound event”. In general, focusing only on two  
725 variables, we look for large values, in one or both variables, which are temporally distant less than a specific  
726 threshold. The method to identify “compound events” varies on the basis of the different studies and scales.  
727 This aspect, together with the choice of the couple of values associated with a specific RP curve, tends to  
728 enhance the complexity and the degrees of freedom of the problem. Considering the present work as an  
729 introductory paper describing the whole modeling chain and its applications, and given the availability of  
730 continuous time series, we intend to pursue future research by focusing directly on impacts. That is, we

731 intend to run the hydrodynamic model using as BCs the whole time series (excluding the periods where  
732 both  $Q$  and  $\eta_{TOT}$  are low), and analyze the statistical properties of the water depth as a consequence of flood  
733 events. In such a way it is possible to by-pass all the issues related to the definition and identification of  
734 compound events. Nevertheless, the availability of these long term simulated discharge time series can also  
735 be a valuable dataset for further analysis on hydrological regimes e.g. droughts.

736 Additionally, another issue that can be overcome in case the impact-based approach is employed, is that  
737 related to the creation of adequate synthetic boundary conditions associated with specific return periods.  
738 The choice to average the extreme events superimposed in phase at the peak can smooth out their variability,  
739 given that they show different variability ranges based on the selected city and variable (Quinn et al., 2014).  
740 Nevertheless, the obtained variability ranges do not exceed the magnitude of the associated extreme event  
741 (see Figure S5, S6, S7 in the Supplementary Material). It was our intent to derive a shape for the time series  
742 that is representative of the main behaviour of the analyzed variable during its rise and fall around the  
743 maximum. The derivation of a synthetic hydrograph starting from the maximum discharge is proposed by  
744 Brunner et al., (2017), where they retrieve a synthetic design hydrograph based on “the fitting of probability  
745 density functions to observed flood hydrographs of a certain flood type taking into account the dependence  
746 between the design variables peak discharge and flood volume”. They also pass through a normalization  
747 step, similar to what we carried out. However, we tried to keep a simpler approach that can be also extended  
748 to the total water levels, for which we did not find an analogous procedure.

749 Accounting for the tide by adding a fixed  $\Delta\eta_{Tide}$  to the extreme event hydrograph (Massa and Villanova),  
750 or by simulating a semidiurnal tide (Oarsoaldea) as a boundary condition, can overlook the long-term  
751 (century-scale) modifications in tidal ranges. Santamaria et al. (2017), using site specific past observations,  
752 found they are driven by meteorological, oceanographic, and hydrographic variability. The difficulty to  
753 forecast them using numerical tools partly justifies the decision not to explicitly include this aspect in the  
754 present study.

755 It is important to emphasize that the errors accumulating throughout the modeling chains are difficult to  
756 estimate and are the results of unavoidable approximations. Furthermore, we are running hydrodynamic  
757 simulations where the environment (e.g. buildings, structure, etc...) do not change in time, which is an  
758 unlikely circumstance. As a consequence, obtained results have to be considered as indicative of a trend  
759 rather than precise predictions of the future.

760 On the one hand, we are making a strong assumption, considering the surrounding environment does not  
761 change over time. On the other hand, the knowledge of specific characteristics of the analyzed area are  
762 crucial in modeling the impact of flood events. A coarse starting DEM of around 20 m resolution cannot  
763 even resolve streets and spaces between buildings, potentially blocking the flow and significantly changing  
764 the flooding pattern. These are aspects that have to be taken into account when evaluating the obtained  
765 results associated with uncertain future scenarios.

766

## 767 **8 Conclusion and outlook**

768 In this work we present a modeling chain to transfer synoptic scale atmospheric information to the scale of  
769 coastal cities with the goal of estimating changes in the impact of extreme riverine and coastal flood events  
770 - specifically in terms of flooded area and volume - under the RCP4.5 and RCP8.5 climate change scenarios,  
771 compared to Historical conditions. We use atmospheric data from the ALADIN63 RCM from the EURO-  
772 CORDEX dataset to drive three numerical models: WWIII for wave climate, SHYFEM for water levels,  
773 and LISFLOOD for river discharge. Model outputs are then processed to generate synthetic extreme events,  
774 which are then used to simulate coastal and riverine floods through a high-resolution hydrodynamic model

775 (HEC-RAS). This model is specifically implemented for the domains of three coastal cities selected within  
776 the SCORE Project: Massa (Italy), Vilanova i la Geltrù, and Oarsoaldea (Spain). Wave climate data are  
777 further used to calculate wave runup, which is combined with water levels to determine total water levels  
778  $\eta_{TOT}$ .

