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Abstract. Permafrost degradation in the Source Area of the Yellow River (SAYR) has intensified under climate warming. Yet, 

the spatiotemporal patterns of freeze–thaw (F-T) dynamics remain poorly understood due to the limited availability of high-

resolution data. Here, we integrate ERA5-Land reanalysis with a Digital Elevation Model (DEM) to develop a 1 km-resolution 

monthly surface temperature dataset (1981–2020), corrected for topographic bias using elevation-dependent temperature lapse 

rates. Based on this dataset, we calculate F-T indices (freezing/thawing index, thaw duration) and analyze their trends. Results 15 

show DEM correction significantly improves temperature accuracy (RMSE = 1.22°C, ubRMSE = 0.38°C). Over 40 years, air 

and surface freezing indices declined by –100.43 and –141.85°C·d/10a, while thawing indices increased by 83.74 and 

98.47°C·d/10a, respectively. Thaw duration extended by 1.17 days/decade, with stronger trends in low-elevation zones. 

Freeze–thaw ratios (N-factor) exceeded 1 across all sites, indicating accelerated permafrost degradation. Spatial heterogeneity 

reveals thaw dominance in southeastern valleys (N > 5) versus residual freezing capacity in northwestern highlands (N < 2), 20 

driven by altitude and vegetation insulation. This study provides the first long-term, high-resolution F-T dataset for SAYR, 

demonstrating that topo-climatic gradients and vegetation feedbacks critically regulate permafrost stability. Our findings 

advance regional permafrost modeling and inform infrastructure resilience strategies in the context of climate change. 

1 Introduction 

The Yellow River headwaters are located in the southeastern part of the Qinghai-Tibetan Plateau (average elevation >4000 m), 25 

which is a transition zone between perennial and seasonal permafrost. As a high-temperature permafrost zone on the Tibetan 

Plateau (UNEP; Cheng et al. 2019), its permafrost is characterized by high temperature, thin thickness, and poor stability (Luo 

et al. 2012), and is highly sensitive to global warming-the warming rate has reached 0.61°C/10a since 2000, which is much 

higher than the average level of the Tibetan Plateau (Liu et al. 2021; Jin et al. 2022), leading to accelerated degradation 
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phenomena such as earlier thawing of permafrost, shorter duration of freezing, increased thickness of the active layer, and 30 

increased frequency of freezing and thawing (Zhao et al. 2020; Qin et al. 2020). These changes affect the ecological security 

of the region through hydrological composition, carbon cycle, and vegetation succession(Wang et al. 2022a; Jin et al. 2022; 

Ge et al. 2024; Piao et al. 2019), and even disrupt the Asian monsoon system (IPCC 2021; Qin et al. 2020). The accelerated 

permafrost degradation pattern in the Yellow River headwaters is similar to the Arctic permafrost tipping point (Douglas et al. 

2021), highlighting the importance of ecological early warning for the mid-latitude permafrost region under global warming. 35 

And finally, the lack of high-precision datasets with long time series: the existing monitoring of the freeze–thaw index is 

mostly limited to short time series (<20 years) or coarse resolution (>10 km) (Gao et al. 2023; Ge et al. 2024; Wang et al. 

2018), which limits the distribution of permafrost for climate feedback simulation and assessment. Modeling and climate 

feedback assessment. 

Therefore, this study constructs the first 1-km resolution monthly surface temperature dataset (1981-2020) in the Yellow River 40 

headwater area by integrating the ERA5 land reanalysis data with the high-resolution DEM and overcomes the problem of 

topographic bias correction (RMSE reduction of 46-92%). On this basis, we systematically quantify the spatial and temporal 

evolution trends of freezing/thawing indices, thawing ratio, and duration of thawing period, and analyze the regulation 

mechanism of freezing/thawing differentiation by elevation and vegetation. The major innovations of this study include: (1) 

the introduction of an elevation temperature lapse rate correction model, which improves the accuracy of surface temperature 45 

estimation in complex terrain; (2) the construction of a 40-year long-series, high-resolution freeze–thaw dynamics dataset, 

which fills the gap of monitoring at the regional scale; and (3) the analysis of the mechanism, which systematically quantifies 

the nonlinear coupling between freeze–thaw variations and terrain-vegetation factors. 

2 Data and methods 

2.1 Study area 50 

The source area of the Yellow River (SARY) is located in the northeastern part of the Qinghai-Tibetan Plateau (Figure 1), 

between the Bayan Kra Mountains and the Animachin Mountains in the southeastern part of Qinghai Province. The area's 

geomorphology is complex and diverse. It is dominated by plateau flatlands, mountains, hills, terraces, and lake basins. The 

topography is high in the west and low in the east. The average elevation ranges from 4,100 to 4,600 meters (Liu and Huang, 

2020). The SARY is a large area of continuous, discontinuous, and seasonal permafrost. As part of the "Roof of the World" 55 

Tibetan Plateau, the SAYR has a typical inland alpine climate, with an annual mean temperature ranging from -1.67 to 1.38°C, 

an annual precipitation range of 447 to 702 mm, and an annual evaporation range of 1,077 to 1,418 mm (LI, 2023). There is a 

significant spatial gradient, with higher temperatures and lower precipitation in the northwest and lower temperatures and 

higher precipitation in the southeast. There are distinct wet and dry seasons (Zhang et al., 2006). Alpine meadow is one of the 

most important grassland types in the SARY, accounting for more than 80% of the total area of the source area, along with 60 

alpine grassland and alpine swamp meadow (Zhou et al., 2005; Li et al., 2023),  supplemented by alpine early swamps, thickets, 
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and sparse alpine vegetation (Zhang et al., 2006). However, the area is ecologically vulnerable due to landscape fragmentation 

caused by the expansion of building land since 1980, coupled with overgrazing, climate change, and vegetation degradation, 

which accounted for 26.8% of the area in the early 21st century (Zhou et al., 2012). The soil is dominated by alpine meadow 

and grassland soils with an average thickness of 38 cm, and the carbon and nitrogen reserves are significantly affected by 65 

permafrost degradation (Li et al., 2021). As the most important water conservation area in the Yellow River Basin (Mo et al., 

2022), the ecological changes in this region play a decisive role in downstream water security. The study showed that the 

vegetation NDVI showed an improving trend from 2000 to 2019, but the ecological risks caused by permafrost degradation 

climate warming,  and humidification still need to be monitored in the long term (Cao et al., 2021). 