779 The extreme value analysis of total water levels  $\eta_{TOT}$  and river discharge  $Q$  reveals both increase and  
780 decrease in RCP4.5 and RCP8.5 extremes compared to Historical extremes, depending on the different  
781 locations, with larger uncertainties associated with high extreme values and longer-term projections (2051-  
782 2100). The increase/decrease in flooded volume is not necessarily related to increase/decrease in extremes  
783 but it depends on relative sea-level rise RSLR and to specific local features of each coastal city.

784 Massa is particularly vulnerable to RSLR, which facilitates the inland propagation of coastal floods,  
785 increasing the water volume up to 68%. Additionally, RSLR hinders river flow into the sea, exacerbating  
786 riverine floods and potentially doubling water volume. This is further compounded by an increase in future  
787 extreme river discharge (ranging from +2.9% to +70%), especially under the RCP8.5 scenario. In contrast,  
788 Vilanova i la Geltrù is not significantly affected by storm surges due to its geomorphic structure, whereas  
789 the riverine extreme floods tend to generally increase in the future according to RCP4.5 and RCP8.5 (up to  
790 +27.5% for peak river discharge and +33% for water volume). Oarsoaldea, on the other hand, is well  
791 protected against storm surges and the flood extension appears to be relatively insensitive to the differences  
792 between Historical, RCP4.5 and RCP8.5 scenarios. Riverine floods in Oarsoaldea show a decrease in extent  
793 for the 100 yr RP but slightly increase for the 25 yr RP in the 2051-2100 timeplay. These results reflect the  
794 complex interplay between extreme events and RSLR.

795 This study highlights the importance of employing high resolution modeling, as local characteristics  
796 significantly influence flood impacts and the analysis of the effects of future extreme events.

797 Future developments include the use of long-term time series of  $\eta_{TOT}$  and  $Q$  to continuously force the  
798 hydrodynamic model, excluding periods associated with low values. This impact-based approach can  
799 potentially replace the need for EVA for different events, including compound ones and enables a direct  
800 analysis of their interaction on the ground, providing a statistical assessment of water depth, flood extent  
801 and water volume time series.

802

### 803 **Author contributions**

804 **B.M.:** conceptualization, formal analysis, investigation, methodology, software, visualization, writing -  
805 original draft, writing - review and editing. **C.F.:** conceptualization, investigation, methodology, writing -  
806 original draft. **C.A.:** conceptualization, investigation, methodology, visualization, writing - original draft.  
807 **T.S.:** conceptualization, investigation, methodology, writing - original draft. **A.I.:** formal analysis, project  
808 administration, investigation. **P.R.:** writing - original draft, writing - review & editing. **M.R.:** investigation,  
809 visualization, writing - review & editing. **P.M.:** data curation, investigation, visualization. **S.M.:** formal  
810 analysis, investigation, writing - review & editing. **V.G.:** data curation. **O.A.:** conceptualization, funding  
811 acquisition, project administration, writing - review and editing. **C.M.:** project administration. **G.S.:**  
812 funding acquisition, project administration, writing - review and editing. **B.C.:** conceptualization,  
813 supervision, funding acquisition, project administration, writing - review and editing.

814

815

### 816 **Competing interests**

817 The authors declare that they have no conflict of interest.

818

819

820 **Funding**821 This research was supported by the project SCORE (Smart Control of the Climate Resilience in European  
822 Coastal Cities), funded by the European Commission's Horizon 2020 research and innovation programme  
823 under grant agreement No. 101003534.

824

825

826 **Acknowledgments**827 Thanks also to the European Union—NextGenerationEU and the Ministry of University and Research  
828 (MUR), National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.5, project  
829 “RAISE—Robotics and AI for Socio-economic Empowerment” (ECS00000035); and the EU - Next  
830 Generation EU Mission 4 “Education and Research” - Component 2: “From research to business” -  
831 Investment 3.1: “Fund for the realisation of an integrated system of research and innovation infrastructures”  
832 - Project IR0000032 – ITINERIS - Italian Integrated Environmental Research Infrastructures System.

833

834 **References**

835

836 Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., & Salamon, P. (2019). A  
837 global streamflow reanalysis for 1980–2018. *Journal of Hydrology* X, 6, 100049.  
838 <https://doi.org/10.1016/j.hydroa.2019.100049>

839

840 Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., & Baldock, T. E. (2016).  
841 Assessment of runup predictions by empirical models on non-truncated beaches on the south-east  
842 Australian coast. *Coastal Engineering*, 119, 15–31. <https://doi.org/10.1016/j.coastaleng.2016.10.001>

843

844 Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., & Canestrelli, P. (2007). A finite element operational  
845 model for storm surge prediction in Venice. *Estuarine, Coastal and Shelf Science*, 75(1–2), 236–249.  
846 <https://doi.org/10.1016/j.ecss.2007.02.025>

847

848 Bajo, M., Medugorac, I., Umgiesser, G., & Orlić, M. (2019). Storm surge and seiche modelling in the  
849 Adriatic Sea and the impact of data assimilation. *Quarterly Journal of the Royal Meteorological Society*,  
850 145(722), 2070–2084. [https://doi.org/https://doi.org/10.1002/qj.3544](https://doi.org/10.1002/qj.3544)

851

852 Barnard, P. L., Van Ormondt, M., Erikson, L. H., Eshleman, J., Hapke, C., Ruggiero, P., Adams, P. N., &  
853 Foxgrover, A. C. (2014). Development of the Coastal Storm Modeling System (CoSMoS) for predicting  
854 the impact of storms on high-energy, active-margin coasts. *Natural Hazards*, 74(2), 1095–1125.  
855 <https://doi.org/10.1007/s11069-014-1236-y>

856

857 Barnard, P. L., Erikson, L. H., Foxgrover, A. C., Hart, J. a. F., Limber, P., O'Neill, A. C., Van Ormondt,  
858 M., Vitousek, S., Wood, N., Hayden, M. K., & Jones, J. M. (2019). Dynamic flood modeling essential to  
859 assess the coastal impacts of climate change. *Scientific Reports*, 9(1). <https://doi.org/10.1038/s41598-019-40742-z>.

861

862 Bensi, M., Mohammadi, S., Kao, S., & Deneale, S. (2020). Multi-Mechanism Flood Hazard Assessment:  
863 Critical Review of Current Practice and Approaches. United States. <https://doi.org/10.2172/1649363>

864

865 Bevacqua, E., Maraun, D., Haff, I. H., Widmann, M., & Vrac, M. (2017). Multivariate statistical modeling  
866 of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). *Hydrology and*  
867 *Earth System Sciences*, 21(6), 2701–2723. <https://doi.org/10.5194/hess-21-2701-2017>

868

869 Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., &  
870 Feyen, L. (2020). More meteorological events that drive compound coastal flooding are projected under  
871 climate change. *Communications Earth & Environment*, 1(1). <https://doi.org/10.1038/s43247-020-00044-z>

873

874 Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., De Moel, H., Ward, P. J., &  
875 Aerts, J. C. J. H. (2018). Global modeling of tropical cyclone storm surges using high-resolution forecasts.  
876 *Climate Dynamics*, 52(7–8), 5031–5044. <https://doi.org/10.1007/s00382-018-4430-x>

877

878 Bonamano, S., Federico, I., Causio, S., Piermattei, V., Piazzolla, D., Scanu, S., Madonia, A., Madonia, N.,  
879 De Cillis, G., Jansen, E., Fersini, G., Coppini, G., & Marcelli, M. (2024). River–coastal–ocean continuum  
880 modeling along the Lazio coast (Tyrrhenian Sea, Italy): Assessment of near river dynamics in the Tiber  
881 delta. *Estuarine Coastal and Shelf Science*, 297, 108618. <https://doi.org/10.1016/j.ecss.2024.108618>