 70 

Figure 1. Geographic location of the source area of the Yellow River (SAYR). (a) Background shading indicates a 1-km Digital Elevation 

Model (DEM) in meters. Red triangles indicate meteorological station locations used in this study; (b)The inset shows the location of 

SAYR within the Qinghai-Tibetan Plateau;(c) Distribution of meteorological stations, roads, and water systems in the SAYR. Coordinates 

are in WGS84 (approx. 32.53–35.67°N, 95.11–101.78°E). DEM source: SRTM. 
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2.2 Datas 75 

2.2.1 Digital Elevation Model (DEM) 

In this study, we used the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) provided by the United 

States Geological Survey (USGS). The original resolution of the DEM is 90 m, which was resampled to 1 km to match the 

spatial resolution of the raster meteorological data. The DEM data were projected to the WGS84 coordinate system and clipped 

to the extent of the Yellow River source region. The DEM served two major purposes in this study: (i) to provide elevation 80 

information as a covariate in the interpolation of meteorological variables, and (ii) to calculate monthly lapse rates used for 

elevation bias correction of ERA5-Land surface temperature data. 

2.2.2 Meteorological Data (CMD and Station Observations) 

The meteorological station data and raster data utilized in this study were obtained from the China Meteorological Data 

Network (http://data.cma.cn). The meteorological raster data (CMD) are monthly datasets with 1 km spatial resolution. They 85 

are generated by interpolating long-term station observations using the thin-plate spline method with elevation as an auxiliary 

variable. 

The station data include daily mean air temperature (1.5 m height) and surface temperature (0 cm depth) records from seven 

meteorological stations in the SAYR for the period 1981–2020. The meteorological station data in this study serve two main 

purposes: (i) as independent observations for validating both the CMD gridded dataset and the bias-corrected ERA5-Land 90 

product, and (ii) they provide the basis for estimating monthly temperature lapse rates, which were subsequently applied to 

correct elevation bias in ERA5-Land surface temperature fields. All meteorological data underwent rigorous quality control, 

including value range checks and consistency verification, to ensure the reliability of the datasets. 

2.2.3 ERA5-Land Reanalysis Data  

The ERA5-Land data, developed by the European Center for Medium-Range Weather Forecasts (ECMWF, 95 

https://cds.climate.copernicus.eu), represents the fifth generation of global climate-atmosphere reanalysis data provided by the 

Copernicus Climate Change Service (C3S) (Muñoz-Sabater et al., 2021). It features a spatial resolution of 0.1° (~10 km), 

hourly temporal resolution, and improved accuracy compared with its predecessor, ERA-Interim (Frederico Johannsen et al., 

2019). 

In this study, we selected the ERA5-Land skin temperature (SKT) data for the period 1981–2020. SKT is a physically based 100 

variable representing the radiative surface temperature in the surface energy balance. Although ERA5-Land provides high-

quality estimates, its relatively coarse resolution may not capture fine-scale topographic variations in mountainous regions 

such as the SAYR. To address this limitation, we applied an elevation bias correction to ERA5-Land SKT data, using lapse 

rates derived from station observations in combination with the DEM. Specifically, the monthly lapse rates estimated from 

CMD and station datasets were used to adjust ERA5-Land SKT to 1 km resolution, thereby improving its representation of 105 
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surface temperature variability in complex terrain. This bias-corrected ERA5-Land product was then employed as the primary 

input for calculating freeze–thaw indices and other surface temperature metrics in subsequent analyses. 

2.3 DEM-based surface temperature correction 

In mountainous areas with complex topography, the spatial distribution of surface temperatures is strongly influenced by 

elevation. Traditional horizontal interpolation methods (e.g., Kriging or inverse distance weighting, IDW) only account for 110 

horizontal spatial heterogeneity, neglecting the influence of terrain elevation (Chen et al., 2011). This omission can lead to 

errors of 2–5 °C in high‐altitude areas such as the source area of the Yellow River (SAYR), where most elevations exceed 

4,000 m.  

To improve temperature accuracy, we applied a DEM-based elevation bias correction to the ERA5-Land skin temperature 

(SKT) product, assuming that elevation is the dominant control of temperature variation. Other factors, such as slope, aspect, 115 

or land cover, were not explicitly considered due to data limitations and to preserve model simplicity. 

The overall correction procedure consists of three main steps (Figure 2). 

Step 1 – Estimation of monthly lapse rates 

For each month t during 1981–2020, the monthly mean surface temperature observed at meteorological stations (STobs) were 

regressed against station elevation (h) to derive the monthly surface-temperature lapse rate  (Γt): 120 

𝛤𝑡 =
∑ (ℎ𝑖−ℎ)(𝑇𝑖−𝑇)𝑖

∑ (ℎ𝑖−ℎ)
2

𝑖

                                                                                                                                                    (1) 

where，ℎ𝑖 and 𝑇𝑖  are the station elevation and observed monthly mean temperature at station i, and  ℎ̅ and 𝑇̅ are their means.  

The corresponding regression relationship can be written as: 

𝑇𝑖 = 𝑎𝑖 + Γ𝑡 ∙ ℎ𝑖 + 𝜀𝑖                                                                                                                                                              (2) 

where 𝑎𝑖 is the intercept, and 𝜀𝑖 is the residual. 125 

𝛤𝑡  (℃/100m-1) is typically negative, reflecting decreasing temperature with increasing altitude. 

To ensure the robustness, lapse rate with |Γₜ| > 0.02 °C m⁻¹ (≈ 2 °C per 100 m), a correlation coefficient R² < 0.2, or an 

insufficient number of valid stations (n < Nₘᵢₙ) were replaced by the climatological monthly mean lapse rate (Γₘ) derived 

from long-term averages. 

Step 2 – Elevation bias correction and downscaling 130 

The ERA5-Land SKT data (T₀, 0.1° spatial resolution) was resampled to 1 km by bilinear interpolation, resulting in T₀_1km. 