882

883 Brunner, G. W. & US Army Corps of Engineers. (2021). HEC-RAS, River Analysis System Hydraulic  
884 Reference Manual (Computer Program Documentation CPD-69). US Army Corps of Engineers.  
885 [https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS\\_6.0\\_Reference\\_Manual.pdf](https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_6.0_Reference_Manual.pdf)

886

887 Bulkeley, H., Marvin, S., Palgan, Y. V., McCormick, K., Breitfuss-Loidl, M., Mai, L., Von Wirth, T., &  
888 Frantzeskaki, N. (2018). Urban living laboratories: Conducting the experimental city? *European Urban and*  
889 *Regional Studies*, 26(4), 317–335. <https://doi.org/10.1177/0969776418787222>

890

891 Carayannis, E. G., & Campbell, D. F. (2009). “Mode 3” and “Quadruple Helix”: toward a 21st century  
892 fractal innovation ecosystem. *International Journal of Technology Management*, 46(3/4), 201.  
893 <https://doi.org/10.1504/ijtm.2009.023374>

894

895 Ciavola, P., Ferreira, O., Haerens, P., Van Koningsveld, M., & Armaroli, C. (2011). Storm impacts along  
896 European coastlines. Part 2: lessons learned from the MICORE project. *Environmental Science & Policy*,  
897 14(7), 924–933.

898

899 Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. In Springer series in statistics.  
900 <https://doi.org/10.1007/978-1-4471-3675-0>

901

902 Conrad, C. C., & Hilchey, K. G. (2010). A review of citizen science and community-based environmental  
903 monitoring: issues and opportunities. *Environmental Monitoring and Assessment*, 176(1–4), 273–291.  
904 <https://doi.org/10.1007/s10661-010-1582-5>

905

906 Coppola, E., Nogherotto, R., Ciarlo, J. M., Giorgi, F., Van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L.,  
907 Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshakl, C., Sillmann, J.,  
908 Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., . . . Wulfmeyer, V. (2020). Assessment of the  
909 European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate  
910 Model Ensemble. *Journal of Geophysical Research Atmospheres*, 126(4).  
911 <https://doi.org/10.1029/2019jd032356>

912

913 Cucco, A., Martín, J., Quattrocchi, G., Fenco, H., Umgiesser, G., & Fernández, D. A. (2022). Water  
914 Circulation and Transport Time Scales in the Beagle Channel, Southernmost Tip of South America. *Journal*  
915 of Marine Science and Engineering

916

917 Cucco, A., Rindi, L., Benedetti-Cecchi, L., Quattrocchi, G., Ribotti, A., Ravaglioli, C., Cecchi, E., Perna,  
918 M., & Brandini, C. (2023). Assessing the risk of oil spill impacts and potential biodiversity loss for coastal  
919 marine environment at the turn of the COVID-19 pandemic event. *The Science of the Total Environment*,  
920 894, 164972. <https://doi.org/10.1016/j.scitotenv.2023.164972>

921

922 De Leo, F., Briganti, R. & Besio, G. Trends in ocean waves climate within the Mediterranean Sea: a review.  
923 *Clim Dyn* 62, 1555–1566 (2024). <https://doi.org/10.1007/s00382-023-06984-4>

924

925 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,  
926 M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N.,  
927 Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., . . . Vitart, F. (2011). The ERA-Interim reanalysis:  
928 configuration and performance of the data assimilation system. *Quarterly Journal of the Royal*  
929 *Meteorological Society*, 137(656), 553–597. <https://doi.org/10.1002/qj.828>

930

931 Fernández-Montblanc, T., Voudoukas, M., Ciavola, P., Voukouvalas, E., Mentaschi, L., Breyiannis, G.,  
932 Feyen, L., & Salamon, P. (2018). Towards robust pan-European storm surge forecasting. *Ocean Modelling*,  
933 133, 129–144. <https://doi.org/10.1016/j.ocemod.2018.12.001>

934

935 Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., & Mossa, M. (2017). Coastal ocean forecasting  
936 with an unstructured grid model in the southern Adriatic and northern Ionian seas. *Natural Hazards and*  
937 *Earth System Sciences*, 17(1), 45–59. <https://doi.org/10.5194/nhess-17-45-2017>