The elevation correction was then applied on a pixel-by-pixel basis as: 

𝑆𝑇 = 𝑇01𝑘𝑚 + Γ𝑡(𝐻𝐷𝐸𝑀 − 𝐻𝑟𝑒𝑓)                                                                                                                                         (3) 

Where 𝐻𝐷𝐸𝑀  is the DEM represents the DEM elevation of each 1-km grid cell, and 𝐻𝑟𝑒𝑓  is the mean elevation of the 

corresponding ERA5-Land grid cell. 135 
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This process was implemented in Python (xarray, GDAL, and numpy). The resulting dataset comprises a monthly, 1 km-

resolution surface temperature (ST) product for the period 1981–2020. 

Step 3 – Accuracy validation 

To evaluate the correction, ST was compared with station-based STobs. Performance metrics include the coefficient of 

determination (R²), root mean square error (RMSE), unbiased RMSE (ubRMSE), and mean bias error (Bias). Detailed 140 

formulas and results are provided in Supplement S1 (Tables S1–S2; Figure S1).

 

Figure 2. Flowchart of DEM-based elevation bias correction applied to ERA5-Land skin temperature (SKT). 
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2.4 Freeze–thaw indices and duration of thawing (DOT) 

The freeze–thaw process is a key factor controlling energy and water exchanges in permafrost regions (F. Nelson and S. Outcalt, 145 

1987; Wu et al., 2011; Zheng et al., 2022). To quantitatively characterize freeze–thaw dynamics, both air- and surface-based 

indices were derived from CMD air temperature and bias-corrected ERA5-Land ST datasets, respectively. 

Air-based indices (derived from CMD 1 km air temperature): Air Freezing Index (AFI), Air Thawing Index (ATI), and Air 

Freeze–Thaw Ratio (Na). 

Surface-based indices (derived from DEM-corrected ERA5-Land ST): Surface Freezing Index (SFI), Surface Thawing Index 150 

(STI), Surface Freeze–Thaw Ratio (Ng), and Thawing Duration (DOT). 

This distinction ensures that atmospheric and surface processes are characterized using their most appropriate data sources. 

(1) Definition of freeze–thaw indices: 

Following Chen et al. ( 2021), the freezing and thawing indices (FI, TI) are defined as the cumulative negative and positive 

temperatures, respectively. Using monthly mean data, they are computed as:  155 

𝐹𝐼 = ∑ min⁡(𝑇𝑡
12
𝑖=1 , 0), 𝑇𝐼 = ∑ max⁡(𝑇𝑡

12
𝑖=1 , 0)                                                                                                                         (4) 

where 𝑇𝑖  denotes the monthly mean temperature, either air temperature (Ta,i from CMD) or surface temperature (Ts,i from 

corrected ERA5-Land ST). 

The freeze-thaw ratio (N) reflects the relative dominance between thawing and freezing processes and serves as an indicator 

of permafrost thermal stability (Cheng et al., 2003). It is calculated as: 160 

𝑁𝑎 =
𝐴𝑇𝐼

𝐴𝐹𝐼
, ⁡⁡⁡⁡⁡𝑁𝑔 =

𝑆𝑇𝐼

𝑆𝐹𝐼
                                                                                                                                                                             (5) 

When N > 1, the thawing process dominates, indicating an increased risk of permafrost degradation; When N ≈ 1, freezing 

and thawing are approximately balanced, reflecting relatively stable permafrost conditions; When N < 1, freezing dominates, 

suggesting stabilization or growth of permafrost at the regional scale. 

The monthly thawing index (𝑇𝐼𝑚) is the sum of positive temperatures for each month, used later for estimating the thawing 165 

duration (DOT), while ATI/STI represent annual sums. 

Additionally, monthly minimum and maximum surface temperatures (STmin and STmax) were derived from the bias-corrected 

ERA5-Land surface temperature (ST) dataset. These variables were used to characterize surface temperature extremes and 

seasonal variability. 

(2) Thawing duration (DOT) 170 

To quantify the duration of thawing (DOT) in permafrost regions, we established a regression model between the monthly 

thawing index (TI) and the observed number of thawing days from meteorological stations. This regression was then applied 

to estimate annual DOT across the SAYR from 1981 to 2020. The regression equation is given as: 

𝐷𝑂𝑇 = {
0.171 × 𝑇𝐼𝑚 + 4.99⁡,⁡⁡⁡⁡⁡⁡⁡𝑇𝐼𝑚 ≤ 175⁡°𝐶 · 𝑑⁡
𝐷𝑚,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑇𝐼𝑚 > 175⁡°𝐶 · 𝑑

                                                                                                                       (6) 
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where a = 0.171 and b = 4.99 are regression coefficients derived from station observations, and Dm  denotes the total number 175 

of days in the corresponding month (30 or 31). This treatment ensures that months with high TI values are recognized as 

complete thawing months, while months with smaller TI values are estimated based on regression. Details of the regression 

validation and the corresponding scatter plot are provided in Supplement Figure S3. 

2.5 Mann-Kendall trend test and the Theil-Sen slope estimator 

To quantify the long-term trend of the freeze–thaw index, the statistical significance of the time series was assessed using the 180 

non-parametric Mann–Kendall test. The trend statistic S was calculated based on the relative size of the data points in the 

series (see  Supplement S3 for the formula). The direction of the trend and the confidence level (α = 0.05 or 0.01) were 

determined by the standardized test statistic Zmk. If | Zmk | > 1.96, the trend is significant at the p < 0.05 level. 

The Theil–Sen median method was used to calculate the trend slope β: 

𝛽 = Median (
𝑥𝑗−𝑥𝑖

𝑗−𝑖
)⁡⁡⁡∀𝑗 > 𝑖                                                                                                                                                      (8) 185 

Where xi and xj are the observed values in years i and j of the time series, respectively. This method is robust to outliers and 

suitable for analyzing trends in climate data (see Supplement S3 for a detailed derivation). 

3 Results and analysis 

3.1 High-precision surface temperature remote sensing data revision 

3.1.1 DEM correction of surface temperature data 190 

A linear regression analysis of surface temperature and elevation was conducted using monthly mean surface temperature data 

from seven meteorological stations in the SAYR. The findings indicated that the use of DEM-corrected surface temperature 

exhibited a superior ability to align with the monthly mean surface temperature of the stations within the study area. 

Additionally, the coefficients of determination (R2) values were all greater than 0.5, signifying the significance of the elevation 

factor in shaping the surface temperature distribution within the study region. The person's correlation coefficient was 195 

subsequently employed to calculate the vertical lapse rate (Γ) of the mean surface temperature in the study area, yielding a 

result of 0.63 ℃/100 m. Furthermore, given the substantial discrepancy in surface temperature between the warm and cold 

seasons in the SAYR, this study endeavored to characterize its temporal and spatial changes with greater precision. To this 

end, the vertical lapse rate of surface temperature was estimated every month (Table S1). 

An analysis of the vertical lapse rate data in December reveals that the Yellow River source region exhibits the most 200 

pronounced lapse rate during winter (-0.85 ℃/100m, R²=0.952) and the least significant lapse rate during summer (-

0.43 ℃/100m, R²=0.852). This phenomenon can be attributed to the pronounced radiative cooling experienced at the surface 

during winter months, coupled with the enhanced heat dissipation observed in the high-altitude region. This dynamic leads to 

an increase in the temperature gradient. Concurrently, the stable snow accumulation in the SAYR during winter, in conjunction 
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with the high surface albedo, contributed to the exacerbation of the temperature drop in the high-altitude zone, particularly in 205 

January, the coldest month. The model with a vertical decrement rate of -0.90 ℃/100m exhibited the strongest explanatory 

power, as indicated in Table S1 and Figure 3. On this basis, the ERA5-Land skin temperature product (SKT) was revised in 

conjunction with the Digital Elevation Model (DEM). The result was a month-by-month time-series surface temperature 

dataset (ST) with a 1 km resolution for the period 1981-2020, totaling 40 years of time-series data. 

3.1.2 Validation 210 

In this study, a correlation analysis was conducted between the STobs and the corrected ST dataset. The results demonstrated a 

high correlation between ST and STobs, with an R2 value of 0.939 (Figure 4). This finding indicates that the dataset can 

effectively reflect the spatial and temporal distribution of ST in the SAYR. A certain degree of overestimation is observed 

during the cold season, which may be attributable to the systematic bias of the ERA5-Land SKT data under low-temperature 

conditions. For the growing season, the site-scale root mean square error (RMSE) was 1.22 ℃, and the unbiased root mean 215 

square error (ubRMSE) was 0.38 ℃. These values suggest that the ST dataset is highly accurate during the growing season in 

the SAYR. Additionally, the monthly mean RMSE and ubRMSE for the ST dataset were 1.90 ℃ and 1.21 ℃, respectively. 

The ST root mean square error (RMSE) and unbiased root mean square error (ubRMSE) in winter were reduced by 81 % and 

36%, respectively, which significantly improved the accuracy of temperature estimation in alpine regions(Table S2 and Figure 

S1). The DEM-corrected 1 km resolution ST data demonstrate a more reasonable spatial distribution pattern in comparison 220 

with STobs. This is due to the former's ability to more accurately portray the details of the temperature field in mountainous 

areas. 

 

Figure 3. Monthly variation of the surface temperature lapse rate Γ (°C /100 m) estimated from station observations in the SAYR. Error 

bars = ±1 standard deviation of monthly site estimates. Winter months show the largest absolute lapse rates (e.g. Dec: −0.85 °C/100 m, 225 
R²=0.952).  
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Figure 4. Scatterplot of DEM-corrected monthly surface temperature (ST, °C) versus station observations (STobs, °C). Each point = 

monthly mean; dashed line = linear fit (R² = 0.939). RMSE (growing season) = 1.22 °C, ubRMSE = 0.38 °C. Cold-season overestimation 

is noted (see text). 230 

3.2 Characterization of temporal and spatial variations in the freeze–thaw cycle 

3.2.1 ST changes in the SAYR 

During 1981–2020, the surface temperature (ST) in the SAYR exhibited a significant upward trend. The multi-year mean ST 

was 3.54 °C, with an overall warming rate of 0.31 ± 0.02 °C/10a( Figure 5). Before 2000, the annual mean ST increased at a 

modest rate of 0.10 °C/10a, while after 2000 the rate accelerated to 0.25 °C/10a, about 2.5 times higher. This shift indicates 235 

an enhanced sensitivity of permafrost in the SAYR to recent climate warming.  

The trends of extreme temperature indices further highlight seasonal differences. The daily maximum ST (STmax) decreased 

slightly at –0.19 °C/10a, while the daily minimum ST (STmin) increased strongly at 1.4 °C/10a. Consequently, the diurnal ST 

range narrowed significantly at –1.61 °C/10a, suggesting that winter warming exceeded summer warming. This asymmetric 

warming indicates that permafrost in the SAYR is particularly vulnerable, as the reduction in winter cooling limits frost 240 

penetration and accelerates active-layer deepening. Overall, the combined trends of rising mean ST, increasing STmin, and 

narrowing diurnal surface temperature range all point to enhanced permafrost degradation risks in the SAYR.  
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Figure 5. Interannual variations of mean surface temperature (ST), daily maximum (STmax), daily minimum (STmin), and 

diurnal surface temperature range in the Source Area of the Yellow River (1981–2020). Linear trends are shown with 245 

corresponding decadal rates. 

3.2.2 Spatial distribution of freeze–thaw indices 

The spatial distribution characteristics of the Atmospheric Freeze Index (AFI) and Surface Freeze Index (SFI) in the SAYR 

demonstrate a discernible spatial correlation with altitude. Specifically, both AFI and SFI demonstrate a distribution trend of 

high in the west and low in the east, with a concurrent decrease from the northwest to the southeast (Figure 6a, c). The AFI 250 

decreases from a westernmost range of 9385.07 ℃‧d to an easternmost range of 297.7 ℃‧d, with a regional mean of 

2274.25 ℃‧d. Meanwhile, the SFI decreases from 3119.73°C‧d in the westernmost range to less than 50 ℃‧d in the easternmost 

range, with a regional mean of 900.01°C. The highest values of both are in the Marduo area, and the lowest values are in the 