938

939 Figueiredo, R., Rangel-Parra, R., Bussi, G., Ceresa, P., Coccia, G., & Martina, M. L. (2024). A semi-  
940 quantitative multi-hazard risk assessment framework for European coastal urban areas. *Geomatics Natural*  
941 *Hazards and Risk*, 15(1). <https://doi.org/10.1080/19475705.2024.2378994>

942

943 Gilleland, E., & Katz, R. W. (2016). extRemes2.0: An Extreme Value Analysis Package inR. *Journal of*  
944 *Statistical Software*, 72(8). <https://doi.org/10.18637/jss.v072.i08>

945

946 Gilleland, E. (2020). Bootstrap Methods for Statistical Inference. Part II: Extreme-Value Analysis. *Journal*  
947 of Atmospheric and Oceanic Technology

948

949 Ghanbari, M., Arabi, M., Kao, S., Obeysekera, J., & Sweet, W. (2021). Climate Change and Changes in  
950 Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts. *Earth's Future*, 9(5).  
951 <https://doi.org/10.1029/2021ef002055>

952

953 Gori, A., & Lin, N. (2022). Projecting Compound Flood Hazard Under Climate Change With Physical  
954 Models and Joint Probability Methods. *Earth's Future*, 10(12). <https://doi.org/10.1029/2022ef003097>

955

956 Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal  
957 cities. *Nature Climate Change*, 3(9), 802–806. <https://doi.org/10.1038/nclimate1979>

958

959 Intergovernmental Panel on Climate Change (IPCC). (2023). *Climate Change 2022 – Impacts, Adaptation  
960 and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental  
961 Panel on Climate Change*. Cambridge University Press. <https://doi.org/10.1017/9781009325844>

962

963 Intergovernmental Panel on Climate Change (IPCC). (2014). *Climate Change 2013 – The Physical Science  
964 Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on  
965 Climate Change*. Cambridge University Press. <https://doi.org/10.1017/CBO9781107415324>

966

967 Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A.,  
968 Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,  
969 Hempelmann, N., Jones, C., Keuler, K., Kovats, S., . . . Yiou, P. (2014). EURO-CORDEX: new high-  
970 resolution climate change projections for European impact research. *Regional Environmental Change*,  
971 14(2), 563–578. <https://doi.org/10.1007/s10113-013-0499-2>

972

973

974 Joint Research Centre (JRC): Institute for Environment and Sustainability, Burek, P., Ntegeka, V. and  
975 Knijff van der, J. (2013) LISVAP, evaporation pre-processor for the LISFLOOD water balance and flood  
976 simulation model – Revised user manual. Publications Office. <https://data.europa.eu/doi/10.2788/26160>

977

978 Jongman B, Hochrainer-Stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G,  
979 Rojas R, Ward PJ (2014) Increasing stress on disaster-risk finance due to large floods. *Nature Climate  
980 Change*. 4:264–268. <https://doi.org/10.1038/nclimate2124>

981

982 Khanal, S., Ridder, N., De Vries, H., Terink, W., & Van Den Hurk, B. (2019). Storm Surge and Extreme  
983 River Discharge: A Compound Event Analysis Using Ensemble Impact Modeling. *Frontiers in Earth  
984 Science*, 7. <https://doi.org/10.3389/feart.2019.00224>

985

986 Laino, E., Paranunzio, R., & Iglesias, G. (2024). Scientometric review on multiple climate-related hazards  
987 indices. *The Science of the Total Environment*, 945, 174004.  
988 <https://doi.org/10.1016/j.scitotenv.2024.174004>

989

990 Lima, F. N., Freitas, A. C. V., & Silva, J. (2023). Climate Change Flood Risk Analysis: Application of  
991 Dynamical Downscaling and Hydrological Modeling. *Atmosphere*, 14(7), 1069.  
992 <https://doi.org/10.3390/atmos14071069>

993

994 Maicu, F., De Pascalis, F., Ferrarin, C., & Umgiesser, G. (2018). Hydrodynamics of the Po River-Delta-  
995 Sea System. *Journal of Geophysical Research Oceans*, 123(9), 6349–6372.  
996 <https://doi.org/10.1029/2017jc013601>

997

998 Marcos, M., Jordà, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a  
999 regional model under climate change scenarios. *Global and Planetary Change*, 77(3–4), 116–128.  
1000 <https://doi.org/10.1016/j.gloplacha.2011.04.002>