Banma area. The SFI exhibits greater spatial variability than the AFI, suggesting that surface temperature is more strongly 

influenced by topography. This distributional feature aligns with the findings of Wang et al. (2019a). 255 
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Figure 6. Spatial distribution of freeze–thaw indices (1981–2020) in the SAYR: (a) Surface Freezing Index (SFI, °C·d); (b) Air Freezing 

Index (AFI, °C·d); (c) Surface Thawing Index (STI, °C·d); (d) Air Thawing Index (ATI, °C·d); (e) Surface freeze–thaw ratio (Ng, unitless); 

(f) Air freeze–thaw ratio (Na, unitless). All indices are computed from 1 km grids (SFI/STI from DEM-corrected ST; AFI/ATI from CMD 

air temperature). Colorbars show index values; higher SFI/AFI indicate stronger freezing. 260 

In contrast to the freezing index, the Atmospheric Thawing Index (ATI) and Surface Thawing Index (STI) exhibited a spatial 

distribution indicative of low west and high east, with a decrease from southeast to northwest Figure 6b,d). The range of the 

ATI was found to be from 681.53 to 2178.24 ℃·d, with a mean value of 681.53 ℃·d. The STI ranged from 446.13.24 to 

3917.47 ℃·d, with a mean value of 1896.35 ℃·d. The highest values of both variables are observed in the Baima area, while 
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the lowest values are recorded in the Maqin area. Furthermore, the amplitude of spatial variability of STI is greater than that 265 

of ATI, suggesting that the warming effect of the land surface is more pronounced.  

The air thaw ratio (Na) ranges from 0.44 to 2.85, with a mean value of 1.24, indicating a distribution of low in the west and 

high in the east, with Na < 1 in Maduo, Gande, and Dari (Table 1). This finding suggests that freezing capacity remains 

predominant. In Jiuzhi and Banma, Na >1 suggests an escalation in the degradation of perennial permafrost. The ground thaw 

ratio (Ng) ranges from 1.31 to 5.73, with a mean value of 2.73. The ground thaw ratios are typically greater than 1, and their 270 

distribution demonstrates a tendency to increase with decreasing altitude from west to east (Figure 6e. The Maduo, Gande, and 

Dari regions, with a freezing capacity index (Ng) of less than 2, continue to be dominated by freezing capacity. In contrast, the 

Banma region, with a freezing capacity index (Ng) greater than 5, exhibits a significant increase in thawing capacity. The trend 

of permafrost degradation is the most evident in this region (Table 1). As the melting index increases and the freezing index 

decreases, the thaw-to-freeze ratio increases significantly, indicating that the degradation of perennial permafrost is 275 

accelerating. 

As demonstrated in Table 1, the magnitude of change in the temperature freeze–thaw index and the magnitude of change in 

the surface freeze–thaw index exhibited significant variation across different altitudes, temperatures, and surface coverages. 

Notably, the magnitude of change in the surface freeze–thaw index surpassed that of the atmospheric freeze–thaw index. 

Concurrently, the annual mean air temperature at each site is considerably lower than the surface temperature, and the heating 280 

effect of the surface on the atmosphere is greater than the cooling effect. The magnitude of Ng is considerably higher than Na 

at each site, suggesting that the surface temperature is elevated relative to the air temperature during the warm season. However, 

the magnitude of Ng has been substantially diminished with the rise in air temperature, indicating that the perennial permafrost 

is undergoing a thawing trend. Although the value of Ng >1 at all sites in the SAYR, the thaw-to-freeze ratio exhibits a 

significant increase. 285 

Table 1. Freeze–thaw indices and n-factors for air and ground temperatures 

Site DEM AT ST ATI AFI Na STI SFI Ng 

Maduo 4273.1 -3.12 1.46 877.97 1977.71 0.44 1817.24 1384.23 1.31 

Maqin 3719.8 0.22 4.29 1353.32 1243.50 1.09 2306.02 902.44 2.56 

Gande 4050.8 -2.08 1.76 1018.89 1742.48 0.58 1878.06 1292.78 1.45 

Dari 3968.3 -0.29 2.85 1246.49 1327.13 0.94 2027.98 1006.59 2.01 

Jiyzhi 3629.3 1.30 4.57 1461.79 958.50 1.53 2241.12 675.07 3.32 

Banma 3530.8 3.23 6.49 1851.42 649.47 2.85 2850.48 497.74 5.73 
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3.2.3 Temporal and spatial trends in Freezing Index 

From 1981 to 2020, both the AFI and SFI in the SAYR showed significant interannual decreasing trends (Figure 7a,b), 

decreasing at rates of -100.43 ℃⸱d/10a and -141.85 ℃⸱d/10a, respectively. Before 2000, the decreasing rate of SFI 290 

(5.64 ℃⸱d/10a) was significantly lower than that of the AFI (88.52 ℃⸱d/10a). After 2000, the decrease in the freezing index 

accelerated, particularly the decrease in SFI, which decreased to 207.24 ℃⸱d/10a from 2001 to 2010 and decreased further to 

721.77 ℃·d from 2010 to 2020. Over the past 40 years, AFI decreased by 286.9 ℃·d and SFI decreased by 389.72 ℃·d. This 

trend is consistent with that of STmin, indicating that the stability of perennial permafrost continues to weaken. 

With respect to spatial changes (Figure 7), the AFI exhibited a downward trend across all regions, with the exception of a 295 

slight uptick in the northeastern Maqin region. The rate of decline increased in a northerly to southerly direction, and SFI 

demonstrated a slight increase in the northwestern Qumalai and southeastern Baima regions. Concurrently, SFI underwent a 

decrease to varying extents in the remaining regions. Notably, the northeastern Maqin region experienced the most substantial 

decline, with a drop exceeding 150 ℃/10a. Overall, in the last 40 years, the stability of perennial permafrost has continued to 

weaken. The decline in FFI observed in the SAYR over the past four decades is of particular significance, suggesting that the 300 

permafrost is undergoing rapid degradation. 

 

Figure 7. Interannual trends of freezing indices (1981–2020). (a-b) Time series of region-mean AFI and SFI with linear lines (p<0.05); (c-

d) Spatial distribution of trend slopes (Theil–Sen estimate, units °C·d/10a) and significance (Mann–Kendall). Positive slopes indicate 

warming/thawing trends; negative slopes indicate cooling/freezing trends. 305 

https://doi.org/10.5194/egusphere-2025-2692
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

3.2.4 Temporal and spatial trends in the Thawing Index  

SAYR exhibited a substantial increase in both ATI and STI, with a p-value of less than 0.001, on an interannual scale from 

1981 to 2020. The growth rates recorded were 83.74 ℃·d/10a and 98.47 ℃·d/10a, respectively, as depicted in Figure 8a, b. 

Before the year 2000, the growth rates of ATI and STI exhibited a gradual rise, reaching 38.25 ℃·d/10a and 34.17 ℃·d/10a, 

respectively. However, since the year 2000, there has been a substantial increase in the growth rate of ATI, reaching 310 

112.47 ℃·d/10a. Similarly, the growth rate of STI has also shown a notable rise, reaching 105.01 ℃·d/10a, which is 

approximately three times the growth rate observed before the year 2000. Concurrently, the rate of change of both ATI and 

STI has proven to be greater than that of the freezing index, particularly following the year 2000.  

 
Figure 8. Interannual trends of thawing indices (1981–2020). (a-b) Time series of region-mean ATI and STI with linear lines (p<0.05); (c-315 
d) Spatial distribution of trend slopes (Theil–Sen estimate, units °C·d/10a) and significance (Mann–Kendall). Positive slopes indicate 

warming/thawing trends; negative slopes indicate cooling/freezing trends. 

The accelerated rise in air and ground temperatures during the thawing period, in conjunction with the freeze–thaw cycle, is 

increasingly dominated by the thawing process. The spatial distribution trend (Figure 8c, d) exhibited a contrasting pattern to 

the freezing index distribution trend. The rate of increase in ATI in the majority of the SAYR gradually increased from 320 

southeast to northwest, with the most significant increases observed in the areas of Maqin, Jiuzhi, and Bama, among others. 
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The STI demonstrated a marked increase in the entire Yellow River source region (p < 0.05), with the rate of increase exceeding 

30℃·d/10a. 

3.2.3 Temporal and spatial trends in duration of thawning 

Based on the DOT model described in Section 2.4, which was established from the regression relationship between monthly 325 

thawing index (TI) and thawing days using meteorological station observations, we estimated the regional thawing duration 

(DOT) using the DEM-corrected ERA5-Land ST dataset for 1981–2020. According to the results ( Figure 9), the regional 

mean DOT exhibited an overall increasing trend of 6.61 d/10a over the past 40 years, with a multi-year average of 229.05 d. 

Before 2000, the variability of DOT was minimal, decreasing slightly from an average of 222.37 d in the 1980s to 223.48 d in 

the 1990s. It then increased to 228.9 d in the 2000s and further to 241.4 d in the 2010s. 330 

 
Figure 9. Interannual trends (1981–2020) of the regionally averaged duration of thawing (DOT, days). Linear trend lines are shown, with 

statistically significant trends (p < 0.05).

 

Figure 10. Spatial distribution of thawing duration (DOT, days) averaged over 1981–2020 (a) and its spatial trend (Theil–Sen slope, days 335 
per decade; b). Trend significance (Mann–Kendall, p < 0.05) is hatched. 

As illustrated in Figure 10, the spatial distribution of DOT ranged from 95 to 319 days, with a clear gradient of short duration 

in the northwest and long duration in the southeast. In the low-altitude southeast zone, thawing typically began in early April 

and lasted until late October, exceeding 230 days in duration. By contrast, in the high-altitude region of the northwest, such as 
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the Mado area and the Qingshui River basin, DOT was less than 180 days. Over the past four decades, the mean DOT across 340 

the entire region exhibited an increase of 1.17 d/10a, with the southeastern low-elevation zone showing the strongest extension 

(3.6 d/10a). This phenomenon may be linked to the enhanced thermal insulation effect from increased vegetative cover. Overall, 

the significant prolongation of DOT in the SAYR confirms the ongoing degradation of perennial permafrost. 

4 Discussions 

4.1 Data applicability 345 

In the context of climate change research, the necessity of extensive, long-term climate data series, often spanning a century 

or more, is paramount. However, the Tibetan Plateau region presents a unique challenge in this regard due to the limited 

observation history, sparse distribution, and heterogeneous nature of meteorological stations. This poses a significant obstacle 

in studying perennial permafrost changes based solely on measured data. Consequently, extant studies frequently employ 

reanalyzed datasets (e.g., ERA, CRU, MERRA2) to evaluate the climate and environmental evolution of the region. 350 

Nevertheless, the existing reanalysis data continue to exhibit substantial limitations in the context of permafrost change 

research. On the one hand, the CRU month-by-month temperatures offer monthly-scale cardinal details, which may lead to 

some bias in the calculation of freeze–thaw indices compared to the daily average temperatures, especially during periods of 

alternating freezing and thawing (e.g., early summer and fall/winter seasons). This may result in an underestimation of the 

persistence of the freezing process or an overestimation of the energy accumulation during the thawing period due to the lack 355 

of high temporal resolution data. Conversely, the spatial resolution of the ERA5-land data is 0.1° (approximately 1500 km²/grid 

point), and the elevation change at this scale can be hundreds or even thousands of meters in the Tibetan Plateau, where the 

topography is highly complex. When the Lapse Rate Effect is taken into consideration, it becomes evident that the freezing 

and thawing indices calculated directly from ERA5-Land SKT data are likely to be subject to overestimation or 

underestimation. To illustrate, the raw ERA5-Land data have the potential to overestimate surface temperature and 360 

underestimate the freezing index at elevated altitudes, while the reverse trend may be observed at lower altitudes. 

In order to enhance the applicability of ERA5-Land data in the SAYR, this study systematically evaluated the impact of 

complex topography and local factors. The study implemented a high-resolution downscaling process for ERA5-Land SKT 

data through DEM correction and data validation at meteorological stations. The SAYR exhibits a wide distribution of high 

and low rolling hills, and the substantial altitude difference results in significant vertical changes in climate. The ST is low. 365 

The mean vertical lapse rate of ST in the SAYR was 0.63 ℃/(100 m), with significant seasonal variations. The maximum 

vertical lapse rate was observed in December (0.9 ℃/(100 m)), while the minimum was recorded in August (0.41 ℃/(100 m)). 