1001

1002 Masina, M., Lamberti, A., & Archetti, R. (2015). Coastal flooding: A copula based approach for estimating  
1003 the joint probability of water levels and waves. *Coastal Engineering*, 97, 37–52.  
1004 <https://doi.org/10.1016/j.coastaleng.2014.12.010>

1005

1006 Moftakhar, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017).  
1007 Compounding effects of sea level rise and fluvial flooding. *Proceedings of the National Academy of  
1008 Sciences*, 114(37), 9785–9790. <https://doi.org/10.1073/pnas.1620325114>

1009

1010 Munang, R., Thiaw, I., Alverson, K., Liu, J., & Han, Z. (2013). The role of ecosystem services in climate  
1011 change adaptation and disaster risk reduction. *Current Opinion in Environmental Sustainability*, 5(1), 47–  
1012 52. <https://doi.org/10.1016/j.cosust.2013.02.002>

1013

1014 Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future Coastal Population Growth  
1015 and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment. *PLoS ONE*, 10(3), e0118571.  
1016 <https://doi.org/10.1371/journal.pone.0118571>

1017

1018 Oppenheimer, M., Hinkel, J., Magnan, A., Cai, R., Cifuentes-Jara, M., Deconto, R., Ghosh, T., Biesbroek,  
1019 R., Buchanan, M., Duvat, V., Ekyakin, A., Ford, J., Fortes, M., Gattuso, J., Kopp, R., Lawrence, J.,  
1020 Mackintosh, A., Melet, A., Mcleod, E., . . . Zhai, P. (2019). Sea Level Rise and Implications for Low-Lying  
1021 Islands, Coasts and Communities. In *The Ocean and Cryosphere in a Changing Climate: Special Report of  
1022 the Intergovernmental Panel on Climate Change* (pp. 321–446). chapter, Cambridge University Press  
1023 eBooks (pp. 321–446). <https://doi.org/10.1017/9781009157964.012>

1024

1025 Orton, P. M., Conticello, F. R., Cioffi, F., Hall, T. M., Georgas, N., Lall, U., Blumberg, A. F., & MacManus,  
1026 K. (2018). Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary. *Natural  
1027 Hazards*, 102(2), 729–757. <https://doi.org/10.1007/s11069-018-3251-x>

1028

1029 Paranunzio, R., Anton, I., Adirosi, E., Ahmed, T., Baldini, L., Brandini, C., Giannetti, F., Meulenberg, C.,  
1030 Ortolani, A., Pilla, F., Iglesias, G., & Gharbia, S. (2023). A New Approach towards a User-Driven Coastal  
1031 Climate Service to Enhance Climate Resilience in European Cities. *Sustainability*, 16(1), 335.  
1032 <https://doi.org/10.3390/su16010335>

1033

1034 Paranunzio, R., Guerrini, M., Dwyer, E., Alexander, P. J., & O'Dwyer, B. (2022). Assessing Coastal Flood  
1035 Risk in a Changing Climate for Dublin, Ireland. *Journal of Marine Science and Engineering*, 10(11), 1715.  
1036 <https://doi.org/10.3390/jmse10111715>