This result aligns closely with the findings of Chen et al. (2025) in the Qinghai-Tibetan Plateau, where the vertical lapse rate 

of ST in July was 0.47 °C/(100 m), and with those of Lin et al. (2018) in the Qilian Mountains, where the average vertical 

lapse rate of ST was 0.60 °C/(100 m), reaching a maximum of 0.91 °C/(100 m) in December. In consideration of the vertical 370 

lapse rate of surface temperature in various altitude regions, the DEM-based spatial interpolation method is employed to revise 
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the surface temperature every month. This approach effectively corrects the ERA5-Land data, thereby ensuring greater 

consistency with the characteristics of the actual terrain distribution. When combined with STobs for error assessment and 

optimization, the surface temperature estimation error caused by topographic complexity was significantly reduced. As a result, 

a high-precision ST dataset was generated with a resolution of 1 km. This dataset provides more reliable temperature-driven 375 

data for the study of the spatial and temporal evolution of the freeze–thaw cycle. 

Despite the efficacy of the DEM-based correction in enhancing the spatial accuracy of the ERA5-Land SKT data, residual 

uncertainties persist. On the one hand, given that the initial resolution of ERA5-Land is 0.1° (approximately 10 km), the issue 

of inadequate elevation response may persist even after correction within the intricate topography of the Yellow River source 

region. Conversely, the number of meteorological stations is restricted to only seven, with the majority situated within the 380 

convenient transportation area. This limitation results in a constrained spatial representation. Consequently, future research 

endeavors may enhance spatial integrity and accuracy by integrating multi-source remote sensing products. 

4.2 Elevation gradient effects and ecohydrological impacts of freeze–thaw indices  

The atmospheric freezing and thawing index are primarily governed by large-scale environmental conditions, including air 

temperature, solar radiation, air humidity, and atmospheric circulation. Meanwhile, the spatial differentiation of the surface 385 

thermal state and the freeze–thaw process is strongly influenced by elevation as well as local surface properties such as 

vegetation cover, soil moisture, and thermal conductivity. At the macro scale, latitude, longitude, and especially elevation exert 

a dominant control on freeze–thaw variability, while at the micro scale, factors such as slope aspect, vegetation density, and 

soil moisture modulate local conditions. 

In the SARY, the spatial distribution of freeze-thaw indices exhibited a pronounced elevation gradient effect. Specifically, 390 

freezing indices (AFI, SFI) decrease with declining elevation, while thawing indices (ATI, STI) increase, reflecting stronger 

freezing in the high-altitude zones and enhanced thawing in lower-altitude valleys (see Figure S3 in the Supplement). The 

correlation between elevation and thawing indices (R² = 0.63, p < 0.001) is notably stronger than that with freezing indices, 

underscoring the dominant role of elevation in controlling freeze–thaw dynamics. 

The SAYR lies between the BaYan Kala Mountains and the Animachin Mountains. The windward slopes, cold and humid air 395 

masses contribute to higher freezing indices, whereas valley regions experience higher thawing indices due to subsidence 

warming. This pattern is consistent with that of Gao et al. (2023), emphasized the role of elevation in shaping permafrost 

distribution via temperature gradients and surface energy balance.  

Furthermore, our results also reveal that regions' surface thaw indices below 1600 ℃⸱d are concentrated in high-elevation 

zones (above 4600 m), such as Zorlaiza, Bayan Kara Pass, and Zhuoya Daze. In these alpine wetlands, dense vegetation and 400 

high soil moisture increase surface albedo and soil heat capacity, thereby reducing heat input and lowering thawing indices. 

This finding agrees with Li et al. (2020), who demonstrated that alpine meadows vegetation substantially modulates solar 

radiation and enhances the thermal stability of permafrost. 
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Thus, the combined influence of elevation, vegetation, and soil moisture drives the spatial pattern of freeze–thaw indices, 

highlighting the ecohydrological significance of elevation-related processes in permafrost regions.  405 

4.3 Trends in perennial permafrost degradation and its ecohydrological implications 

The TI in the SAYR is found to be considerably higher than the TI, suggesting that the freeze–thaw cycle in this region is 

predominantly governed by the thawing process. This indicates that the perennial permafrost is experiencing an accelerated 

degradation trend. The surface thaw-thaw ratio (Ng) exhibited a higher value in comparison to the air thaw-thaw ratio (Na), 

demonstrating an increase that propagated from the northwest to the southeast (Ng > 2.0 was prevalent in the southeast). This 410 

observation signifies that the surface thaw depth persisted in its increase, concurrent with a gradual deepening of the active 

layer, a phenomenon that occurred in conjunction with the accumulation of heat within the permafrost. This phenomenon 

aligns with the findings of  Zhang et al. (2024), employing the TTOP model, predicted multi-year permafrost degradation. A 

general consensus emerges from the available data regarding the increasing multi-surface temperature (ST) in the SAYR. This 

phenomenon is concomitant with the decreasing trend of the freezing index and increasing trend of the thawing index (see 415 

Figure 7-8 ). This observation indicates a decline in the stability of the perennial permafrost. In particular, in areas with lower 

elevations and substantial vegetation cover, the thawing period persisted, with a duration exceeding 230 days. This prolonged 

thawing resulted in a significant accumulation of permafrost heat. 

The joint evolution of these indicators clearly reflects the degradation trend of perennial permafrost in the SAYR. The 

continuous degradation of perennial permafrost may have far-reaching impacts on ecosystems and hydrological processes. 420 

Permafrost thawing has been shown to increase soil water availability and promote vegetation growth. However, this 

phenomenon may also exacerbate soil carbon emissions and affect the regional carbon cycle (Peng et al., 2019). The thickening 

of the active layer has been shown to enhance subsurface microbial activities and accelerate soil organic matter decomposition, 

resulting in the release of greenhouse gases (Li et al., 2024). Conversely, multi-year permafrost has been shown to lead to 

increased groundwater runoff, thereby altering the hydrological cycle pattern and affecting the runoff process in the upper 425 

reaches of the Yellow River. The extension of the summer thaw period may result in an increase in the seasonal net flow in 

the SAYR. Conversely, the reduction of the winter freeze period may intensify the seasonal water shortage problem. 

The SAYR is located at the intersection of perennial permafrost and seasonal permafrost, and the surface thaw time is mainly 

controlled by elevation, which shows a significant spatial gradient, with longer thaw time in the southeastern low-elevation 

zone and shorter thaw time in the northwestern high-elevation zone. This is consistent with the findings of Gao et al. (2023) 430 

and Wang (2019a) that the higher the altitude, the lower the atmospheric pressure, the thinner the space, the weaker the 

insulation effect, the slower the temperature rise at higher altitudes, the longer the time the ground is in a frozen state, and the 

shorter the thawing period. The lower the altitude, the faster the temperature rises, combined with the increased thermal 

insulation of vegetation in the southeast of the source area, prolongs the melting period. Meanwhile, the observed increase in 

thaw duration (1.2 d/10a) in the SAYR is consistent with the pan-Arctic trend of permafrost degradation (Biskaborn et al., 435 
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2019; Obu et al., 2019), suggesting a synchronous response of permafrost to anthropogenic forcing at both mid- and high 

latitudes. This is closely linked to temperature increases and changes in the surface heat balance associated with global 

warming, leading to shorter surface freezing periods and earlier and longer thawing periods, which in turn affect regional 

hydrological processes and ecosystem stability. In addition, permafrost degradation poses a potential threat to the safety of 

regional infrastructure. For example, in areas of road and dam construction, the increased thickness of the active layer can lead 440 

to a reduction in the bearing capacity of the foundations, which can induce engineering diseases such as pavement cracking 

and pipeline fracture (Hjort et al., 2022; Ran et al., 2022). Therefore, the results of this study are an important reference for 

future infrastructure site planning and design. 

4.4 Vegetation's role in regulating the freeze–thaw cycle 

Vegetation has been identified as a critical factor influencing the thermal stability of permafrost, which exerts a substantial 445 

effect on the freeze–thaw cycle index and the duration of the thaw period by modifying the surface energy balance, regulating 

soil moisture, and influencing albedo and transpiration (Gao et al., 2023). The spatial differentiation of the freeze–thaw index 

in the Yellow River catchment is influenced by climatic factors as well as the type and cover of surface vegetation. As 

demonstrated in Figure 8, the STI exhibited a marked increase in the alpine meadow and wetland vegetation area in the 

southeast relative to the grassland bare rock area in the northwest. This phenomenon is closely related to the thermal insulation 450 

effect of high vegetation cover. As demonstrated in related studies (Shen et al., 2015; Li et al., 2020), alpine meadows have 

been shown to slow permafrost degradation by increasing the surface soil heat capacity and reducing the magnitude of daily 

changes in soil temperature. During summer months, the process of transpiration in alpine meadows has been observed to 

reduce soil temperatures by 0.5-1.2°C (Shen et al., 2015). This phenomenon functions as a cooling agent, thereby indirectly 

inhibiting the growth of the thaw index. During the winter months, vegetation plays a pivotal role in regulating surface heat 455 

dissipation, functioning as a form of thermal insulation, and thereby reducing the freezing index (Li et al., 2024). Areas 

exhibiting elevated surface vegetation cover (e.g., the southeast) demonstrated higher thaw/freeze ratios (Ng > 2.0), indicating 

that as vegetation succession progresses in response to climate warming, meadow areas may experience an augmentation in 

surface heat accumulation, an extension of thaw periods, and acceleration in the degradation of perennial permafrost. 

In this study, the effect of local microtopography (e.g., valley winds) on surface temperature was not taken into account, which 460 

may lead to a bias in the calculation of local freezing and thawing indices. The spatial interpolation accuracy can be further 

improved in the future by combining higher-resolution DEM and remote sensing data (Sentinel-3 LST). In addition, the 

missing SKT data (<5%) due to cloud cover were filled by linear interpolation in this study, which may affect the temperature 

accuracy in some areas. In the future, data fusion can be performed by combining multi-source remote sensing data, such as 

MODIS LST and Sentinel-3 LST, to improve data completeness and reliability. 465 
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5 Conclusion 

In this study, we developed a 1 km freeze–thaw dataset of the SAYR from 1981 to 2020. This dataset was constructed using 

DEM-corrected ERA5 land SKT data. The construction of this dataset solved the difficult problem of temperature downscaling 

in high-elevation and complex terrain areas. It also significantly improved the accuracy of ST estimation (RMSE=1.22 ℃, 

ubRMSE=0.38 ℃). The findings indicate a substantial decline in the air and surface freezing indices within the source region 470 

of the Yellow River over the past four decades. This decline is evident in the observed decrease of -100.43 ℃/10a and -141, 

respectively. As the temperature increased from 85°C to 100°C, the thawing indices exhibited a consistent upward trend, 

reaching 83.74°C/10°C and 98.47°C/10°C, respectively. Furthermore, the thawing ratio, N, consistently exceeded the value of 

1 and demonstrated an upward trajectory, suggesting a discernible trend of multi-year permafrost degradation. Concurrently, 

the duration of thaw (DOT) exhibited a marked increase at a rate of 1.2 d/10a, particularly in the southeastern region 475 

characterized by lower elevations, which proved to be the most substantial. The freeze–thaw cycle in the SAYR exhibits a 

discernible topographic gradient distribution, which is collectively governed by elevation, climate warming, and vegetation 

type. The freezing capacity remains robust in the high-altitude region, while the thawing process is accelerated in the low-

altitude area. These observations suggest that topography and ecological factors play a pivotal role in determining the stability 

of permafrost. The accelerated degradation of permafrost has far-reaching consequences for alpine ecosystems, including 480 

alterations to water cycling, vegetation succession, and carbon flux. This phenomenon also poses a significant challenge to 

infrastructure security. The consolidation of the thaw layer may result in a reduction of foundation stability, thereby increasing 

the likelihood of roadbed impairment thawing and subsidence. Consequently, the findings of this study offer a scientific 

foundation for the establishment of ecological protection red lines, the development of climate-adapted infrastructure planning, 

and the assessment of regional permafrost risk. The findings of this study indicate that permafrost may incur heightened 485 

degradation risks in the context of future climate warming, suggesting that permafrost may be susceptible to more severe 

degradation risks in the future. 
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