1037  
1038 Parodi, M. U., Giardino, A., Van Dongeren, A., Pearson, S. G., Bricker, J. D., & Reniers, A. J. H. M. (2020).  
1039 Uncertainties in coastal flood risk assessments in small island developing states. *Natural Hazards and Earth  
1040 System Sciences*, 20(9), 2397–2414. <https://doi.org/10.5194/nhess-20-2397-2020>  
1041  
1042 Quattrocchi, G., Simeone, S., Pes, A., Sorgente, R., Ribotti, A., & Cucco, A. (2021). An Operational  
1043 Numerical System for Oil Stranding Risk Assessment in a High-Density Vessel Traffic Area. *Frontiers in  
1044 Marine Science*, 8. <https://doi.org/10.3389/fmars.2021.585396>  
1045  
1046 Reimann, L., Vafeidis, A. T., & Honsel, L. E. (2023). Population development as a driver of coastal risk:  
1047 Current trends and future pathways. *Cambridge Prisms Coastal Futures*, 1.  
1048 <https://doi.org/10.1017/cft.2023.3>  
1049  
1050 Satterthwaite, D. (2009). The implications of population growth and urbanization for climate change.  
1051 *Environment and Urbanization*, 21(2), 545–567. <https://doi.org/10.1177/0956247809344361>  
1052  
1053 Sun, Q., Fang, J., Dang, X., Xu, K., Fang, Y., Li, X., & Liu, M. (2022). Multi-scenario urban flood risk  
1054 assessment by integrating future land use change models and hydrodynamic models. *Natural Hazards and  
1055 Earth System Sciences*, 22(11), 3815–3829. <https://doi.org/10.5194/nhess-22-3815-2022>  
1056  
1057 Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2011). An Overview of CMIP5 and the Experiment Design.  
1058 *Bulletin of the American Meteorological Society*, 93(4), 485–498. [https://doi.org/10.1175/bams-d-11-00094.1](https://doi.org/10.1175/bams-d-11-<br/>1059 00094.1)  
1060  
1061 Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., & De Vriend, H. J. (2013).  
1062 Ecosystem-based coastal defence in the face of global change. *Nature*, 504(7478), 79–83.  
1063 <https://doi.org/10.1038/nature12859>  
1064  
1065 Tiwari, A., Rodrigues, L. C., Lucy, F. E., & Gharbia, S. (2022). Building Climate Resilience in Coastal  
1066 City Living Labs Using Ecosystem-Based Adaptation: A Systematic Review. *Sustainability*, 14(17), 10863.  
1067 <https://doi.org/10.3390/su141710863>  
1068  
1069 Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice  
1070 Lagoon. Development, set up, calibration and validation. *Journal of Marine Systems*, 51(1–4), 123–145.  
1071 <https://doi.org/10.1016/j.jmarsys.2004.05.009>  
1072  
1073 Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F., Bellafiore, D., Ghezzo, M., & Bajo, M. (2014).  
1074 Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. *Journal of  
1075 Geophysical Research Oceans*, 119(4), 2212–2226. <https://doi.org/10.1002/2013jc009512>  
1076  
1077 Umgiesser, G., Ferrarin, C., Bajo, M., Bellafiore, D., Cucco, A., De Pascalis, F., Ghezzo, M., McKiver, W.,  
1078 & Arpaia, L. (2022). Hydrodynamic modeling in marginal and coastal seas — The case of the Adriatic Sea  
1079 as a permanent laboratory for numerical approach. *Ocean Modelling*, 179, 102123.  
1080 <https://doi.org/10.1016/j.ocemod.2022.102123>

1081  
1082 Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K., & Gooijer, J. (2015). Analysis of  
1083 a compounding surge and precipitation event in the Netherlands. *Environmental Research Letters*, 10(3),  
1084 035001. <https://doi.org/10.1088/1748-9326/10/3/035001>

1085  
1086 Van Der Knijff, J. M., Younis, J., & De Roo, A. P. J. (2008). LISFLOOD: a GIS-based distributed model  
1087 for river basin scale water balance and flood simulation. *International Journal of Geographical Information  
1088 Science*, 24(2), 189–212. <https://doi.org/10.1080/13658810802549154>

1089  
1090 Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K., Coppola, E., Corre, L., Van  
1091 Meijgaard, E., Nogherotto, R., Sandstad, M., Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O.  
1092 B., Ciarlo, J. M., Demory, M., Giorgi, F., Jacob, D., . . . Wulfmeyer, V. (2020). Evaluation of the Large  
1093 EURO-CORDEX Regional Climate Model Ensemble. *Journal of Geophysical Research Atmospheres*,  
1094 126(17). <https://doi.org/10.1029/2019jd032344>

1095  
1096 Vezzoli, R., Mercogliano, P., Pecora, S., Zollo, A., & Cacciamani, C. (2015). Hydrological simulation of  
1097 Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. *The  
1098 Science of the Total Environment*, 521–522, 346–358. <https://doi.org/10.1016/j.scitotenv.2015.03.096>

1099  
1100 Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling  
1101 of coastal flooding frequency within decades due to sea-level rise. *Scientific Reports*, 7(1).  
1102 <https://doi.org/10.1038/s41598-017-01362-7>

1103  
1104 Volodire, A., Sanchez-Gomez, E., Mélia, D. S. Y., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau,  
1105 I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave,  
1106 E., Moine, M., Planton, S., Saint-Martin, D., . . . Chauvin, F. (2012). The CNRM-CM5.1 global climate  
1107 model: description and basic evaluation. *Climate Dynamics*, 40(9–10), 2091–2121.  
1108 <https://doi.org/10.1007/s00382-011-1259-y>

1109  
1110 Voudoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. (2016a): Extreme Sea level -  
1111 RCP4.5. European Commission, Joint Research Centre (JRC) [Dataset] PID:  
1112 <http://data.europa.eu/89h/e9e42344-119d-479e-9bc7-57400d12a8a2> - A (Accessed on 10 june 2024)

1113  
1114 Voudoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. (2016b): Extreme Sea level -  
1115 RCP85. European Commission, Joint Research Centre (JRC) [Dataset] PID:  
1116 <http://data.europa.eu/89h/a565eea4-5422-4c7d-a000-2e10ae872da7> - B (Accessed on 10 june 2024)

1117  
1118 Voudoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M. and Feyen, L. (2017), Extreme sea levels  
1119 on the rise along Europe's coasts. *Earth's Future*, 5: 304-323. <https://doi.org/10.1002/2016EF000505>

1120  
1121 Voudoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., & Feyen, L.  
1122 (2018). Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard.  
1123 *Nature Communications*, 9(1). <https://doi.org/10.1038/s41467-018-04692-w>

1124

1125 Voudoukas, M. I., Mentaschi, L., Hinkel, J., Ward, P. J., Mongelli, I., Ciscar, J., & Feyen, L. (2020).  
1126 Economic motivation for raising coastal flood defenses in Europe. *Nature Communications*, 11(1).  
1127 <https://doi.org/10.1038/s41467-020-15665-3>

1128

1129 Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., & Slangen, A. B. A. (2017).  
1130 Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. *Nature  
1131 Communications*, 8(1). <https://doi.org/10.1038/ncomms16075>

1132

1133 Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding  
1134 from storm surge and rainfall for major US cities. *Nature Climate Change*, 5(12), 1093–1097.  
1135 <https://doi.org/10.1038/nclimate2736>

1136

1137 WAVEWATCH III Development Group (WW3DG), (2019). User manual and system documentation of  
1138 WAVEWATCH III version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA,  
1139 465 pp. + Appendices. <https://github.com/NOAA-EMC/WW3/wiki/files/manual.pdf>

1140

1141 Wicks, A. J., & Atkinson, D. E. (2016). Identification and classification of storm surge events at Red Dog  
1142 Dock, Alaska, 2004–2014. *Natural Hazards*, 86(2), 877–900. <https://doi.org/10.1007/s11069-016-2722-1>

1143

1144 Yang, S., Sheng, J., Ohashi, K., Yang, B., Chen, S., & Xing, J. (2023). Non-linear interactions between  
1145 tides and storm surges during extreme weather events over the eastern Canadian shelf. *Ocean Dynamics*,  
1146 73(5), 279–301. <https://doi.org/10.1007/s10236-023-01556-w>

1147

1148 Zheng, F., Westra, S., & Sisson, S. A. (2013). Quantifying the dependence between extreme rainfall and  
1149 storm surge in the coastal zone. *Journal of Hydrology*, 505, 172–187.  
1150 <https://doi.org/10.1016/j.jhydrol.2013.09.054>

1151

1152 Zijl, F., Verlaan, M., & Gerritsen, H. (2013). Improved water-level forecasting for the Northwest European  
1153 Shelf and North Sea through direct modelling of tide, surge and non-linear interaction. *Ocean Dynamics*,  
1154 63(7), 823–847. <https://doi.org/10.1007/s10236-013-0624-2>

1155

1156 Zhong, M., Xiao, L., Li, X., Mei, Y., Jiang, T., Song, L., & Chen, X. (2023). A study on compound flood  
1157 prediction and inundation simulation under future scenarios in a coastal city. *Journal of Hydrology*, 628,  
1158 130475. <https://doi.org/10.1016/j.jhydrol.2023.130475>